
19th Annual AIAA/USU Conference on Small Satellites, Logan, Utah, USA, August 8-11, 2005                                                        SSC05-VII-6 
Session VII – Frank J. Redd Student Scholarship Competition 

A. Dando                                                                  1                         19th AIAA/USU Conference on Small Satellites 

The Attitude Control System Concept for the  

Joint Australian Engineering Micro-Satellite (JAESat) 
 

 
Aaron Dando*  

Advisor: Werner Enderle† 

Cooperative Research Center for Satellite Systems 

Queensland University of Technology 

GPO Box 2434, Brisbane, QLD, Australia, 4001 

 

 
JAESat is a joint micro-satellite project between Queensland University of Technology (QUT), Australian Space 

Research Institute (ASRI) and other national and international partners including the Australian Cooperative Research 

Centre for Satellite Systems (CRCSS), Kayser-Threde GmbH, Aerospace Concepts and Auspace who will contribute to 

this project. The JAESat micro-satellite project is an educational and GNSS technology demonstration mission. The main 

objectives of the JAESat mission are the design and development of a micro-satellite in order to educate and train 

students and also to generate a platform in space for technology demonstration and conduction of research on a low-cost 

basis. The main payload on-board JAESat will be a GPS receiver called SPARx (SPace Applications Receiver), developed 

by the Queensland University of Technology for attitude and orbit determination. In addition to the GPS based attitude 

sensor, a star sensor will be on-board JAESat for attitude determination. JAESat will be three-axis stabilized based on a 

zero-momentum approach using magnetic coil actuators. This paper will outline the Attitude Control System (ACS) 

concept for JAESat including: subsystem configuration and components, performance requirements, control mode 

definition, attitude dynamic modeling, control law development, and attitude determination concept. Performance of the 

JAESat ACS is predicted via simulations using a comprehensive ACS model developed in Matlab Simulink. 

 

 
I. Introduction 

The JAESat micro-satellite project is an educational 

and Global Navigation Satellite Systems (GNSS) 

technology demonstration mission, which will also 

generate data for scientific use. The high level mission 

objectives
1,2

 of JAESat are:  

 

• Design, develop, manufacture, test, launch and 

operate the educational/research micro-satellite  

JAESat 

• Develop payloads with a technological and 

scientific relevance 

• Use JAESat as a sensor in space and GNSS 

technology demonstrator mission 

 

As can be seen from the high level mission objectives, 

the education and training aspects play an important 

role in the JAESat mission. The GNSS mission 

objective is driven by the SPARx (Space Applications 

GPS Receiver), a development by QUT/CRCSS. 

Functions and performance of SPARx will be tested 

and validated in space within the JAESat mission. 

Another key element of the high level mission 

objectives is the development and testing of a novel 

integrated attitude sensor concept combining star 

sensor and GPS attitude sensor data. 
___________________ 
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The JAESat mission will ultimately consist of two 

micro-satellites (master and slave) flying in formation 

(see Figure 1). The satellites will be coupled during the 

launch phase and then separated in space by a spring 

mechanism. Following the separation the two satellites 

will drift away from each other with a low drift rate (~ 

0.01 m/s). A communication link between the two 

satellites will be established in form of a RF Inter-

Satellite Link (ISL). The master satellite will be a cube 

with side length 390 mm and approximate mass 25 kg. 

The slave satellite will be half the height of the master 

satellite with dimensions 390 mm x 390 mm x 195 mm 

and approximate mass 15 kg.  

 

Negotiations with prospective launch providers for a 

piggyback launch are ongoing and consequently the 

final orbit of JAESat has not yet been established. 

However, it is intended that JAESat will be placed into 

a circular, near-polar sun-synchronous Low Earth Orbit 

(LEO) with an orbit altitude between 600 km and 800 

km. The operational life time of JAESat is expected to 

be approximately 12 months. Mission operations will 

be conducted from a ground station located at the 

Queensland University of Technology in Brisbane, 

Australia. JAESat will be designed to possess a high 

degree of on-board autonomy and to conduct a variety 

of experiments based on the mode of interoperation 

between the payloads on-board the two satellites.  
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Figure 1:  Separation of master satellite (left) and slave satellite (right) in space  

 

 

The main experiments
3,4

 for JAESat include: 

  

