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ABSTRACT: In this paper, the formulation and the solution procedure for optimal placement of satellite 
components is given. Satellite internal space is discretized into three- dimensional grid (cubes) such as each cube 
represents a unit volume. Components or subsystems are approximated by a box with integer dimensions based 
on its largest three dimensions. The placement problem is formulated as a discreet optimization problem and 
solved with genetic algorithms. The optimization variables represent the location of the center of mass of each 
component. Different constraints and requirements including the non- intersection of components are also 
applied. The solution procedure was tested with simple two-dimensional test cases.   

 
 
INTRODUCTION 

 
Space technology is growing every day due to, human 
ambition of invading the space. Satellites are 
increasingly used in telecommunications, scientific 
research, surveillance, and meteorology. These 
satellites differ widely in their size and onboard 
components. To put these satellites in their orbits 
around the earth we are limited to the size of the 
storage compartment inside the launching vehicle. So 
depending on the launcher, we need to make sure that 
the satellite size doesn’t exceed certain dimensions. It 
is also preferable to reduce the product of inertia to 
simplify the modeling and control of satellite motion 
so there would be small or no coupling of forces and 
moments between different axes.1,2 
 
In this work we are dealing with the problem of 
optimum allocation of satellite component. 
Components placement in a satellite or any other type 
of vehicle is not a trivial task.  It is a popular problem 
in many industries, such as car or aircraft industries. 
It is usually required to place the components or 
subsystems, such as to satisfy certain requirements 
like mass balance, location of center of mass, 
requirements on moments of inertia, etc. There are 
also different constraints such as some component 
should not placed close to each other, such as 
magnetic torquers which should not be placed close to 
magnetometers. Some other components should be 
placed as far as possible in the satellite such as GPS 
antennas when used for attitude control. Such 
problems can be formulated as a discrete optimization 
problem and genetic algorithms will be used to solve 
it.  
   
Generally, the problem is three dimensional with 
optimization variables representing the location of the 
center of mass of each component. But for trays type 

satellites, the problem can be reduced to few two 
dimensional problems (depending on the number of 
trays). Additional constraints have to be introduced to 
guaranty non-intersection of components. 
 
The solution procedure is based on genetic 
algorithms. The use of GA’s has been instrumental in 
achieving good solutions to discrete optimization 
problems. The discrete nature of the components 
placement problem has been recognized and the GA 
approach has been successfully applied to solve such 
problems3,4. 
 
The paper will introduce the general formulation and 
solution procedure of the problem including some 
cost functions and constraints thought by the authors 
to be the most frequently used in components 
allocation. Also some two dimensional problems will 
be solved at the end of the paper. 
 
 
FORMULATION OF THE PROBLEM 
 
Generally, the satellite volume is discretized into 
three- dimensional grid of cubic elements such as 
each cube represents a unit volume (based on unit 
length cm, mm, inch, etc.). Each component is 
approximated by rectangular with integer dimensions 
based on its largest three dimensions. For example, if 
the largest dimensions of a certain component are 3.7, 
7.6 and 4.5 then the used dimensions are 4, 8, and 5.  
 
For satellites with volume divided into trays, the 
problem reduces to two-dimensional with tray area 
divided into a grid of square elements. Each square in 
that grid represents a unit area (i.e. unit length in x 
direction multiplied by unit width in y direction). 
Each component or subsystem is converted to a box 
in the three-dimensional case or rectangle in the two-
dimensional case using its maximum dimensions. 
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This integer approximation of the element shape 
keeps the same location of the center of mass and 
moments of inertia of the original element. Figure 1 
shows an example of a two-dimensional tray with two 
elements a circular element approximated as a square 
and an elliptical element approximated as a rectangle.  
 

y

x  
Figure 1 A satellite layer with two components 

 
Three dimensional array is used to represent satellite 
internal volume (two dimensional array for the tray 
case). Each array element represents a unit volume 
(area). The array is initialized with zeros for all 
internal elements and ones to represent the outer 
contours. Elements are represented with arrays the 
same way but initialized to ones. To add an element 
inside the satellite or a tray, element array of ones is 
inserted in the global array (satellite or tray arrays) in 
a location equivalent to its center of mass. For 
example, a two dimensional array representing a 
square tray with four units at each dimension and a 
rectangle element with area three units by one unit are 
shown in figure 2. The element center of mass is 
inserted at location (3,3) in the array. 
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Figure 2. Array representation of a square tray 

with one rectangle element 
 

Optimization parameters are the location of the center 
of mass of each component. So by moving the center 
of any rectangle to a certain location on the layer we 
are moving the entire component to that location (i.e. 

inserting the element array in this location in the 
global array). Knowing the center of mass location 
will allow the calculation of the full satellite (tray) 
center of mass, and the equivalent moment of inertia 
about this center as follows. 
 
