

34

Fig. 4.7: State diagram of the relocator module.

35

Fig. 4.8: Read command sequence.

Fig. 4.9: De-Sync command sequence.

36

Fig. 4.10: Write command sequence.

4.3 Performance Analysis

A comparative performance analysis of the hardware and software implementations

of PRR-PRR relocation algorithm is provided here. Performance is estimated using the

proposed analytical model for relocating a single frame. Table 4.1 shows a comparative

listing (software vs ARC) of the various timing estimates for the variables defined in the

proposed model.

At different stages in the relocation process, a sequence of commands is generated. In

the software implementation, the commands are generated in sequence and written to a

buffer before writing it to ICAP. In hardware, the commands are hardcoded and written

directly to ICAP. Tα
gen values for software implementation are much higher (for different α’s).

For the software implementation, we observe that there is considerable overhead associated

with the process of communicating with ICAP (ToverheadW and ToverheadR). Corresponding

numbers for the hardware implementation are much smaller. Once the ICAP is ready, time

taken to write (or read) x words is x clock cycles (in case of ARC) and is some function

37

Table 4.1: Performance analysis of ARC versus software implementation.

Variable name
Number of
words

ARC Software

Tα
gen x 1 f1(x)

ToverheadW n/a 4 81
ToverheadR n/a 4 81
Twrite(x) x x f2(x)
Tread(x) x x f3(x)
T syncRdCmds

gen 18 1 691
T syncRdCmds

writeICAP
18 22 100

TFD
readICAP 83 87 154

T desyncCmds
gen 4 1 149

T desyncCmds
writeICAP

4 8 81

TreadFD n/a 119 1175

T syncWrCmds
gen 24 1 1024

T syncRdCmds
writeICAP

18 22 100
TFD

writeICAP 82 86 260
T desyncCmds

gen 4 1 149
T desyncCmds

writeICAP
4 8 81

TwriteFD n/a 118 1614

TbitReversal 82 0 13310

Toverall n/a 237 16099

of x (in case of software). Table 4.1 lists the values for other variables in the performance

model and also lists the overall time. In this table, some values are represented as fi(x),

which indicates that the value is a function of the number of words (x) and is much larger

than x. In case of relocation to opposite half of FPGA, bit-reversal needs to be performed.

This is a time consuming process in software as it involves reading the sequence of bits from

the frame buffer into a temporary buffer, reversing the bits, and then storing it back into

the original buffer. This process involves a large number of sequential memory transactions

(in a software implementation) and takes 13310 clock cycles. In hardware, bit-reversal is

performed on the fly, and does not require any additional clock cycles. Overall time taken

for software is estimated to be 68 times larger than that of ARC.

38

Chapter 5

Results

The proposed software and hardware (ARC) approaches were implemented and tested

to run at 100 MHz on a Virtex 4 SX35 FPGA based ML402 evaluation board [31]. Xilinx

ISE tool flow is used to synthesize, map, place, and route the design. Each project is

implemented using the EAPR tool flow from Xilinx [8]. The approaches are compared

against estimates of performance of BiRF [27] and the relocation approach proposed by

Carver et al. [29], based on information available in the respective publications. Test cases

used to evaluate the different approaches are of two types, as listed below.

• Dynamically scalable systolic array designs [2]: Number of processing elements (PE)

can be increased during runtime, thus requiring the relocation of a single PE design

to an empty PRR. In Table 5.1, test cases 1-6 belong to this type.

• Fault tolerant designs [1]: Relocation is required to replace a faulty circuit. In Table

5.1, test case 7 belongs to this type.

Before testing the above test cases, a simple project is implemented to show the reloca-

tion performed by ARC. Two designs are taken, an up counter and a down counter. These

designs are manually placed on the chip in PlanAhead as shown in fig. 5.1.

The up counter is assigned to PRR A, one of the down counters to PRR B, and the

other down counter to PRR C. PRR C is specifically taken to show relocation to the other

side of the meridian in the chip. As shown in fig. 5.1, PRR A is located in the top half of

the chip in HCLK (row address) 2. The PRR starts at major column 1 and ends at major

column 2. Both the major columns in this PRR are CLB columns. So, the 16-bit address

for this PRR is obtained as shown in fig. 5.2.

The 16-bit address obtained for PRR A is 0x0822. The addresses for other two PRR

regions are obtained in the same manner. First, the source PRR is taken as PRR A, which

39

Fig. 5.1: PRRs placed for ARC implementation.

Fig. 5.2: Address of PRR A.

