








78

Table 3.15: Isolated substorms data. P-values in percent.

Response
Method HON BOU

I 9.80 26.3
II 6.57 1.15

We conclude that it is not appropriate to use model (3.1.1) with iid errors to study

the interaction of high– and low latitude currents when the data are derived from

consecutive days.

Setting 2 (substorm days): We now focus on two samples studied in Maslova et

al. (2010). They are derived from 37 days on which isolated substorms were recorded

at College, Alaska (CMO). A substorm is classified as an isolated substorm, if it is

followed by 2 quiet days. There were only 37 isolated substorms in 2001, data for

10 such days are shown in Figure 3.3. The first sample consists of 37 pairs (Xn, Yn),

where Xn is the curve of the nth isolated storm recorded at CMO, and Yn is the

curve recorded on the same UT day at Honolulu, Hawaii, (HON). The second sample

is constructed in the same way, except that Yn is the curve recorded at Boulder,

Colorado (BOU). The Boulder observatory is located in geomagnetic midlatitude,

i.e. roughly half way between the magnetic north pole and the magnetic equator.

Honolulu is located very close to the magnetic equator.

The p-values for both methods and the two samples are listed in Table 3.15.

For Honolulu, both tests indicate the suitability of model (3.1.1) with iid errors. For

Boulder, the picture is less clear. The acceptance by Method I may be due to the

small sample size (N = 37). The simulations in Section 3.6 show that for N = 50 this

method has the power of about 50% at the nominal level of 5%. On the other hand,

Method II has the tendency to overreject. The sample with the Boulder records as

responses confirms the general behavior of the two methods observed in Section 3.6,

and emphasizes that it is useful to apply both of them to obtain more reliable con-

clusions. From the space physics perspective, midlatitude records are very difficult to
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Fig. 3.3: Magnetometer data on 10 chronologically arranged isolated substorm days
recorded at College, Alaska (CMO), Honolulu, Hawaii, (HON) and Boulder, Colorado
(BOU).
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interpret because they combine features of high latitude events (exceptionally strong

auroras have been seen as far south as Virginia) and those of low latitude and field

aligned currents.

We also applied the tests to samples in which the regressors are curves on days on

which different types of substorms occurred, and the responses are the corresponding

curves at low altitude stations. The general conclusion is that for substorm days, the

errors in model (3.1.1) can be assumed iid if the period under consideration is not

longer than a few months. For longer periods, seasonal trends cause differences in

distribution.

Application to intradaily returns. Perhaps the best known application of linear

regression to financial data is the celebrated Capital Asset Pricing Model (CAMP),

see e.g. Chapter 5 of Campbell et al. (1997). In its simplest form, it is defined by

rn = α + βrm,n + εn,

where

rn = 100(ln Pn − ln Pn−1) ≈ 100
Pn − Pn−1

Pn−1

is the return, in percent, over a unit of time on a specific asset, e.g. a stock of a

corporation, and rm,n is the analogously defined return on a relevant market index.

The unit of time can be can be day, month or year.

In this section we work with intra–daily price data, which are known to have

properties quite different than those of daily or monthly closing prices, see e.g. Chap-

ter 5 of Tsay (2005), Guillaume et al. (1997), and Andersen and Bollerslev (1997a,

1997b) also offer interesting perspectives. For these data, Pn(tj) is the price on day

n at tick tj (time of trade); we do not discuss issues related to the bid–ask spread,

which are not relevant to what follows. For such data, it is not appropriate to de-

fine returns by looking at price movements between the ticks because that would

lead to very noisy trajectories for which the methods discussed in this paper, based
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on the FPC’s, are not appropriate; Johnstone and Lu (2009) explain why principal

components cannot be meaningfully estimated for such data. Instead, we adopt the

following definition.

Definition 1 Suppose Pn(tj), n = 1, . . . , N, j = 1, . . . , m, is the price of a financial

asses at time tj on day n. We call the functions

rn(tj) = 100[ln Pn(tj)− ln Pn(t1)], j = 2, . . . , m, n = 1, . . . , N,

the intra-daily cumulative returns.

Figure 3.4 shows intra-daily cumulative returns on 10 consecutive days for the

Standard & Poor’s 100 index and the Exxon Mobil Corporation. These returns have

an appearance amenable to smoothing via FPC’s.

We propose an extension of the CAPM to such return by postulating that

(3.7.21) rn(t) = α(t) +

∫
β(t, s)rm,n(s)ds + εn(t), t ∈ [0, 1],

where the interval [0, 1] is the rescaled trading period (in our examples, 9:30 to 16:00

EST). We refer to model (3.7.21) as the functional CAPM (FCAPM). As far as we

know, this model has not been considered in the financial literature, but just as for

the classical CAPM, it is designed to evaluate the extent to which intradaily market

returns determine the intra–daily returns on a specific asset. It is not our goal in

this example to systematically estimate the parameters in (3.7.21) and compare them

for various assets and markets, we merely want to use the methods developed in this

paper to see if this model can be assumed to hold for some well–known asset. With

this goal in mind, we considered FCAPM for S&P 100 and its major component, the

Exxon Mobil Corporation (currently it contributes 6.78% to this index). The price

processes over the period of about 8 years are shown in Figure 3.5. The functional

observations are however not these processes, but the cumulative intra–daily returns,

examples of which are shown in Figure 3.4.



82

0 1000 2000 3000 4000

−
1

.5
−

1
.0

−
0

.5
0

.0
0

.5
1

.0
1

.5

min

S
P

 r
e

tu
rn

s

0 1000 2000 3000 4000

−
0

.5
0

.0
0

.5
1

.0
1

.5
2

.0

min

X
O

M
 r

e
tu

rn
s

Fig. 3.4: Intra-daily cumulative returns on 10 consecutive days for the Standard &
Poor’s 100 index (SP) and the Exxon–Mobil Corporation (XOM).
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Fig. 3.5: Share prices of the Standard & Poor’s 100 index (SP) and the Exxon–Mobil
Corporation (XOM). Dashed lines separate years.
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After some initial data cleaning and preprocessing steps, we could compute the

p-values for any period within the time stretch shown in Figure 3.5. The p-values

for calendar years, the sample size N is equal to about 250, are reported in Table

3.16. In this example, both methods lead to the same conclusions, which match the

well–known macroeconomic background. The tests do not indicate departures from

the FCAMP model, except in 2002, the year between September 11 attacks and the

invasion of Iraq, and in 2006 and 2007, the years preceding the collapse of 2008 in

which oil prices were growing at a much faster rate than then the rest of the economy.

In the above examples we tested the correlation of errors in model (3.1.1). A

special case of this model is the historical functional model of Malfait and Ramsay

(2003), i.e. model (3.1.1) with ψ(t, s) = β(s, t)IH(s, t), where β(·, ·) is an arbitrary

Hilbert–Schmidt kernel and IH(·, ·) is the indicator function of the set H = {(s, t) :

0 ≤ s ≤ t ≤ 1}. This model requires that Yn(t) depends only on the values of

Yn(s) for s ≤ t, i.e. it postulates temporal causality within the pairs of curves. Our

approach cannot be readily extended to test for error correlation in the historical

model of Malfait and Ramsay (2003) because it uses series expansions of a general

kernel ψ(t, s), and the restriction that the kernel vanishes in the complement of H

does not translate to any obvious restrictions on the coefficients of these expansions.

We note however that the magnetometer data are obtained at locations with different

local times, and for space physics applications the dependence between the shapes

of the daily curves is of importance. Temporal causality for financial data is often

not assumed as asset values reflect both historical returns and expectations of future

market conditions.

3.8 Proof of Theorem 3.3

Relation (3.3.5) can be rewritten as

(3.8.22) Yn = ΨpXn + bDgn,
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Table 3.16: P–values, in percent, for the FCAPM (3.7.21) in which the regressors
are the intra–daily cumulative returns on the Standard & Poor’s 100 index, and the
responses are such returns on the Exxon–Mobil stock.

Year Method I Method II
2000 46.30 55.65
2001 43.23 56.25
2002 0.72 0.59
2003 22.99 27.19
2004 83.05 68.52
2005 21.45 23.67
2006 2.91 3.04
2007 0.78 0.72

where

Ψp =




ψ11 ψ12 · · · ψ1p

ψ21 ψ22 · · · ψ2p

...
...

...
...

ψp1 ψp2 · · · ψpp




.

The vectors Yn,Xn, bDgn are defined in Section 3.3 as the projections on the

FPC’s v1, v2, . . . vp. lemma 3.8 establishes an analog of (3.8.22) if these FPC’s are

replaced by the EFPC’s v̂1, v̂2, . . . v̂p. These replacement introduces additional terms

generically denoted with the letter γ. First we prove Lemma 3.7 which leads to a

decomposition analogous to (3.3.5).

Lemma 3.7. If relation (3.1.1) holds with a Hilbert–Schmidt kernel ψ(·, ·), then

Yn(t) =

∫ (
p∑

i,j=1

ĉiψij ĉj v̂i(t)v̂j(s)

)
Xn(s)ds + ∆n(t),

where

∆n(t) = εn(t) + ηn(t) + γn(t).



86

The terms ηn(t) and γn(t) are defined as follows:

ηn(t) = ηn1(t) + ηn2(t);

ηn1(t) =

∫ ( ∞∑
i=p+1

∞∑
j=1

ψijvi(t)vj(s)

)
Xn(s)ds,

ηn2(t) =

∫ (
p∑

i=1

∞∑
j=p+1

ψijvi(t)vj(s)

)
Xn(s)ds.

γn(t) = γn1(t) + γn2(t);

γn1(t) =

∫ p∑
i,j=1

ĉiψij[ĉivi(t)− v̂i(t)]vj(s)Xn(s)ds,

γn2(t) =

∫ p∑
i,j=1

ĉiψij ĉj v̂i(t)[ĉjvj(s)− v̂j(s)]Xn(s)ds.

Proof. Observe that by (3.3.4),

∫
ψ(t, s)Xn(s)ds =

∫ ( ∞∑
i,j=1

ψijvi(t)vj(s)

)
Xn(s)ds

=

∫ (
p∑

i,j=1

ψijvi(t)vj(s)

)
Xn(s)ds + ηn(t).

Thus model (3.1.1) can be written as

Yn(t) =

∫ (
p∑

i,j=1

ψijvi(t)vj(s)

)
Xn(s)ds + ηn(t) + εn(t)

To take into account the effect of the estimation of the vk, we will use the decompo-

sition

ψijvi(t)vj(s) = ĉiψij ĉj(ĉivi(t))(ĉjvj(s))

= ĉiψij ĉj v̂i(t)v̂j(s)
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+ĉiψij ĉj[ĉivi(t)− v̂i(t)]ĉjvj(s) + ĉiψij ĉj v̂i(t)[ĉjvj(s)− v̂j(s)]

which allows us to rewrite (3.1.1) as

Yn(t) =

∫ (
p∑

i,j=1

ĉiψij ĉj v̂i(t)v̂j(s)

)
Xn(s)ds + ∆n(t).

To state lemma 3.8, we introduce the vectors

Ŷn = [Ŷn1, Ŷn2, . . . , Ŷnp]
T , Ŷnk = 〈Yn, v̂k〉 ;

X̂n = [ξ̂n1, ξ̂n2, . . . , ξ̂np]
T , ξ̂nk = 〈Xn, v̂k〉 ;

∆̂n = [∆̂n1, ∆̂n2, . . . , ∆̂np]
T , ∆̂nk = 〈∆n, v̂k〉 .

Projecting relation (3.1.1) onto v̂k, we obtain by Lemma 3.7,

〈Yn, v̂k〉 =

p∑
j=1

ĉkψkj ĉj 〈Xn, v̂j〉+ 〈∆n, v̂k〉 , 1 ≤ k ≤ p,

from which the following lemma follows.

Lemma 3.8. If relation (3.1.1) holds with a Hilbert–Schmidt kernel ψ(·, ·), then

Ŷn = Ψ̃pX̂n + D̂n, n = 1, 2, . . . N,

where Ψ̃p is the p× p matrix with entries ĉkψkj ĉj, k, j = 1, 2, . . . p.

To find the asymptotic distribution of the matrices Vh, we establish several

lemmas. Each of them removes terms which are asymptotically negligible, and in the

process the leading terms are identified. Our first lemma shows that, asymptotically,
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in the definition of Vh, the residuals

(3.8.23) Rn = Ŷn − Ỹ∧
n = (Ψ̃p − Ψ̃∧

p )X̂n + ∆̂n.

can be replaced by the “errors” ∆̂n. The essential element of the proof is the relation

Ψ̃p − Ψ̃∧
p = OP (N−1/2) stated in lemma 3.2.

Lemma 3.9. Suppose Assumptions 3.2 and 3.3 and condition (3.2.2) hold. Then, for

any fixed h > 0, ∣∣∣∣∣

∣∣∣∣∣Vh −N−1

N−h∑
n=1

∆̂n∆̂
T

n+h

∣∣∣∣∣

∣∣∣∣∣ = OP (N−1).

Proof. By (3.8.23) and (3.4.14),

Vh = N−1

N−h∑
n=1

[(Ψ̃p − Ψ̃∧
p )X̂n + ∆̂n][(Ψ̃p − Ψ̃∧

p )X̂n+h + ∆̂n+h]
T .

Denoting, Ĉh = N−1
∑N−h

n=1 X̂nX̂
T
n+h, we thus obtain

Vh = (Ψ̃p − Ψ̃∧
p )Ĉh(Ψ̃p − Ψ̃∧

p )T + (Ψ̃p − Ψ̃∧
p )N−1

N−h∑
n=1

X̂n∆̂
T

n+h

+N−1

N−h∑
n=1

∆̂nX̂
T
n+h(Ψ̃p − Ψ̃∧

p )T + N−1

N−h∑
n=1

∆̂n∆̂
T

n+h.