Calculating the Center of mass 

 
The center of mass of all components can be 
calculated through the following equation: 
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Where  
x,y,z: position of the center of mass of each 
component measured from the lower left corner of the 
satellite or tray (as shown in figure 1).   
X : component of center of mass of all-components 

in the x-direction.  
Y : component of center of mass of all-components 
in the y-direction.  

Z : component of center of mass of all-components 
in the z-direction.  
 
Calculating the Product of Inertia 

 
The product of inertia of the components about the 
center of the layer can be calculated by: 
 

a) Calculating the product of inertia 
about the origin,  
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b) Transferring the product of inertia 

to the center of the satellite 
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Where  
Ixy, Iyz, Izx: products of inertia at the origin. 
IxyComp, IyzComp, IzxComp: products of inertia of each 
component at its center of mass.. 
Ixyc, Iyzc, Izxc: products of inertia at the center satellite 
or tray. 
 
Calculating the Distance of the Center of Mass from 
the Center of the Layer 

 
The distance D1 between the center of mass of the 
components and the geometric of the satellite (or a 
layer), or any other predefined point is used to 
balance the weight inside satellite and it can be 
calculated as 
 

222
1 )()()( ZZYYXXD satsatsat −+−+−=                                                                              

(4) 
 
Where  

satX : component of center of mass of satellite in the 
x-direction.  

satY : component of center of mass of satellite in the 
y-direction.  

satZ : component of center of mass of satellite in the 
z-direction.  
 
Sizing the Satellite 
 
Minimizing equation (4) does not guaranty the 
compactness of the satellite (small size). Additional 
equation witch sum the absolute distance of each 
component to the center of mass has to be used as 
follows 
 

∑ −+−+−
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By minimizing D2 with the avoidance of intersection 
(as shown in the next section), the size of the satellite 
can be optimized. 
Intersection Detection 
 
Component intersection detection and avoidance is 
very vital in component placement procedure. Using 
the zero-one matrix formulation, simplify this task. If 
any component crossed the satellite volume boundary 

or intersect with another boundary, the global matrix 
will have elements with value greater than one. The 
more of such elements the more intersection of 
components and the value of a certain number, 
greater than one, represent the number of 
intersections. For example, if the global matrix has an 
element with value 3 then it means that there are three 
intersecting components at the equivalent location of 
this value.   
 
 
THE GENETIC ALGORITHMS 
 
In 1975, Holland4 introduced genetic algorithms 
(GA). Genetic Algorithms are stochastic global 
search techniques based on the mechanics of genetics. 
Roughly, a genetic algorithm works as in figure 3. 
Further description of genetic algorithms can be 
found in Goldberg5. 

Figure 3. The Pseudo-Code of The Genetic 
Algorithms (GA) 

 
The main advantages of Genetic Algorithms are its 
global optimization performance and the ease of 
distributing its calculations among several processors 
or computers as it operate on population of solutions 
that can be evaluated concurrently. It is a very simple 
method, generally applicable, and needs no special 
mathematical treatment of the problem under 
consideration. It is also well suited for discreet 
optimization. 
 
The GA used here is binary coding of the x, y and z 
coordinates of the center of mass of each component 
concatenated to form the chromosome. Figure 4 
shows the coding for “m” components.  
 
z1 y1 z1 z2 y2 z2 ……. zm ym ym 

 
Figure 4. A Simple Representation of Elements 

Position on A Chromosome 
 

BEGIN GA  
Make initial population at random.  
WHILE NOT (stopping condition) DO  
              BEGIN  
                  Select parents from the population.  
                  Produce offspring from the selected 
                  parents   (crossover).  
                  Mutate the individuals.  
                  Extend the population adding the 
                  offspring to it.  
                  Reduce the extended population.  
               END  
           Output the best individual found.  
END GA 



 
 
 
 

Kassem                                                                                                                            19th Annual  AIAA/USU 
Conference on Small Satellites 

  

4

An initial population of members is randomly 
produced and evaluated. Successive populations are 
produced by the GA operations of selection, 
crossover, and mutation. The evaluation process is 
done through constructing a so-called fitness function 
(a function to be maximized). The fitness function 
can include product of inertia (equation (3)), distance 
from the center of mass (equation (4)), or satellite 
sizing (equation (5)) or any other requirements. 
 