• Testing and evaluation of the QUT/CRCSS 

SPARx, including attitude capability 

• Testing of a new integrated star sensor/GPS 

sensor concept for three-axis attitude 

determination 

• Relative navigation between JAESat master and 

slave satellites 

• Orbit determination concepts: 

o On-ground precise orbit determination based 

on GPS code and carrier phase measurements 

o On-board orbit determination based on GPS 

receiver position solutions 

• Relative positioning between master and slave 

satellites 

• Establishment of stable RF inter-satellite link 

• Atmospheric research 

 

 
 

Figure 2:  Inter-satellite and ground station communications concept 

for the JAESat mission 

 

II. ACS Requirements 
A preliminary set of ACS performance requirements 

has been derived for the Normal Mode of operations 

(see Table 1), driven primarily by the mission 

requirement to establish an ISL. The Detumbling Mode 

requirement is for the coupled satellite angular velocity 

to be damped to less than 0.2 deg/sec (per axis). During 

the Reorientation Mode in which the master and slave 

are still coupled, the requirements for the master 

satellite specified in Table 1 may be used. The orbit-

average power consumption requirement for the master 

ACS in each operational mode is TBD.  

 
 Accuracy Jitter Settling Time  

MASTER  5 deg (per axis) TBD 6 orbits (per 

axis) 

SLAVE 10 deg (roll, pitch) 

15 deg (yaw) 

TBD N/A 

 

Table 1:  Minimum pointing requirements (3 σ ) with baseline ACS 

components 
 

III. Attitude Control System Concept 
The key driver for the Attitude Control System (ACS) 

concept is the establishment of an ISL so that 

housekeeping and scientific data can be transferred 

between the two satellites. Communication with the 

ground station (uplink satellite commands and 

downlink telemetry) will be via the master satellite 

only. The communications concept for the JAESat 

mission is illustrated in Figure 2. To meet the important 

ISL mission requirement an innovative ACS concept is 

proposed comprising a three-axis stabilized master 

satellite and gravity-gradient stabilized slave satellite in 

formation flight. This concept aims to reduce the cost 

and complexity of future formation flying missions. In 

addition, system modularity will be a key feature of the 

low-cost master ACS design to accommodate 

modifications and improvements for different micro-

satellite missions conducted in LEO. 

 
Master Satellite 

The master satellite will be three-axis stabilized using a 

zero-momentum approach. The baseline ACS will 

provide three-axis attitude determination and control 

for large-angle tracking/slewing maneuvers and also for 

fine pointing. A block diagram of the master ACS is 

depicted in Figure 3. Component selection was based 

on total system cost, requirements (functional and 

performance), availability, and system compatibility.  

ISL 

 

SLAVE 

(Gravity-Gradient 

Stabilised) 

MASTER 

(Three-Axis 

Stabilised) 

Uplink  / Downlink 
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Figure 3:  ACS block diagram for the JAESat master satellite 

 

 

The actuator complement consists of three magnetic 

coil actuators with air cores (air coils) whose magnetic 

moment vectors are aligned with the satellite body 

axes.  Three additional coils may be implemented to 

provide a certain level of redundancy in the ACS 

design. The air coils are to be designed and 

manufactured at QUT. Preliminary design parameters 

for the air coils using SWG-18 copper wire are 

summarized in Table 2.  

 
MASS 0.57 kg 

COIL AREA 0.15 m2 

NO. OF TURNS 50 

RESISTIVITY OF COPPER WIRE  1.7e-8  
�

m 

WIRE CROSS-SECTIONAL AREA 0.823e-6 m2 

COIL RESISTANCE 1.6 
�

 

SATURATION MOMENT 10 Am2 

MAX. COIL CURRENT 1.3 A 

MAX. POWER CONSUMPTION  

AT SATURATION (COIL ONLY) 

2.8 W 

 

Table 2: Preliminary design parameters for a single air coil 
 

The baseline sensor complement consists of an 

integrated attitude sensor comprising a star sensor and 

multi-antenna GPS sensor. This concept has been 

previously investigated
5-7

 by the German Space 

Operations Center (GSOC) for three-axis attitude 

determination. It aims to overcome many of the 

performance and functional limitations of conventional 

attitude sensors whilst also providing critical navigation 

data and precise timing. The boresight axis of the star 

sensor will be aligned with the +z body axis. The four 

GPS antennas will be located at the corners of the +z 

face of the master (see Figure 10), thus providing an  

 

 

unobstructed half sphere field-of-view. The ground link 

and inter-satellite link antennas will be located on the –

z and +x faces respectively. During the Normal Mode 

the +z body axis will point in the zenith direction 

allowing for the best possible visibility of the GPS 

satellite constellation and reference stars so that a 

continuous attitude solution will be available.  

