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Abstract:  The TacSat-II, a.k.a. Roadrunner, formerly Joint Warfighting Space Demonstration 1, 
mission is being conducted by the Air Force Research Laboratory (AFRL) to demonstrate 
techniques and methodologies to dramatically shorten the development time required for small 
satellites.  The TacSat-II program is a pathfinder for a 1 year development time, a one week time 
from call up to on orbit readiness, and 24-hour autonomous on-orbit operations.  TacSat-II will 
show the way ahead for these impressive schedule milestones while fielding a suite of nearly a 
dozen experiments.  Microsat Systems, Inc. is supplying the TacSat-II spacecraft bus based on a 
design originally qualified for a previous MSI spacecraft.  During the course of this program the 
team has learned a great deal about how to adapt existing designs to new missions as rapidly as 
possible.  This paper discusses some of those key lessons with an emphasis on how they relate to 
the application of modularity in spacecraft design in particular.  These lessons emphasize the 
success of a “capabilities-driven” approach instead of a “requirements-driven” approach and the 
extensive use of software modularity and adaptability to meet mission goals. 
 
 
 

Introduction 

 
Figure 1 – TacSat-II  

 
TacSat-II, shown above in Figure 1, is the 
first AFRL mission to directly address the 
current Responsive Space efforts, which are 
aimed at drastically lowering the time to 
place space assets in theater.  The primary 
objective of the TacSat-II (a.k.a. 
Roadrunner) mission is to demonstrate the 
rapid development and rapid deployment of 

a militarily useful tactical asset.  The 
Roadrunner spacecraft carries a suite of 11 
experiments from different organizations 
and will fly in a 390 km, 40-45 degree 
inclined orbit.  MicroSat Systems, Inc. 
(MSI) supplied the spacecraft bus including 
structure, Attitude Determination and 
Control Subsystem (ADCS), thermal control 
and some power components.  MSI is also 
supplying bus systems engineering and 
assembly, integration and test services. 
 
This paper presents some of the key lessons 
learned by MSI during the production and 
integration and test of the TacSat-II 
spacecraft.  These lessons have direct 
applicability to several new missions in 
responsive space where short schedules are 
key discriminators. 
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“Capabilities-Driven” 
 
One of the key enabling concepts for 
TacSat-II has been the use of a “capabilities-
driven” approach as opposed to a 
“requirements-driven” approach.  In this 
paradigm, AFRL selected payloads and 
operations concepts within the capability of 
the spacecraft rather than design the 
spacecraft to fit a particular mission.  This 
methodology has great applicability to 
modular spacecraft whose systems will 
largely be assembled from existing designs.  
It should also be noted that a primary 
enabler to this method is having a general 
purpose, highly capable small satellite bus to 
begin with.  A bus with too-limited 
capability will have few potential matching 
payloads.  For TacSat-II, the previous MSI 
program supplied a high-capability solution. 
 
In practice, this approach had to be tempered 
with the reality of making things actually fit 
when it came time to finalize ICD’s.  At this 
stage, existing payloads met existing 
spacecraft and it was necessary to craft a 
workable interface.  Many of the 
experiments on TacSat-II utilized existing 
hardware or designs that were completed 
before TacSat-II to save development time, 
and could not be easily adapted to fit the bus 
interfaces as they had been previously 
designed.  When it was not possible to alter 
a payload interface, the first candidate 
solution was to adapt the customized 
harness, whose design finalization was 
delayed until the last possible date, just 6 
weeks prior to the start of I&T.   
 
The chief detriment to this method is that it 
forced over a dozen last minute changes in 
the harness that we did not have time to 
fully review as a whole spacecraft team.  
The result was that some of these changes 
were not correct and necessitated modifying 
the harness after delivery.  Generally the 

modifications were no more severe than 
pulling and swapping some pins on a 
connector, which was easily accomplished.  
Figure 2 shows some of these modifications 
being made to the EM harness.  A few cases 
did require running a new length of wire, 
however.  In order to avoid so much rework 
in the future, more effort should be made to 
finalize ICD’s, including testing EM 
hardware together, with enough time left to 
fully review the flight harness design prior 
to manufacturing.  Spacecraft designers 
should be aware that failure to achieve these 
two goals greatly hinders the chance of 
getting the flight build correct on the first 
try, and could jeopardize their ability to fly 
on the spacecraft.  
 