40

is the up counter and the destination PRR is taken as PRR B which is the down counter

in the top half of the chip. So, the 32-bit address that has to be supplied to ARC will be

0x08220422, 0x0422 being the address of PRR B.

Figure 5.3 shows the waveforms, showing the output of the up counter and down

counter. These wave form are obtained using a Xilinx tool called, ChipScope Pro [32],

which can be used to tap signals and observe them during run-time, i.e., when operating

on the FPGA. The wave form of down counter can be seen distored after a few clock

cycles, indicating the relocation ARC is performing by reading frames from PRR A and

copying them to PRR B. While relocation, PRR B outputs garbage value as the frames are

being changed one by one. Figure 5.4 shows the starting seven clock cycles from which the

operating of up counter and down counter can be seen clearly. After the relocation, a reset

signal has to be sent to the down counter to reset all the flip flops in the design. After the

reset, the down counter in PRR B, which was counting down, starts counting up as shown

in fig. 5.5.

Fig. 5.3: Designs before relocation.

Fig. 5.4: Functionality of designs.

41

Fig. 5.5: Designs after relocation.

The Resource estimates of ARC and the comparisons are shown in Table 5.2. The

footprint shown is on a Virtex 4 SX35 chip. To estimate the number of BRAMs, the

microblaze is instantiated with 64KB of memory.

Table 5.1 shows the relocation times for the various test cases. It is observed that the

proposed software implementation provides slower relocation times for all test cases when

compared with the software implementation proposed by Carver et al. [29].

For relocating to the same half of FPGA, performance of our software implementation is

found to be 1.7 times slower (2.53 for relocation to opposite half). But, a major disadvantage

of Carver et al. [29] is additional BRAM requirement to store the partial bitstream, as listed

in Table 5.2.

Proposed ARC is compared with BiRF [27]. When the source and destination PRRs

are on the same half of the FPGA, an average speed up of 153× is observed. This speed-

up can be attributed to the fact that BiRF requires off-chip communication to read the

bitstream that needs to be relocated. There is insufficient information about relocation

to the other half of the FPGA using BiRF, and hence performance cannot be reasonably

estimated. We also observed that the difference between estimated performance results

(using proposed model) and actual results (using implementation on FPGA) is less than

5% for all test cases.

Proposed relocation algorithm is applicable to any Virtex 4 FPGA as long as source

and destination PRRs are floor planned to have identical set of device primitives and rout-

ing resources. Accelerating relocation can have a major impact on performance, under

42

Table 5.1: Time taken (in ms) for relocation using proposed approaches and related ap-
proaches. DWT stands for Discrete Wavelet Transform.

Index Test case
#
frames

Bitstream
size (bytes)

#
BRAMs

PRR-
PRR
ARC

PRR-PRR
software

BiRF
[27]

Carver et al. [29]

Same/Opp
half

Same
half

Opp
half

Same
half

Same
half

Opp
half

Systolic Array PE (not using DSP48)
1 Faddeev [1] 195 31159 14 0.48 5.77 22.24 84.7 3.38 8.86
2 DWT [1] 195 30693 14 0.48 5.77 22.24 83.4 3.33 8.73

3
Matrix multiplier
[1]

432 68469 30 1.07 12.79 49.26 186.1 7.42 19.47

Systolic Array PE (using DSP48)
4 Faddeev [1] 195 32349 15 0.48 5.77 22.24 87.9 3.5 9.2
5 DWT [1] 195 33045 15 0.48 5.77 22.24 89.8 3.58 9.39

6
Matrix multiplier
[1]

432 65261 29 1.07 12.79 49.26 177.3 7.07 18.56

Non Systolic Array (using DSP48)
7 DWT [2] 303 47897 21 0.75 8.97 34.55 130.2 5.19 13.62

Table 5.2: Resource requirements of ARC and BiRF (Microblaze is instantiated with 64
KB of memory).

Relocation Architecture LUTs FFs BRAMs
ARC (with Microblaze) 2787 1928 33

ARC (with state machine) 1072 686 1
BiRF 2047 1574 32

two conditions: (i) Relocation time is comparable to actual execution time, and (ii) Fast

relocation is required to respond to a particular event.