By the CLT for h–dependent vectors, Ĉh = OP (1), so the first term satisfies

(Ψ̃p − Ψ̃∧
p )Ĉh(Ψ̃p − Ψ̃∧

p )T = OP (N−1/2N−1/2) = OP (N−1).

To deal with the remaining three terms, we use the decomposition of Lemma

3.7. It is enough to bound the coordinates of each of the resulting terms. Since

∆n = εn + ηn1 + ηn2 + γn1 + γn2, we need to establish bounds for 2 × 5 = 10 terms,
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but these bounds fall only to a few categories, so we will only deal with some typical

cases.

Starting with the decomposition of X̂n∆̂
T

n+h, observe that

N−1/2

N−h∑
n=1

〈Xn, v̂i〉 〈εn+h, v̂j〉 =

∫∫ (
N−1/2

N−h∑
n=1

Xn(t)εn+h(s)

)
v̂i(t)v̂j(s)dtds.

The terms Xn(t)εn+h(s) are iid elements of the Hilbert space L2([0, 1]× [0, 1]), so by

the CLT in a Hilbert space, see e.g. Section 2.3 of Bosq (2000),

∫∫ (
N−1/2

N−h∑
n=1

Xn(t)εn+h(s)dtds

)2

= OP (1).

Since the v̂j have unit norm,
∫∫

(v̂i(t)v̂j(s))
2dtds = 1. It therefore follows from the

Cauchy–Schwarz inequality that

N−h∑
n=1

〈Xn, v̂i〉 〈εn+h, v̂j〉 = OP (N1/2).

Thus, the εn contribute to (Ψ̃p−Ψ̃∧
p )N−1

∑N−h
n=1 X̂n∆̂

T

n+h a term of the order OP (N−1/2N−1N1/2) =

OP (N−1), as required.

We now turn to the contribution of the ηn,1. As above, we have

N−1/2

N−h∑
n=1

〈Xn, v̂i〉 〈ηn+h,1, v̂j〉 =

∫∫ (
N−1/2

N−h∑
n=1

Xn(t)ηn+h,1(s)

)
v̂i(t)v̂j(s)dtds

=

∫∫ (
N−1/2

N−h∑
n=1

Xn(t)

∫ ( ∞∑

k=p+1

∞∑

`=1

ψk`vk(s)v`(u)

)
Xn+h(u)du

)
v̂i(t)v̂j(s)dtds

=

∫ [∫∫
Nh(t, u)Rp(t, u)dtdu

]
vk(s)v̂j(s)ds,
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where

Nh(t, u) = N−1/2

N−h∑
n=1

Xn(t)Xn+h(u)

and

Rp(t, u) =
∞∑

`=1

∞∑

k=p+1

ψk`v`(u)v̂k(t).

By the CLT for m–dependent elements in a Hilbert space (follows e.g. from Theorem

2.17 of Bosq (2000)), Nh(·, ·) is OP (1) in L2([0, 1]× [0, 1]), so

∫∫
N2

h(t, u)dtdu = OP (1).

A direct verification using Assumption 3.3 shows that also

∫∫
R2

p(t, u)dtdu = OP (1).

Thus, by the Cauchy–Schwarz inequality, we obtain that

N−h∑
n=1

〈Xn, v̂i〉 〈ηn+h,1, v̂j〉 = OP (N1/2),

and this again implies that the ηn1 make a contribution of the same order as the εn.

The same argument applies to the ηn2.

We now turn to the contribution of the γn1, the same argument applies to the

γn2. Observe that, similarly as for the ηn1,

(3.8.24)

N−1/2

N−h∑
n=1

〈Xn, v̂i〉 〈γn+h,1, v̂j〉 =

∫∫ (
N−1/2

N−h∑
n=1

Xn(t)γn+h,1(s)

)
v̂i(t)v̂j(s)dtds

=

∫ [∫∫
Nh(t, u)

p∑

k,`=1

ĉkψk`v`(u)v̂i(t)dtdu

]
[ĉkvk(s)− v̂k(s)]v̂j(s)ds
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Clearly, ∫∫ (
p∑

k,`=1

ĉkψk`v`(u)v̂i(t)

)2

dtdu = OP (1),

By Theorem 3.1,

(3.8.25)

{∫
[ĉkvk(s)− v̂k(s)]

2ds

}1/2

= OP (N−1/2).

We thus obtain

(3.8.26)
N−h∑
n=1

〈Xn, v̂i〉 〈γn+h,1, v̂j〉 = OP (1),

so the contribution of γn is smaller than that of εn and ηn.

To summarize, we have proven that

(Ψ̃p − Ψ̃∧
p )N−1

N−h∑
n=1

X̂n∆̂
T

n+h = OP (N−1).

The term N−1
∑N−h

n=1 ∆̂nX̂
T
n+h(Ψ̃p− Ψ̃∧

p )T can be dealt with in a fully analogous

way.

By Lemma 3.7, the errors ∆̂n can be decomposed as follows

∆̂n = ên + η̂n + γ̂n,

with the coordinates obtained by projecting the functions εn, ηn, γn onto the EFPC’s

v̂j. For example,

η̂n = [〈ηn, v̂1〉 , 〈ηn, v̂2〉 , . . . , 〈ηn, v̂p〉]T .

Lemma 3.10 shows that the vectors γ̂n do not contribute to the asymptotic

distribution of the Vh. This is essentially due to the fact that by Theorem 3.1, the

difference between v̂j and ĉjvj is of the order OP (N−1/2). For the same reason, in the
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definition of ên and η̂n, the v̂j can be replaced by the ĉjvj, as stated in Lemma 3.11.

Lemma 3.11 can be proven in a similar way as Lemma 3.10, so we present only the

proof of Lemma 3.10.

Lemma 3.10. Suppose Assumptions 3.2 and 3.3 and condition (3.2.2) hold. Then,

for any fixed h > 0,

∣∣∣∣∣

∣∣∣∣∣Vh −N−1

N−h∑
n=1

[ên + η̂n][ên+h + η̂n+h]
T

∣∣∣∣∣

∣∣∣∣∣ = OP (N−1).

Lemma 3.11. Suppose Assumptions 3.2 and 3.3 and condition (3.2.2) hold. Then,

for any fixed h > 0,

∣∣∣∣∣

∣∣∣∣∣Vh −N−1

N−h∑
n=1

[ẽn + η̃n][ẽn+h + η̃n+h]
T

∣∣∣∣∣

∣∣∣∣∣ = OP (N−1),

where

ẽn = [ĉ1 〈εn, v1〉 , ĉ2 〈εn, v2〉 , . . . , ĉp 〈εn, vp〉]T

and

η̃n = [ĉ1 〈ηn, v1〉 , ĉ2 〈ηn, v2〉 , . . . , ĉp 〈ηn, vp〉]T

= [ĉ1 〈ηn2, v1〉 , ĉ2 〈ηn2, v2〉 , . . . , ĉp 〈ηn2, vp〉]T .

Proof of Lemma 3.10. In light of Lemma 3.9, we must show that the norm of

difference between

N−1

N−h∑
n=1

[ên + η̂n][ên + η̂n]T

and

N−1

N−h∑
n=1

[ên + η̂n + γ̂n][ên + η̂n + γ̂n]T

is OP (N−1).
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Writing η̂n = η̂n1 + η̂n2 and γ̂n = γ̂n1 + γ̂n2, we see that this difference consists

of 20 terms which involve multiplication by γ̂n1 or γ̂n2. For example, analogously to

(3.8.24), the term involving εn and and γn+h,1 has coordinates

N−1

N−h∑
n=1

〈εn, v̂i〉 〈γn+h,1, v̂j〉

= N−1/2

∫ [∫∫
Nε,h(t, u)

p∑

k,`=1

ĉkψk`v`(u)v̂i(t)dtdu

]
[ĉkvk(s)− v̂k(s)]v̂j(s)ds,

where

Nε,h(t, u) = N−1/2

N−h∑
n=1

εn(t)Xn+h(u).

By the argument leading to (3.8.26) (in particular by (3.8.25)),

N−1

N−h∑
n=1

〈εn, v̂i〉 〈γn+h,1, v̂j〉 = OP (N−1).

The other terms can be bounded using similar arguments. The key point is that

by (3.8.25), all these terms are N1/2 times smaller than the other terms appearing in

the decomposition of N−1
∑N−h

n=1 ∆̂n∆̂
T

n .

No more terms can be dropped. The asymptotic approximation to Vh thus

involves linear functionals of the following processes.

R
(1)
N,h = N−1/2

N∑
n=1

εn(t)εn+h(s),

R
(2)
N,h = N−1/2

N∑
n=1

εn(t)Xn+h(s),

R
(3)
N,h = N−1/2

N∑
n=1

εn+h(t)Xn(s),
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R
(4)
N,h = N−1/2

N∑
n=1

Xn(t)Xn+h(s).

Lemma 3.12, which follows directly for the CLT in the space L2([0, 1]× [0, 1]) and the

calculation of the covariances, summarizes the asymptotic behavior of the processes

R
(i)
N,h.

Lemma 3.12. Suppose Assumptions 3.2 and 3.3 and condition (3.2.2) hold. Then

{
R

(i)
N,h, 1 ≤ i ≤ 4, 1 ≤ h ≤ H

}
d→

{
Γ

(i)
h , 1 ≤ i ≤ 4, 1 ≤ h ≤ H

}
,

where the Γ
(i)
h are L2([0, 1] × [0, 1])–valued jointly Gaussian process such that the

processes
{

Γ
(i)
h , 1 ≤ i ≤ 4

}
are independent and identically distributed.

According to Lemmas 3.11 and 3.12, if

(3.8.27) ĉ1 = ĉ2 = . . . = ĉp = 1,

then

N1/2 {Vh, 1 ≤ h ≤ H} d→ {Th, 1 ≤ h ≤ H} ,

where the Th, 1 ≤ h ≤ H, are independent identically distributed normal random

matrices. This is because the limit distribution of the Vh is determined by the random

processes R
(i)
N,h, 1 ≤ i ≤ 4, 1 ≤ h ≤ H which are uncorrelated for every fixed N .

Since their joint limit is multivariate normal, the asymptotic independence of the

R
(i)
N,h, 1 ≤ i ≤ 4, 1 ≤ h ≤ H follows. This yields the asymptotic independence of

V1, . . .VH . Their asymptotic covariances can be computed using Lemma 3.7. After

lengthy but straightforward calculations, the following lemma is established

Lemma 3.13. Suppose Assumptions 3.2 and 3.3 and condition (3.2.2) hold. If

(3.8.27) holds, then for any fixed h > 0,

N Cov(Vh(k, `),Vh(k
′, `′)) → a(k, `; k′, `′),
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where

a(k, `; k′, `′)

= r2(k, k′)r2(`, `
′) + r2(k, k′)r1(`, `

′) + r2(`, `
′)r1(k, k′) + r1(k, k′)r1(`, `

′),

with

r1(`, `
′) =

∞∑
j=p+1

λjψ`jψ`′j

and

r2(k, k′) =

∫∫
E[ε1(t)ε1(s)]vk(t)vk′(s)dtds.

While assumption (3.8.27) is needed to obtain the asymptotic distribution of the

autocovariance matrices Vh, we will now show that it is possible to construct a test

statistic which does not require assumption (3.8.27). The arguments presented below

use a heuristic derivation, and the approximate equalities are denoted with “≈”. The

arguments could be formalized as in the proofs of Lemmas 3.10 and 3.11, but the

details are not presented to conserve space.

We estimate 〈εn, vk〉 by

e∧nk = 〈Yn, v̂k〉 −
p∑

j=1

ψ̃∧kj 〈Xn, v̂j〉

≈ ĉk 〈Yn, vk〉 −
p∑

j=1

ĉkψkj ĉj ĉj 〈Xn, vj〉

= ĉk

(
〈Yn, vk〉 −

p∑
j=1

ψkj 〈Xn, vj〉
)

= ĉk

(
〈εn, vk〉+

∞∑
j=p+1

ψkj 〈Xn, vj〉
)

.

By the strong law of large numbers

1

N

N∑
n=1

(
〈εn, vk〉+

∞∑
j=p+1

ψkj 〈Xn, vj〉
)(

〈εn, vk′〉+
∞∑

j=p+1

ψk′j 〈Xn, vj〉
)
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a.s.→ E

[(
〈εn, vk〉+

∞∑
j=p+1

ψkj 〈Xn, vj〉
)(

〈εn, vk′〉+
∞∑

j=p+1

ψk′j 〈Xn, vj〉
)]

= r1(k, k′) + r2(k, k′).

Therefore, defining,

â(k, k′, `, `′) =

(
1

N

N∑
n=1

e∧nke
∧
nk′

)(
1

N

N∑
n=1

e∧n`e
∧
n`′

)
,

we see that

(3.8.28) â(k, k′, `, `′) ≈ ĉkĉk′ ĉ`ĉ`′a(k, k′, `, `′).

By Lemma 3.13, under (3.8.27), the asymptotic covariance matrix of N1/2vec(Vh)

is a p2 × p2 matrix

M = [ A(i, j), 1 ≤ i, j ≤ p ] ,

where

A(i, j) = [ a(`, i, k, j), 1 ≤ `, k ≤ p ] .

