

59

have a text label inside of them indicating what percent of the whole the category is. A

screenshot of the simple pie chart is shown in Figure 10.

To allow the pie chart to be a bit more versatile, we allow users to hide particular

categories from the display. This comes in handy when one category dominates the

dataset, but that category is not particularly interesting. A user can click on it and hide it,

and the rest of the data will expand to fill in the entire circle. This allows for a simple but

effective form of filtering. Figure 11 shows the same data as Figure 10, with the two

largest categories filtered out.

Figure 10. Simple Pie Chart visualization screenshot.

60

Figure 11. Filtered data on a Simple Pie Chart visualization.

The simple bar chart is quite similar to the pie chart in its design and

functionality. In fact, when it came time to design the two visualizations, we

intentionally designed a common core that they could both use.

The simple bar chart shows the data categories as a series of rectangles whose

heights are determined by the number of data that fits in the given category. Bar graphs

function differently than pie charts in this aspect. Each group is drawn not as a

percentage of the whole, but rather in proportion to the total amount of data in the given

category.

Neither of these graphs removes old data from the categories, so using either of

these methods with live data sets would become less meaningful after a while, as even a

61

significant change in the events would not alter the graph much. A chart like this is much

more volatile at the beginning when there is little other data to compare it to.

In both the pie chart and the bar graph, when a user determines that a particular

category may be of interest or otherwise wants to perform drilldown on a particular

category, the user can right click on the category and choose a menu option to display the

category‘s contents. This opens up a tab in the Packet Contents tab on the main

AdviseAid window showing all of the details of the information collected in the given

category. The display used for drilldown is shown in Figure 12.

Additionally, because the main window is a fixed size, the user can open up an

expanded view that puts the data in a completely separate window, for better viewing.

Figure 12. The drilldown display. This display is used in both the Simple Pie Chart and

Simple Bar Chart visualizations, and can be utilized by other visualization techniques.

62

Other Components of AdviseAid

Plugin System

One of the requirements that AdviseAid needed was a plugin system. There are

many companies that use AdviseAid, and each one has various components they want to

be able to use, while not having the user interface cluttered with components that other

companies or projects have funded. In addition, sometimes, these same companies have

paid a large amount of money into a visualization technique or other components, and

they do not wish to share it with other companies at no cost.

Of course, one simple approach is to develop separate branches of the software

for each company, and give each one only the components that are available to them and

that they wish to have, but this has its own limitations. First, such a strategy creates a

large problem for developers who must fix bugs in multiple versions of the code.

Additionally, it would be nice if individual users would be able to enable and disable

various visualizations and components, rather than just at a company level. The

visualization techniques that are suitable for one task do not necessarily work well for

another [40], and so different people will likely need a customized set of tools they can

modify as needed.

An ideal approach to this problem is a plugin system, which modularizes

components of the program as a whole. These components can then be ―plugged in‖ to

the core framework of the software, enabling users to use them, or ―unplugged‖ to

remove them from the display. Because plugins are independent software units, they

could be marketed and sold separately, though this is currently not needed in AdviseAid.

63

While a variety of plugin systems exist, none met the requirements that we needed

for AdviseAid. Our system needed to be easy to work with, needed to be Java-based, and

had to have a simple interface, so that both developers of the AdviseAid core, as well as

third party visualization developers could quickly and easily build plugins.

We created our own simple system of plugins, which is built directly on top of the

JAR (Java ARchive) utility, a key part of the Java platform. Java‘s JAR system is

designed as a simple method of packaging code. It consists of a directory of compiled

.class files, compressed with the ZIP compression scheme, along with an optional (but

recommended) manifest file, which specifies which classes are available in the JAR file,

along with other options, such as the ―main‖ class, which is the entry point to an

executable JAR, if one exists.

The information contained in a JAR manifest is not very useful to AdviseAid.

Instead, it is important to know which classes in a JAR file are expected to be loaded as

plugins. Our approach was to add an additional file to the top level directory of a JAR

file called load.txt, which simply lists the classes in the JAR that are to be loaded as

plugins. An example load file for the VisAlert visualization might look like this:

adviseaid.visualization.visalert.VisAlert

This system easily and effectively accomplishes a number of our goals. First, it is

easy to create a plugin. A developer takes the compiled class files and their directory

structure, and creates a ZIP file from it, often simply by using the tools that exist in the

operating system. Then, a text file, load.txt is created, and a single line is added to it,

listing which classes are the plugins, and added to the ZIP archive. Because JAR

64

archives use the same compression as ZIP, the developer just needs to change the

extension of the file from .zip to .jar.

Additionally, because Java uses JAR files so heavily, there is already an existing

framework for opening up JAR files and using a class loader to prepare the contained

classes, which made it simple for us to develop. In fact, our code for doing this is less

than 100 lines of code.

Plugin Manager

Along with our plugin system came the need to have a system to manage plugins.

This includes the ability to add and remove plugins, as well as see what plugins are

currently loaded, and ideally, some basic information about the plugin, as well as the

ability to update a plugin or find additional plugins.

Our current system does not contain all of these features. We do not yet have the

ability to update plugins automatically, nor do we have anything set up in the way of

finding additional plugins. The basic functionality, however, is in place.

Part of the interface for plugins requires them to specify a number of things,

including short and long descriptions, a name, a version number, and a set of icons that

can be used in the display to represent the plugin. Both input plugins and visualization

plugins are assigned default values, so the plugin developer does not necessarily need to

deal with this, though it is typically done.

The plugin manager shows a hierarchical display of the installed plugins,

displaying their icon and name. When a given plugin is selected, the plugin description

box is filled in with the plugin‘s information, specified by the developer. This

65

information allows for HTML, so formatting and styling information can be added in to

the description, as well as hyperlinks. Figure 13 shows the plugin manager window.

Figure 13. The Plugin Manager interface. Plugins are categorized in the tree hierarchy on

the left, with detailed information about the plugin on the right, along with options for

updating or uninstalling the plugin, as well as installing new plugins.

From the plugin manager, plugins can be uninstalled, as well as installed, which

allows the user to browse their file system for a .jar file that contains the desired plugin.

Once a plugin is added to AdviseAid, it does not need to be added again, unless the user

removes it.

Web Demo Version

As AdviseAid has grown, so have the opportunities for giving demonstrations of

it. In the past, this has been done by packaging up a version of AdviseAid with the latest

70

Image and video capturing can be easily accessed by using the Capturing tab on

the main window. Within this window are two tabs. The first tab allows a user to create

an image or video capture of any of the visualizations that are currently open. The image

capture GUI is shown in Figure 14.

A user can create an image capture by clicking on the camera icon. To start a

video, the user clicks on the video camera icon. Still screenshots, as well as video

captures are stored in a temporary location on the hard drive, and given default filenames

that encode the visualization, date, and time of capture. Users can then view the image

and video captures that have been taken, using the capture manager interface, shown in

Figure 15.

Figure 14. The image and video capturing interface.

71

Figure 15. Video and image capture manager screenshot.

At the bottom of the window is a list of thumbnails of the images and videos.

Clicking on one causes a larger version to appear in the main upper panel, along with the

information about when it was created, as well as what visualization it was. The user is

given the option of saving the file elsewhere on the file system or deleting the capture

entirely.

Branding

Funding for various components of AdviseAid have come from a wide variety of

sources, including private companies and the United States Air Force. A number of these

companies expressed interest in having a version of AdviseAid branded or customized in

a particular way to reflect their own needs. For example, some AdviseAid clients wanted

72

IntelliVis to be able to demonstrate an example of their VisAlert visualization method to

their own clients. They wanted a version that would display their own logo image on the

start screen, as well as in the title bar, and other places. Additionally, they did not want

many of the GUI components to be displayed either, since it was more controls than they

needed, and detracted from the demo.

We created a simple branding system that met these requirements. It was

powerful enough to allow for different text strings throughout the program, different

splash screen images and icons, and the ability to show or hide components of the GUI.

The system utilizes two files. The first is a file with the extension .brand. This

file lists the bulk of the branding information, including the files to use for various

resources like icons and the splash screen image, as well as a listing of whether or not to

show various components of the GUI.