 
Figure 2 - Harness Modifications 

 
If a harness modification could not solve the 
interface issue, the next place we looked to 
adapt was the payload interface-specific 
software, which we called the “payload 
managers”.  Since software is one of the 
easiest things to modify late in the 
integration process, it became a frequent 
place to make adjustments for interface 
mismatches.   This meant that we often had 
to make the software interface work real 
time after payload arrival.  This required a 
very streamlined, informal procedure for 
modifying software quickly and getting the 
new software loaded onto the spacecraft 
quickly.  We were able to optimize this 
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process to the point of identifying a change, 
notifying the programmers at Broad Reach 
Engineering, receiving a new software load 
and installing and testing it all within about 
45 minutes.   
 
The key organizational feature that made 
this response time possible was empowering 
the line engineers in testing and software to 
handle each of these steps, thereby 
minimizing the number of individuals and 
organizations that had to be involved in 
getting this type of work done.  In order to 
allow this relationship to develop, key 
contractors needed enough latitude in how to 
execute their statements of work without 
involving a contract negotiation for every 
minor engineering change.  This type of 
trust is only possible where organizational 
and personal relationships have been built 
on the foundation of positive past 
performance and a commitment to mutual 
goals.  Therefore, maintaining a win-win 
mentality is essential for bottom line 
efficiency in responsive space missions.  
This mission successfully achieved that 
cooperative team atmosphere.  Figure 3 
shows that team in action. 
 

 
Figure 3 - AFRL, J&T & MSI Employees 

Collaborate on Flatsat Testing 
 
After software, the next level of change 
implementation was in firmware or loading 
new VHDL coding into FPGA’s used to 
drive interface transceivers.  Due to the type 
of devices used on Roadrunner, they could 
only be burned once so this change required 
new chips to be soldered onto the boards.  
For EM’s this wasn’t too costly or risky, but 
it did take 48 hours to ship the hardware 
back to Broad Reach Engineering and get it 
back in the test lab.  We only had to make 
one such change to the flight boards.  
Repeated soldering and desoldering of these 
parts stresses the strength of the solder pad 
adhesion to the circuit boards and should 
therefore be avoided in flight units where 
possible. 
 
Finally, if all else is ruled out, changes to 
bus hardware have to be made.  For TacSat-
II one change we had to make after 
finalizing the C&DH hardware was 
accommodated by a separate board that 
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converted voltage levels to make the 
interface work for the Experimental Solar 
Array IV Box.  This board was built by 
Jackson & Tull, the integration and test 
contractor on TacSat-II.  MSI’s analysis 
team determined where and how the board 
could be mounted on one of the existing 
payload boxes.  The new board was then put 
in its own enclosure and adhesively 
mounted. 
 
One aspect of this methodology that is 
widely recognized is that these options were 
much easier to implement earlier in the 
development than later.  Again, every effort 
should be made to finalize ICD’s as early as 
possible to preserve as many adaptation 
options as possible.  Finalizing the ICD’s 
early also allows the team to make changes 
prior to releasing the flight designs to 
fabrication when it is much less expensive 
and less risky to make modifications.  In 
order to do this, each participant must 
commit significant effort to finalizing these 
interface details early in the program and be 
held accountable for doing so.  Neither side 
of an interface can afford to place all their 
initial efforts at internal development and 
neglect the interface to the larger spacecraft.  
Doing so leads to delays which make it very 
difficult to accommodate changes. 
 

Software Modularity 
 
On TacSat-II we learned that test software 
modularity, adaptability, and ease of update 
became critical parameters for a responsive 
space program.  Due to the number of 
problems that had to be solved in flight 
software and the complexity of the payload 
suite, it became necessary to rely on a much 
larger, more intelligent suite of test software 
than previously used at MSI.  On TacSat-II 
the spacecraft and ground test set used 
Spacecraft Command Language (SCL), 
developed by Interface Control Systems, to 

manage the command and telemetry 
databases.  SCL has a built in scripting 
capability to allow routine operations to be 
automated.  As payload interfaces matured 
and changes were made to various mission 
elements, the SCL integration and test 
scripts had to be rewritten multiple times to 
stay up to date and compatible.  
 
To manage the update process, we 
formalized the release procedure for test 
scripts at the very beginning of I&T.  MSI 
and Jackson & Tull both set up software 
configuration management databases using 
“Configuration Verification System” (CVS) 
servers.  MSI used WinCVS clients to 
access its database, while J&T elected to use 
a Tortoise CVS client, both of which worked 
well.  For the MSI system, all test scripts 
and related configuration files were kept in 
the CVS server and maintained by a single 
person.  This person was not the only one 
making changes however.  The MSI test 
team on console often made changes on the 
spot to accommodate features which only 
became apparent in the actual hardware 
environment and multiple developers were 
working in parallel to meet the aggressive 
testing deadlines.  Changes made to scripts 
were checked back into the system nightly 
and every week the working directory of the 
test computer (where tests were run from) 
was moved to a backup location and 
replaced with the official CVS version to 
ensure that no incompatible pieces of test 
software were accidentally left in the 
“production” environment.  To document 
changes, each modification was commented 
with the author, date and reason for change 
in the code at the location of change.  Major 
updates were also annotated at the beginning 
of the code in comments and were described 
in the release notes in CVS. 
 