By (3.8.28), an estimator of M is

M̂ =
[

M̂(i, j), 1 ≤ i, j ≤ p
]
,

where

M̂(i, j) = [ â(`, i, k, j), 1 ≤ `, k ≤ p ] .

Direct verification shows that M̂ can be written in the form (3.4.15), which is conve-

nient for coding.

As seen from (3.8.28), it cannot be guaranteed that the matrix M̂ will be close

to the matrix M because of the unknown signs ĉi. However, as will be seen in the

proof of Theorem 3.3, statistic (3.4.16) does not depend on these signs.
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Proof of Theorem 3.3. By Lemmas 3.9 and 3.10,

vec(Vh) = vec

(
N−1

N−h∑
n=1

[ên + η̂n][ên+h + η̂n+h]
T

)
+ OP (N−1).

The arguments used in the proof of Lemma 3.9 show that

vec

(
N−1

N−h∑
n=1

[ên + η̂n][ên+h + η̂n+h]
T

)

= [Ĉ⊗ Ĉ] vec

(
N−1

N−h∑
n=1

[en + ηn][en+h + ηn+h]
T

)
+ oP (1),

where the matrix Ĉ is defined by (3.3.11), and where

en = [〈εn, v1〉 , 〈εn, v2〉 , . . . , 〈εn, vp〉]T ;

ηn = [〈ηn, v1〉 , 〈ηn, v2〉 , . . . , 〈ηn, vp〉]T .

Similar arguments also show that

M̂ = [Ĉ⊗ Ĉ]M[Ĉ⊗ Ĉ] + oP (1).

Since [Ĉ⊗ Ĉ]T [Ĉ⊗ Ĉ] is the p2 × p2 identity matrix, we obtain by Lemma 3.12 that

Q∧
N = N

H∑

h=1

{
vec

(
N−1

N−h∑
n=1

[en + ηn][en+h + ηn+h]
T

)

M−1

[
vec

(
N−1

N−h∑
n=1

[en + ηn][en+h + ηn+h]
T

)]T


 + oP (1).

In particular, we see that the asymptotic distribution of Q∧
N does not depend on the

signs ĉ1, ĉ2, . . . , ĉp (the same argument shows that Q∧
N itself does not depend on these
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signs), so we may assume that they are all equal to 1. The claim then follows form

Lemmas 3.12 and 3.13.

3.9 Proof of Theorem 3.4

We use expansions with respect to the vi as well as to the uj, so we replace (3.3.4)

by

(3.9.29) ψ(t, s) =
∞∑

i,j=1

λ−1
i σijuj(t)vi(s)

which leads to

(3.9.30) ζnj =
∞∑
i=1

ξniλ
−1
i σij + εnj, 1 ≤ j ≤ q, 1 ≤ n ≤ N.

where

ζnj = 〈uj, Yn〉 , ξni = 〈vi, Xn〉 , εnj = 〈uj, εn〉 ,

σij = E[ξniζnj], λi = Eξ2
ni.

Introducing

Zn = [Zn1, Zn2, . . . , Znq]
T , 1 ≤ n ≤ N,

(3.9.31) Znj := ζnj −
p∑

i=1

ξniλ
−1
i σij, 1 ≤ j ≤ q,

the vector of nonobservable residuals, by (3.9.30), we have

(3.9.32) Znj = εnj + rnj, rnj =
∞∑

i=p+1

ξniλ
−1
i σij, 1 ≤ j ≤ q.
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Define by Ch the q × q autocovariance matrix with entries

ch(k, `) =
1

N

N−h∑
n=1

ZnkZn+h,`

Analogously to the statistics Q̂N of Theorem 3.4, define

QN = N

H∑

h=1

q∑
i,j=1

rf,h(i, j)rb,h(i, j),

Where rf,h(i, j) and rb,h(i, j) the (i, j) entries, respectively, of C−1
0 Ch and ChC

−1
0 .

Our first result is the limit distribution of QN .

Lemma 3.14. Under the assumptions of Theorem 3.4, QN converges in distribution

to the χ2–distribution with q2H degrees of freedom.

Proof. Since the vectors Zn with coordinates (3.9.31) are independent and identically

distributed with zero mean and finite fourth moment, the result follows from Theorem

B.3 of Gabrys and Kokoszka (2007).

We must now show that Q̂N − QN
P→ 0. To do this, we must use Theorem 3.1,

which in turn requires that QN and Q̂N be invariant to the signs of the EFPC’s. This

property is established in the following lemma.

Lemma 3.15. Set ci = sign(〈vi, v̂i〉) and di = sign(〈ui, ûi〉). (i) The value of QN does

not change if each vi is replaced by civi and each ui by diui. (ii) The value of Q̂N

does not change if each v̂i is replaced by civ̂i and each ûi by diûi.

Proof. We will proof statement (i), the arguments for statement (ii) is the same,

“hats” have to be added to all formulas. Denote all quantities obtained by using civi

and diui in place of vi and ui with a prime ′. Then

Z ′
jn = djζnj −

p∑
i=1

ciξniλ
−1
i ciσijdj = djZnj.
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Therefore,

c′h(k, `) =
1

N

N−h∑
n=1

dkZnkd`Zn` = dkd`ch(k, `).

Denoting D = diag(d1, d2, . . . , dq), we thus have C′
h = DChD. Direct verification

shows that QN = tr[CT
hC−1

0 ChC
−1
0 ]. Consequently,

Q′
N = tr[DCT

hDD−1C−1
0 D−1DChDD−1C−1

0 D−1] = tr[DCT
hC−1

0 ChC
−1
0 D−1].

Since tr(AB) = tr(BA), it follows that Q′
N = QN .

Lemma 3.14 and Lemma 3.15 show that to verify the convergence Q̂N−QN
P→ 0,

we may replace v̂i by civ̂i and ûi by diûi in the definition of Q̂N to ensure that the

differences civ̂i − vi and diûi − ui are small. The residuals Ẑnj can be expressed as

follows

Ẑnj = djZnj + (Ẑnj − Znj) + Dn(p),

Dn(p) =

p∑
i=1

[
λ̂−1

i σ̂ij ξ̂ni − λ−1
i djciσijciξni

]
.

In the following, we use the notation

viN = civ̂i, uiN = diûi

and replace v̂i and ûi, respectively, by viN and uiN in all definitions.

The following Lemma forms part of the proof of Theorem 1 of Gabrys and

Kokoszka (2007).

Lemma 3.16. Under the assumptions of Theorem 3.4,

1

N

N∑
n=1

ξ̂nk(ξn` − ξ̂n`) = OP (N−1/2)
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and for h ≥ 1,

1√
N

N−h∑
n=1

ξ̂nk(ξn+h,` − ξ̂n+h,`) = OP (N−1).

Analogous statements hold for the scores of the Yn.

We will also use the following bounds.

Lemma 3.17. Under the assumptions of Theorem 3.4,

λ̂j − λj = OP (N−1/2), σ̂ij − cidjσij = OP (N−1/2).

Proof. The relation λ̂j − λj = OP (N−1/2) follows from Theorem 3.1. To establish

the second relation, we start with the decomposition

σ̂ij − cidjσij =
1

N

N∑
n=1

(ξ̂niζ̂nj − ξniζnj) +
1

N

N∑
n=1

(ξniζnj − E[ξniζnj]).

The second term is OP (N−1/2) by the central limit theorem. The first term is further

decomposed as

1

N

N∑
n=1

(ξ̂niζ̂nj − ξniζnj) =
1

N

N∑
n=1

ξ̂ni(ζ̂nj − ζnj) +
1

N

N∑
n=1

ζnj(ξ̂ni − ξni).

We will show that N−1/2
∑N

n=1 ζnj(ξ̂ni− ξni) is bounded in probability, the other term

is dealt with in a similar way. Observe that

N−1/2

N∑
n=1

ζnj(ξ̂ni − ξni) = N−1/2

N∑
n=1

〈Yn, uj〉 〈Xn, viN − vi〉

=

〈
N−1/2

N∑
n=1

〈Yn, uj〉Xn, viN − vi

〉
.

By the strong law of large numbers in a Hilbert space, the norm of N−1/2
∑N

n=1 〈Yn, uj〉Xn

is OP (N1/2), and by Theorem 3.1, ||viN − vi|| = OP (N−1/2).
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Now we are ready to prove Lemma 3.18 which completes the proof of Theorem

3.4.

Lemma 3.18. If the assumptions of Theorem 3.4 holds, then

(3.9.33) Ĉ0 −C0 = OP (N−1/2)

and for h ≥ 1,

(3.9.34) Ĉh −Ch = OP (N−1).

Proof. We will use a modified definition of the autocovariances ĉh(k, `), namely

ĉh(k, `) =
1

N

N−h∑
n=1

ẐnkẐn+h,`,

the sample means µ̂Z(k) add terms of the order OP (N−1) to the ĉh(k, `).

To prove relations (3.9.33) and (3.9.34), we decompose Ĉh−Ch into a number of

terms, and use Lemmas 3.16 and 3.17 to show that these terms are of an appropriate

order in probability. Observe that for h ≥ 0,

Ĉh −Ch =
1

N

N−h∑

h=1

Ẑnk(Ẑn+h,` − Zn+h,`) +
1

N

N−h∑

h=1

Zn+h,`(Ẑnk − Znk) =: M1 + M2.

In the following, we consider only the first term, M1, the same tools apply to M2. We

decompose M1 as

M1 = M11 + M12 + M13 + M14,

where

M11 =
1

N

N−h∑
n=1

ζ̂nk(ζ̂n+h,` − ζn+h,`);
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M12 =

p∑
j=1

1

N

N−h∑
n=1

ζnk(ξn+h,jλ
−1
j σj` − ξ̂n+h,jλ̂

−1
j σ̂j`) =:

p∑
j=1

M12j;

M13 = −
p∑

i=1

1

N

N−h∑
n=1

ξ̂niλ̂
−1
i σ̂ik(ζ̂n+h,` − ζn+h,`) =: −

p∑
i=1

M13i;

M14 = −
p∑

j=1

p∑
i=1

1

N

N−h∑
n=1

ξ̂niλ̂
−1
i σ̂ik(ξn+h,jλ

−1
j σj` − ξ̂n+h,jλ̂

−1
j σ̂j`) =: −

p∑
i=1

p∑
j=1

M14ij.

The term M11 is of correct order by Lemma 3.16.

Each term M12j can be decomposed as M12j = M12j1 + M12j2, where

M12j1 =
1

N

N−h∑
n=1

ζknξn+h,j(λ
−1
j σj` − λ̂−1

j σ̂j`);

M12j2 =
1

N

N−h∑
n=1

ζnkλ̂
−1
j σ̂j`(ξn+h,j − ξ̂n+h,j).

By Lemma 3.17, M12j1 = OP (N−1/2)N−1
∑N−h

n=1 ζknξn+h,j. If h = 0, N−1
∑N

n=1 ζnkξj,n =

OP (1) by the law of large numbers. If h ≥ 1, N−1
∑N−h

n=1 ζnkξn+h,j = OP (N−1/2), by

the central limit theorem. The term M12j2 has the same rates. If h = 0, by the law

of large numbers in a Hilbert space,

1

N

N∑
n=1

ζnk(ξnj − ξ̂nj) =

〈
1

N

N∑
n=1

〈uk, Yn〉Xn, vj − vjN

〉
= OP (1)OP (N−1/2).

If h ≥ 1, by the central limit theorem in a Hilbert space,

1

N

N−h∑
n=1

ζnk(ξn+h,j−ξ̂n+h,j) =

〈
1

N

N−h∑
n=1

〈uk, Yn〉Xn+h, vj − vjN

〉
= OP (N−1/2)OP (N−1/2).

We conclude that

M12 = OP (N−1/2), if h = 0; M12 = OP (N−1), if h ≥ 1.
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The same technique shows that for α = 3 and α = 4

M1α = OP (N−1/2), if h = 0; M1α = OP (N−1), if h ≥ 1.

3.10 Proofs of Theorems 3.5 and 3.6

We closely follow the plan of the proof of Theorem 3.3. The decomposition in

Lemma 3.7 and lemma 3.8 clearly hold for dependent Xn.

To formulate our first lemma, we introduce the p× p matrix

K̂p =

[
ĉiĉj

∞∑

k=p+1

∫∫
ψjkvk(u)eh(t, u)vj(t)dtdu, 1 ≤ i, j ≤ p

]
.

Lemma 3.19. Under the assumptions of Theorem 3.5, for any fixed h > 0,

∣∣∣∣∣

∣∣∣∣∣Vh −
[
N−1

N−h∑
n=1

∆̂n∆̂
T

n+h + (Ψ̃p − Ψ̃∧
p )K̂p + K̂T

p (Ψ̃p − Ψ̃∧
p )T

]∣∣∣∣∣

∣∣∣∣∣ = OP (N−1).

Proof. By (3.8.23) and (3.4.14),

Vh = N−1

N−h∑
n=1

[(Ψ̃p − Ψ̃∧
p )X̂n + ∆̂n][(Ψ̃p − Ψ̃∧

p )X̂n+h + ∆̂n+h]
T .

Denoting, Ĉh = N−1
∑N−h

n=1 X̂nX̂
T
n+h, we thus obtain

Vh = (Ψ̃p − Ψ̃∧
p )Ĉh(Ψ̃p − Ψ̃∧

p )T + (Ψ̃p − Ψ̃∧
p )N−1

N−h∑
n=1

X̂n∆̂
T

n+h

+N−1

N−h∑
n=1

∆̂nX̂
T
n+h(Ψ̃p − Ψ̃∧

p )T + N−1

N−h∑
n=1

∆̂n∆̂
T

n+h.