A brand file is loaded in to the program, and the contents are dumped into a

dictionary that is accessible from any part of the program as key and value pairs. As

various components are being initialized, they can look up the key they want to check and

get the result. For instance, as the GUI is being initialized, it can check to see if a

particular component should be visible or not, and add the component, based on the value

in the dictionary.

One of the required key elements in the .brand file is a reference to a file

containing various text strings. This file is called the string file and has the extension .str.

The string file is the second important component of branding. It is similar to the brand

file, but instead of specifying global program options, it lists what strings are to be

73

displayed in various components of the program. This, for instance, allows a title string

to be specified, which is then placed on the title bar. The normal version of AdviseAid is

given the title ―AdviseAid‖, while IntelliVis‘s version can be branded to say ―VisAlert‖

on the title bar. A large number of strings are listed in the string file.

As an example, below are the contents of the default AdviseAid brand file.

SPLASH_SCREEN_IMAGE=Resources/Brand/AdviseAid/SplashScreen.png
SHOW_MAIN_TAB=true
SHOW_MAPPING_TAB=true
SHOW_BEHAVIOR_TAB=true
SHOW_PACKET_CONTENTS_TAB=true
SHOW_DATA_DETAILS_TAB=true
SHOW_CAPTURING_TAB=true
SHOW_SEARCH_TAB=true
SHOW_FILE_MENU=true
SHOW_FILTER_MENU=true
SHOW_HIGHLIGHT_MENU=true
SHOW_OPTIONS_MENU=true
SHOW_HELP_MENU=true
SHOW_SELECT_INPUT_MENU_ITEM=true
SHOW_MANAGE_PLUGINS_MENU_ITEM=true
SHOW_LIVE_OR_STATIC_DATA_COMPONENT=true
SHOW_LIVE_DATA_MENU_ITEM=true
SHOW_STATIC_DATA_MENU_ITEM=true
SHOW_SAVE_MENU_ITEM=true
SHOW_SAVE_AS_MENU_ITEM=true
SHOW_OPEN_MENU_ITEM=true
SHOW_DATABASE_MAPPER_MENU_ITEM=true
SHOW_CHANGE_CAPTURE_FILE_MENU_ITEM=true
SHOW_RESTART_FILE_MENU_ITEM=true
SHOW_EXIT_MENU_ITEM=true
SHOW_MANAGE_FILTERS_MENU_ITEM=true
SHOW_CLEAR_ALL_HIGHLIGHTS_MENU_ITEM=true
SHOW_COMPUTE_INTERVAL_MENU_ITEM=true
SHOW_TIMING_VARIABLES_MENU_ITEM=true
SHOW_DISPLAY_PARAMETERS_MENU_ITEM=true
SHOW_SET_LOOK_AND_FEEL_MENU_ITEM=true
SHOW_JAVA_LAF_MENU_ITEM=true
SHOW_NATIVE_LAF_MENU_ITEM=true
SHOW_NIMBUS_LAF_MENU_ITEM=true
SHOW_ABOUT_MENU_ITEM=true
SHOW_PROGRAM_HELP_MENU_ITEM=true
SHOW_CONNECTION_OR_PACKET_MODE=true
STRING_FILE=./Resources/Brand/AdviseAid/AdviseAid.str

74

The string file allows for user defined variables, which can be reused later in other

strings. For instance, many of the strings in a program may refer to the title of the

program. If the title changes (for example, from ―AdviseAid‖ to ―AdviseAid 2.0‖), the

variable storing the title is the only place a change is needed, and every other string will

be updated to reflect this.

A portion of the default AdviseAid string file is shown below.

$TITLE=AdviseAid
SplashScreen.WindowTitle={$TITLE}
SplashScreen.MainText=Loading {$TITLE}:
SplashScreen.InitDisplayParameters=Initializing Display Parameters
SplashScreen.BuildingVisualizations=Building Visualizations
SplashScreen.InitGUI=Initializing GUI
SplashScreen.InitEventManager=Initializing Event Manager
SplashScreen.PreparingInput=Preparing Input
MainWindow.BasicTitlebarText={$TITLE}
MainWindow.ExtendedTitlebarText={$TITLE}:
Menu.Help.ProgramHelp={$TITLE} Help

This simple brand system has proven to be quite effective and easy to use. In

addition to fulfilling the original goals, the string file acts as an easy method for handling

internationalization and localization. While this has yet to be fully implemented in

AdviseAid, it is a trivial task to create another string file that contains another language

such as Spanish or French. AdviseAid could just as easily load that string file instead,

providing a simple mechanism for providing language translations for the application.

75

RESULTS AND CONTRIBUTIONS

AdviseAid has changed the way computer security visualization is approached in

a number of ways. The architecture allows researchers to quickly and easily implement a

new visualization technique in a way that is separate from the framework, allowing them

to concentrate on the actual technique. Our framework combines a wide variety of tools

and features that are important to visualizations that many other systems fail to include.

AdviseAid also allows visualization designers to quickly implement prototypes to

determine the viability of a technique, while simultaneously providing enough resources

and computational power that visualizations can be produced at production-level. These

features are discussed individually in more detail below.

Comparison of Features

AdviseAid provides many features that visualization designers are clamoring for.

In terms of usable features for security visualization tools, AdviseAid performs

significantly better than other visualization systems.

AdviseAid provides a wide variety of features to visualization designers that no

other system provides. AdviseAid allows the user to add in custom made visualization

techniques, and work with multiple visualizations simultaneously. Other systems do this

to a limited level only. Unlike the other visualization systems, AdviseAid allows the user

to animate a data set, and control the speed of processing. While many individual

visualization techniques have either implemented this [3, 11, 32, 39], or have indicated

that they want to implement it [2, 9, 12], AdviseAid is the only visualization platform that

currently supports it.

76

With input, each of the existing visualization platforms expects a specific kind of

input, while AdviseAid provides a wide variety of input sources, it allows developers to

easily add their own new types in as needed. Each of the existing platforms fails to

provide important mechanisms for handling data, while AdviseAid allows users to filter

and search data sets, and perform data mapping. AdviseAid also provides more support

to new visualization techniques by providing built in mechanisms for drilldown, as well

as for generating geographical and topological maps.

Novel Visualization Techniques

In addition to the development of AdviseAid‘s core framework, a wide variety of

novel visualization techniques have been created as well. AdviseAid currently has fifteen

visualization techniques, eleven of which are novel visualizations. This shows us that the

AdviseAid platform allows visualization designers who have created a novel technique

on paper to quickly and easily develop a working version of their design. While many of

the existing visualizations have a comparable number of existing techniques, their

techniques typically consist mostly of visualizations that are more or less simple graphs,

such as pie charts or bar charts. AdviseAid only provides minimal support for those

common graphs, but instead, is focused on more advanced visualization methods.

Separation of Technique and Framework

One of the key results of AdviseAid is a strong separation of the visualization

technique from everything else. It is clear from the way the literature describes other new

visualization techniques that the visualization creators have focused on a wide variety of

supporting code beyond just the actual visualization. AdviseAid has produced a system

77

wherein a developer only needs to implement the rendering and processing that is

specific to their visualization.

Prototyping

One of the key features that AdviseAid provides is the ability to easily prototype a

new visualization idea. The idea of a prototyping framework is significantly different

than previous approaches to security visualizations. In the past, novel visualization

techniques have been built by creating a new standalone application with limited features.

When the technique has proven useful, the designers have then gone back and added in

the desired features.

The prototyping process of AdviseAid has proven to be extremely useful in at

least two different scenarios. First, the Air Force‘s Rome Labs approached us with

several possible visualization designs, and asked us to implement one for them. Instead,

we began implementing two of their designs. Within a short time, we had two working

prototypes and were able to determine that one technique was far more useful than the

other. We were able to then focus the rest of our time on the more useful visualization

technique.

AdviseAid provides developers with the ability to quickly implement fully

functional prototypes. The best example of this is the Triangle visualization. The

Triangle visualization was designed on paper in a matter of days, and then within a

week‘s time, a fully functional prototype was implemented. The entire implementation

process took no more than forty hours of work, leaving time for tweaking and testing the

78

design. The Triangle visualization is discussed in more detail as a case study at the end

of this thesis.

