

Terrance Yee 1
19th Annual AIAA/USU Conference on Small Satellites

SSC05-IV-7

MSI TacSat-II Lessons Learned
Terrance Yee

Microsat Systems, Inc.
 8130 Shaffer Parkway

Littleton, CO 80128
Phone: (303) 285-1849, Fax: (303) 285-9880 E-mail: TYee@MicrosatSystems.com

Abstract: The TacSat-II, a.k.a. Roadrunner, formerly Joint Warfighting Space Demonstration 1,
mission is being conducted by the Air Force Research Laboratory (AFRL) to demonstrate
techniques and methodologies to dramatically shorten the development time required for small
satellites. The TacSat-II program is a pathfinder for a 1 year development time, a one week time
from call up to on orbit readiness, and 24-hour autonomous on-orbit operations. TacSat-II will
show the way ahead for these impressive schedule milestones while fielding a suite of nearly a
dozen experiments. Microsat Systems, Inc. is supplying the TacSat-II spacecraft bus based on a
design originally qualified for a previous MSI spacecraft. During the course of this program the
team has learned a great deal about how to adapt existing designs to new missions as rapidly as
possible. This paper discusses some of those key lessons with an emphasis on how they relate to
the application of modularity in spacecraft design in particular. These lessons emphasize the
success of a “capabilities-driven” approach instead of a “requirements-driven” approach and the
extensive use of software modularity and adaptability to meet mission goals.

Introduction

Figure 1 – TacSat-II

TacSat-II, shown above in Figure 1, is the
first AFRL mission to directly address the
current Responsive Space efforts, which are
aimed at drastically lowering the time to
place space assets in theater. The primary
objective of the TacSat-II (a.k.a.
Roadrunner) mission is to demonstrate the
rapid development and rapid deployment of

a militarily useful tactical asset. The
Roadrunner spacecraft carries a suite of 11
experiments from different organizations
and will fly in a 390 km, 40-45 degree
inclined orbit. MicroSat Systems, Inc.
(MSI) supplied the spacecraft bus including
structure, Attitude Determination and
Control Subsystem (ADCS), thermal control
and some power components. MSI is also
supplying bus systems engineering and
assembly, integration and test services.

This paper presents some of the key lessons
learned by MSI during the production and
integration and test of the TacSat-II
spacecraft. These lessons have direct
applicability to several new missions in
responsive space where short schedules are
key discriminators.

Terrance Yee 2
19th Annual AIAA/USU Conference on Small Satellites

“Capabilities-Driven”

One of the key enabling concepts for
TacSat-II has been the use of a “capabilities-
driven” approach as opposed to a
“requirements-driven” approach. In this
paradigm, AFRL selected payloads and
operations concepts within the capability of
the spacecraft rather than design the
spacecraft to fit a particular mission. This
methodology has great applicability to
modular spacecraft whose systems will
largely be assembled from existing designs.
It should also be noted that a primary
enabler to this method is having a general
purpose, highly capable small satellite bus to
begin with. A bus with too-limited
capability will have few potential matching
payloads. For TacSat-II, the previous MSI
program supplied a high-capability solution.

In practice, this approach had to be tempered
with the reality of making things actually fit
when it came time to finalize ICD’s. At this
stage, existing payloads met existing
spacecraft and it was necessary to craft a
workable interface. Many of the
experiments on TacSat-II utilized existing
hardware or designs that were completed
before TacSat-II to save development time,
and could not be easily adapted to fit the bus
interfaces as they had been previously
designed. When it was not possible to alter
a payload interface, the first candidate
solution was to adapt the customized
harness, whose design finalization was
delayed until the last possible date, just 6
weeks prior to the start of I&T.

The chief detriment to this method is that it
forced over a dozen last minute changes in
the harness that we did not have time to
fully review as a whole spacecraft team.
The result was that some of these changes
were not correct and necessitated modifying
the harness after delivery. Generally the

modifications were no more severe than
pulling and swapping some pins on a
connector, which was easily accomplished.
Figure 2 shows some of these modifications
being made to the EM harness. A few cases
did require running a new length of wire,
however. In order to avoid so much rework
in the future, more effort should be made to
finalize ICD’s, including testing EM
hardware together, with enough time left to
fully review the flight harness design prior
to manufacturing. Spacecraft designers
should be aware that failure to achieve these
two goals greatly hinders the chance of
getting the flight build correct on the first
try, and could jeopardize their ability to fly
on the spacecraft.