By the ergodic theorem , Ĉh = OP (1), so the first term satisfies

(Ψ̃p − Ψ̃∧
p )Ĉh(Ψ̃p − Ψ̃∧

p )T = OP (N−1/2N−1/2) = OP (N−1).
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To deal with the remaining three terms, we use the decomposition of Lemma 3.7.

Starting with the decomposition of X̂n∆̂
T

n+h, observe that

N−1/2

N−h∑
n=1

〈Xn, v̂i〉 〈εn+h, v̂j〉 =

∫∫ (
N−1/2

N−h∑
n=1

Xn(t)εn+h(s)

)
v̂i(t)v̂j(s)dtds.

It is verified in Aue et al. (2010) that

∫∫ (
N−1/2

N−h∑
n=1

Xn(t)εn+h(s)dtds

)2

= OP (1).

Since the v̂j have unit norm, it follows from the Cauchy–Schwarz inequality that

N−h∑
n=1

〈Xn, v̂i〉 〈εn+h, v̂j〉 = OP (N1/2).

Thus, the εn contribute to (Ψ̃p−Ψ̃∧
p )N−1

∑N−h
n=1 X̂n∆̂

T

n+h a term of the order OP (N−1/2N−1N1/2) =

OP (N−1).

We now turn to the contribution of the ηn,1. As above, we have

N−1/2

N−h∑
n=1

〈Xn, v̂i〉 〈ηn+h,1, v̂j〉 =

∫∫ (
N−1/2

N−h∑
n=1

Xn(t)ηn+h,1(s)

)
v̂i(t)v̂j(s)dtds

=

∫∫ (
N−1/2

N−h∑
n=1

Xn(t)

∫ ( ∞∑

k=p+1

∞∑

`=1

ψk`vk(s)v`(u)

)
Xn+h(u)du

)
v̂i(t)v̂j(s)dtds.

Setting

Nh(t, u) = N−1/2

N−h∑
n=1

[Xn(t)Xn+h(u)− eh(t, u)]

and

Rp(s, u) =
∞∑

`=1

∞∑

k=p+1

ψk`v`(u)v̂i(s),
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we thus obtain

N−1/2

N−h∑
n=1

〈Xn, v̂i〉 〈ηn+h,1, v̂j〉

=

∫∫∫
Nh(t, u)v̂j(s)Rp(s, u)v̂i(t)dtdsdu

+
N − h

N1/2

∫∫∫
eh(t, u)v̂j(s)Rp(s, u)v̂i(t)dtdsdu.

By the Cauchy–Schwarz inequality, we have

∣∣∣∣
∫∫∫

Nh(t, u)v̂j(s)Rp(s, u)v̂i(t)dtdsdu

∣∣∣∣

≤
(∫∫∫

N2
h(t, u)v̂2

j (s)dtdsdu

)1/2 (∫∫∫
R2

p(s, u)v̂2
i (t)dtdsdu

)1/2

.

Aue et al. (2010) verified that

(3.10.35)

∫∫
N2

h(t, u)dtdu = OP (1).

A direct verification using Assumption 3.3 shows that also

∫∫
R2

p(t, u)dtdu = OP (1).

Hence ∣∣∣∣
∫∫∫

Nh(t, u)v̂j(s)Rp(s, u)v̂i(t)dtdsdu

∣∣∣∣ = OP (1).

Using (3.2.3), we conclude that

∫∫∫
eh(t, u)v̂j(s)Rp(s, u)v̂i(t)dtdsdu

=

∫∫∫
eh(t, u)vj(s)Rp(s, u)vi(t)dtdsdu + OP (N−1/2).
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Since j ≤ p,
∫

Rp(s, u)vj(s)ds = 0, leading to

(3.10.36) N−1/2

N−h∑
n=1

〈Xn, v̂i〉 〈ηn+h,1, v̂j〉 = OP (N1/2).

Repeating the arguments leading to (3), we obtain that

N−1/2

N−h∑
n=1

〈Xn, v̂i〉 〈ηn+h,2, v̂j〉

= (N − h)ĉiĉj

∫∫∫
eh(t, u)vj(s)

p∑

`=1

∞∑

k=p+1

ψ`kv`(s)vk(u)vi(t)dsdtdu + OP (N1/2).

By orthogonality of the vi,

∫ p∑

`=1

∞∑

k=p+1

ψ`kv`(s)vk(u)vj(s)ds =
∞∑

k=p+1

ψjkvk(u).

We now turn to the contribution of the γn1, the same argument applies to the

γn2. Observe that, similarly as for the ηn1,

(3.10.37)

N−1/2

N−h∑
n=1

〈Xn, v̂i〉 〈γn+h,1, v̂j〉 =

∫∫ (
N−1/2

N−h∑
n=1

Xn(t)γn+h,1(s)

)
v̂i(t)v̂j(s)dtds

=

∫ [∫∫
Nh(t, u)

p∑

k,`=1

ĉkψk`v`(u)v̂i(t)dtdu

]
[ĉkvk(s)− v̂k(s)]v̂j(s)ds

+
N − h

N1/2

∫ [∫∫
eh(t, u)

p∑

k,`=1

ĉkψk`v`(u)v̂i(t)dtdu

]
[ĉkvk(s)− v̂k(s)]v̂j(s)ds.

Clearly, ∫∫ (
p∑

k,`=1

ĉkψk`v`(u)v̂i(t)

)2

dtdu = OP (1).
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By (3.2.3), {∫
[ĉkvk(s)− v̂k(s)]

2ds

}1/2

= OP (N−1/2)

and

∫∫∫
eh(t, u)

p∑

k,`=1

ĉkψk`v`(u)v̂i(t)[ĉkvk(s)− v̂k(s)]v̂j(s)dtdsdu = OP (N−1/2).

We thus obtain

(3.10.38)
N−h∑
n=1

〈Xn, v̂i〉 〈γn+h,1, v̂j〉 = OP (N1/2),

with the same bound holding for γn+h,2 in place of γn+h,1.

To summarize, we have expanded, as required, the term (Ψ̃p−Ψ̃∧
p )N−1

∑N−h
n=1 X̂n∆̂

T

n+h.

The term N−1
∑N−h

n=1 ∆̂nX̂
T
n+h(Ψ̃p−Ψ̃∧

p ) can be dealt with in a fully analogous way.

By Lemma 3.7, the errors ∆̂n can be decomposed as follows

∆̂n = ên + η̂n + γ̂n,

with the coordinates obtained by projecting the functions εn, ηn, γn onto the EFPC’s

v̂j. For example,

η̂n = [〈ηn, v̂1〉 , 〈ηn, v̂2〉 , . . . , 〈ηn, v̂p〉]T .
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Lemma 3.20 shows that γ̂n contributes a drift term to the asymptotic distribution

of Vh. To formulate it, we introduce the a p× p matrix F̂p with entries

F̂p(i, j) =

p∑
m,r=1

∞∑

`=p+1

ψi`ψmr

∫∫
v`(s)vr(z)eh(s, z)dsdz

∫
ĉm[ĉmvm(u)− v̂m(u)]vj(u)du

+

p∑
m=1

∞∑

`=1

ψi`ψmj ĉm

∫∫
v`(s)eh(s, z)[ĉjvj(s)− v̂j(s)]dsdz

+

p∑
m,r=1

∞∑

`=p+1

ψj`ψmr

∫∫
v`(s)vr(z)eh(s, z)dsdz

∫
ĉm[ĉmvm(u)− v̂m(u)]vi(u)du

+

p∑
m=1

∞∑

`=1

ψj`ψmiĉm

∫∫
v`(s)eh(s, z)[ĉjvj(s)− v̂j(s)]dsdz.

Lemma 3.20. Under the assumptions of Theorem 3.5, for any fixed h > 0,

∣∣∣∣∣

∣∣∣∣∣N
−1

N−h∑
n=1

∆̂n∆̂
T

n+h −
{

N−1

N−h∑
n=1

[ên + η̂n][ên+h + η̂n+h]
T + F̂p

}∣∣∣∣∣

∣∣∣∣∣ = OP (N−1).

Proof. Following the proof of Lemma 3.19, one can verify that

∣∣∣∣∣

∣∣∣∣∣
N−h∑
n=1

ênη̂T
n+h

∣∣∣∣∣

∣∣∣∣∣ = OP (1),

∣∣∣∣∣

∣∣∣∣∣
N−h∑
n=1

η̂nê
T
n+h

∣∣∣∣∣

∣∣∣∣∣ = OP (1)

and ∣∣∣∣∣

∣∣∣∣∣
N−h∑
n=1

η̂nγ̂
T
n+h

∣∣∣∣∣

∣∣∣∣∣ = OP (1),

∣∣∣∣∣

∣∣∣∣∣
N−h∑
n=1

γ̂T
n η̂T

n+h,1

∣∣∣∣∣

∣∣∣∣∣ = OP (1).

Using (3.2.3), (3.10.35), and the orthonormality of the vi, we get

N−h∑
n=1

〈ηn,2, v̂i〉 〈γn+h,1, v̂j〉

= ĉiĉjN

p∑
m,r=1

∞∑

l=p+1

ψi`ψmr

∫∫
v`(s)vr(z)eh(s, z)dsdzĉmψmr[ĉmvm(u)−v̂m(u)]vj(u)du+OP (1)
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and
N−h∑
n=1

〈ηn,2, v̂i〉 〈γn+h,2, v̂j〉

= ĉiĉjN

p∑
m=1

∞∑

l=p+1

ψi`ψmj

∫∫
v`(s)vr(z)eh(s, z)dsdzĉmψmr[ĉjvj(s)−v̂j(s)]dsdz+OP (1).

The remaining two terms,
∑N−h

n=1 〈γn,α, v̂i〉 〈ηn+h,2, v̂j〉 , α = 1, 2, can be handled in

the same way.

To formulate the next lemma, we introduce the matrix Ĝp whose (i, j) entry is

Ĝp(i, j) = ĉj

p∑

k=1

p∑

`,r=1

ψk`ψjr

∫∫∫
vk(t)[v̂i(t)− ĉivi(t)]v`(s)eh(s, z)vr(z)dtdsdz

+ĉi

p∑
m=1

p∑

`,r=1

ψi`ψmr

∫∫∫
v`(s)eh(s, z)vm(u)[v̂j(u)− ĉjvj(u)]vr(z)dudsdz.

Recall also that

ẽn = [ĉ1 〈εn, v1〉 , ĉ2 〈εn, v2〉 , . . . , ĉp 〈εn, vp〉]T

and

η̃n = [ĉ1 〈ηn,2, v1〉 , ĉ2 〈ηn,2, v2〉 , . . . , ĉp 〈ηn,2, vp〉]T .

Lemma 3.21. Under the assumptions of Theorem 3.5, for any fixed h > 0,

∣∣∣∣∣

∣∣∣∣∣N
−1

N−h∑
n=1

[ên + η̂n][ên+h + η̂n+h]
T −

{
N−1

N−h∑
n=1

[ẽn + η̃n][ẽn+h + η̃n+h]
T + Ĝp

}∣∣∣∣∣

∣∣∣∣∣ = OP (N−1).

Lemma 3.21 can be established along the lines of the proof of Lemma 3.20.

Proof of Theorem 3.6. The proof of Theorem 3.5 shows that

∣∣∣
∣∣∣Vh −

[
ĉiĉj

(
V

(e)
h (i, j) + Dh(i, j)

)
, 1 ≤ i, j ≤ p

]∣∣∣
∣∣∣ P→ 0,
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where

V
(e)
h (i, j) = E[〈ε0, vi〉 〈εh, vj〉].

Thus, but the definition of the statistic Q∧
N , the consistency is established if for some

1 ≤ h ≤ H,

[vec(V
(e)
h ) + Dh)]

T{M̂0 ⊗ M̂0}−1vec(V
(e)
h ) + Dh) 6= 0.

The matrix Dh converges to zero, as p → ∞. It can be shown, as in the proof

of Theorem 3.5, that by imposing the same dependence conditions on the εn as on

the Xn, we have ĉiĉjM̂0(i, j)
P→ M0(i, j), where M0(i, j) is the limit of the empirical

covariances N−1
∑N

n=1 e∧nie
∧
ni, and so is positive definite.

Thus, the test is consistent if for some 1 ≤ h ≤ H,

[vec(V
(e)
h )]T{M̂0 ⊗ M̂0}−1vec(V

(e)
h ) 6= 0,

that is, if for some 1 ≤ h ≤ H and 1 ≤ i, j ≤ p, E[〈ε0, vi〉 〈εh, vj〉] 6= 0.
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CHAPTER 4

DETECTING CHANGES IN THE MEAN OF FUNCTIONAL OBSERVATIONS1

4.1 Introduction

Functional data analysis (FDA) has been enjoying increased popularity over the

last decade due to its applicability to problems which are difficult to cast into a

framework of scalar or vector observations. Even if such standard approaches are

available, the functional approach often leads to a more natural and parsimonious

description of the data, and to more accurate inference and prediction results. The

monograph of Ramsay and Silverman (2005) has become a standard reference to the

ideas and tools of FDA. To name a few recent applications of FDA which illustrate

its advantages alluded to above, we cite Antoniadis and Sapatinas (2003), Fernández

de Castro et al. (2005), Müller and Stadtmüller (2005), Yao et al. (2005b), and

Glendinning and Fleet (2007).