The crossover is done using Roulette Wheel 
method with probability (Pc=0.5) and the mutation 
probability (Pm=0.1). It is also 1-elitist so the top-
performing individual of each generation is assured to 
be included in the next population. 
  
The intersection banality can be introduced into the 
optimization by rejecting the chromosome which 
produce intersection of components or by penalizing 
the fitness function by a certain factor.  

The optimization algorithm is shown in table 1.  
 

Table 1 Optimization procedure 

1-Start with n chromosome concatenating 
components positions. 
2-Build the global matrix. 
3-Run the intersection check procedure. 
4-calculate fitness function and penalize it in 
case of intersection. 
5- Run the GA procedure (figure 3). 
6- Go to step (2) until stop criterion is reached or 
for m generations. 
7- Stop. 

 
 
TWO DIMENSIONAL TEST CASES 

 
The three dimensional general case can be reduced to 
two-dimensional case especially for small satellites 
where trays are used. Each tray can be optimized 
alone as 2D and then the whole satellite can be 
studied as a multi-two-dimensional problem. 
Different fitness functions will be studied to study the 
effectiveness of the solution procedure. A general 
fitness function F is chosen as follow: 

  

432211
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F                (6) 

Where α1, α2, α3, and α4  are constant weighting 
factors.  
 
 The selected problems are simple and easy to be 
checked and verified for correct answer by inspection. 
All satellite elements or subsystems are assumed 
equal mass and square shape of one unit by one unit. 
The intersection of components is penalized in by 
setting the cost function F to zero. 

For example if the product of inertia was chosen 
alone to be minimized (i.e. α1= α2 =0) this will 
require the symmetry of component distribution 
inside satellite tray. If the distance from the center of 
mass minimization is the target (i.e. α2= α3 =0)   this 
will require no specific distribution as long as the 
center of mass coincide (i.e. D1 = 0). 
 
A first trivial test case is to place a single component 
in a square three units by three units tray (3x3 tray) 
such that to minimize F with unity weight factors. 
The solution is as expected (shown in figure 5. the 
element is centered in the middle of the tray. It is a 
simple problem and it can be done annually by testing 
3*3 = 9 positions. 
 

Figure 5. The Placement of one Component on A 
(3x3) Layer   

 
Another simple problem is of placing 3 components 
all of length unity in same layer. The expected 
solution is that the 3 components be placed next to 
each other in a straight line (horizontally o vertically). 
The output of the algorithm was still identical to this 
solution as shown in Figure 6 (the vertical case).  
 

 
Figure 6. The Placement of Three Components on 

A (3x3) Layer   
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The combinatorial characteristic of the problem 
shows a sharp increase of the size of the search space 
to be 7*8*9 = 504 positions. 
 
A more practical case is five components on a (5x5) 
layer, the solution was just as expected and the output 
for this case is shown in Figure 7. Here the search 
space, for direct enumeration of all possible 
combinations, increases dramatically to be 
25*24*23*22*21 which is approximately 6.3 million 
possible combinations. For small number of 
components relative to the tray size, the solution 
space has approximately lmn )( × where n, m are the 
dimensions of the tray and l is the number of 
components. The GA procedure suggested here could 
reach the solution using a generation of 500 and 
population of 100.   
 

 
Figure 7. The Placement of Five Components on A 

(5x5) Layer   
 

 
CONCLUSIONS 
  
The formulation and solution procedure for satellite-
subsystems-placement problem has been introduced 
in this work. The problem is formulated as discreet 
optimization problem and Genetic algorithms were 
used to solve it.  GA formulation shows great 
advantage over direct enumeration or trial and error 
procedures and it also saves a lot of execution time. 
Some two-dimensional problems were tested and the 
result agreed with the optimal solution.  
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