Figure 2 - Harness Modifications

If a harness modification could not solve the
interface issue, the next place we looked to
adapt was the payload interface-specific
software, which we called the “payload
managers”. Since software is one of the
easiest things to modify late in the
integration process, it became a frequent
place to make adjustments for interface
mismatches. This meant that we often had
to make the software interface work real
time after payload arrival. This required a
very streamlined, informal procedure for
modifying software quickly and getting the
new software loaded onto the spacecraft
quickly. We were able to optimize this

Terrance Yee 3
19th Annual AIAA/USU Conference on Small Satellites

process to the point of identifying a change,
notifying the programmers at Broad Reach
Engineering, receiving a new software load
and installing and testing it all within about
45 minutes.

The key organizational feature that made
this response time possible was empowering
the line engineers in testing and software to
handle each of these steps, thereby
minimizing the number of individuals and
organizations that had to be involved in
getting this type of work done. In order to
allow this relationship to develop, key
contractors needed enough latitude in how to
execute their statements of work without
involving a contract negotiation for every
minor engineering change. This type of
trust is only possible where organizational
and personal relationships have been built
on the foundation of positive past
performance and a commitment to mutual
goals. Therefore, maintaining a win-win
mentality is essential for bottom line
efficiency in responsive space missions.
This mission successfully achieved that
cooperative team atmosphere. Figure 3
shows that team in action.

Figure 3 - AFRL, J&T & MSI Employees

Collaborate on Flatsat Testing

After software, the next level of change
implementation was in firmware or loading
new VHDL coding into FPGA’s used to
drive interface transceivers. Due to the type
of devices used on Roadrunner, they could
only be burned once so this change required
new chips to be soldered onto the boards.
For EM’s this wasn’t too costly or risky, but
it did take 48 hours to ship the hardware
back to Broad Reach Engineering and get it
back in the test lab. We only had to make
one such change to the flight boards.
Repeated soldering and desoldering of these
parts stresses the strength of the solder pad
adhesion to the circuit boards and should
therefore be avoided in flight units where
possible.

Finally, if all else is ruled out, changes to
bus hardware have to be made. For TacSat-
II one change we had to make after
finalizing the C&DH hardware was
accommodated by a separate board that

Terrance Yee 4
19th Annual AIAA/USU Conference on Small Satellites

converted voltage levels to make the
interface work for the Experimental Solar
Array IV Box. This board was built by
Jackson & Tull, the integration and test
contractor on TacSat-II. MSI’s analysis
team determined where and how the board
could be mounted on one of the existing
payload boxes. The new board was then put
in its own enclosure and adhesively
mounted.

One aspect of this methodology that is
widely recognized is that these options were
much easier to implement earlier in the
development than later. Again, every effort
should be made to finalize ICD’s as early as
possible to preserve as many adaptation
options as possible. Finalizing the ICD’s
early also allows the team to make changes
prior to releasing the flight designs to
fabrication when it is much less expensive
and less risky to make modifications. In
order to do this, each participant must
commit significant effort to finalizing these
interface details early in the program and be
held accountable for doing so. Neither side
of an interface can afford to place all their
initial efforts at internal development and
neglect the interface to the larger spacecraft.
Doing so leads to delays which make it very
difficult to accommodate changes.

Software Modularity

On TacSat-II we learned that test software
modularity, adaptability, and ease of update
became critical parameters for a responsive
space program. Due to the number of
problems that had to be solved in flight
software and the complexity of the payload
suite, it became necessary to rely on a much
larger, more intelligent suite of test software
than previously used at MSI. On TacSat-II
the spacecraft and ground test set used
Spacecraft Command Language (SCL),
developed by Interface Control Systems, to

manage the command and telemetry
databases. SCL has a built in scripting
capability to allow routine operations to be
automated. As payload interfaces matured
and changes were made to various mission
elements, the SCL integration and test
scripts had to be rewritten multiple times to
stay up to date and compatible.

To manage the update process, we
formalized the release procedure for test
scripts at the very beginning of I&T. MSI
and Jackson & Tull both set up software
configuration management databases using
“Configuration Verification System” (CVS)
servers. MSI used WinCVS clients to
access its database, while J&T elected to use
a Tortoise CVS client, both of which worked
well. For the MSI system, all test scripts
and related configuration files were kept in
the CVS server and maintained by a single
person. This person was not the only one
making changes however. The MSI test
team on console often made changes on the
spot to accommodate features which only
became apparent in the actual hardware
environment and multiple developers were
working in parallel to meet the aggressive
testing deadlines. Changes made to scripts
were checked back into the system nightly
and every week the working directory of the
test computer (where tests were run from)
was moved to a backup location and
replaced with the official CVS version to
ensure that no incompatible pieces of test
software were accidentally left in the
“production” environment. To document
changes, each modification was commented
with the author, date and reason for change
in the code at the location of change. Major
updates were also annotated at the beginning
of the code in comments and were described
in the release notes in CVS.