 

A KM-1303 star sensor
8
 has been contributed by 

Kayser-Threde GmbH for use in the JAESat project 

(see Table 3). The major operational limitation of star 

sensors is their sensitivity to large rotation rates (> 5 

deg/sec) leading to star identification difficulties and 

consequently an erroneous attitude solution. However, 

by using additional external information from the GPS 

attitude sensor, the probability of correctly identifying 

star patterns will improve substantially. 

 
DIMENSIONS Star sensor body: 112 × 115 × 45 mm 

Height: 170 mm (with baffle) 
MASS Sensor unit: 0.58 kg 

16 mm lens: 0.1 kg 

Baffle: ca. 0.1 kg 

POWER Power consumption max.: 5 W 

Power consumption 

typical at 12 VDC: 4.2 W 

Input voltage range: 12 - 15 VDC 

Connector type: DSUB 9 pin 

STAR SENSOR 

PERFORMANCE  

Field of view: 21° × 31° 

Sensitivity: MV = +6 to -2 

Update period: 250 ms 

Star acquisition time: 0.5 s (first acquisition) 

Accuracy: ± 0.02° (2 Sigma) 
 

Table 3:  Key characteristics and specifications of the Kayser-Threde 

KM-1301 star sensor 

Star Sensor 

GPS Attitude 

Sensor 

Magnetic 

Coils 

Sensors Actuators 

Control Law Attitude 

Determination 

Target Motion 

Quaternion 

 & Magnetic 

Field Model 

 

 

Sensor 

Selection 

Time & Orbit 

Propagator 

ACS Input 

(Commands) 

ACS Output 

(Telemetry) 
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The GPS based three-axis attitude sensor will be 

designed and manufactured at QUT. It will use the low-

cost, lightweight SPARx technology which is based on 

the MITEL GP2021, GP2015, and GP2010 chip set and 

is a modification of the MITEL Orion
9
 GPS receiver 

demonstrator. Each GPS SPARx unit is 95 mm x 50 

mm x 50 mm with 12 parallel channels and has a power 

consumption of approximately 2W (including active 

antenna). 

 

All ACS processing for the master will be performed 

by the on-board flight computer, a low-cost 

commercial-off-the-shelf Intrinsyc
®
 Cerf™ Board. 

Specific features include a 192 MHz Intel™ 

Strongarm™ CPU, 16 MB flash memory, 32 MB 

SDRAM, and three RS232 serial ports. 

 
Slave Satellite 

The slave satellite will be gravity-gradient stabilised 

without using a deployable boom or libration damper. 

Hence the satellite inertia matrix will need to be 

designed to ensure gravity-gradient stabilization within 

the requirements specified in Table 1.  

 

IV. ACS Operational Modes 
Detumbling Mode: This mode will use a simple B-dot 

control law to damp the angular rates of the coupled 

satellite (master and slave) relative to the earth’s 

magnetic field.  

  

Reorientation Mode: This mode will use a star sensor 

based inertial attitude solution and a tracking maneuver 

control law to reorientate the coupled satellite so that it 

tracks reference frame 1 (defined in Table 4), within 

the accuracy specified in Table 1. Once the tracking 

maneuver has been completed the slave satellite will be 

correctly orientated for gravity-gradient stabilisation 

and the two satellites will then be separated.  

 

ORIGIN Master satellite mass center 

X-AXIS Toward the center of the earth or nadir ( r̂− )  

Y-AXIS Direction of specific angular momentum 

vector or orbit plane normal ( vr ˆˆ × ) 

Z-AXIS Completes right-hand orthogonal set 
 

Table 4:  Definition of reference frame 1 

 

Normal Mode: This is the primary mode for the 

JAESat mission during which a number of experiments 

will be conducted (see section I). Following the 

separation an ISL will be established between the two 

satellites. In this mode the slave will be gravity-

gradient stabilised and the master will be three-axis 

stabilised tracking reference frame 2 (defined in Table 

5), within the accuracy specified in Table 1. The master 

will use the same control and attitude determination 

algorithms as the Reorientation Mode. Also during this 

mode the master will test and validate the novel attitude 

sensor concept for three-axis attitude determination. 

  

ORIGIN Master satellite mass center 

X-AXIS Completes right-hand orthogonal set 

Y-AXIS Direction of the specific angular momentum 

vector or orbit plane normal ( vr ˆˆ × ) 

Z-AXIS Direction of satellite position vector or 

zenith ( r̂ ) 
 

Table 5:  Definition of reference frame 2 
 

 

 
 

Figure 4:  Reorientation and Normal ACS operational modes 

 

V. Attitude Modeling 
This section will present (without derivation) the 

dynamic and kinematic equations of motion for the 

three-axis stabilised JAESat master satellite. Both 

attitude regulation and attitude tracking will be 

considered. All vectors are expressed in the master 

satellite body frame (origin at satellite mass center). 
 