Production-Level Development

Prototyping is a key component of the development of visualizations. Once a

prototype is built, and a new technique is proven to be effective, many visualization

developers will likely begin work on a completely separate visualization application.

However, AdviseAid provides enough power and features to allow a prototype to be

turned into a production-level visualization.

The strongest evidence of this is that of the VisAlert visualization. Once VisAlert

was prototyped, the designers, IntelliVis, were able to provide feedback and additional

requests to make the visualization more powerful. IntelliVis funded us to add many

additional features to the framework, such as allowing their visualization to read from the

data sources they wanted. Then, using the branding framework that we developed, the

entire application was customized and branded to appear as an entirely different

application, specific to their needs. IntelliVis is currently marketing their visualization

technique.

79

FUTURE WORK

AdviseAid has become a powerful program for developing and testing

visualization techniques, and it is even powerful enough to be used as a commercial

framework. However, it has a number of limitations that need to be improved upon. In

this section, we take a look at some of the limitations and shortfalls for AdviseAid, as

well as looking at plans for the future.

Many of the current shortfalls of AdviseAid have arisen as a result of the moving

target problem. As time has passed, the goals for AdviseAid have grown and changed.

These changes have made AdviseAid fairly powerful, but the constantly changing

requirements have created a large number of inconsistencies in AdviseAid that will need

to be addressed in the future, to allow AdviseAid to grow further.

Rework of the Data Pipeline

As the data sources for AdviseAid have become more diverse and AdviseAid has

expanded beyond network capture files and beyond simple security-related data to

generalized data sets like CSV files, there is now a need to rework the data pipeline in its

entirety. The current data pipeline is inefficient. Currently, the data is read in to two

classes, one of which is the ParameterPercentages class, and the second is the

DataParameters class. Originally, these classes essentially contained all of the

meaningful information that the header of a network packet might contain, including

source and destination IP addresses, transport layer protocol, packet size, and time of

transmission. As the need for additional types of data with additional fields arose,

however, new instance variables were added to the ParameterPercentages class. For

80

instance, when Snort data was added, three additional parameters were added for the

generator number, the event number, and the revision number. A large variety of data

types have been added, and for a while, each new type required additional instance

variables, to the point that now there are 171 instance variables for each

ParameterPercentages created, making each item in a data set nearly one kilobyte in

size, once loaded into memory. Within each ParameterPercentages object, only a

handful of fields are actually in use, creating a huge amount of wasted memory for

virtually all types of data.

Over time, the AdviseAid team has used multiple approaches to reduce this

growth as new data types have been added. First, we put data into fields that did not

necessarily match the original purpose. This meant that data was not labeled correctly.

Thus, while it was visible to the programmers, it was hidden from the end user.

Consequently, an extra amount of care was required in working with data, while giving

the benefit of preventing further expansion of the ParameterPercentages class. This

method, however, was far from ideal.

With the most recent new data types, we added in a system of extensions to the

data pipeline. The extension system allowed for new fields to be added to the storage in

the data pipeline without having to add the fields to all of the data storage throughout the

pipeline. While this extension system nearly solves the problem, it still leaves some

loose ends. Currently, each data item still has the 171 original fields in addition to the

new dynamic field storage that comes from the extension system.

81

To solve this problem completely, we will need to refactor all of the 171 fields

into the extension system, along with any place throughout AdviseAid that references

these fields. Since the data pipeline covers everything from the input readers to the

visualizations, this is no small task, and will require changes to virtually every

component of the system, or to deprecate parts of the system. The change, however, is

one that is needed in the near future, to allow AdviseAid to better handle data sets that

contain non-standardized fields, like XML files, or CSV files.

Plugin System Improvements

As discussed earlier, the plugin system is currently extremely simple and

powerful. The system, however, still has three significant limitations that could easily be

addressed to give AdviseAid plugins far more power. At the moment, all plugins must be

either visualizations or input readers. Ideally, a developer should be able to make a

plugin that can make virtually any change to AdviseAid, like adding content to the help

system, or adding a menu item.

This would require changing the way plugins work, such that they install

themselves, rather than being installed by the visualization manager or input reader

manager. However, because input reader and visualization plugins are the most common,

a default system should be built for these two types, as well as possibly other types.

Second, plugins should be able to specify prerequisites when they are being

installed. Multiple plugins may desire to reference a common library, and so the library

ought to be able to be accessed as a separate plugin that all of the others can refer to.

82

Finally, there needs to still be some significant improvements to the way plugins

are updated. Currently, all plugins must be updated manually, which complicates the

process and may prevent users from keeping up-to-date with the newest versions of

various plugins. The plugin system will likely need to be extended somewhat to allow

each plugin the ability to specify where new updates will come from, like a URL. Such

capability could then provide the AdviseAid system with the ability to lookup what

version of the plugin to update to, and what version of AdviseAid is required, as well as

potentially allowing the user to choose whether to get development or beta versions of

plugins, rather than just final release versions or maintenance versions.

Improved Mapping System

One final area of improvement that AdviseAid will need soon is a revamped

mapping system. The current mapping system, while functional, is very basic. The GUI

for the current system is shown in Figure 16.

In the current version, each visualization is responsible for providing a list of data

parameters that the user can map from, and a list of visual attributes that each of these

parameters can map to.

The current system has several limitations that need to be resolved to allow

AdviseAid to continue to be a useful application and development platform in the future.

First, the data source needs to be the origination point of the data parameters. The type of

data being viewed is determined by the input parser and the contents of the file. Currently

though, the visualization is the object providing the list of data parameters, and they do

not use any information about the currently loaded data set or data parser. (It is possible

83

Figure 16. A screenshot of the current mapping system GUI. Each visualization provides

a list of parameters from the data that they can map from, and a list of visual attributes

that can be mapped to. Users can pair any data parameter provided with any visual

attribute provided.

for a visualization to determine this information by working with the input parser, but the

process would be complicated and long, so no visualization does this.)

Second, the current system allows a user to map any of the listed data parameters

to any of the listed visual attributes, without regard to the type of data it represents. This

causes serious problems with the way data is handled. For instance, consider a

visualization like the Triangle visualization that averages a parameter of the data and uses

it as an important part of the display. Some fields in a data set can be averaged

84

meaningfully, while others cannot. The packet size of multiple packets can be averaged,

and can thus be used for this function in the Triangle visualization. However, the

transport layer protocol of multiple packets cannot be averaged meaningfully. For

instance, if the visualization considers a set of eleven packets wherein nine are TCP

packets (represented with the protocol number of 6) and two are UDP packets

(represented with the protocol number of 17) when the average is taken, the result is

eight, which is the protocol number for the Exterior Gateway Protocol (EGP). This could

lead a person to think that EGP is being used, when in fact, only TCP and UDP are being

used. This form of data cannot be averaged and could, therefore, not reasonably be

mapped to this particular visual component of the Triangle visualization. The data is

nominal or categorical, and so this operation cannot be used for this purpose.

AdviseAid‘s mapping system needs to be expanded to allow visualizations to filter which

types of data from the data set and input parser can be mapped to a particular attribute of

the visualization.

85

CONCLUSIONS

The process that AdviseAid has gone through over the last three-and-a-half years

has shown us a great deal of things that may help in the field of visualization in the

future, as well as give direction to where AdviseAid will go from here.

Our survey of some of the more popular security visualization techniques has

given us important information about what features most visualizations need. These

features include reading from files and other data sources, a close connection with other

visualizations that may be running simultaneously, a component of drilldown, data

filtering and searching, and a system to easily deploy the new technique to potential

clients, as well as screen and video captures for reports.

The progress that has been made over the last several years has made AdviseAid a

useful platform for creating and experimenting with new visualization methods. We have

seen that the process of making a quick prototype for a visualization is extremely useful,

because it has allowed us to quickly determine if a particular visualization method can

accomplish the task it was designed for. We have seen a number of visualizations that,

once implemented, were clearly not going to be able to do what we wanted of them. For

example, the Time Analytic visualization was dropped early on, once we had a working

basic prototype, because we could see that the Trilogy visualization was a much better

choice for the task they were both designed for, and time constraints required us to

complete only one. Others, still, have exceeded even our own expectations. VisAlert, for

one, has turned out to be the most fully developed and powerful visualizations, and as the

initial round of implementation was completed, we could then see many ways to extend

86

and improve the visualization for the better. Once we had prototyped several of our

visualizations, we could easily see what they were lacking, and come up with a quick fix

to the problem, without needing to develop a complete and individual package for the

visualization. We have seen that the prototyping process that AdviseAid creates greatly

helps with the development of a new visualization technique.