This system worked very well to track 
changes and to make sure that script 
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modules stayed consistent with each other so 
that we could maximize the reuse of these 
modules in other test executives.  We set up 
this system at the beginning and agreed to a 
set of module standards for controlling the 
spacecraft settings and configurations when 
exiting and entering modules.  This allowed 
MSI, Interface Control Systems (a payload 
software provider) and Jackson & Tull to 
interchangeably share and co-develop script 
modules that worked together.  Although 
each organization had different purposes and 
different styles to their scripts, the common 
interface standard allowed us to save a lot of 
development time by coordinating efforts 
and allowing us to build on the work of the 
others.  The final users, the ground operators 
of the spacecraft, will also be using scripts 
built on modules that now have extensive 
test heritage. 
 
The flight software for the mission has also 
been largely co-developed with the 
hardware to match the interfaces of the new 
payloads.  This flight software was heavily 
based on the bus flight software previously 
developed for another program which 
allowed MSI to develop compatible test 
code early in this program.  We began to 
encounter some difficulty keeping up with 
the flight software growth and modifications 
once we began integration and test of the 
payloads, however.  Due to their relative 
newness, these software interfaces were in 
significant flux early on, requiring several 
adjustments and adaptations as is typical in a 
spiral development.  These changes in flight 
software often required new commands and 
new telemetry mnemonics (variable names) 
to implement.  Due to the fast response of 
the flight software team to changes, it often 
became a matter of trial and error to 
determine if test software was still 
compatible.  Fortunately, compile time error 
messages would quickly indicate when 
mnemonics had gone out of synch. 

 
For some of our most frequently used 
scripts, MSI developed new tools to 
autogenerate test code to keep up with the 
demand.  We did this by importing the xml 
databases containing the command and 
telemetry mnemonics into Excel then using 
some visual basic code to generate the actual 
script code to perform our tests.  This 
worked very well for long, routine tests with 
lots of repetition, but was not worth the 
effort for other MSI tests that followed less 
regular, repeated steps.   
 
In addition to this method, Broad Reach 
developed new techniques in Labview to 
automatically build & update telemetry 
display screens based on the most current 
databases.  Display windows would 
automatically resize themselves to display 
all the variables in a particular packet or 
grouping of telemetry and display the textual 
description of the variable taken straight 
from the current database.  This allowed a 
lot of information to be displayed in a dense 
format and largely kept the telemetry system 
instantly up to date without requiring new 
human work unless entire new telemetry 
packets were developed.  The disadvantage 
of this system is that a telemetry item’s 
location on the display screen could change 
if things were added or subtracted in a 
particular packet, making it a more difficult 
for operators to memorize the exact location 
of critical parameters.  Also with this 
method it was not possible to display critical 
parameters in ways that made the 
information stand out on a busy screen. 
 
When ICS implemented their RIMS display 
tool and the operational ground system as an 
in-house alternative to Labview for data 
display, these drawbacks in display 
customization were eliminated because 
RIMS is very easy for users to modify.  
While Labview is also generally easy to 
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modify as well, the particular technique used 
to automatically keep the displays updated 
locked us into a single display style.  The 
drawbacks with RIMS are that it has a less 
rich toolbox of display widgets such as 
virtual gauges and that only 60 telemetry 
items could be displayed in a single display 
window and they didn’t pack as densely as 
the Labview windows.  This made the 
system a little cumbersome when deep in a 
debug activity where hundreds of 
parameters might be important.  On the 
other hand, the ability to highlight critical 
parameters made RIMS easier to use from a 
spacecraft operator viewpoint since they are 
more interested in seeing a few things 
quickly.  Since RIMS is used in the mission 
operations center that TacSat-II will be run 
from, we switched to RIMS as soon as it 
was ready to maximize the amount of 
“testing like we were flying”. 
 
With modular systems such as those 
envisioned by future responsive space 
planners, the long pole in development 
could easily be software, so the lessons 
learned from TacSat-II could have direct 
benefit in reducing the overall delivery time.  
Some of the lessons learned on TacSat-II  
from the RIMS web-based telemetry display 
and commanding tools have inspired even 
more far reaching concepts at MSI for 
spacecraft test & operations that would take 
full advantage of modern web tools and 
architecture.  At a minimum, responsive 
space planners should insist on a modular 
software implementation from their 
subcontractors. 
 