Kinematic Equations of Motion 

For attitude regulation the objective is to stabilise the 

satellite body frame with respect to an inertial (non-

rotating) reference frame. For this case the kinematic 

equations of motion are given by:  

 ω
q

Ξ
q )(

2

1=&                              (1) 

 

[ ]


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
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where ω  is the angular velocity of the body frame 

relative to the inertial frame, Inxn is an n x n identity 

matrix, [ ]×⋅  denotes the vector cross product operator, 

and q is a quaternion describing the orientation of the 

body frame relative to the inertial frame. The attitude 

quaternion is defined as: 

 









=

4

13

q

q
q                                   (3) 

 








=







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



=
2

Φ
sinˆ

q

q

q

3

2

1

13 nq                       (4a) 

 








=
2

Φ
cosq 4                             (4b) 

 

where n̂  is a unit vector in the direction of Euler axis 

of rotation and Φ  is the angle of rotation. Since the 

quaternion is a non-minimal parameterisation of the 

attitude an additional parameter is required which is 

related through the constraint equation: 

 

 1q2
413

T
13

T =+= qqqq                        (5) 

 

For attitude tracking the objective is to stabilise the 

satellite body frame with respect to a rotating reference 

frame defined in terms of a desired quaternion qd and 

angular velocity ω d. The error quaternion describing 

the orientation of the body frame relative to the rotating 

reference frame is defined as: 

 
1

d
−⊗= qqq

δ
                              (6) 

  

where the ⊗  operator denotes quaternion 

multiplication
10

. This may also be expressed as: 

 

d)( qq
Ψ

q
δ

=                               (7) 

 

   







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T

T
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q

q
Ξ

q
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                          (8) 

 

The error angular velocity describing the angular 

velocity of the body frame relative to the rotating 

reference frame is defined as: 

 

d
ωωδ ω −=                              (9) 

 

Hence for attitude tracking the kinematic equations of 

motion are given by: 

ωδ
q

δΞ
q

δ
)(

2

1=&                        (10) 

 

Dynamic Equations of Motion 
The (rigid body) dynamic equations of motion for the 

JAESat master satellite are given by:  

 

[ ] TJTJJ ωωJω 1
gg

11 −−− ++×−=&            (11) 

  

where ω  is the angular velocity of the body frame 

relative to the inertial frame, J is the satellite inertia 

matrix, T is the external control torque generated by the 

magnetic coils, and Tgg is the gravity-gradient 

disturbance torque. The control torque is defined by: 

 

[ ]BmT ×=                               (12) 

 

where m  is the magnetic moment generated by the 

magnetic coils, and B  is the magnetic flux density of 

the earth’s magnetic field at the satellite location (also 

called geomagnetic field vector). The earth’s main 

magnetic field is modeled using a 10
th

 order IGRF 

model with extrapolated J2005 coefficients. Each 

magnetic coil produces a magnetic moment according 

to: 

 

NAIm =                                  (13) 

 

where N is the number of turns of wire, A is the area 

formed by the coil, and I is the coil current. The 

gravity-gradient torque is given by: 

 

[ ] rJrT ˆˆ3
2

gg 0 ×ω=                          (14) 

 

where r̂  is a unit vector in the zenith direction, and ω 0 

is the orbit angular velocity. For the case of attitude 

regulation Eq (11) can be used directly. For attitude 

tracking the dynamic equations of motion are obtained 

by differentiating Eq (9) and substituting the result into 

Eq (11) which leads to the following expression:  

 

[ ] TJTJωωJωJωδ 1
gg

1
d

1 −−− ++−×−= &&        (15) 

 

VI. Attitude Control Laws 
This section presents the control laws that will be 

implemented in the master ACS during each mode of 

operation. For each control law (including derivations) 

all vectors are expressed in the master satellite body 

frame unless otherwise specified. Performance of the 

closed-loop system is simulated using a comprehensive 

ACS model developed in Matlab
®
 Simulink. For all 

simulations perfect attitude knowledge has been 

assumed, i.e. attitude determination using ideal sensors
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FEDSAT 

1 27598U 02056B   05122.26089911 -.00000001  00000-0  17045-4 0  6439 

2 27598  98.5672 196.2324 0009070 346.7664  13.3272 14.27886601124186 
 

Table 6:  Two-Line Element Set for FedSat  
 

 

with zero noise, infinite bandwidth, and zero 

misalignment. The satellite orbit state vector 

information is based on the SGP4 algorithm using 

NORAD Two-Line Elements (TLE) for the 800km 

sun-synchronous orbit of FedSat (see Table 6).  