AdviseAid makes it easy to implement new visualizations because it allows

developers to concentrate solely on their specific visualization technique. Many of the

common tasks that they all share are done within the AdviseAid framework.

Visualization developers do not need to worry about reading in files, connecting to

databases, or filtering data, and the framework provides a large number of other tools that

help in the development and testing of a new visualization. Developers have multiple

options for the rendering of their visualization in OpenGL and Swing, and while it has

not yet been tested, they could theoretically develop in any language that runs on the Java

Platform.

The growing collection of implemented visualization techniques has reinforced

the idea that visualization is very beneficial in computer and network security

applications, as well as in broader fields. We see visualization methods giving users

strong visual cues that an attack is occurring on their network, and helping them to

understand what is happening.

In addition to the benefits that we see from AdviseAid, we also see a couple of

drawbacks to using visualization techniques in general. From what we have seen, it

would appear that a single visualization alone will not likely be able to identify all attacks

87

and threats, or even the majority of them. Visualizations often need to work in

conjunction with others to give users the information they need. For example, a rule-

based visualization, like VisAlert will miss previously unseen attacks that the user has not

accounted for. A visualization like the Triangle visualization will not always be very

accurate with previously known attacks the way VisAlert is, but it does give users the

benefit of detecting anomalies. A combination of the two visualizations would produce

better results than each one individually. Indeed, AdviseAid provides a great deal of

support in this manner, by allowing a user to run any number of visualizations

simultaneously, and by allowing users to select data in one visualization that is then

marked in other visualizations.

While we can see with AdviseAid that visualization is a very useful tool in attack

detection, it is unlikely that visualization will ever take over the role of many other

security features, such as a firewall, intrusion detection systems, and other security tools

like Snort and Dragon. These tools perform a variety of computations on the raw

network traffic and take action as necessary. The goal of visualization is not to perform

raw calculations, but rather, to display data in a way that the human eye can process

faster than it would if the user were given a large data set in a table or text-based form.

As research in all of these areas progress, we will likely see more powerful visualization

methods using data created by more powerful intrusion detection systems, and more

powerful security tools, rather than only visualization or computational tools dominating

the field.

88

CASE STUDY: THE TRIANGLE VISUALIZATION

Introduction

As a demonstration of the usefulness and versatility of the AdviseAid

environment, I created a novel visualization technique designed specifically for anomaly-

based intrusion detection. The goal of this visualization is to demonstrate how easy it is

to create a visualization using the features AdviseAid provides, as well as to produce a

new visualization technique that has value on its own, and expands the current field of

knowledge of using visualization for computer security purposes.

We used the Triangle visualization technique for our case study, which is an

extension of a ternary plot. A ternary plot is a type of graph that plots points within a

triangular region, based on what percent of a whole matches each of three separate

categories, as shown in Figure 17.

While not nearly as common as other plots, such as a bar graph, or pie chart,

ternary plots have been used for a number of purposes. A prime example of a ternary

plot in relatively widespread use is that of the United States Department of Agriculture‘s

soil texture triangle [35]. The soil texture triangle is used by the USDA and soil and

plant scientists to label and categorize soil measurements. When using the soil texture

triangle, soil is considered to have three attributes (silt, sand, and clay), each of which are

a certain percentage of the whole.

The triangle visualization plots points in a triangular region on the screen. Taking

advantage of data mappings, one of the key components of the AdviseAid framework, the

points plotted in the triangle visualization may represent virtually any aspect of a given

89

Figure 17. A basic ternary plot. Ternary plots measure three components that combine

to form a whole. Based on the values along the three axes, a point can be plotted within

the triangle representing the given percentages.

data set.

By default, each point represents data transferred between two computers, so two

IP addresses uniquely identify a connection. A node‘s position in the triangle can be

mapped to a number of different attributes about the connection, and the node moves

around over time, as the given attribute changes. The three attributes that we are

specifically concerned with are port, protocol, and packet size, though AdviseAid gives

us the ability to map to other attributes of the data set as needed.

90

The triangle visualization is primarily useful as an anomaly-based intrusion

detection visualization, wherein the user is able to quickly and easily detect when

something abnormal is happening. Anomaly-based attack detection is known to be a very

powerful form of detection because it allows a system to discover attacks that are not

previously known. Current behavior is compared against ―normal‖ behavior, and any

time it deviates from the known normal behavior, the user is alerted that something may

be wrong.

The triangle visualization expands on the basic ternary plot in a number of ways.

First, because the visualization occurs over time, the plot is animated. As time passes,

nodes move around within the triangular plot area, and the user sees how the network is

currently behaving, as well as how it might be changing.

Second, to make the changes more obvious, and also to show the nodes‘ history, a

trace line is drawn behind each node to illustrate the path it has taken.

Third, as a method of better illustrating normal behavior, as well as anomalous

behavior, the triangular plot area is divided into a given number of smaller triangles

called zones. All of the area within a single triangular zone represents similar data.

Zones for a selected node are colored based on how much time the node has spent in the

given zone. Colors are customizable, though the default is to color the zone black if the

node has never spent any time in that zone, solid blue if the node has spent a great deal of

time in the zone, and a shade in between if it has spent a smaller amount of time in the

zone. If a node moves into a zone that it has never been in before, it will draw the user‘s

attention to the anomaly.

91

A screenshot of the completed Triangle visualization is shown in Figure 18,

illustrating the basic features of the visualization.

Figure 18. A screenshot of the Triangle visualization. This shows the basic plotting,

along with traces and zones, colored in blue, for the selected node.

Previous Work

Detecting and analyzing attacks on a computer system is a difficult task. In fact,

it may be impossible to come up with a perfect solution for this problem. There are a

number of complicated problems that must be addressed in order to come up with an

effective solution. First, on a network, or even just a single computer system, there is a

massive amount of data that needs to be processed. Within any system designed for

92

intrusion detection, an analysis must be able to process this data quickly, in real-time or

near real-time, to be effective.

Second, on any given system, the majority of the data likely represents good or

normal use of the computer network. An intrusion detection system or analysis tool must

be able to effectively sort out data that represents an attack from data that represents

normal use of the system. Of particular interest here, are the concepts of false positives

and false negatives. A false positive in this context is when an intrusion detection system

identifies something as malicious activity when it is really normal or valid. A false

negative occurs when a system indicates that something is normal, or fails to mark it as

malicious, when, in fact, the event was part of an attack. Ideally, a system should have

both low false positive and low false negative rates. It is generally thought that having a

low false negative rate is somewhat more important, because false negatives mean that

attacks are going by unseen, whereas false positives means the analyst has more data to

look at, but nothing malicious is getting through. Thus, a good intrusion detection system

or analysis tool has low error rates, especially low false positive rates.

Thirdly, it is important for an intrusion detection system or analysis tool to be able

to identify new attacks that have not been seen before. This is a critical feature of this

type of system, because attackers are always coming up with new attacks and exploiting

new vulnerabilities.

A variety of methods have been applied to the problem of intrusion detection.

Kabiri and Gohrbani [11] point out some of the various types of techniques that have

been applied in this area, including artificial intelligence, rule-based systems, data

93

mining, Bayesian classification, and fuzzy logic. They point out that each of these

methods has advantages and disadvantages that come into play in computer security.

One method for intrusion detection or analysis that has begun growing in

usefulness is that of visualization. Ball et al. [2] point out that in the communications

they have had with network analysts, the analysts have indicated that they have many

tools to use, most of which are text-based. They state that the analysts are requesting

more visual tools to help them quickly see the state of their networks.