Other Benefits of Scripting 
 
The use of automated scripts for testing on 
TacSat-II has been both a blessing and 
curse.  On the positive side, we were able to 
reuse many elements of the automated tests 
developed for previous MSI projects on this 

program and the various organizations 
working on scripts have cooperated and 
shared tools and information very well.  In 
fact, two of the software experiments on 
TacSat-II make extensive use of scripts to 
accomplish their mission objectives and 
these scripts are based very closely on the 
ones developed originally for integration 
and test.  Because Interface Control Systems 
(ICS, the developers of our scripting 
language, SCL) is conducting these 
experiments, the rest of the team including 
MSI, AFRL and J&T has benefited greatly 
by having access to their expertise.   
 
The operational scripts, to be used by 
mission controllers, have also been 
developed based on the I&T scripts.  The 
I&T team is also using these flight scripts in 
several tests to ensure that the transition to 
the flight team goes smoothly and to 
increase the accuracy of our “test like you 
fly” approach.  One benefit of this approach 
is that it involves the flight operators early in 
the development and gives them a chance to 
suggest improvements that increase the ease 
of operation of the system and help ensure 
that the software development on the vehicle 
is properly targeted to the most useful 
features.   
 
Each of the groups involved has acted as a 
source of peer review for each other’s work 
which has resulted in software tools of 
higher utility and quality than would 
otherwise be the case.  The push to prepare 
scripts before testing also provided an early 
impetus to several team members becoming 
knowledgeable about the test system and the 
spacecraft capabilities in general well before 
the first working set of hardware was 
assembled on a lab table as a “flatsat”. 
 
The main benefit of the scripts has been the 
ability to have non-subject expert testers 
perform specific scripted activities with 
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accuracy and confidence.  This vastly 
increases the pool of available resources to 
support testing which thus allows testing to 
be scheduled with much greater flexibility.  
The usefulness of this feature cannot be 
overstated.  This enabled us to have a 
generalist tester run most operations during 
I&T and if they ran into trouble on a 
particular test that they couldn’t solve, they 
could get the team back at MSI, Broad 
Reach, or the payload provider working 
offline on a solution while at the test site the 
crew just picked up the next scripted test 
that was ready and ran that instead.  This 
allowed us to run testing at AFRL with 
virtually no down time waiting for experts to 
work out the test kinks.  Since we only had 
one flatsat and one spacecraft to work on, 
this maximized the testing throughput for 
our limited resources. 
 
The scripts have also been extremely useful 
in establishing baseline behavior of the 
system and components so that as capability 
is added to the flatsat and new versions of 
software are released, we can easily, 
repeatably, perform regression tests that help 
us identify and isolate problems. 
 
One consequence of performing all the 
major testing with scripts is that the lead 
time in preparing tests is much longer due to 
the necessity of planning each step when 
coding the script.  While this is less of a 
challenge for experienced operators who are 
both familiar with the system and the 
scripting language, many of the contributors 
to TacSat-II were neither at the beginning of 
the program.  This lead to a large amount of 
trial and error in debugging the early scripts 
on the flatsat.  As a result, much of the early 
testing on TacSat-II focused on producing 
useable test scripts rather than actual 
verification of requirements on hardware or 
flight software.  This system has the benefit 
of resulting in knowledgeable spacecraft 

operators at the same time as the scripts are 
produced. 
 
The other difficulty with using scripts is that 
it can be cumbersome to debug scripts for 
longer duration, complex tests.  For these 
types of tests, if a bug is found 2 hours into 
testing, it may take only 5 minutes to fix the 
bug but sometimes it takes an hour to get 
back to the point at which the bug occurred 
and move forward again.  The lesson from 
this experience is that complex flow control 
such as conditional looping and passing test 
conditions between subroutines should be 
avoided to allow better stand alone testing of 
individual test modules.  Construction of 
tests which run straight through and are 
broken into several distinct segments allows 
testing to be reentered for debugging and 
speeds the overall development process.  
This also leads to better modularity of the 
test segments, which can then be reused in 
other tests with greater ease.   
 
An alternative script generation method 
which could be tried is to manually run all 
the commands in sequence, then use the 
command logs to create the scripts after the 
fact. 
 