A main tool of FDA is the principal component analysis (PCA). It represents

the functional observations Xi(t), t ∈ T, i = 1, 2, . . . , N, in the form Xi(t) = µ(t) +
∑

1≤`<∞ ηi,`v`(t), where µ is the mean, v` are the eigenfunctions of the covariance

operator, and the ηi,` are the scores. The set T can be interpreted as a time or a

spatial domain, the methodology we develop requires merely that it be a compact

subset of a Euclidean space. To perform the functional PCA, the functional mean

µ(t), approximated by the sample mean of the Xi(t), is first subtracted from the

data. The first principal component v1(t) is then interpreted as the main pattern of

deviation of the observations from the mean µ(t), or equivalently, as the direction in a

function space of the largest variability away from the mean function. The subsequent

1COAUTHORED BY BERKES, I., GABRYS, R. HORVÁTH, L., KOKOSZKA, P. REPRO-
DUCED BY PERMISSION FROM JOURNAL OF THE ROYAL STATISTICAL SOCIETY, SE-
RIES B, VOL. 71, ISSUE 5, PAGES 927–946, 2009.
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eigenfunction define analogous directions orthogonal to the previous eigenfunctions.

This interpretation and inferential procedures based on it assume that the mean

function µ(t) is the same for all values of i. If, in fact, the mean changes at some

index(es) i, the results of PCA are confounded by the change(s). Issues of this type are

most likely to emerge if the data are collected sequentially over time. Applications we

have in mind abound in climatology, environmental science and economics; detecting

and locating changes in mean can be interpreted, for example, as climate shifts, a

baseline change in a pollution level, or a shift in a long–term rate of growth.

It is thus useful to develop a methodology for the detection of changes in the mean

of functional observations that is both easy to apply and justified by an clear large

sample argument. We propose a significance test for testing the null hypothesis of a

constant functional mean against the alternative of a changing mean. We also show

how to locate the change points if the null hypothesis is rejected. Our methodology

is readily implemented using the R package fda. The null distribution of the test

statistic is asymptotically pivotal with a well-known asymptotic distribution going

back to the work of Kiefer (1959).

The problem of detecting a change in the mean of a sequence Banach space

valued random elements has recently been approached from a theoretical angle by

Račkauskas and Suquet (2006). Motivated by detecting an epidemic change (the

mean changes and then returns to its original value), Račkauskas and Suquet (2006)

proposed an interesting statistic based on increasingly fine dyadic partitions of the

index interval, and derived its limit, which is nonstandard.

The change point problem has been extensively studied in the multivariate setting

starting with Srivastava and Worsley (1986), while the work of Horváth et al. (1999)

is most closely related to the present paper. Different multivariate settings with

further references are discussed in Lavielle and Teyssiére (2006), Zamba and Hawkins

(2006), and Qu and Perron (2007), among others.

Returning to the functional setting, a somewhat related problem has recently
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been studied by Benko et al. (2009) who considered two populations, admitting the

PCA’s:

Xi,p(t) = µp(t) +
∑

1≤`<∞
ηi,p,` vp,`(t), p = 1, 2.

Benko et al. (2009) developed a bootstrap test for checking if the elements of the

two decompositions (including the means) are the same. Earlier, Laukaitis and

Račkauskas (2005) considered the model

Xi,g(t) = µg(t) + εi,g(t), g = 1, 2, . . . , G,

with innovations εi,g and group means µg, and tested H0 : Eµ1(t) = . . . = EµG(t).

Other contributions in this direction include Cuevas et al. (2004), Delicado (2007),

and Ferraty et al. (2007). In these settings, it is known which population or group

each observation belongs to. In our setting, we do not have any partition of the data

into several sets with possibly different means. The change can occur at any point,

and we want to test if it occurs or not.

The paper is organized as follows. In Section 4.2, we introduce the required

notation and assumptions, and recall several results which will be used in the follow-

ing sections. Section 4.3 describes the proposed methodology and contains theorems

which provide its asymptotic justification. The finite sample performance is investi-

gated in Section 4.4, which also contains an illustrative application to the detection

of changes in mean patters of annual temperatures. The proofs of the Theorems of

Section 4.3 are presented in Section 4.5.

4.2 Notation and assumptions

We consider functional observations Xi(t), t ∈ T, i = 1, 2, . . . , N, defined over a

compact set T. We assume that the Xi are independent, and we want to test if their
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mean remains constant in i. Thus we test the null hypothesis

H0 : EX1(t) = EX2(t) = . . . = EXN(t), t ∈ T.

Note that under H0, we do not specify the value of the common mean.

Under the alternative, H0 does not hold. The test we construct, has particularly

good power against the alternative in which the data can be divided into several

consecutive segments, and the mean is constant within each segment, but changes

from segment to segment. The simplest case of only two segments (one change point)

is specified in Assumption 4.2.

Under the null hypothesis, we can represent each functional observation as

(4.2.1) Xi(t) = µ(t) + Yi(t), EYi(t) = 0.

The following assumption specifies conditions on µ(·) and the errors Yi(·) needed to

establish the asymptotic distribution of the test statistic.

In the following, unless indicated otherwise, all integrals denote integration over

the set T.

Assumption 4.2. The mean µ(·) is in L2(T). The errors Yi(·) are iid mean zero

random elements of L2(T) which satisfy

(4.2.2) E||Yi||2 =

∫
EY 2

i (t)dt < ∞.

Their covariance function

(4.2.3) c(t, s) = E[Yi(t)Yi(s)] t, s ∈ T

is square integrable, i.e. is in L2(T × T).
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Assumption 4.2 implies the following expansions, see e.g. Chapter 4 of Indritz (1963):

(4.2.4) c(t, s) =
∑

1≤k<∞
λkvk(t)vk(s)

and

(4.2.5) Yi(t) =
∑

1≤`<∞
λ

1/2
` ξi,`v`(t),

where λk and vk are, respectively, the eigenvalues and eigenfunctions of the covariance

operator, defined by

(4.2.6)

∫
c(t, s)v`(s)ds = λ`v`(t), ` = 1, 2, . . .

The sequences {ξi,`, ` = 1, 2, . . .} are independent, and within each sequence the

ξi,` are uncorrelated with mean zero and unit variance. The infinite sum in (4.2.5)

converges in L2(T) with probability one. Recall also that v`, ` = 1, 2, . . . , form an

orthonormal basis in L2(T), and all λ` are nonnegative.

In practice, we work with estimated eigenelements defined by

(4.2.7)

∫
ĉ(t, s)φ̂`(s)ds = λ̂`v̂`(t), ` = 1, 2, . . . ,

where

ĉ(t, s) =
1

N

∑
1≤i≤N

(
Xi(t)− X̄N(t)

) (
Xi(s)− X̄N(s)

)
and X̄N(t) =

1

N

∑
1≤i≤N

Xi(t).

To control the distance between the estimated and the population eigenelements,

we need the following assumptions:
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Assumption 4.3. The eigenvalues λ` satisfy, for some d > 0

λ1 > λ2 > . . . > λd > λd+1.

.

Assumption 4.4. The Yi in (4.2.1) satisfy

E||Yi||4 =

∫
EY 4

i (t)dt < ∞.

The results of Dauxois et al. (1982) and Bosq (2000) then imply that for each k ≤ d:

(4.2.8) lim sup
N→∞

NE
[||ĉkvk − v̂k||2

]
< ∞, lim sup

N→∞
NE

[
|λk − λ̂k|2

]
< ∞,

where ĉk = sign
∫

T
vk(t)v̂k(t)dt. The random sign ĉk is included because the vk and

v̂k are defined up to a sign, and since vk is unknown, it is impossible to ensure that
∫

T
vk(t)v̂k(t)dt ≥ 0.

We establish the consistency of the test under the alternative of one change point

formalized in Assumption 4.5. A similar argument can be developed if there are

several change points, but the technical complications then obscure the main idea

explained in Sections 4.3 and 4.5.2 (in particular the functions (4.2.10) and (4.3.18)

would need to be modified). The more general case is studied empirically in Section

4.4.

Assumption 4.5. The observations follow the model

(4.2.9) Xi(t) =





µ1(t) + Yi(t), 1 ≤ i ≤ k∗,

µ2(t) + Yi(t), k∗ < i ≤ N,
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in which the Yi satisfy Assumption 4.2, the mean functions µ1 and µ2 are in L2(T),

and

k∗ = [nθ] for some 0 < θ < 1.

.

We will see in the proof of Theorem 4.2 that under Assumption 4.5 the sample

covariances of the functional observations converge to the function

(4.2.10) c̃(t, s) = c(t, s) + θ(1− θ)(µ1(t)− µ2(t))(µ1(s)− µ2(s)).

This is a symmetric, square integrable function, and it is easy to see that for any

x, y ∈ L2(T), ∫ ∫
c̃(t, s)x(t)x(s)dtds ≥ 0,

so c̃(t, s) is a covariance function. Consequently, it has orthonormal eigenfunctions

wk and nonnegative eigenvalues γk satisfying

(4.2.11)

∫
c̃(t, s)wk(s)ds = γkwk(t).

The quantities c̃(t, s), wk and γk are used in Section 4.3 to describe the distribution

of the test statistic under the alternative of one change point.

4.3 Detection procedure

To explain the idea of the test procedure, denote

µ̂k(t) =
1

k

∑

1≤i≤k

Xi(t), µ̃k(t) =
1

N − k

∑

k<i≤N

Xi(t).

If the mean is constant, the difference ∆k(t) = µ̂k(t)− µ̃k(t) is small for all 1 ≤ k < N

and all t ∈ T. However, ∆k(t) can become large due to chance variability if k is close
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to 1 or to N . It is therefore usual to work with the sequence

(4.3.12) Pk(t) =
∑

1≤i≤k

Xi(t)− k

N

∑
1≤i≤N

Xi(t) =
k(N − k)

N
[µ̂k(t)− µ̃k(t)]

in which the variability at the end points is attenuated by a parabolic weight function.

If the mean changes, the difference Pk(t) is large for some values of k and of t. Since

the observations are in an infinite dimensional domain, we work with the projections

of the functions Pk(·) on the principal components of the data. These projections can

be expressed in terms of functional scores which can be easily computed using the R

package fda.

Consider thus the scores corresponding the largest d eigenvalues:

η̂i,` =

∫
[Xi(t)− X̄N(t)]v̂`(t)dt, i = 1, 2, . . . , N, ` = 1, 2, . . . , d.

Observe that the value of Pk(t) does not change if the Xi(t) are replaced by Xi(t)−
X̄N(t). Consequently, setting ` = [Nx], x ∈ (0, 1), we obtain

(4.3.13)

∫ { ∑
1≤i≤Nx

Xi(t)− [Nx]

N

∑
1≤i≤N

Xi(t)

}
v̂`(t)dt =

∑
1≤i≤Nx

η̂i,`− [Nx]

N

∑
1≤i≤N

η̂i,`.

Identity (4.3.13) shows that functional scores can be used for testing the constancy

of the mean function.

The following theorem can be used to derive a number of test statistics. To state

it, introduce the vectors

β̂i = [η̂i,1, . . . , η̂i,d]
T , i = 1, 2, . . . N,
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the covariance matrix

Σ̂d =




λ̂1 0 · · · 0

0 λ̂2 · · · 0

...
...

...
...

0 0 · · · λ̂d




.

and denote by B1(·), . . . , Bd(·) independent standard Brownian bridges.

Theorem 4.1. Suppose Assumptions 4.2, 4.3, 4.3 hold. Then, under H0,

1

N

[ ∑
1≤i≤Nx

β̂i − x
∑

1≤i≤N

β̂i

]T

Σ̂−1
d

[ ∑
1≤i≤Nx

β̂i − x
∑

1≤i≤N

β̂i

]
d→

∑

1≤`≤d

B2
` (x) (0 ≤ x ≤ 1),

in the Skorokhod space D[0, 1].

Theorem 4.1 is proved in Section 4.5.

To see how it can be used to derive test statistics, denote

(4.3.14) TN(x) =
1

N

d∑

`=1

λ̂−1
`

( ∑
1≤i≤Nx

η̂i,` − x
∑

1≤i≤N

η̂i,`

)2

By Theorem 4.1, U(TN)
d→ U(

∑
1≤`≤d B2

` (·)), for any continuous functional U :

D[0, 1] → R. Applying integral or max functionals, or their weighted versions, leads

to useful statistics. In this paper, we focus on the integral of the squared function,

i.e. the Cramer-von-Mises functional, which is known to produce effective tests [this

functional was also selected in a different context by Bugni et al. (2006)]. Thus, we

consider the convergence
∫ 1

0
TN(x)dx

d→ ∫ 1

0

∑
1≤l≤d B2

` (x)dx, which can be rewritten

as

(4.3.15) SN,d :=
1

N2

d∑

l=1

λ̂−1
`

N∑

k=1

( ∑

1≤i≤k

η̂i,` − k

N

∑
1≤i≤N

η̂i,`

)2

d→
∫ 1

0

∑

1≤`≤d

B2
` (x)dx.
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The distribution of the random variable

(4.3.16) Kd =

∫ 1

0

∑

1≤`≤d

B2
` (x)dx

was derived by Kiefer (1959). Denoting by cd(α) its (1−α)th quantile, the test rejects

H0 if SN,d > cd(α). The critical values cd(α) are presented in Table 4.1.

A multivariate analog of statistic (4.3.15) considered is Horváth et al. (1999)

(4.3.17) MN,d =
1

N2

N∑

k=1

(
k

N

N − k

N

)2

∆(k)D̂−1
d ∆T (k),

where ∆(k) is the difference of the mean vectors (of dimension d) computed from

the first k and the last N − k data vectors, and D̂d is the d× d matrix of estimated

residual vectors. If d is large, the inverse of D̂d is unstable. In statistic (4.3.15),

this inverse is “replaced” by inverses of the d largest eigenvalues λ̂`, and the whole

statistic is properly “diagonalized” so that only the most important variability of the

data is considered, while the high dimensional noise is ignored.