Another trend in the field of intrusion detection is that of anomaly detection,

rather than signature-based or rule-based systems [11]. This is because signature-based

and rule-based systems essentially provide a blacklist of the different activities that

constitute malicious activity. When new attacks appear, these systems generally miss the

attack. Anomaly detection will most likely be able to detect the attack. Several anomaly-

based intrusion detection systems have been, or are being developed. Depren et al. [5]

for example, designed a system with anomaly detection and misuse detection, utilizing

self-organizing maps (SOMs). A number of others have also applied anomaly detection

to intrusion detection [14].

By combining these two trends, we can see that an anomaly-based visualization

approach to intrusion detection and analysis may prove useful. However, many of the

current anomaly-based visualizations, such as AdviseAid‘s ForceVis, fail to truly provide

any new data beyond other existing visualization techniques, and there is still an empty

hole that needs to be filled in this area. From a survey of literature on visualizations

geared towards computer security, it appears that our approach of extending a ternary plot

94

into an anomaly-based visualization tool has not been rigorously applied. Our design is

the first to attempt this that we are aware of.

In addition to the goal of designing and developing a useful new visualization

technique, our other goal was to more fully test out the features and tools that AdviseAid

provides. To date, all visualizations that exist in AdviseAid have one of two problems.

Either they are too small to fully test AdviseAid‘s usefulness, such as the simple Pie

Chart and simple Bar Chart that were discussed earlier in this thesis, or they are

sufficiently complex, but were developed mostly before many of the more powerful

features of AdviseAid were created. The Triangle visualization is the first large scale

attempt to utilize the features of the AdviseAid environment.

Methods and Implementation

The Triangle visualization is a prototype visualization, and as such, many of the

aspects of the design and implementation were determined by this fact. For example, the

triangle visualization‘s rendering was done with Java‘s Swing and the Graphics2D class,

as opposed to OpenGL, which is used by most of the other visualizations in AdviseAid.

This was done to allow for rendering that is easy to work with and looks nice, without

having to do a lot of work.

Overview

The basic structure of the Triangle visualization is fairly straightforward, and

essentially follows the Model-View-Controller design pattern. The architecture is

illustrated in Figure 19.

95

Figure 19. Illustration of the overall architecture of the Triangle visualization. Input

comes in from AdviseAid, the underlying model is updated to include the new input, and

the renderer displays the changes in the user interface.

The visualization takes advantage of many of the features that AdviseAid

provides, and as such, the visualization has no need to worry about input handling, other

than to work with the data that AdviseAid gives to it.

The underlying data model consists of a collection of nodes, which each represent

a single point plotted in the Triangle visualization. Each individual node consists of three

major pieces. First, there is some matching information, used to determine if new data

belongs to the node or not. The code is designed so that the matching information is an

interface, which allows for developers to easily extend the visualization, but the default

implementation allows for any network packet that has the same source and destination

IP addresses to be considered a match as described in the introduction of this chapter. If

96

no match is found in the set of nodes, a new node is created, with appropriate matching

information for future use.

When a new piece of data is added to a node, the node updates itself to include the

new information. At the core of this process, the node to update its trilinear coordinates,

which determine its location.

Additionally, a node contains a history of where it has been in the recent past. As

enough time passes between updates, all of the nodes move to the next time step. The

history of a node is stored as a queue, with new time steps being added to the back and

the oldest time steps being removed from the front when the queue becomes filled to a

given maximum capacity. Beyond the basic functionality of a queue, all time steps in the

list are visible externally, so that the contents of the history can be displayed to the user

on demand.

Each node also contains a zone manager, which takes the current location of the

node within the plot and maps the value to a particular zone. A zone is a triangular

region within the full triangular plot. Zones are a way of effectively grouping similar

points together into a single bucket. As a node moves around, it spends more time in

particular zones than others. In most cases, a node spends all of its time within a single

zone, or a small number of zones, and when the node suddenly leaves the zone to a

different zone, especially one that is drastically different from where it was before, it

becomes obvious to the user visually that something abnormal has happened, and the

node is no longer following normal behavior.

97

At each frame of the visualization, the renderer redraws the screen to display the

most recent contents of the data model, which consists of the current points, their

histories, and rendering of the zones of selected nodes. The rendering, along with various

settings that the user can modify during run time, form the view component of the model-

view-controller design.

Trilinear Coordinates

Trilinear coordinates are a critical component of the Triangle visualization. They

determine where a node should be plotted on the ternary plot. Trilinear coordinates

consist of three values x, y, and z, where x + y + z = 1. Trilinear coordinates differ from

3D Cartesian coordinates in that the values combine to form a whole. While this

provides the ability to plot ternary points on a graph, it is also a limiting factor in the

sense that any of the components can be—and must be—determined by the other two

values. For example, if x = 0.2 and y = 0.3, then we know z must be 0.5.

This has a direct impact on the way the visualization works, and is the single

largest limitation to a ternary plot, in general. For example, if each node represents the

flow of communication between any two IP addresses, the trilinear coordinates, which

tells us the location of a node, can represent the protocol used to communicate between

the two. The x-coordinate represents the total percent of packets that use TCP. The y-

coordinate represents the total percent of packets that use UDP. The z-coordinate

represents the remainder of the packets, which are all of those that are using another

protocol besides TCP or UDP, such as ICMP.

98

In some ternary plots, such as the USDA soil texture triangle, there are only three

possible categories or labels, and each coordinate can represent a distinct category. For

many other data sets, like the network traffic that we want to analyze, there are more than

three categories.

There are two methods of dealing with this. First, the third coordinate can simply

represent all other data, giving us two distinct categories, and a third catch-all category.

Second, we can have three distinct categories, and anything that does not fit one of the

three categories is removed from consideration. The Triangle visualization allows one to

specify which values are to be used for each category.

A second significant limitation of trilinear coordinates is that each of the three

categories must be independent of each other. Anything that fits in the x category, must

not fit into the y or z category. This restricts what kinds of categories can be chosen, to

some degree, though most of the common categorizations should work without any

trouble. For example, one could use the transport layer protocols TCP, UDP, and ICMP

as the three categorizations. Anything that uses TCP cannot also use UDP or ICMP.

However, one could not mixing transport layer and network layer protocols, and choose

TCP, UDP, and IP protocols as the categorizations, because all TCP and UDP packets are

also IP packets.

Updating Nodes

One particular challenge with this visualization is how a node‘s trilinear

coordinates gets updated, based on a new piece of data. A node contains a collection of

data that determine the node‘s trilinear coordinates. Because data within AdviseAid is

99

being processed as time passes, or at least in some form of sequential ordering, the

trilinear coordinate of the node is the average of each of the individual data items over

time. For example, if two computers are communicating with each other and they send

four TCP packets and then a UDP packet, the node‘s current location would be (0.8, 0.2,

0.0). Thus with a basic implementation, a node‘s trilinear coordinates is the average of

the node‘s data over its entire history.

This type of basic implementation, however, has two big drawbacks. First,

because it requires all of the node‘s history, as more time passes, more memory will be

required of the visualization. Second, if a great deal of normal traffic occurs, and then

suddenly a smaller amount of anomalous traffic appears, because there is so much more

normal traffic, the node will barely change coordinates, and it will not produce a visible

anomaly to the user.

An improvement on the basic naïve implementation is to only keep track of a

user-specified number of recent packets, and average those instead, or alternatively, only

keep track of all packets within a certain amount of time before removing them from the

list. The former approach creates a maximum cap on the total amount of data stored,

though the latter approach is likely to produce more accurate results, as it is time-based.

It does not, however, guarantee a limited number of packets for each node, as the data set

may contain a very large amount of data during a given timeframe. This data would be

stored in its entirety, until enough time has elapsed, possibly causing the program to use

up its available memory and slow the execution of the visualization.

100

While either of the two above approaches would be vast improvements over a

naïve implementation that stores everything, neither of them were implemented. Instead

a hybrid approach was taken.

The approach that was implemented in the current version of the Triangle

visualization is a method wherein only a given number of packets are stored for the node,

but the trilinear coordinates of the node is calculated based on both the value of the new

packets, and older packets, combined together with a weighting or decay factor.