Location of I&T 
 
TacSat-II has a programmatic objective of 
building AFRL corporate knowledge to be 
able to pass lessons on to all of industry.  As 
a by-product of this objective, there was 
considerable  knowledge transfer about 
small, fast satellite missions to the junior 
grade officers and other support personnel at 
AFRL.  For AFRL to gain the most 
knowledge to pass along to industry, it was 
necessary for the program must have as 
much activity take place at AFRL as 
possible.  This meant that from component 
checkout to assembly, integration and test of 
the spacecraft bus occurred at the Aerospace 
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Engineering Facility and building 277 at 
Kirtland AFB.  This had the secondary 
benefit of allowing a large number of other 
AF personnel to witness the work and get a 
real sense and feel for how the new 
paradigm actually worked.  This has 
certainly helped fuel the rapid increase in 
visibility of these techniques and the greater 
acceptance of them within DoD. 
 
As successful as this decision has been in 
achieving these goals, it did not come 
without a unique set of challenges.  First, 
access to the test area was not available to 
MSI outside of normal work hours all the 
time partly due to the need to be escorted by 
on-base personnel who could not always be 
made available at the odd hours testers 
needed to keep.  Similarly, base security 
rules severely limit internet access, even 
wireless internet access, to only cleared 
personnel stationed on base full time.  
Fortunately, permanent base personnel were 
not constrained by these restrictions. 
 
Second, having to run some operations 
through other people instead of doing them 
ourselves is inherently slower, but necessary 
in order to teach properly.  Sometimes this 
was also necessary due to the fact that MSI 
personnel were not trained on all the 
different equipment at AFRL. 
 
Lastly, there were many operations that 
required the design experts to be on-site and 
required well over a man-year of combined 
travel and extended time away from families 
and homes.  Obviously, MSI prefers to 
minimize travel to minimize the hardships to 
its employees.   
 
These challenges were met by the combined 
TacSat-II team of Jackson & Tull, Air Force 
personnel and MSI through a combination of 
dedication, hard work, flexibility and 
resourcefulness.  This use of scripting as 

mentioned above was one of the key 
features that allowed the team to maximize 
its efficiency and keep the program on track.  
The lesson to remember is that unless the 
mission must integrate at a customer’s site 
for knowledge purposes, MSI finds it much 
more efficient and straightforward to 
assemble and test our bus product at our 
facility where we have full access to our 
local subcontractor support teams and the 
other MSI support systems and personnel 
during I&T.   
 

Other Lessons 
 
Keeping the appropriate level of 
documentation and checks and balances on 
the program was crucial to keeping the fast 
pace of our program without getting out of 
control.  For I&T the two critical documents 
were a daily Test Conductor’s (TC) log and 
a database of Problem/Failure Reports 
(PFR’s).  The TC log was a one or two page 
summary of what had occurred that day and 
a listing of any new techniques learned or 
other useful tidbits of knowledge.  Kept as a 
single word document that was appended 
daily, it included all the knowledge gained 
on previous MSI programs as well as 
TacSat-II and was used several times a day 
to search for information and special 
methods relating to all aspects of the 
satellite.  The PFR’s served a similar 
purpose in making sure problems got 
corrected and not forgotten and that lessons 
were properly learned during the program.  
For checks and balances we always had two 
engineers working on the spacecraft or 
flatsat at any time, always using a second set 
of eyes to check touch labor.  At the same 
time most of our touch labor activities did 
not need anything more than engineering 
approval from the MSI or J&T cognizant 
engineer. 
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With the large number of different 
organizations involved in TacSat-II, full 
participation by each party in our weekly 
program meetings became very important.  
If one organizational representative was 
missing, or delinquent in a deliverable to the 
group it was quite possible to have that one 
schedule hit ripple into each of the 
individual schedules of the 20 or so 
organizations.  Therefore, for missions 
requiring many cooperating entities, it 
becomes even more critical that each does 
its utmost to meet the deliverables to the 
others and all are active participants in 
group meetings.  
 

Conclusions 
 
TacSat-II has developed a wealth of new 
techniques and methods to speed the 
development of high performance 
microsatellites.  By performing I&T at 
AFRL we have provided the best 
opportunity for these lessons to be 
communicated to a large community at the 
AFRL, in the Air Force in general, and 
among the civilian partners and participants 
in the mission.  These lessons, such as how 
to use a capabilities-driven approach and 
software modularity, form a set of building 
blocks for even more ambitious 
microsatellite missions for the Air Force to 
pursue.  Missions such as TacSat-II are 
enabling a broader shift in thinking within 
the industry about what the limits of 
responsiveness can be in this field.  By 
applying the lessons of TacSat-II and fully 
developing the ideas inspired by this and 
other responsive space missions, the 
industry is preparing to implement the 
dramatic jump to space missions that 
respond to changing tactical demands in a 
matter of days.  In addition, TacSat-II and 
the other missions in the series are creating 
many individual advances that can be 

applied to medium and even large 
spacecraft. 
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