We now turn to the behavior of the test under the alternative. We will show that

it is consistent, i.e. SN,d
P→ ∞. In fact, we can obtain the rate of divergence: under

HA, Sn,d grows linearly with N . We formulate these results under the assumption of

one change point. Under Assumption 4.5, for 1 ≤ k ≤ d, introduce the functions

(4.3.18) gk(x) =





x(1− θ)

∫
(µ1(t)− µ2(t))wk(t)dt, 0 < x ≤ θ

θ(1− x)

∫
(µ1(t)− µ2(t))wk(t)dt, θ < x < 1.

Theorem 4.2. Under Assumption 4.2,

sup
0≤x≤1

∣∣N−1TN − gT (x)Σ∗g(x)
∣∣ = oP (1),
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where

g(x) = [g1(x), . . . , gd(x)]T ; Σ∗ =




1/γ1 0 · · · 0

0 1/γ2 · · · 0

...
...

...
...

0 0 · · · 1/γd




.

Theorem 4.2 is proved in Section 4.5.

It follows that the test statistic (4.3.15) satisfies the law of large numbers under

the alternative, i.e.

1

N
SN,d

P→
∑

1≤k≤d

1

γk

1∫

0

g2
k(x)dx.

If
∫ 1

0
g2

k(x)dx > 0 for some 1 ≤ k ≤ d, then SN,d
P→∞.

To understand when the test is consistent, introduce the jump function ∆(t) =

µ1(t)−µ2(t). By (4.3.18), the condition
∫ 1

0
g2

k(x)dx > 0 is equivalent to
∫ 1

0
∆(s)wk(s)ds 6=

0. Thus the test will have no power, if

(4.3.19)

∫ 1

0

∆(s)wk(s)ds = 0, for all 1 ≤ k ≤ d.

By (4.2.10) and (4.2.11), (4.3.19) is equivalent to

(4.3.20)

∫
c(t, s)wk(s)ds = γkwk(t), for all 1 ≤ k ≤ d.

Comparing to (4.2.6), we see that condition (4.3.19) means that, up to a sign, the

wk, γk are equal to vk, λk, for 1 ≤ k ≤ d. This lead us to the following lemma.

Lemma 4.3. If Assumption 4.5 holds, and the jump function ∆(t) = µ1(t)−µ2(t) is

not orthogonal to the subspace spanned by the first d eigenfunctions of the covariance

kernel c(t, s) (4.2.3), then SN,d
P→∞, as N →∞.

To estimate the change point, we plot the function TN(x) (4.3.14) against 0 ≤
x ≤ 1, and estimate θ by the value of x which maximizes TN(x). The intuition behind
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this estimator is clear from (4.3.14) and (4.3.13). To ensure uniqueness, we formally

define this estimator as

(4.3.21) θ̂N = inf

{
x : TN(x) = sup

0≤y≤1
TN(y)

}
.

Its weak consistency is established in the following lemma

Lemma 4.4. If the assumptions of Lemma 4.3 hold, then θ̂N
P→ θ.

Proof. The argument x maximizing Tn(x), clearly maximizes AN(x) = N−1TN(x).

Theorem 4.2 states that sup0≤x≤1 |AN(x)− A(x)| P→ 0, where

A(x) = gT (x)Σ∗g(x) =





x(1− θ)A, 0 ≤ x ≤ θ

θ(1− x)A, θ < x < 1,

with

A =
∑

1≤`≤d

1

γ`

(∫
∆(t)w`(t)dt

)2

.

Under the assumptions of lemma 4.3, A > 0, and it is easy to verify that A(x) has

then a unique maximum at x = θ.

An important aspect of the procedure is the choice of the number d of the eigen-

functions vk. This issue is common to all FDA procedures using functional PCA,

and several approaches have been proposed. These include an adaptation of the scree

plot of Cattell (1966), see Kokoszka et al. (2008), the cumulative percentage variance

approach used in Section 4.4.2, the pseudo AIC and the cross-validation, see Yao

et al. (2005). All these methods are implemented in the MATLAB PACE package

developed at the University of California at Davis. A general recommendation for

the cumulative percentage variance method is to use d which explains 85% of the

variance. This choice is suitable in the setting of Section 4.4.2, where d = 8 explains

84% of the variance.
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4.4 Finite sample performance and application to temperature data

In this section, we report the results of a simulation study that examines the finite

sample performance of the test. Recall that the test rejects if SN,d (4.3.15) exceeds

the (1 − α)th quantile of Kd (4.3.16). For d ≤ 5, these quantiles were computed by

Kiefer (1959) using a series expansion of the CDF of Kd. Horváth et al. (1999) used

these expansions to find the critical values for d = 12 and noticed that the critical

values obtained by simulating Kd by discretizing the integral are slightly different,

but actually lead to more accurate tests. To cover a fuller range of the d values,

Table 4.1 gives simulated critical values for d = 1, . . . , 30, computed by discretizing

the integral over 1, 000 points and running 100, 000 replications.

The simulation study consists of two parts. First we use standard Gaussian pro-

cesses as the errors Yi and a number of rather arbitrary mean functions µ. This part

assesses the test in some generic cases analogous to assuming a normal distribution

of scalar observations. In the second part, we use mean functions and errors derived

from monthly temperature data. No assumptions on the marginal distribution of

the Yi’s or the shape of the µ’s are made. This part assesses the test in a specific,

practically relevant setting.

4.4.1 Gaussian processes

To investigate the empirical size, without loss of generality, µ(t) was chosen

to be equal to zero and two different cases of Yi(t) were considered, namely the

trajectories of the standard Brownian motion (BM), and the Brownian bridge (BB).

These processes were generated by transforming cumulative sums of independent

normal variables computed on a grid of 103 equispaced points in [0, 1]. Following

Ramsay and Silverman (2005) (Chapter 3) discrete trajectories were converted to

functional observations (functional objects in R) using B-spline and Fourier bases and

various numbers of basis functions. No systematic dependence either on the type of

the basis or on the number of basis functions was found.
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Table 4.1: Simulated critical values of the distribution of Kd.

Nominal size d
1 2 3 4 5 6

10% 0.345165 0.606783 0.842567 1.065349 1.279713 1.485200
5% 0.460496 0.748785 1.001390 1.239675 1.469008 1.684729
1% 0.740138 1.072101 1.352099 1.626695 1.866702 2.125950

7 8 9 10 11 12

10% 1.690773 1.897365 2.096615 2.288572 2.496635 2.686238
5% 1.895557 2.124153 2.322674 2.526781 2.744438 2.949004
1% 2.342252 2.589244 2.809778 3.033944 3.268031 3.491102

13 14 15 16 17 18

10% 2.884214 3.066906 3.268958 3.462039 3.650724 3.837678
5% 3.147604 3.336262 3.544633 3.740248 3.949054 4.136169
1% 3.708033 3.903995 4.116829 4.317087 4.554650 4.734714

19 20 21 22 23 24

10% 4.024313 4.214800 4.404677 4.591972 4.778715 4.965613
5% 4.327286 4.532917 4.718904 4.908332 5.101896 5.303462
1% 4.974172 5.156282 5.369309 5.576596 5.759427 5.973941

25 26 27 28 29 30

10% 5.159057 5.346543 5.521107 5.714145 5.885108 6.083306
5% 5.495721 5.688849 5.866095 6.068351 6.242770 6.444772
1% 6.203718 6.393582 6.572949 6.771058 6.977607 7.186491
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The results reported in this section were obtained using B-spline basis with 800

basis functions. We used a wide spectrum of N and d, but to conserve space, we

present the results for N = 50, 150, 200, 300, 500 and d = 1, 2, 3, 4. All empirical

rejection rates are based on 1, 000 replications.

Table 4.2 shows the empirical sizes based on critical values reported in Table 4.1.

The empirical sizes are fairly stable. Except for a very few cases of small sample sizes,

all deviations from the nominal significance levels do not exceed two standard errors

computed using the normal approximation
√

p(1− p)/R, where p is a nominal level

and R the number of repetitions. Table 4.2 shows that for these Gaussian processes,

the empirical size does not depend appreciably either on n or on d.

In the power study, several cases that violate the null were considered. We report

the power for k∗ = [N/2]. Several other values of k∗ were also considered, and only a

small loss of power was observed for N/4 < k∗ ≤ 3N/4. A few different mean functions

µ before and after change were used, namely µi(t) = 0, t, t2,
√

t, et, sin(t), cos(t),

i = 1, 2, for instance µ1(t) = t and µ2(t) = cos(t), etc.

Table 4.3 presents selected results of the power study. It shows that the test has

overall good power. For small samples, N ≤ 100, in cases where the BB was used

the power is slightly higher than for those with the BM. Nonetheless, for N ≥ 150

the power approaches 100% for both processes and all choices of other parameters.

The power decreases as the number of principal components d increases. This can

be explained as follows: the critical values of SN,d increase with d, but the change

point is mainly captured by a few initial leading principal components explaining the

major part of the variance.

4.4.2 Temperature data

The goal of this section is twofold: to investigate the performance of the test in

a real world setting, and to demonstrate the advantages of the functional approach

for high–dimensional data.
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Table 4.2: Empirical size (in percent) of the test using the B-spline basis.

Process d=1 d=2 d=3 d=4
10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%

N = 50
BM 10.3 4.6 0.1 9.9 4.8 0.7 8.4 3.3 0.6 9.7 4.8 0.8
BB 11.2 5.5 0.8 10.6 4.9 1.1 8.4 4.0 0.9 8.5 4.3 1.2

N = 100
BM 12.2 5.6 1.3 9.8 5.6 0.9 9.3 4.6 0.9 9.0 5.4 0.9
BB 12.4 5.7 0.7 10.2 4.2 0.6 9.9 4.6 1.0 8.3 4.1 0.8

N = 150
BM 10.8 5.7 1.3 9.7 4.6 1.2 11.8 6.2 0.8 10.8 5.3 1.1
BB 10.5 5.0 1.2 9.8 4.4 1.1 10.4 6.2 0.7 10.5 5.1 1.2

N = 200
BM 9.7 5.4 0.8 9.2 4.3 0.7 9.3 5.8 1.3 10.8 5.5 0.9
BB 9.2 5.1 0.8 10.8 5.6 1.2 10.0 5.2 1.0 9.6 5.2 1.0

N = 300
BM 10.3 5.2 1.5 11.1 6.1 0.6 10.1 4.5 0.6 9.9 5.5 0.7
BB 10.4 5.6 1.1 9.4 4.8 0.9 9.9 4.1 0.8 10.5 5.3 1.3

N = 500
BM 11.6 6.3 1.3 10.6 6.9 1.5 10.9 5.7 1.4 9.0 4.4 0.6
BB 11.7 5.1 1.3 9.7 5.8 1.4 10.3 5.3 1.1 10.0 5.4 1.1
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Table 4.3: Empirical power (in percent) of the test using B-spline basis. Change point
at k∗ = [n/2].

Process d=1 d=2 d=3
10% 5% 1% 10% 5% 1% 10% 5% 1%

N = 50

BM; BM + sin(t) 81.5 70.8 43.7 72.6 60.0 33.2 67.7 54.9 27.3
BM; BM + t 88.4 78.0 54.1 84.7 74.0 45.4 77.5 64.3 36.0
BB; BB + sin(t) 99.8 99.4 97.4 100 100 99.9 100 100 100
BB; BB + t 99.9 99.8 98.9 100 100 99.9 100 100 100

N = 100

BM; BM + sin(t) 97.4 95.3 86.3 96.4 91.0 76.5 93.5 88.0 68.7
BM; BM + t 99.0 97.5 91.2 98.7 97.1 87.6 97.5 94.9 83.8
BB; BB + sin(t) 100 100 100 100 100 100 100 100 100
BB; BB + t 100 100 100 100 100 100 100 100 100

N = 150

BM; BM + sin(t) 99.9 99.5 96.6 99.6 98.6 95.1 98.9 97.4 90.3
BM; BM + t 100 99.8 98.7 99.8 99.7 98.8 99.9 99.7 97.8
BB; BB + sin(t) 100 100 100 100 100 100 100 100 100
BB; BB + t 100 100 100 100 100 100 100 100 100

N = 200

BM; BM + sin(t) 100 99.9 99.1 100 99.8 99.0 99.9 99.7 98.2
BM; BM + t 100 100 100 100 100 99.9 100 100 99.3
BB; BB + sin(t) 100 100 100 100 100 100 100 100 100
BB; BB + t 100 100 100 100 100 100 100 100 100
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The data consists of 228 years (1780 to 2007) of average daily temperatures

in central England. The original data can thus be viewed as 228 curves with 365

measurements on each curve. These data were converted to functional objects in

R using 12 B-spline basis functions. Multivariate observations were obtained as in

Horváth et al. (1999) by computing monthly averages resulting in 228 vectors of

dimension d = 12. (We could not even compute statistics (4.3.17) for vectors of

dimension 365 because R reported that D̂ was singular.) These two procedures are

illustrated in Figure 4.1. Even though we used 12 B-splines and 12 averages, the

resulting data look quite different, especially in spring and fall, when the temperatures

change most rapidly. Gregorian months form a somewhat arbitrary fixed partition of

the data, while the splines adapt to their shapes which differ from year to year.

To compute statistic (4.3.15), we used d = 8 eigenfunctions which explain 84% of

variability. If the test indicates a change, we estimate it by the estimator θ̂N (4.3.21).