𝑡𝑖+1 = 𝛼 𝑡𝑖 + 1 − 𝛼 𝑣𝑘

𝑛

𝑘=1

Where:

ti is the trilinear coordinate at the i
th

timestep,

α is the decay factor, and 0 ≤ α ≤ 1,

vk is the trilinear coordinate of the k
th

 new piece of data, and vk is either

(1, 0, 0), (0, 1, 0), or (0, 0, 1),

and n is the total number of new packets.

We found that a decay factor of α = 0.995 works well, though this value is

customizable, and other values may be better for different applications. In general, the

closer α is to 1, the slower the node will move to reflect recent changes. With α = 1, the

node would never move, and instead, retain its original position forever. The lower α is,

the faster it will move. If α = 0, all old data is discarded immediately, and only the

current data is used to determine the current location. This, in effect, degenerates to one

of the previous methods described, wherein only a certain number of recent packets are

used. Values near, but not at 1 tend to produce the best results.

This type of incremental change allows the visualization to be able to detect some

forms of low and slow attacks. While old data may be completely thrown away, a

101

summary of the data tracked numerically until a great deal of new data arrives. For

instance, if a port scan is attempting to go undetected by only scanning one port every

day, the Triangle visualization may still be able to detect it, because even though the data

from days earlier has been removed, it is still having an impact on the node‘s location

because of the decay factor.

Screen Coordinates and Trilinear Coordinates

In order to be plotted on the screen, a trilinear coordinate must first be converted

from trilinear coordinates to Cartesian coordinates in the screen‘s coordinate space. In

Java‘s Swing, as well as virtually all other windowing systems, the top left corner of the

screen or window has the coordinates (0, 0). The x-axis goes left to right, and the y-axis

goes from top to bottom.

In order to plot the point, we must be able to take trilinear coordinates and the

given Cartesian coordinates of three points on an equilateral triangle to determine the

screen coordinates of the given trilinear point. Additionally, the Triangle visualization

allows the user to select nodes in the graph. Since mouse events in Java are referenced

by the screen coordinates of the mouse, we also need to be able to convert from Cartesian

coordinates to trilinear coordinates.

Mertie describes the process of converting trilinear coordinates to Cartesian

coordinates [19]. The Triangle visualization follows the basic formulas Mertie provides,

with a few variations and modifications to match the screen coordinate system that we are

using.

102

In this section, we refer to the main triangle that contains all points in the plot as

T, and each of the vertices of the triangle as T1, T2, and T3, where T1 is the top vertex,

T2 is the right vertex, and T3 is the left vertex of the equilateral triangle.

To convert a 2D screen coordinate to trilinear coordinates, we follow a two-step

process. First, the mouse coordinates (mx, my) are converted to a unitized box

surrounding an equilateral triangle with sides of length 1. Next, we determine a number

of important measurements on the original triangle.

The following formulas are used to determine the values of L, h, and a:

𝐿 = 𝑇3𝑥 – 𝑇2𝑥

𝑎 =
 3

6
𝐿

ℎ = 2𝑎

To calculate the point (x, y), given (mx, my), we use the following equation:

𝑥 = 𝑇3𝑥 −
𝐿

2
+ 𝑚𝑥

𝑦 = 𝑚𝑦 + 𝑇3𝑦 − 𝑎

We can then calculate the trilinear coordinates for the point (α, β, γ) with the

following equations:

103

𝛼 =
1

3

2 (𝑝3 − 𝑥 cos 𝜔3 − 𝑦 sin 𝜔3)

ℎ
+ 1

𝛽 =
1

3

2 (𝑝2 − 𝑥 cos 𝜔2 − 𝑦 sin 𝜔2)

ℎ
+ 1

𝛾 =
1

3

2 (𝑝1 − 𝑥 cos 𝜔1 − 𝑦 sin 𝜔1)

ℎ
+ 1

𝑤ℎ𝑒𝑟𝑒 𝑝1 = 𝑝2 = 𝑝3 =
1

3

𝑎𝑛𝑑 𝜔1 =
𝜋

3
, 𝜔2 =

5𝜋

6
, 𝜔3 =

3𝜋

2

To convert from trilinear coordinates to Cartesian screen coordinates, we use the

formulas below:

𝑥 = + 𝑇2𝑥 − 𝑇3𝑥
𝛽

1 − 𝛼

𝑦 = 𝑇1𝑦 + 𝑇2𝑦 − 𝑇1𝑦 1 − 𝛼

Note that γ is not used in these calculations, because γ is dependent on α and β.

Zones and Trilinear Coordinates

Zones in the Triangle visualization are small triangular regions within the main

triangular plot area. All points within a zone have very similar trilinear coordinates, and

as such, zones have an important role in helping the user determine when the behavior of

a node becomes anomalous. A node crossing into a zone in which it has not spent much

or any time is an indication that something odd may be going on. It is especially so if the

104

node makes a rapid change to a distant zone. A screenshot from the completed Triangle

visualization, is shown in Figure 20.

The current implementation of the Triangle visualization stores the zones in an

array of arrays. Each row in the array represents a horizontal strip of zones across the

triangle. Each row contains alternating orientations of triangles, upward oriented, then

Figure 20. Screenshot of zones in the triangle visualization. In this image, the zone data

is for the selected point in the lower right part of the triangle. The zones indicate where

the node has spent most of its time, with the color of the zone changing from black,

representing zones that the node has never been in, to blue, where it has spent a long

period of time. If a node moves into a black area, it is clear that something anomalous is

happening, and is worth further investigation.

downward oriented. The first row is of size 1, containing only the single upward-oriented

zone at the top of the triangle, the second is of size 3, containing the three zones in the

105

second row of zones (two upward- and one downward-oriented triangles), the third

contains 5 total zones, and so on, until the bottom of the triangle is reached.

As a part of this process, it is fairly common to need to determine the zone of a

node, given a trilinear coordinate. This problem can be summarized as this: given a

trilinear coordinate (α, β, γ), and the total number of rows of zones in existence,

determine the row and column in the triangular array for the zone that it belongs to.

To accomplish this, we first calculate the zone‘s value along each of the three

axes, using the equations below:

𝑥 = ℎ − 1 − 1 − 𝛼 ℎ

𝑦 = ℎ − 1 − 1 − 𝛽 ℎ

𝑧 = ℎ − 1 − 1 − 𝛾 ℎ

𝑤ℎ𝑒𝑟𝑒 ℎ 𝑖𝑠 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑜𝑤𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑧𝑜𝑛𝑒 𝑎𝑟𝑟𝑎𝑦

Then, to lookup the actual row and column from these values, we use these

equations:

𝑟𝑜𝑤 = ℎ − 1 − 𝑥

𝑐𝑜𝑙𝑢𝑚𝑛 =
2𝑦 𝑖𝑓 𝑦 + 𝑧 = 𝑟𝑜𝑤

2𝑦 + 1 𝑖𝑓 𝑦 + 𝑧 ≠ 𝑟𝑜𝑤

Note that the function for determining the column becomes a piecewise function

to account for both upward oriented and downward oriented zones.

106

Results

We have run the Triangle visualization with an assortment of TCP dump files.

The results are very interesting; they show that the visualization has the ability to detect

various network security events and threats. In this section, we review results from three

of the files, we discuss the results of the other goal of creating the visualization, and

finally we discuss how the development process was assisted by the AdviseAid

framework.

One interesting example that we noticed with the Triangle visualization is the

detection of port scans. Port scans were easy to discover in the capture_2 file that ships

with AdviseAid as an example data set, and is commonly used with other AdviseAid

visualizations. The Triangle visualization shows port scans as nodes that continue to

move from one vertex to the other and back. Occasionally, if the visualization is

configured right, the node will go around each of the vertices in a cycle. Figure 21 shows

a screenshot of the Triangle visualization with two port scans visible. On the right is a

port scan that is easy to see because the node continues to move back and forth from the

top corner to the lower right corner. Upon further drill down, one sees that the scan starts

at around port 1000 and incrementing by one on each step, up until around 4000, when it

starts over. In the lower left corner is a second port scan that started somewhere in the

2001-6000 range, and continued to climb, and eventually moved the node over to the left

vertex.