 
Detumbling Mode 

Three-axis magnetic moment commands for the 

magnetic coils are generated using a simple B-dot 

control law
11

: 

 

 BKm &−=                                (16) 

 

where K is a positive definite diagonal gain matrix and 

B&  is the time derivative of the body frame components 

of the geomagnetic field vector.  

 
 Parameter Value Units 

Inertia Matrix 

















=
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J

 kgm2 

Initial Attitude  

(1-2-3 Euler Angles)  

[ ] T
0.00.00.0),,( =ψθφ 000

 rad 

Initial Angular Rates [ ] T
0 052.0052.0052.0=

δ ω  rad/sec 

Gain Matrix 



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














=
6

6

6

e5.200

0e5.20

00e5.2

K

 Am2s/T 

Simulation Duration 18000 sec 
 

Table 7:  Parameters for Detumbling Mode simulation 

 

Figure 5 shows that the coupled satellite angular 

velocities are damped to less than 0.2 deg/sec (with 

respect to reference frame 1) in approximately one 

orbit, which is compliant with the requirements 

specified in section II. The values in Table 7 were 

selected by trading-off system settling time for 

magnetic coil power consumption. 
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Figure 5:  Satellite angular rates and total magnetic coil power 

consumption during Detumbling Mode  

 
Reorientation Mode 

Significant research efforts have been made to develop 

closed-loop control laws for large-angle attitude 

tracking maneuvers.
12-18

 The control law to be 

implemented in the JAESat master satellite was 

developed by Crassidis, Vadali, and Markley for the 

NASA Microwave Anisotropy Probe (MAP) 

mission.
17,18

 It is based on a variable-structure (sliding 

mode) control approach with optimal switching 

surfaces and is an extension of previous research 

conducted by Vadali on large-angle slew maneuvers.
19

 

The principle advantage of sliding mode control is its 

robustness with respect to satellite modeling 

uncertainties and unexpected disturbance torques.  

 

To obtain the optimal switching surfaces a control law 

of the form ω  = ω (q) is sought which minimizes the 

following performance index:  

 

( )













+= ∫∞→

t

t

T
13

T
13t

s

dt
ρ

2

1
lim

Π δ ωδ ωq
δ

q
δ

       (17) 

 

subject to Eq (1), where 
ρ
 is a scalar gain and ts is the 

time of arrival at the sliding manifold. The Hamiltonian 

associated with minimising Eq (17) is defined as: 

 

q
λδ ωδ ωq

δ
q

δ
&TT

13
T
13

2

1ρ
2

1
H ++=            (18) 

 

where 
λ
 is the costate vector associated with q.  
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The necessary conditions for optimality according to 

Pontryagin’s Minimum Principle are: 

 λq
∂
∂= H

&                                (19a) 

q

λ
∂
∂−= H&                                (19b) 

  ω0
∂
∂= H

                               (19c) 

 

Using Eqs (1), (7), (8), (9), and (18) the solution of Eqs 

(19a)-(19c) leads to the following two-point boundary-

value problem: 

 ω
q

Ξ
q )(

2

1=&                            (20a) ωλΞ
qq

Ξ
q

Ξλ
)(

2

1
)()(

ρ
d

T
d +−=&            (20b) 

d
T

)(
2

1 ωλ
q

Ξω
+−=                    (20c) 

 

It can be shown based on analysis that the following 

choice for the sliding manifold minimizes Eqs (17) and 

(18):  

 

0q
δδ ω

  s =+= 13k                         (21) 

 

provided that ρk ±=  where k is a scalar gain. It is 

critical to note that for the quaternion parameterisation 

of the attitude 
δ

q and –
δ

q represent the same 

orientation, although the former gives the shortest 

distance to the sliding manifold whilst the later gives 

the longest distance. The sliding manifold defined by 

Eq (21) must therefore be modified to ensure that the 

attitude tracking maneuver follows the shortest possible 

path to the sliding manifold (and also to the reference 

trajectory): 

  

[ ] 0q
δδ ω

  s =+= 13s4 )t(
δ
qksgn               (22) 

 