43

Chapter 6

Conclusions and Future Work

In this thesis, relocation in FPGAs is discussed and the disadvantages with the re-

location techniques to date have been observed. This work proposes a novel PRR-PRR

relocation algorithm to read frame data directly from an active PRR and relocate it to

a destination PRR on the fly, thus accelerating the relocation and removing the need to

store any temporary copies of bitstreams. This algorithm is implemented in two ways: (i) a

software solution, and (ii) dedicated hardware architecture called the accelerated relocation

circuit (ARC). An analytical model is also proposed to evaluate the performance of both

software and hardware solutions. Proposed technique is tested on a Virtex 4 SX35 FPGA

and performance is compared against two state of the art techniques. An average speed-up

of 153× for ARC over BiRF is observed, with the additional advantage of not storing any

bitstreams, thus saving invaluable BRAMs. Accuracy of proposed analytical model was

found to be more than 95% for the seven test cases.

The main challenge in this thesis is to understand how the ICAP primitive works. ICAP

was used to read and write frames to perform relocation and to find the right sequence

of commands to read and write was challenging. Also, ICAP cannot be simulated like

other device primitives. This made the debugging the designs very tough until a Xilinx

tool, ChipScope Pro, was used to do real-time debugging. This work also required to

understand the bitstream through some reverse engineering in order invent this novel PRR-

PRR algorithm.

Some of the features that can be added to ARC are given below.

1. ARC can be extended to different Virtex-4 devices. It can also be extended to other

families of FPGAs.

2. ARC can be improved to handle PRR’s which span more than one HCLK row.

44

3. Relocation to non-identical regions can be added as a new feature to ARC.

4. The time to read a frame can be optimized by reading only the data frame, and not the

pad frame.

5. PDR capability can be added to ARC, which can be used to configure a PRR using a

bitstream when the configuration data is not available on the chip.

6. Another solution when the configuration data is not available on the chip, is to read the

configuration data off a PRR before wiping it out to configure with a new functionality,

store it in BRAM temporarily and configure it back to a PRR when required.

45

References

[1] A. Sreeramareddy, J. Josiah, A. Akoglu, and A. Stoica, “Scars: Scalable self-
configurable architecture for reusable space systems,” Adaptive Hardware and Systems,
NASA/ESA Conference, pp. 204–210, June 2008.

[2] A. Sudarsanam, R. Barnes, J. Carver, R. Kallam, and A. Dasu, “Dynamically recon-
figurable systolic array accelerators: A case study with extended kalman filter and
discrete wavelet transform algorithms,” Computers Digital Techniques, Institution of
Engineering and Technology, vol. 4, no. 2, pp. 126–142, Mar. 2010.

[3] Xilinx, “Xilinx website,” [http://www.xilinx.com/], 2010.

[4] Xilinx, “Fpga vs. asic,” [http://www.xilinx.com/company/gettingstarted/
fpgavsasic.htm], 2010.

[5] Xilinx, “Microblaze soft processor core,” [http://www.xilinx.com/tools/
microblaze.htm], 2010.

[6] M. Wirthlin and B. Hutchings, “Improving functional density using run-time circuit
reconfiguration [fpgas],” Very Large Scale Integration (VLSI) Systems, IEEE Transac-
tions, vol. 6, no. 2, pp. 247–256, June 1998.

[7] C. Kao, “Benefits of partial reconfiguration,” Xcell Journal, pp. 65–76, 2005.

[8] P. Lysaght, B. Blodget, J. Mason, J. Young, and B. Bridgford, “Invited paper: En-
hanced architectures, design methodologies and cad tools for dynamic reconfiguration
of xilinx fpgas,” Field Programmable Logic and Applications, International Conference,
pp. 1–6, Aug. 2006.

[9] Xilinx, “Planahead tutorial,” [http://www.xilinx.com/support/documentation/
sw_manuals/PlanAhead10-1_Tutorial.pdf], 2008.

[10] Xilinx, “Bitgen,” [http://www.xilinx.com/itp/xilinx6/books/data/docs/dev/
dev0120_18.html], 2006.

[11] Xilinx, “Virtex-4 configuration guide,” [http://www.xilinx.com/support/
documentation/user_guides/ug071.pdf], 2009.

[12] D. Mesquita, F. Moraes, J. Palma, L. Moller, and N. Calazans, “Remote and partial
reconfiguration of fpgas: tools and trends,” Proceedings of Parallel and Distributed
Processing Symposium, Apr. 2003.

[13] E. Carvalho, N. Calazans, E. Briao, and F. Moraes, “Padreh - a framework for the
design and implementation of dynamically and partially reconfigurable systems,” Inte-
grated Circuits and Systems Design, SBCCI, 17th Symposium, pp. 10–15, Sept. 2004.

46

[14] T. Grotker, System Design with SystemC. Norwell, Massachusetts: Kluwer Academic
Publishers, 2002.