This divides the data set into two subsets. The procedure is then repeated for each

subset until periods of constant mean functions are obtained. We proceed in exactly

the same manner using statistic (4.3.17). We refer to these procedures, respectively,

as FDA and MDA approaches. The resulting segmentations are shown in Tables 4.4

and 4.5.

The functional approach identified two more change point, 1850 and 1992, which

roughly correspond to the beginning of mass industrialization and the advent of rapid

global warming. The multivariate approach “almost” identified these change points

with the P–values in iterations 4 and 5 being just above the significance level of 5%.

This may indicate that the functional method has better power, perhaps due to its

greater flexibility in capturing the shape of the data. This conjecture is investigated

below. Figure 4.2 shows average temperatures in the last four segments, and clearly

illustrates the warming trend.
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Table 4.4: Segmentation procedure of the data into periods with constant mean
function.

Iteration Segment Decision Sn,d P-value Estimated
change point

England temperatures (d = 8) (FDA approach)
1 1780 - 2007 Reject 8.020593 0.00000 1926
2 1780 - 1925 Reject 3.252796 0.00088 1808
3 1780 - 1807 Accept 0.888690 0.87404 -
4 1808 - 1925 Reject 2.351132 0.02322 1850
5 1808 - 1849 Accept 0.890845 0.87242 -
6 1850 - 1925 Accept 1.364934 0.41087 -
7 1926 - 2007 Reject 2.311151 0.02643 1993
8 1926 - 1992 Accept 0.927639 0.84289 -
9 1993 - 2007 Accept 1.626515 0.21655 -

England temperatures (d = 12) (MDA approach)
1 1780 - 2007 Reject 7.971031 0.00000 1926
2 1780 - 1925 Reject 3.576543 0.00764 1815
3 1780 - 1814 Accept 1.534223 0.81790 -
4 1815 - 1925 Accept 2.813596 0.07171 -
5 1926 - 2007 Accept 2.744801 0.08662 -
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Fig. 4.1: Daily temperatures in 1916 with monthly averages and functional object
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Table 4.5: Summary and comparison of segmentation. Beginning and end of data
period in bold.

Approach Change points
FDA 1780 1808 1850 1926 1992 2007
MDA 1780 1815 1926 2007

The analysis presented above assumes a simple functional change point model

for the daily temperatures. Obviously, one cannot realistically believe that the mean

curves change abruptly in one year, this is merely a modeling assumption useful in

identifying patterns of change in mean temperature curves. Well-established alter-

native modeling approaches have been used to study the variability of temperatures.

For example, Hosking (1984) fitted a fractionally differenced ARMA(1,1) model to

the series of annual average temperatures in central England in 1659–1976. It is gen-

erally very difficult to determine on purely statistical grounds if a change–point or a

long–range dependent model is more suitable for any particular finite length record,

see Berkes et al. (2006) and Jach and Kokoszka (2008) for recent methodology, dis-

cussion and references. It is often more useful to choose a modeling methodology

which depends on specific goals, and this is the approach we use. One way of check-

ing an approximate adequacy of our model is to check if the residuals obtained after

subtracting the mean in each segment are approximately independent and identically

distributed. This can be done by applying the test developed by Gabrys and Kokoszka

(2007) which is a functional analog of the well–known test of Hosking (1980) and Li

and McLeod (1981) [see also Hosking (1981, 1989)]. The P-value of 8% indicates the

acceptance of the hypothesis that the residuals are iid.

Keeping these caveats in mind, we use the partitions obtained above to generate

realistic synthetic data with and without change–points. We use them to evaluate and

compare the size and power properties of the FDA and MDA tests, and to validate our

findings. We compute the residuals of every observation in a constant mean segment

by subtracting the average of the segment, i.e. Ŷis = Xis − µ̂s, where s = 1, . . . , S
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Table 4.6: Empirical size of the test for models derived from the temperature data.

Segment Number of 10% 5% 1% 10% 5% 1%
functions Case I Case II
FDA approach (d = 8)

1780 - 1807 (∆1) 28 8.0 3.0 0.1 7.6 2.5 0.2
1808 - 1849 (∆2) 42 9.5 3.9 0.4 9.7 4.1 0.4
1850 - 1925 (∆3) 76 10.0 4.7 0.7 10.2 4.3 0.7
1926 - 1992 (∆4) 66 8.8 3.7 0.8 9.2 4.1 1.0
1993 - 2007 (∆5) 16 3.8 0.3 0.0 3.3 0.1 0.0

MDA approach (d = 12)
1780 - 1807 (∆1) 28 3.0 0.5 0.0 2.8 0.4 0.0
1808 - 1849 (∆2) 42 5.3 2.3 0.1 5.4 1.3 0.0
1850 - 1925 (∆3) 76 6.9 1.9 0.0 9.1 4.2 0.6
1926 - 1992 (∆4) 66 7.9 3.3 0.5 7.4 2.7 0.2
1993 - 2007 (∆5) 16 - - - 0.0 0.0 0.0

denotes the segment, and i = 1, . . . , Is indexes observations in the sth segment. The

Ŷis are functional residuals, and their average in each segment is clearly the zero

function.

To assess the empirical size, we simulate “temperature-like” data by considering

two cases. Case I: for every constant mean segment s, we produce synthetic observa-

tions by adding to its mean function µ̂s errors drawn from the empirical distribution

of the residuals of that segment, i.e. synthetic (bootstrap) observations in the sth

segment are generated via X∗
is = µ̂s + Ŷi∗s, where i∗ indicates that Ŷi∗s is obtained

by drawing with replacement from
{
Ŷis, i = 1, . . . , Is

}
. Case II: We compute resid-

uals in each segment and pool them together. We use this larger set of residuals to

create new observations by adding to the average of a segment the errors drawn with

replacement from that pool of residuals. For each segment, we generate 1000 of these

bootstrap sequences. Table 4.6 shows the the resulting empirical sizes. As the sample

size increases, the FDA rejection rates approach nominal sizes, while the MDA test is

much more conservative. For the 1993–2007 segment, the size is not reported because

the matrix D was (numerically) singular for most bootstrap replications.
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We next investigate the power. Three cases are considered. Case I: For each seg-

ment, we produce synthetic observations using the bootstrap procedure and sampling

residuals from a corresponding period. This means that the errors in each segment

come from possibly different distributions. Case II: We pool together two, three,

four, or five sets of residuals (depending on how many constant mean segments we

consider) and sample from that pool to produce new observations. This means that

the errors in each segment come from the same distribution. Case III: We slightly

modify Case II by combining all residuals from all segments into one population and

use it to produce new observations. In both Case II and Case III, the theoretical

assumptions of Section 4.2 are satisfied, cf. Assumption 4.2, i.e. the means change,

but the errors come from the same population. Table 4.7 shows the power of the test

for FDA approach and Table 4.8 presents results of discrete MDA method. As seen

in Table 4.7, the differences between the three cases are of the order of the chance

error. Table 4.7 shows that the test has excellent power, even in small samples, both

for single and multiple change points. As for the Gaussian processes, power is slightly

higher if there is a change point around the middle of the sample. Comparing Tables

4.7 and 4.8, it is seen that in FDA approach dominates the MDA approach. There are

a handful of cases, indicated with ∗, when MDA performed better, but their frequency

and the difference size suggests that this may be attributable to the chance error.

4.5 Proof of Theorems 4.1 and 4.2

A key element of the proofs in bound (4.5.26), which follows from a functional

central limit theorem in a Hilbert space. A result of this type is needed because the

observations Xi(·) are elements of a Hilbert space, and to detect a change point, we

must monitor the growth of the partial sums
∑

1≤i≤Nx Xi(t) which are a function of

0 < x < 1 (and of t ∈ T).

Lemma 4.5 is particularly noteworthy because it shows that the eigenvalues and

the eigenfunctions also converge under the alternative.
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4.5.1 Proof of Theorems 4.1

We will work with the unobservable projections

β̃i,k =

∫
Yi(t)v̂k(t)dt, βi,k =

∫
Yi(t)vk(t)dt, β∗i,k = ĉkβi,k

and the vectors

βi = [βi,1, . . . , βi,d]
T , β∗i = [β∗i,1, . . . , β

∗
i,d]

T , 1 ≤ i ≤ N.

Since the Yi are iid functions with mean zero, the βi are iid mean zero vectors in

Rd. A simple calculation using the orthonormality of the vk shows that each βi has

a diagonal covariance matrix

Σd =




λ1 0 · · · 0

0 λ2 · · · 0

...
...

...
...

0 0 · · · λd




The functional central limit theorem, thus implies that

(4.5.22) N−1/2
∑

1≤i≤Nx

βi
d→ ∆d(x) (0 ≤ x ≤ 1),

where the convergence is in the Skorokhod space Dd[0, 1]. The process {∆d(x), 0 ≤
x ≤ 1} takes values in Rd, has zero mean and covariance matrix Σd. Convergence

(4.5.22) implies in turn that

(4.5.23)
1

N

[ ∑
1≤i≤Nx

βi − x
∑

1≤i≤N

βi

]T

Σ−1
d

[ ∑
1≤i≤Nx

βi − x
∑

1≤i≤N

βi

]
d→

∑

1≤i≤d

B2
i (x)

in the Skorokhod space D[0, 1].
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The matrix Σd is estimated by Σ̂d. By (4.2.8) and Assumption 4.2, Σ̂−1
d

P→ Σd
−1,

so (4.5.23) yields

(4.5.24)
1

N

[ ∑
1≤i≤Nx

βi − x
∑

1≤i≤N

βi

]T

Σ̂−1
d

[ ∑
1≤i≤Nx

βi − x
∑

1≤i≤N

βi

]
d→

∑

1≤i≤d

B2
i (x).

Note that

∑
1≤i≤Nx

β∗i,k − x
∑

1≤i≤N

β∗i,k = ĉk

( ∑
1≤i≤Nx

βi,k − x
∑

1≤i≤N

βi,k

)
.

Since ĉ2
k = 1, we can replace the βi in (4.5.24) by the β∗i , and obtain

(4.5.25)
1

N

[ ∑
1≤i≤Nx

β∗i − x
∑

1≤i≤N

β∗i

]T

Σ̂−1
d

[ ∑
1≤i≤Nx

β∗i − x
∑

1≤i≤N

β∗i

]
d→

∑

1≤i≤d

B2
i (x).

We now turn to the effect of replacing the β∗i,k by β̃i,k. Observe that

sup
0<x<1

∣∣∣∣∣N
−1/2

∑
1≤i≤Nx

β∗i,k −N−1/2
∑

1≤i≤Nx

β̃i,k

∣∣∣∣∣

= sup
0<x<1

∣∣∣∣∣
∫ (

N−1/2
∑

1≤i≤Nx

Yi(t)

)
(ĉkvk(t)− v̂k(t)) dt

∣∣∣∣∣

≤ sup
0<x<1




∫ (
N−1/2

∑
1≤i≤Nx

Yi(t)

)2

dt




1/2 [∫
(ĉkvk(t)− v̂k(t))

2 dt

]1/2

.

The first factor is bounded in probability, i.e.

(4.5.26) sup
0<x<1

∫ (
N−1/2

∑
1≤i≤Nx

Yi(t)

)2

dt = OP (1).
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Relation (4.5.26) follows from the weak convergence in D([0, 1], L2(T)) of the partial

sum process
∑

1≤i≤Nx Yi, x ∈ [0, 1], see e.g. Kuelbs (1973).

Combining (4.5.26) and (4.2.8), we obtain

sup
0<x<1

∣∣∣∣∣N
−1/2

∑
1≤i≤Nx

β∗i,k −N−1/2
∑

1≤i≤Nx

β̃i,k

∣∣∣∣∣
P→ 0,

which in turn implies that

(4.5.27)

∣∣∣∣∣

∣∣∣∣∣

[ ∑
1≤i≤Nx

β∗i − x
∑

1≤i≤N

β∗i

]
−

[ ∑
1≤i≤Nx

β̂i − x
∑

1≤i≤N

β̂i

]∣∣∣∣∣

∣∣∣∣∣ = oP (N−1/2),

where the norm is the Euclidean norm in Rd. Relations (4.5.25) and (4.5.27) yield

the claim in Theorem 4.1.

4.5.2 Proof of Theorem 4.2

Theorem 4.2 follows from relation (4.5.31) and Lemma 4.6. To establish them,

we need the following Lemma.

Lemma 4.5. Under assumption 4.2, for every 1 ≤ k ≤ d, as N →∞,

(4.5.28) λ̂k
P→ γk,

(4.5.29)

∫
[v̂k(t)− ĉkwk(t)]

2dt
P→ 0,

where v̂k, λ̂k are defined by (4.2.7), wk, γk by (4.2.11) and ĉk = sign
∫

T
vk(t)v̂k(t)dt.

Proof. It is easy to see that

X̄N(t) = ȲN(t) +
k∗

N
µ1(t) +

N − k∗

N
µ2(t)
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and, denoting ∆(t) = µ1(t)− µ2(t),

ĉN(t, s) =
1

N

( ∑

1≤i≤k∗
+

∑

k∗<i≤N

)
(Xi(t)− X̄N(t))(Xi(s)− X̄N(s))

=
1

N

∑

1≤i≤k∗

(
Yi(t)− ȲN(t) + µ1(t)− k∗

N
µ1(t)− N − k∗

N
µ2(t)

)

×
(

Yi(s)− ȲN(s) + µ1(s)− k∗

N
µ1(s)− N − k∗

N
µ2(s)

)

+
1

N

∑

k∗<i≤N

(
Yi(t)− ȲN(t) + µ2(t)− k∗

N
µ1(t)− N − k∗

N
µ2(t)

)

×
(

Yi(s)− ȲN(s) + µ2(s)− k∗

N
µ1(s)− N − k∗

N
µ2(s)

)

=
1

N

∑

1≤i≤k∗

(
Yi(t)− ȲN(t) +

N − k∗

N
∆(t)

)(
Yi(s)− ȲN(s) +

N − k∗

N
∆(s)

)

+
1

N

∑

k∗<i≤N

(
Yi(t)− ȲN(t)− k∗

N
∆(t)

)(
Yi(s)− ȲN(s)− k∗

N
∆(s)

)
.