It can be shown based on analysis and simulation that 

sgn[
δ
q4(ts)] may be replaced with sgn[

δ
q4(t)] (denoted  

herein by sgn[
δ
q4]) which also produces a maneuver to 

the reference trajectory in the shortest possible 

distance. Substituting Eq (22) into the derivative of Eq 

(7) leads to the following kinematic equations for 

“ideal sliding” on the sliding manifold:  

 

13413

δ
qk

2

1
q

δ
q

δ
−=&  

[ ] [ ]( )134d13

δ
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1
q

δω
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[ ]( )2
444

δ
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δ
qksgn

2

1
q

δ
−=&                  (23b) 

 

The trajectory in the state-space that slides on the 

sliding manifold can be shown to be asymptotically 

stable using Lyapunov’s Direct Method. The following 

candidate Lyapunov function is proposed: 

 

13
T
13

2

1
V q

δ
q

δ
=                             (24) 

 

Substituting Eq (23a) into the derivative of Eq (24) 

leads to the following expression: 

 

13
T
134

δ
qk

2

1
 V q

δ
q

δ
−=&                     (25) 

 

which is clearly negative definite provided k > 0. 

 

A control law is required so that the closed-loop system 

can asymptotically track a desired quaternion qd and 

angular velocity 
ω

d. The equivalent control method
19,20

 

is used to develop a control law that induces ideal 

sliding based on external control torque inputs. It will 

be subsequently proven using a Lyapunov stability 

analysis that the same control law can also be used to 

force the state trajectory onto the sliding manifold. The 

dynamic and kinematic equations of motion for the 

attitude tracking case, given by Eqs (10) and (15), can 

be expressed as a system of n equations, linear in the m 

controls: 

 

BTxfx +)(=&                             (26) 

 

where 
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4x3

J
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During ideal sliding on the sliding manifold defined by 

s = 0, s&  can be set to zero: 

 

0TPBxfPxPs =+)(== eq&&                  (30) 

 

where Teq is the equivalent control torque and P is a m 

x n Jacobian matrix defined by: 
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Using the definition of the sliding vector in Eq (22), the 

Jacobian matrix defined by Eq (31) reduces to:  

 

[ ][ ]3313334

δ
qksgn ×××= I0IP              (32) 

 

The equivalent control torque can be obtained by 

rearranging Eq (30):  

 

[ ] )(= 1-
eq xfPPBT                       (33) 

 

which has a solution provided that [PB] is non-

singular. Substituting Eqs (28), (29), and (32) into Eq 

(33) provides an expression for the equivalent control 

torque: 

 

[ ] [ ][ ]134dggeq

δ
qksgn q

δω
JT

ω
J

ω
T && −+−×=     (34) 

                                                                

where 13q
δ
&  is given by Eq (23a). Under the influence 

of additional external disturbance torques, unmodeled 

dynamics, parameter uncertainties and parameter 

variations, the equivalent control torque given by Eq 

(34) will not be sufficient to exactly maintain the ideal 

sliding motion. Hence it is necessary to modify Teq in 

order to account for these non-ideal effects so that the 

state trajectory will remain close to the sliding 

manifold. The modified control law is selected as: 

 υ
JGTT −= eq                           (35) 

or 

 

            [ ] ggT
ω

J
ω

T −×=  

[ ][ ]
υ

Gq
δω

J −−+ 134d

δ
qksgn &&             (36) 

 

where G is a 3 x 3 positive definite diagonal matrix and υ
 is a saturation function defined by: 

 










−<−

≤

>+

= ε
sfor1

ε
sforεs ε
sfor1

i

i
i

i

i
υ

     1,2,3i =            (37) 

 

where 
ε
 is a small positive scalar. The saturation 

function is used to minimise chattering in the control 

torque. The asymptotic stability of the closed-loop 

system using the control law given by Equation (36) 

can be assessed using Lyapunov’s Direct Method. The 

following candidate Lyapunov function is proposed: 

 

ss
T

2

1
V =                                 (38) 

 

The derivative of the sliding vector in Eq (22) is 

obtained by assuming that sgn[ δ q4] is constant with 

respect to time: 

 

[ ] 134δ qksgn q
δωδ

  s &&& +=                     (39) 

 

The dynamic equations of motion for the attitude 

tracking maneuver are obtained by substituting Eq (36) 

into Eq (15):  

 

[ ] υ
Gq

δωδ
−−= 134δ qksgn &&                 (40) 

 

Substituting Eqs (39) and (40) into the derivative of Eq 

(38) produces the following expression:  

 υ
Gs

T

2

1
V −=&                            (41) 

 

which is negative definite provided that G is a positive 

definite matrix. Hence the control law given by Eq (36) 

may also be used to asymptotically force the state 

trajectory towards the sliding manifold.  