107

Figure 21. Two port scans in the Triangle visualization. Each vertex of the triangle

represents different ranges of ports, with the low end ports at the top vertex, the middle

range ports on the right vertex, and the high range ports on the left vertex. The node

marked with the red arrow continues to transition between the top and the right vertices

during the duration of the file, as indicated by the light blue arrow. The node in the left

corner has also just moved from the mid range ports to the high range ports. Both of

these are clearly port scans in the file.

Near the end, several nodes suddenly turn extremely unstable, and move all over

the plot. In particular, one node, shown in Figure 22, arcs through the middle of the plot

indicating that it was communicating on a large number of ports. This shows a serious

problem with the node. Because this node is selected, we can also see that this node had

previously spent almost all of its time near the top vertex by looking at the marked zones

in blue.

108

Figure 22. Anomalous activity shown in the Triangle visualization. This shows the same

capture file, near the end as several nodes begin moving all across the plot in a significant

anomaly. The purplish arc in the bottom left came from a node, now located in the lower

left corner which represents the communication between two computers on a wide variety

of ports, causing it to arc abnormally.

In a second example, shown in Figure 24, the visualization has the vertices

mapped to packet size. In this example, the top vertex represents communication with

small packets (less than 100 bytes long) the right vertex with medium sized packets (100

to 1000 bytes) and the left vertex represents communication with large packets (longer

than 1000 bytes long) as would be normal during a large file transfer. During the

analysis, we see two nodes that are constantly moving around near the lower middle part

109

Figure 23. The Triangle visualization mapped to packet size. Two nodes near the bottom

center are moving around together, indicating that they are communicating with each

other. Another node suddenly moves from the top vertex out to the middle, because it

has suddenly started sending much larger packets. This is likely a sign that the

connection the node represents has started transferring large amounts of data.

of the triangle. They move around together, which indicates that the two nodes are likely

communicating with each other.

Another interesting discovery in this example is the node in the center that has

moved from the top vertex down to the lower middle of the plot. The node is selected,

and so by the zones it is clear to see that the node had spent a great deal of time sending

only small packets, and suddenly, it began sending much larger packets. The connection

it represents has clearly changed the type of data it is sending from small single packets

110

to larger packets. This is likely the beginning of a file transfer that will produce bigger

full Ethernet packets.

A third and final example shown in Figure 25 shows a network capture from a

single computer. The single computer was accessing the Internet to watch a streaming

video. After running only the streaming video, another single web page was opened,

producing a collection of other nodes. Upon detailed investigation, it is clear that the

collection of nodes are coming from the original page, as well as other sites that are

providing additional content, like images, ads, and so on. The two purplish nodes

heading towards the lower left corners have likely begun transmitting larger files, like

images or Flash objects.

Figure 24. The Triangle visualization with video and web traffic. This image shows a

streaming video connection in the bottom left, and a large collection of connections

transferring small packets. The large collection of nodes appeared when a single web

page was opened. The multiple nodes are showing all of the content from other pages

that were needed to load the complete page, like ads, images, and so forth. The two

purplish nodes heading towards the lower left are likely transmitting images or Flash

objects.

111

Components of AdviseAid Utilized

One of the key goals in the development of the Triangle visualization was to

illustrate that AdviseAid provides a large collection of tools speed the development

process along. It is therefore worth discussing briefly the components of AdviseAid that

have proven useful during the development of the Triangle visualization, to illustrate how

AdviseAid can assist in the creation of visualization prototypes.

The Triangle visualization relied heavily on the default input parsers that

AdviseAid provides. In particular, the Triangle visualization took advantage of the Jpcap

parser, which reads TCP dump files. Since the goal with the Triangle visualization is to

prototype a new novel visualization technique, it saved a great deal of time to be able to

skip the file reading and parsing entirely, and just work with the data pipeline that

AdviseAid provides to the visualizations.

The Triangle visualization also took advantage of the visualization framework

that was assembled years ago, and greatly simplified in the more recent months.

Essentially, the entire development of the Triangle visualization was devoted initially to

the design, the implementation mostly devoted to the visualization‘s update() and draw()

methods, where the underlying data model was updated, expanded, and otherwise

modified to reflect the newest collection of data supplied by AdviseAid, and to the actual

rendering of the visualization. Because AdviseAid took care of the event loop, our

visualization did not need to worry about that aspect either.

Along the same lines, the framework that AdviseAid provided for doing rendering

with Swing allowed us to use a programming technology that is widespread and well

112

known, but extremely easy to use for our rendering. Because Swing rendering is so

strongly supported with AdviseAid, we did not have to waste a great deal of time

working with the more tedious (though more powerful) OpenGL capabilities that

AdviseAid also supports.

We were also able to take advantage of a number of GUI components and

structures that appear in the main AdviseAid window to interact with the user.

AdviseAid‘s mapping system let us easily get feedback from the user to try different

mappings. The user was able to decide what each of the points on the triangle

represented, and change it to get a different view of the data set. While not all mappings

are useful in the Triangle visualization, the built-in functionality of AdviseAid easily

allows one to experiment with all possible options. This allowed us to quickly and easily

learn important lessons from the prototype that would be needed in a final

implementation of the visualization.

Lastly, the screenshot and video capturing tools of AdviseAid made it extremely

easy to put together this thesis, as well as a collection of other reports about the

visualization. While screenshots and video captures can be generated in other ways, the

native ability of AdviseAid to do this meant that we did not need to spend time working

with either an image editor or a video editor, and we did not need to spend any extra

money in the development to get quality screen and video capturing.

Overall, we saw that building on the AdviseAid framework provided us with a

great deal of boilerplate code and functionality that allowed us to skip the low-level

basics of producing a visualization, and move ahead with the implementation of the

113

visualization itself, giving us extra time to add in additional improvements, such as the

zones.

Future Work and Conclusions

The results show that the Triangle visualization is capable of detecting a variety

of network attacks and significant events. With continued development, the visualization

could prove to be even more powerful. We have seen that using anomaly-based

visualization can alert the user to when something is amiss on their network. We have

shown that port scans are easily visible in the visualization, as are sudden changes in the

behavior of a computer. These events allow a network analyst to quickly see what may

be wrong on the network.

One of the best features of the Triangle visualization is that is has proven to be

easy to use. Many other visualizations are done in three dimensions, which requires the

user to rotate the display around to understand what is going on. A simple 2D display

like the one used in the Triangle visualization allows a user to be able to analyze the

network without having to work with complicated user interactions to control an abstract

3D environment. A user can tell what might possibly be wrong by simply looking at

things that are changing in the display, especially the movement of nodes. ―Normal‖

nodes stay put, while others move around.

The Triangle visualization has one significant limitation that will most likely not

be able to be fixed. The fact that all pieces of data must be categorized into one of

exactly three categories is the driving force behind the underlying ternary plot, but it is

also an intrinsic limitation to the plot and to the visualization as a whole.

114

There is another limitation that the Triangle visualization has that is common to

all anomaly-based systems: a system can perform bad activity so often that malicious

events become normal. This is not likely to occur in a real world situation, however, and

for now, we are ignoring this concern.

Scalability also appears to still be a significant issue with this visualization

technique. Like many other visualizations, a large data set greatly clutters the screen,

which restricts what the user can do with it. Different visualizations handle this to

varying degrees of success, but the Triangle visualization is probably somewhat worse

than average in this regard. There may be things that can be done to improve this

problem, however. First, since the entire visualization is based on anomalous behavior, a

metric of anomalous behavior in a node could be provided. It would also be beneficial to

add a transparency component to each node, so that nodes that are behaving within

normal bounds are completely transparent, and nodes that are an anomaly appear opaque

to varying degrees, depending on how anomalous it is. This would ensure that only

anomalous data is displayed, and would greatly reduce clutter on the screen. A feature

such as this is going to be almost mandatory for this visualization before it could be

considered viable for commercial uses.

There is a small collection of other areas in which this visualization could be

improved if additional time could be put into it. More mappings would help expand the

power of the visualization and allow it to be applied to a wider variety of input sources.

115

There are also many parameters the visualization tracks that the user cannot

modify, such as the node size, or the zone color. A developer can change these values in

code, but it would be beneficial to end users to have access to these features.