This system worked very well to track
changes and to make sure that script

Terrance Yee 5
19th Annual AIAA/USU Conference on Small Satellites

modules stayed consistent with each other so
that we could maximize the reuse of these
modules in other test executives. We set up
this system at the beginning and agreed to a
set of module standards for controlling the
spacecraft settings and configurations when
exiting and entering modules. This allowed
MSI, Interface Control Systems (a payload
software provider) and Jackson & Tull to
interchangeably share and co-develop script
modules that worked together. Although
each organization had different purposes and
different styles to their scripts, the common
interface standard allowed us to save a lot of
development time by coordinating efforts
and allowing us to build on the work of the
others. The final users, the ground operators
of the spacecraft, will also be using scripts
built on modules that now have extensive
test heritage.

The flight software for the mission has also
been largely co-developed with the
hardware to match the interfaces of the new
payloads. This flight software was heavily
based on the bus flight software previously
developed for another program which
allowed MSI to develop compatible test
code early in this program. We began to
encounter some difficulty keeping up with
the flight software growth and modifications
once we began integration and test of the
payloads, however. Due to their relative
newness, these software interfaces were in
significant flux early on, requiring several
adjustments and adaptations as is typical in a
spiral development. These changes in flight
software often required new commands and
new telemetry mnemonics (variable names)
to implement. Due to the fast response of
the flight software team to changes, it often
became a matter of trial and error to
determine if test software was still
compatible. Fortunately, compile time error
messages would quickly indicate when
mnemonics had gone out of synch.

For some of our most frequently used
scripts, MSI developed new tools to
autogenerate test code to keep up with the
demand. We did this by importing the xml
databases containing the command and
telemetry mnemonics into Excel then using
some visual basic code to generate the actual
script code to perform our tests. This
worked very well for long, routine tests with
lots of repetition, but was not worth the
effort for other MSI tests that followed less
regular, repeated steps.

In addition to this method, Broad Reach
developed new techniques in Labview to
automatically build & update telemetry
display screens based on the most current
databases. Display windows would
automatically resize themselves to display
all the variables in a particular packet or
grouping of telemetry and display the textual
description of the variable taken straight
from the current database. This allowed a
lot of information to be displayed in a dense
format and largely kept the telemetry system
instantly up to date without requiring new
human work unless entire new telemetry
packets were developed. The disadvantage
of this system is that a telemetry item’s
location on the display screen could change
if things were added or subtracted in a
particular packet, making it a more difficult
for operators to memorize the exact location
of critical parameters. Also with this
method it was not possible to display critical
parameters in ways that made the
information stand out on a busy screen.

When ICS implemented their RIMS display
tool and the operational ground system as an
in-house alternative to Labview for data
display, these drawbacks in display
customization were eliminated because
RIMS is very easy for users to modify.
While Labview is also generally easy to

Terrance Yee 6
19th Annual AIAA/USU Conference on Small Satellites

modify as well, the particular technique used
to automatically keep the displays updated
locked us into a single display style. The
drawbacks with RIMS are that it has a less
rich toolbox of display widgets such as
virtual gauges and that only 60 telemetry
items could be displayed in a single display
window and they didn’t pack as densely as
the Labview windows. This made the
system a little cumbersome when deep in a
debug activity where hundreds of
parameters might be important. On the
other hand, the ability to highlight critical
parameters made RIMS easier to use from a
spacecraft operator viewpoint since they are
more interested in seeing a few things
quickly. Since RIMS is used in the mission
operations center that TacSat-II will be run
from, we switched to RIMS as soon as it
was ready to maximize the amount of
“testing like we were flying”.

With modular systems such as those
envisioned by future responsive space
planners, the long pole in development
could easily be software, so the lessons
learned from TacSat-II could have direct
benefit in reducing the overall delivery time.
Some of the lessons learned on TacSat-II
from the RIMS web-based telemetry display
and commanding tools have inspired even
more far reaching concepts at MSI for
spacecraft test & operations that would take
full advantage of modern web tools and
architecture. At a minimum, responsive
space planners should insist on a modular
software implementation from their
subcontractors.