 

As stated above, Eq (36) has been developed 

specifically for continuous external control torque 

inputs. The JAESat master satellite will use three 

orthogonal magnetic coils to generate the control 

torque. The fundamental limitation of using magnetic 

coils is that only the component of Eq (36) 

perpendicular to the geomagnetic field vector can be 

generated. This constraint follows directly from the 

definition of the magnetic torque given by Eq (12). The 

implication for closed-loop stability is that Lyapunov 

stability results given by Eqs (25) and (41) will not in 

general be valid for the magnetically actuated system. 

The following expression is used to generate the three-

axis magnetic coil commands: 

 

2
B

TB
m

⊥×=                                             (42) 

 

where ⊥T  is the component of Eq (36) perpendicular 

to the geomagnetic field vector. The control law 

parameters k, 
ε
, and G must be carefully selected 

empirically so that the closed-loop system is 

asymptotically stable and the minimum performance 

requirements specified in Table 1 are achieved. 
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Parameter Value Units 
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Table 8:  Parameters for Reorientation Mode simulation 
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Figure 6:  Satellite attitude and total magnetic coil power 

consumption during Reorientation Mode 
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Figure 7:  Steady-state pointing during Reorientation Mode  

Figure 6 depicts the simulation of the large-angle 

tracking maneuver. The settling time for all axes is 

approximately the same and less than 30000 seconds. 

The steady-state pointing performance is depicted in 

Figure 7 and vastly exceeds the specified accuracy 

requirements. The magnetic coil power consumption is 

very low throughout the attitude tracking maneuver 

which is a key advantage of magnetic actuation.   

 
Normal Mode 

The control law defined by Eqs (36) and (42) can also 

be used for three-axis stabilisation of the master 

satellite during the Normal Mode. 
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Table 9:  Parameters for Normal Mode simulation 
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Figure 8:  Satellite attitude and total magnetic coil power 

consumption during Normal Mode 
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Figure 9:  Steady-state pointing during Normal Mode 
 

Results of the Normal Mode simulation provided in 

Figures 8 and 9 clearly show that the ACS is able to 

easily meet the performance requirements specified in 

Table 1. Alternative control strategies, for example 

proportional-derivative control or a Linear Quadratic 

Regulator (LQR) approach, will also be considered in 

future research in an attempt to improve the steady-

state pointing performance with respect to Figure 9. 

 

Simulations were also performed for both the 

Reorientation and Normal modes to investigate the 

robustness of the control law with respect to initial 

conditions and the satellite inertia matrix. Uncertainties 

of up to 15% in the moments of inertia and up to 25% 

in the rates were acceptable although the settling time 

was considerably degraded.  

 

VII. Attitude Determination 
Three-axis attitude determination (attitude and rates) 

for the master satellite will be performed by the star 

sensor and also by the attitude sensor based on GPS. 

However, the star sensor will be used predominately to 

provide attitude state information to the control 

algorithm. The GPS attitude sensor on the other hand 

will be used to test and validate different algorithms for 

GPS-based attitude determination and carrier phase 

cycle ambiguity resolution. It is also intended to 

conduct a series of tests where the benefits of this 

combination of attitude sensors will be clearly 

demonstrated. The star sensor directly outputs a 

quaternion estimate of the satellite three-axis attitude 

relative to an inertial reference frame (see Ref. 8 for 

further details). It also has the capability to provide star 

data information so that new algorithms can be tested 

for advanced star identification and attitude 

determination. Since rate gyros will not be included in 

the ACS design, the body rates will be derived from the 

star sensor output using the on-board flight computer. 

One possible method is to calculate the Euler axis/angle 

parameters for the angular motion between each 

sampling time step by differencing the current and 

previous quaternion estimates. The Euler angle is then 

divided by the sampling period and low-pass filtered to 

obtain the angular velocity about the Euler axis. Since 

the star sensor delivers directly an attitude solution, this 

section will concentrate on a brief description of the 

applied attitude determination concept based on GPS. 