[15] F. Ferrandi, M. Santambrogio, and D. Sciuto, “A design methodology for dynamic re-
configuration: the caronte architecture,” Proceedings of Parallel and Distributed Pro-
cessing, 19th IEEE International Symposium, p. 4, Apr. 2005.

[16] A. Raghavan and P. Sutton, “Jpg - a partial bitstream generation tool to support partial
reconfiguration in virtex fpgas,” Proceedings of Parallel and Distributed Processing
Symposium, Abstracts and CD-ROM, pp. 155–160, Apr. 2002.

[17] K. Nasi, T. Karouhalis, M. Danek, and Z. Pohl, “Figaro - an automatic tool flow for
designs with dynamic reconfiguration,” Field Programmable Logic and Applications,
International Conference, pp. 590–593, Aug. 2005.

[18] P. Sedcole, B. Blodget, T. Becker, J. Anderson, and P. Lysaght, “Modular dynamic
reconfiguration in virtex fpgas,” Computers and Digital Techniques, IEE Proceedings,
vol. 153, no. 3, pp. 157–164, May 2006.

[19] O. Diessel and G. Milne, “Hardware compiler realising concurrent processes in recon-
figurable logic,” Computers and Digital Techniques, IEE Proceedings, vol. 148, no. 45,
pp. 152–162, July/Sept. 2001.

[20] M. Gericota, G. Alves, M. Silva, and J. Ferreira, “Run-time management of logic re-
sources on reconfigurable systems,” Design, Automation and Test in Europe Conference
and Exhibition, pp. 974–979, 2003.

[21] H. Tan and R. F. DeMara, “A physical resource management approach to minimizing
fpga partial reconfiguration overhead,” Reconfigurable Computing and FPGA’s, IEEE
International Conference, pp. 1–5, Sept. 2006.

[22] L. Singhal and E. Bozorgzadeh, “Physically-aware exploitation of component reuse
in a partially reconfigurable architecture,” Parallel and Distributed Processing, 20th
International Symposium, p. 8, Apr. 2006.

[23] E. Horta, J. Lockwood, D. Taylor, and D. Parlour, “Dynamic hardware plugins in an
fpga with partial run-time reconfiguration,” Proceedings of Design Automation Con-
ference, pp. 343–348, 2002.

[24] Y. Krasteva, E. de la Torre, T. Riesgo, and D. Joly, “Virtex ii fpga bitstream manipu-
lation: Application to reconfiguration control systems,” Field Programmable Logic and
Applications, International Conference, pp. 1–4, Aug. 2006.

[25] H. Kalte, G. Lee, M. Porrmann, and U. Ruckert, “Replica: A bitstream manipulation
filter for module relocation in partial reconfigurable systems,” Proceedings of Parallel
and Distributed Processing, 19th IEEE International Symposium, pp. 151b–151b, Apr.
2005.

[26] H. Kalte and M. Porrmann, “Replica2pro: task relocation by bitstream manipulation
in virtex-ii/pro fpgas,” Proceedings of the 3rd Conference on Computing Frontiers, pp.
403–412, 2006.

47

[27] S. Corbetta, M. Morandi, M. Novati, M. Santambrogio, D. Sciuto, and P. Spoletini,
“Internal and external bitstream relocation for partial dynamic reconfiguration,” Very
Large Scale Integration (VLSI) Systems, IEEE Transactions, vol. 17, no. 11, pp. 1650–
1654, Nov. 2009.

[28] D. Montminy, R. Baldwin, P. Williams, and B. Mullins, “Using relocatable bitstreams
for fault tolerance,” Adaptive Hardware and Systems, Second NASA/ESA Conference,
pp. 701–708, Aug. 2007.

[29] J. Carver, R. Pittman, and A. Forin, “Relocation and automatic floor-planning of
fpga partial reconfiguration bitstreams,” Microsoft Research, WA, Technical Report
no. MSR-TR-2008-111, Aug. 2008.

[30] T. Becker, W. Luk, and P. Cheung, “Enhancing relocatability of partial bitstreams
for run-time reconfiguration,” Field Programmable Custom Computing Machines, 15th
Annual IEEE Symposium, pp. 35–44, Apr. 2007.

[31] Xilinx, “Ml40x getting started tutorial,” [http://www.xilinx.com/support/
documentation/boards_and_kits/ug083.pdf], 2006.

[32] Xilinx, “Chipscope pro software and cores user guide,” [http://www.xilinx.
com/support/documentation/sw_manuals/chipscope_pro_sw_cores_9_1i_ug029.
pdf], 2007.