Other Benefits of Scripting

The use of automated scripts for testing on
TacSat-II has been both a blessing and
curse. On the positive side, we were able to
reuse many elements of the automated tests
developed for previous MSI projects on this

program and the various organizations
working on scripts have cooperated and
shared tools and information very well. In
fact, two of the software experiments on
TacSat-II make extensive use of scripts to
accomplish their mission objectives and
these scripts are based very closely on the
ones developed originally for integration
and test. Because Interface Control Systems
(ICS, the developers of our scripting
language, SCL) is conducting these
experiments, the rest of the team including
MSI, AFRL and J&T has benefited greatly
by having access to their expertise.

The operational scripts, to be used by
mission controllers, have also been
developed based on the I&T scripts. The
I&T team is also using these flight scripts in
several tests to ensure that the transition to
the flight team goes smoothly and to
increase the accuracy of our “test like you
fly” approach. One benefit of this approach
is that it involves the flight operators early in
the development and gives them a chance to
suggest improvements that increase the ease
of operation of the system and help ensure
that the software development on the vehicle
is properly targeted to the most useful
features.

Each of the groups involved has acted as a
source of peer review for each other’s work
which has resulted in software tools of
higher utility and quality than would
otherwise be the case. The push to prepare
scripts before testing also provided an early
impetus to several team members becoming
knowledgeable about the test system and the
spacecraft capabilities in general well before
the first working set of hardware was
assembled on a lab table as a “flatsat”.

The main benefit of the scripts has been the
ability to have non-subject expert testers
perform specific scripted activities with

Terrance Yee 7
19th Annual AIAA/USU Conference on Small Satellites

accuracy and confidence. This vastly
increases the pool of available resources to
support testing which thus allows testing to
be scheduled with much greater flexibility.
The usefulness of this feature cannot be
overstated. This enabled us to have a
generalist tester run most operations during
I&T and if they ran into trouble on a
particular test that they couldn’t solve, they
could get the team back at MSI, Broad
Reach, or the payload provider working
offline on a solution while at the test site the
crew just picked up the next scripted test
that was ready and ran that instead. This
allowed us to run testing at AFRL with
virtually no down time waiting for experts to
work out the test kinks. Since we only had
one flatsat and one spacecraft to work on,
this maximized the testing throughput for
our limited resources.

The scripts have also been extremely useful
in establishing baseline behavior of the
system and components so that as capability
is added to the flatsat and new versions of
software are released, we can easily,
repeatably, perform regression tests that help
us identify and isolate problems.

One consequence of performing all the
major testing with scripts is that the lead
time in preparing tests is much longer due to
the necessity of planning each step when
coding the script. While this is less of a
challenge for experienced operators who are
both familiar with the system and the
scripting language, many of the contributors
to TacSat-II were neither at the beginning of
the program. This lead to a large amount of
trial and error in debugging the early scripts
on the flatsat. As a result, much of the early
testing on TacSat-II focused on producing
useable test scripts rather than actual
verification of requirements on hardware or
flight software. This system has the benefit
of resulting in knowledgeable spacecraft

operators at the same time as the scripts are
produced.

The other difficulty with using scripts is that
it can be cumbersome to debug scripts for
longer duration, complex tests. For these
types of tests, if a bug is found 2 hours into
testing, it may take only 5 minutes to fix the
bug but sometimes it takes an hour to get
back to the point at which the bug occurred
and move forward again. The lesson from
this experience is that complex flow control
such as conditional looping and passing test
conditions between subroutines should be
avoided to allow better stand alone testing of
individual test modules. Construction of
tests which run straight through and are
broken into several distinct segments allows
testing to be reentered for debugging and
speeds the overall development process.
This also leads to better modularity of the
test segments, which can then be reused in
other tests with greater ease.

An alternative script generation method
which could be tried is to manually run all
the commands in sequence, then use the
command logs to create the scripts after the
fact.