 
GPS Based Attitude Determination 

The fundamental physical principle of the GPS based 

attitude determination process is the interferometric 

principle, which is depicted in Figure 10. The GPS 

receiver measures single (SD) or double (DD) carrier 

phase differences. As discussed in section 3, the master 

satellite will have four antennas arranged in a 

rectangular configuration on the +z satellite face (see 

Figure 10). It is intended that the master will use SD 

observations for the attitude determination process. The 

basic equations for the SD attitude determination 

algorithm
5,6

 using Euler angles (rotation sequence 3-1-

2) as attitude parameters will be presented below. The 

ideal observation equation (i.e. neglecting any error) is 

given by: 

 
i
m

i
m

i
m

λ
∆N

ρ −∆=∆Φ                       (43) 

 

where ∆ Φ  is the SD carrier phase, ∆
ρ
 is the SD slant 

distance, 
λ
 is the wavelength of the GPS L1 signal, ∆N 

is the difference of the initial number of carrier phase 

cycle ambiguities, m is the index for the baseline, and i 

is the index for the GPS satellite pair that has been used 

to generate the SD observation. The SD slant distance 

as a function of the line-of-sight unit vector and the 

corresponding baseline vector is given by: 

 

            [ ] m
i
m

i
m (

ρ
∆ buA •ψ) θ,φ,=                   (44) 

 

where A(φ,θ,ψ) is the attitude matrix (reference frame 

to body frame), u is the line-of-sight unit vector 

expressed in the reference frame, and b is the baseline 

vector expressed in the body frame. Substituting Eq 

(44) into (43) and also considering an error term, leads 

to the general observation equation for SD carrier phase 

measurements: 

     

[ ] ∆
ελ

∆N(∆ Φ i
mm

i
m

i
m +−•ψ) θ,φ,= buA        (45) 

 

where ∆ε represents errors such as line bias, receiver 

noise and multipath effects. The carrier phase cycle 

ambiguity ∆N will be solved in an initialisation step for 

the attitude determination process with the STAR
7 

algorithm based on spherical trigonometry. This 

method will also provide an initial guess for the state 

vector x defined as:    
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Figure 10:  Interferometric principle and GPS attitude sensor array

  

 

[ ]Tψθ
φ=x                           (46) 

 

A minimum of two visible GPS satellites are required 

in order to be able to perform a deterministic attitude 

solution. If more than two GPS satellites are visible, the 

number of measurements is larger than the number of 

unknown parameters, and therefore a Least Squares 

Solution (LSQ) will be used in a sequential way. The 

attitude determination solution will be obtained through 

the following expression:   

 

[ ] lMMMx
T1T −

=∆                         (47) 

 

where ∆x = [∆φ ∆θ ∆ψ]
T
 is the solution vector, l is a 

vector containing the residuals between calculated and 

measured observation, and M is a design matrix 

defined by:  

       

∗=∂
∂=

xxx
M

∆ Φ
                          (48) 

 

where x* is the initial state vector. The LSQ attitude 

determination solution is given by: 

 

xxx ∆+= ∗                              (49) 

 

The accuracy of GPS based attitude determination is 

dependant upon the geometry, the baseline length and 

the measurement errors. It is commonly known that the 

most significant measurement error on the carrier phase 

results from multipath effects. The magnitude of the  

 

multipath strongly depends on the design of the 

satellite, in particular possible points and surfaces for 

the reflection of signals. Tests will be conducted to gain 

an understanding about the multipath effects for the 

JAESat master satellite. Currently a Gaussian 

distributed multipath error of 5mm (1σ, SD) has been 

assumed for simulation purposes. The one sigma 

attitude solution accuracy can be calculated using the 

following expressions:    

 

YawDOP
b

σσ SD
Yaw =                     (50a) 

 RollDOP
b

σσ SD
Roll =                      (50b) 

 PitchDOP
b

σσ SD
Pitch =                    (50c) 

AttDOP
b

σσ SD
Att =                       (50d) 

 

where the attitude Dilution of Precision (DOP) is given 

by: 

 

2

22

RollDOP

PitchDOPYawDOP
ATTDOP

+

+
=         (51) 

    

The DOP values are obtained from the covariance 

matrix Cov = [M
T
M]

-1
 of the attitude solution. 
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VIII. Conclusion 

In summary, an innovative low-cost ACS concept has 

been proposed for the JAESat mission. The proposed 

control law based on a sliding mode approach provides 

optimal large-angle slewing/tracking maneuvers and 

sub-degree steady-state pointing capabilities. The 

attitude determination concept is primarily based on the 

star sensor, but a novel integrated three-axis attitude 

sensor concept can be applied as well. The system 

performance of the JAESat master ACS has been 

verified through simulations and exceeds the specified 

minimum performance requirements, although the 

effect of using practical attitude sensors needs to be 

assessed. Further research and development will 

include implementation of the ACS software in the on-

board flight computer and development of the 

integrated attitude sensor.   
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