Another possible improvement to the interface would be to enable the size of

nodes to increase and decrease, based on the total amount of data being processed at the

given moment. The Triangle visualization currently analyzes the type of data each node

is processing, and almost completely ignores the volume of data. Adding in this feature

would greatly improve its power. If this feature were implemented, though, it would be

important for it to show the change in volume of data, rather than the actual amount of

data, in order to allow the visualization to focus on anomalous behavior. For example, a

popular web server like google.com handles a vast number of requests every second,

while a single desktop computer only handles a very small amount of traffic. It would be

important for this feature to show that Google‘s server has suddenly begun transmitting

an abnormally small amount of data, or that an individual‘s desktop computer is suddenly

being flooded with data, instead of the normal slow trickle. Thus, the size of the node

must be based on how abnormal the volume of data is, rather than a measurement of the

total volume.

This case study shows that AdviseAid provides many powerful features that allow

complicated visualizations to be prototyped in a short period of time by providing the

user with necessary framework to work quickly and effectively. It also illustrates that the

Triangle visualization is a relatively effective technique by itself. There are still many

ways that it can be improved, and it has a few limitations that will not be able to be

116

addressed, simply because of the basic requirements of the underlying ternary plot, but

overall the visualization is powerful and has been shown to be able to detect a variety of

network based attacks.

117

REFERENCES

[1] Ahlberg, C. and Wistrand, E. IVEE: An Information Visualization and

Exploration Environment. In IEEE Symposium on Information Visualization

(InfoVis ’95), 1995.

[2] Ball, R., Fink, G., and North, C. Home-Centric Visualization of Network Traffic

for Security Administration. In Proceedings of the 2004 ACM Worksop of

Visualization and Data Mining for Computer Security, 2004.

[3] Becker, R., Eick, S., Wilks, A. Visualizing Network Data. In IEEE Transactions

on Visualization and Computer Graphics, 1995.

[4] Craft, B. and Cairns P. Directions for Methodological Research in Information

Visualization. In Conference on Information Visualization, 2008.

[5] Depren, O., Topallar, M., Anarim, E., and Ciliz, M. An intelligent intrusion

detection system (IDS) for anomaly and misuse detection in computer networks.

In Expert Systems with Applications, 2005.

[6] Erbacher, R. Exemplifying the Inter-Disciplinary Nature of Visualization

Research. In 11
th

 International Conference on Information Visualization, 2007.

[7] Fink, G., Ball, R., North, C., Jawalkar, N., and Correa, R. Network Eye: End-to-

End Computer Security Visualization. ACM CCS Workshop on Visualization and

Data Mining for Computer Security (VizSec/DMSec). 2004.

[8] Fink, G., Muessig, P, North, C. Visual Correlation of Host Processes and Network

Traffic. In Proceedings of the Worksop on Visualization for Computer Security,

2005.

[9] Hideshima, Y. and Koike, Hideki. STARMINE: A Visualization System for

Cyber Attacks. In Asia-Pacific Symposium on Information Visualization, 2006.

[10] IBM. Many Eyes. 2010. http://manyeyes.alphaworks.ibm.com/manyeyes/.

January 2010.

[11] Kabiri, P. and Ghorbani A. Research on Intrusion Detection and Response: A

Survey. International Journal on Network Security 1, 2 (2005), 84-102.

[12] Koike, H. and Ohno, K. SnortView: Visualization System of Snort Logs. In

Proceedings of VizSEC/DMSEC ’04, 2004.

[13] Koike, H., Ohno, K., and Koizumi, K. Visualizing Cyber Attacks using IP Matrix.

In Proceedings of the Workshop on Visualization for Computer Security, 2005.

118

[14] Kruegel, C., Toth, T., Kirda, E. Service specific anomaly detection for network

intrusion detection. In Proceeings of the 2002 ACM Symposium on Applied

Comupting, 2002.

[15] Lau, Stephen. The Spinning Cube of Potential Doom. Communications of the

ACM – Wireless sensor networks 47, 6 (2004), 25-26.

[16] Lau, Stephen. The Spinning Cube of Potential Doom. 2003.

http://www.nersc.gov/nusers/security/TheSpinningCube.php. January 2010.

[17] Lee, C., Trost, J., Gibbs, N., Beyah, Raheem, and Copeland, J. Visual Firewall:

real-time network security monitor. In Proceedings of the IEEE Workshop on

Visualization for Computer Security 2005, 2005.

[18] McPherson, J., Ma, K., Krystosk, P., Bartoletti, T., and Christensen, M. PortVis:

A Tool for Port-Based Detection of Security Events. In Proceedings of VisSEC

’04, 2004.

[19] Mertie, J. Transformation of Trilinear and Quadriplanar Coordinates to and from

Cartesian Coordinates. The American Minerologist 49, 7/8 (1964), 926-936.

[20] Mukosaka, S. and Koike, H. Integrated Visualization System for Monitoring

Security in Large-Scale Local Area Network. In 6
th

 International Asia-Pacific

Symposium on Visualization, 2007.

[21] Neri, F. Comparing local search with respect to genetic evolution to detect

intrusion in computer networks. In Proceedings of the 2000 Congress on

Evolutionary Computation, 2000.

[22] North, C., Kerren, A., Stasko, J., and Fekete J. Information Visualization: Human-

Centered Issues in Visual Representation, Interaction, and Evaluation. Springer-

Verlag. 2008.

[23] Onut, I. and Ghorbani A. SVision: A novel visual network-anomaly identification

technique. Computers and Security 26, 1 (2007), 201-212.

[24] Ren, P., Gao, Y., Li, Z., Chen, Y., and Watson, B. IDGraphs: intrusion detection

and analysis using histographs. In VisSEC: Proceedings of the IEEE Workshop

for Computer Security, 2005.

[25] Richardson, R. CSI Computer Crime and Security Survey. 2008.

[26] Roth, S., Kolojejchick, J., Mattis, J., and Golstein, J. Interactive Graphic Design

Using Automatic Presentation Knowledge. In Proceedings of the Conference on

Human Factors in Computing Systems, 1994.

119

[27] Secure Decisions. SecureScope – Secure Decisions Portal. 2007.

http://www.securedecisions.com/securescope. January 2010.

[28] Shneiderman, B. Designing the User Interface: Strategies for Effective Human-

Computer Interaction. Addison-Wesley Longman Publishing Co., 1986.

[29] Stallings, W. and Brown, L. Computer Security: Principles and Practice. Upper

Saddle River: Pearson Education, Inc., 2008.

[30] Storey, M., Best, C., Michaud, J., Rayside, D., Litoiu, M., and Musen, M.

SHriMP Views: An Interactive Environment for Information Visualization and

Navigation. In Proceedings of CHI 2002, 2002.

[31] Takada T. and Koike H. Tudumi: Information Visualization System for

Monitoring and Auditing Computer Logs. In Proceedings of the Sixth

International Conference on Information Visualization, 2002.

[32] Teoh, S., Ma, K., Wu, S., and Zhao, X. Case Study: Interactive Visualization for

Internet Security. In Proceedings of the Conference on Visualization ’02, 2002.

[33] Theus, M. Mondrian – Interactive Statistical Data Visualization in JAVA. 2009.

http://www.rosuda.org/Mondrian/. January 2010.

[34] United States Census Bureau. Computer and Internet Use in the United States:

October 2007. 2007.

http://www.census.gov/population/www.socdemo/computer/2007.html. January

2010.

[35] United States Department of Agriculture Natural Resources Conservation Service.

Soil Survey Manual. 12 November 2008.

[36] University of Indiana. InfoVis CyberInfrastructure-Software. August 2005.

http://iv.slis.indiana.edu/sw/index.html#ivcfw. January 2010.

[37] Ware, C. Information Visualization: Perception for Design. Morgan Kaufmann

Publishers Inc., 2000.

[38] Weaver, C. Improvise. 2008. http://www.cs.ou.edu/~weaver/improvise/. January

2010.

[39] Yurcik, W. Visualizing NetFlows for Security at Line Speed: The SIFT Tool

Suite. In Proceedings of LISA ’05, 2005.

[40] Ziemkiewicz, C. and Kosara, R. The Shaping of Information by Visual

Metaphors. In Transactions on Visualization in Computer Graphics, 2008.