Location of I&T

TacSat-II has a programmatic objective of
building AFRL corporate knowledge to be
able to pass lessons on to all of industry. As
a by-product of this objective, there was
considerable knowledge transfer about
small, fast satellite missions to the junior
grade officers and other support personnel at
AFRL. For AFRL to gain the most
knowledge to pass along to industry, it was
necessary for the program must have as
much activity take place at AFRL as
possible. This meant that from component
checkout to assembly, integration and test of
the spacecraft bus occurred at the Aerospace

Terrance Yee 8
19th Annual AIAA/USU Conference on Small Satellites

Engineering Facility and building 277 at
Kirtland AFB. This had the secondary
benefit of allowing a large number of other
AF personnel to witness the work and get a
real sense and feel for how the new
paradigm actually worked. This has
certainly helped fuel the rapid increase in
visibility of these techniques and the greater
acceptance of them within DoD.

As successful as this decision has been in
achieving these goals, it did not come
without a unique set of challenges. First,
access to the test area was not available to
MSI outside of normal work hours all the
time partly due to the need to be escorted by
on-base personnel who could not always be
made available at the odd hours testers
needed to keep. Similarly, base security
rules severely limit internet access, even
wireless internet access, to only cleared
personnel stationed on base full time.
Fortunately, permanent base personnel were
not constrained by these restrictions.

Second, having to run some operations
through other people instead of doing them
ourselves is inherently slower, but necessary
in order to teach properly. Sometimes this
was also necessary due to the fact that MSI
personnel were not trained on all the
different equipment at AFRL.

Lastly, there were many operations that
required the design experts to be on-site and
required well over a man-year of combined
travel and extended time away from families
and homes. Obviously, MSI prefers to
minimize travel to minimize the hardships to
its employees.

These challenges were met by the combined
TacSat-II team of Jackson & Tull, Air Force
personnel and MSI through a combination of
dedication, hard work, flexibility and
resourcefulness. This use of scripting as

mentioned above was one of the key
features that allowed the team to maximize
its efficiency and keep the program on track.
The lesson to remember is that unless the
mission must integrate at a customer’s site
for knowledge purposes, MSI finds it much
more efficient and straightforward to
assemble and test our bus product at our
facility where we have full access to our
local subcontractor support teams and the
other MSI support systems and personnel
during I&T.

Other Lessons

Keeping the appropriate level of
documentation and checks and balances on
the program was crucial to keeping the fast
pace of our program without getting out of
control. For I&T the two critical documents
were a daily Test Conductor’s (TC) log and
a database of Problem/Failure Reports
(PFR’s). The TC log was a one or two page
summary of what had occurred that day and
a listing of any new techniques learned or
other useful tidbits of knowledge. Kept as a
single word document that was appended
daily, it included all the knowledge gained
on previous MSI programs as well as
TacSat-II and was used several times a day
to search for information and special
methods relating to all aspects of the
satellite. The PFR’s served a similar
purpose in making sure problems got
corrected and not forgotten and that lessons
were properly learned during the program.
For checks and balances we always had two
engineers working on the spacecraft or
flatsat at any time, always using a second set
of eyes to check touch labor. At the same
time most of our touch labor activities did
not need anything more than engineering
approval from the MSI or J&T cognizant
engineer.

Terrance Yee 9
19th Annual AIAA/USU Conference on Small Satellites

With the large number of different
organizations involved in TacSat-II, full
participation by each party in our weekly
program meetings became very important.
If one organizational representative was
missing, or delinquent in a deliverable to the
group it was quite possible to have that one
schedule hit ripple into each of the
individual schedules of the 20 or so
organizations. Therefore, for missions
requiring many cooperating entities, it
becomes even more critical that each does
its utmost to meet the deliverables to the
others and all are active participants in
group meetings.

Conclusions

TacSat-II has developed a wealth of new
techniques and methods to speed the
development of high performance
microsatellites. By performing I&T at
AFRL we have provided the best
opportunity for these lessons to be
communicated to a large community at the
AFRL, in the Air Force in general, and
among the civilian partners and participants
in the mission. These lessons, such as how
to use a capabilities-driven approach and
software modularity, form a set of building
blocks for even more ambitious
microsatellite missions for the Air Force to
pursue. Missions such as TacSat-II are
enabling a broader shift in thinking within
the industry about what the limits of
responsiveness can be in this field. By
applying the lessons of TacSat-II and fully
developing the ideas inspired by this and
other responsive space missions, the
industry is preparing to implement the
dramatic jump to space missions that
respond to changing tactical demands in a
matter of days. In addition, TacSat-II and
the other missions in the series are creating
many individual advances that can be

applied to medium and even large
spacecraft.

	Introduction
	“Capabilities-Driven”
	Software Modularity
	Other Benefits of Scripting
	Location of I&T
	Other Lessons
	Conclusions