Rearranging terms, we obtain

ĉN(t, s) =
1

N

N∑
i=1

(
Yi(t)− ȲN(t)

) (
Yi(s)− ȲN(s)

)
+

k∗

N

(
1− k∗

N

)
∆(t)∆(s) + rN(t, s),

where

rN(t, s) =

(
1− k∗

N

)
1

N

∑

1≤i≤k∗

[(
Yi(t)− ȲN(t)

)
∆(s) +

(
Yi(s)− ȲN(s)

)
∆(t)

]

+
k∗

N

1

N

∑

k∗<i≤N

[(
Yi(t)− ȲN(t)

)
∆(s) +

(
Yi(s)− ȲN(s)

)
∆(t)

]
.

Using the law of large numbers for independent, identically distributed Hilbert space

valued random variables (see e.g. Theorem 2.4 of Bosq (2000)), we obtain
∫

T

∫
T
r2
N(t, s)dtds

P→
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0 and

(4.5.30)

∫ ∫
[ĉN(t, s)− c̃N(t, s)]2

P→ 0.

Hence Lemmas 4.2 and 4.3 of Bosq (2000) imply, respectively, (4.5.28) and (4.5.29).

As an immediate corollary to (4.5.28), we obtain

(4.5.31) Σ̂−1
d

P→ Σ∗.

Lemma 4.6. Under Assumption 4.2,

sup
0≤x≤1

∣∣∣∣∣
1

N

[ ∑
1≤i≤Nx

η̂i,k − x
∑

1≤i≤N

η̂i,k

]
− ĉkgk(x)

∣∣∣∣∣ = oP (1),

with the functions gk defined by (4.3.18).

Proof. Denote

ĝk(x) =
1

N

[ ∑
1≤i≤Nx

η̂i,k − x
∑

1≤i≤N

η̂i,k

]
, x ∈ [0, 1],

and observe that

η̂i,k =

∫
Yi(t)v̂k(t)dt +

∫
µ1(t)v̂k(t)dt−

∫
X̄N(t)v̂k(t)dt, if 1 ≤ i ≤ k∗

and

η̂i,k =

∫
Yi(t)v̂k(t)dt +

∫
µ2(t)v̂k(t)dt−

∫
X̄N(t)v̂k(t)dt, if k∗ < i ≤ N.
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We will use the relation

(4.5.32) sup
0<x<1

∣∣∣∣∣
∑

1≤i≤Nx

∫
Yi(t)v̂k(t)dt

∣∣∣∣∣ = OP (N1/2),

which follows from (4.5.26).

Suppose first that 0 < x ≤ θ. Then, by (4.5.32) and (4.5.29), uniformly in

x ∈ [0, 1],

ĝk(x) = x(1− θ)

[∫
µ1(t)v̂k(t)dt−

∫
µ2(t)v̂k(t)dt

]
+ oP (N−1/2)

= x(1− θ)ĉk

[∫
µ1(t)wk(t)dt−

∫
µ2(t)wk(t)dt

]
+ oP (1).

If x > θ, then, uniformly in x ∈ [0, 1],

ĝk(x) = θ(1− x)ĉk

[∫
µ1(t)wk(t)dt−

∫
µ2(t)wk(t)dt

]
+ oP (1).
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CHAPTER 5

ESTIMATION OF A CHANGE–POINT IN THE MEAN FUNCTION OF

FUNCTIONAL DATA1

5.1 Introduction

Functional data analysis (FDA) has been enjoying increased attention over the

last decade due to its applicability to problems which are difficult to cast into a

framework of scalar or vector observations. Even if such standard approaches are

available, the functional approach often leads to a more natural and parsimonious

description of the data, and to more accurate inference and prediction results, see,

for example, Antoniadis and Sapatinas (2003, 2007), Chiou et al. (2004), Fernández

de Castro et al. (2005), Laukaitis and Račkauskas (2005), Müller and Stadtmüller

(2005), Yao et al. (2005), and Glendinning and Fleet (2007). Both inferential and

exploratory tools of FDA can however be severely biased if the stochastic structure of

the data changes at some unknown point within the sample. In the scalar context, this

issue has received considerable attention, see Cobb (1978), Inclán and Tiao (1994),

Davis et al. (1995), Antoch et al. (1997), Garcia and Ghysels (1998), Horváth et al.

(1999), Kokoszka and Leipus (2000), among many others.

The most important change that can occur in the functional context is the change

of the mean function. This paper investigates large sample properties of an estimator

of such a change–point. We consider both the case of a fixed size change and a con-

tiguous change whose size approaches zero as the sample size increases. Specifically,

we assume that the functional observations X1, . . . , Xn are defined on a compact set

1COAUTHORED BY AUE, A., GABRYS, R., HORVÁTH, L., KOKOSZKA, P. REPRO-
DUCED BY PERMISSION FROM JOURNAL OF MULTIVARIATE ANALYSIS, VOL. 100, NO.
10, PAGES 2254–2269, 2009.
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T and follow the model

(5.1.1) Xi = µ + ∆I{i > k∗}+ Yi, i = 1, . . . , n,

where µ and ∆ 6= 0 are unknown, square integrable and deterministic functions over

T, and Y1, . . . , Yn are independent, identically distributed zero mean random elements

of L2(T) with covariance function

K(s, t) = E[Y1(s)Y1(t)], s, t ∈ T,

satisfying E[‖Y1‖2] =
∫

T
E[Y 2

1 (t)]dt < ∞. The unknown integer k∗ ∈ {1, . . . , n} is

called the change-point. We assume that

(5.1.2) k∗ = bθnc with some fixed θ ∈ (0, 1].

Model (5.1.1) describes a sequence of functional observations which suffer from

a mean change if k∗ < n or, equivalently, if θ < 1. The corresponding hypothesis

testing problem

H0 : k∗ = n vs HA : k∗ < n

has been addressed in Berkes et al. (2009a). To explain their results and present

our contribution, we must state several consequences of the assumptions made so

far. First, Mercer’s theorem (see Chapter 4 of Indritz, 1963) implies that, under the

null hypothesis, there is a spectral decomposition for the covariance operator K(s, t),

namely

K(s, t) =
∞∑

`=1

λ`ϕ`(s)ϕ`(t), s, t ∈ T,

where λ` and ϕ` denote the eigenvalues and eigenfunctions of K(s, t), respectively.

These can be obtained as the solutions of the equation system
∫

T
K(s, t)ϕ`(t)dt =

λ`ϕ`(s) with s, t ∈ T. Since the eigenfunctions form a complete orthonormal basis in
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L2(T) and all eigenvalues of K(s, t) are nonnegative, they lead to the the Karhunen–

Loéve representation (in L2(T), not pointwise in t ∈ T)

Yi(t) =
∞∑

`=1

√
λ`ρi,`ϕ`(t), t ∈ T, i = 1, . . . , n,

where
√

λ`ρi,` =
∫

T
Yi(t)ϕ`(t)dt is called the `th functional principal component score.

It is also implied that the sequences (ρi,`)`≥1 consist of uncorrelated random variables

with zero mean and unit variance and that, for i 6= j, (ρi,`)`≥1 and (ρj,`)`≥1 are

independent.

For the statistical analysis, the population eigenvalues and eigenfunctions have to

be replaced by their estimated versions. These are based on the estimated covariance

operator

(5.1.3) K̂(s, t) =
1

n

n∑
i=1

[Xi(s)− X̄n(s)][Xi(t)− X̄n(t)],

where X̄n = n−1(X1 + . . . + Xn). From this, estimated eigenvalues λ̂` and eigenfunc-

tions ϕ̂` can then be derived as the solutions of the equations

∫

T

K̂(s, t)ϕ̂`(t)dt = λ̂`ϕ̂`(s).

We make the assumption that, for some fixed > 0,

(5.1.4) λ1 > λ2 > . . . > λd > λd+1 ≥ 0,

which together with the assumption of finite fourth moment of the Yi guarantees that

the estimated and population eigenvalues and eigenfunctions are sufficiently close

under H0, see Chapter 4 of Bosq (2000) and Dauxois et al. (1982).

The hypothesis test for H0 versus HA in Berkes et al. (2009a) is based on the

projection of the functions X̄bnxc − X̄n, x ∈ (0, 1), on the space spanned by the first
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d estimated eigenfunctions ϕ̂1, . . . , ϕ̂d. The corresponding estimated scores are

η̂i,` =

∫

T

[Xi(t)− X̄n(t)]ϕ̂`(t)dt.

Berkes et al. (2009a) introduced the test statistic

Sn,d =
1

n2

d∑

`=1

1

λ̂`

n∑

k=1

(
k∑

i=1

η̂i,` − k

n

n∑
i=1

η̂i,`

)2

and established its limit distribution under the null hypothesis, as well as its con-

sistency under the alternative. For the convenience of the reader, these results are

stated as a theorem.

Theorem 5.1. Let E[‖Y1‖4] < ∞. Then, it holds under H0 that

Sn,d
D−→

d∑

`=1

∫ 1

0

B2
` (x)dx (n →∞),

where
D−→ indicates convergence in distribution and (B`(x) : x ∈ [0, 1]), 1 ≤ ` ≤ d, de-

notes independent standard Brownian bridges. If ∆ is not orthogonal to the subspace

spanned by the eigenfunctions ϕ1, . . . , ϕd, then it holds under HA that Sn,d
P−→∞ as

n →∞.

While the theorem guarantees in its second part that Sn,d will eventually detect

a change given that there are sufficiently many observations, it does not contain

information on how to locate the change-point, and what the distributional properties

of an appropriate estimator are. The main aim of the present paper is therefore to

introduce an estimator k̂∗n for k∗ and to derive its limit distribution under different

assumptions on the function ∆ which determines the type of change. This will be

done in Section 5.2. In Section 5.3, we evaluate the finite sample behavior via a small

simulation study. All proofs are relegated to Section 5.4.
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5.2 Change-point estimator and its limit distribution

It is assumed throughout this section that the alternative hypothesis HA holds

true. Letting xT denote the transpose of a vector x, define η̂i = (η̂i,1, . . . , η̂i,d)
T and

the diagonal matrix Σ̂ = diag(λ̂` : ` = 1, . . . , d). Introducing the quantities

κ̂n(k) =
k∑

i=1

η̂i −
k

n

n∑
i=1

η̂i

and the quadratic forms

Q̂n(k) =
1

n
κ̂T

n (k)Σ̂−1κ̂n(k),

a suitable estimator for k∗ is given by

(5.2.1) k̂∗n = min

{
k : Q̂n(k) = max

1≤j≤n
Q̂n(j)

}
.

With this procedure, we select as change-point the time k that maximizes the ran-

dom quadratic form Q̂n(k) which is directly linked to the test statistic Sn,d from the

previous section via the equality Sn,d =
∫ 1

0
Q̂n(bnxc)dx. Because Q̂n(k) lives on the

subspace spanned by the first d estimated eigenfunctions ϕ̂1, . . . , ϕ̂d of the covariance

operator K̂(s, t), we need to determine the behavior of K̂(s, t) under HA. Due to the

additional ∆ appearing after the change-point k∗, it cannot be expected that K̂(s, t)

provides an estimator for K(s, t) anymore. Indeed, the following holds true instead.

If we let

KA(s, t) = K(s, t) + θ(1− θ)∆(t)∆(s), s, t ∈ T,

then KA(s, t) is symmetric, square integrable and positive–definite, so it admits a

representation

KA(s, t) =
∞∑

j=1

γ`ψ`(s)ψ`(t)
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with eigenfunctions ψ` and eigenvalues γ` obtained from solving the system
∫

T
KA(s, t)ψ`(t)dt =

γ`ψ`(s). The relation between the pairs (γ`, ψ`) and (λ̂`, ϕ̂`) is established in lemma

5.2 whose proof is given in Berkes et al. (2009a).

Lemma 5.2. Under HA it holds that, for all 1 ≤ ` ≤ d,

(i) |λ̂` − γ`| = oP (1) as n →∞ and

(ii) ‖ϕ̂` − ĉ`ψ`‖ = oP (1) as n →∞,

where ĉ` = sign
∫

T
ψ`(t)ϕ̂`(t)dt.

The lemma identifies γ` and ψ` (up to a sign) as the stochastic limits of their

estimated versions λ̂` and ϕ̂`. As a consequence, it implies that the limit distribution

of k̂∗n depends on the behavior of the projection of ∆ on the subspace spanned by the

eigenfunctions ψ1, . . . , ψd. For 1 ≤ ` ≤ d, denote by

ζi,` =
√

γ`ξi,` =

∫

T

Yi(t)ψ`(t)dt and β` =
√

γ`δ` =

∫

T

∆(t)ψ`(t)dt

the principal component scores and set

ζi = (ζi,1, . . . , ζi,d)
T , ξi = (ξi,1, . . . , ξi,d)

T , δ = (δ1, . . . , δd)
T .

We distinguish two cases

(5.2.2) δ 6= 0 is constant

and

(5.2.3) δ = δn 6= 0 such that ‖δn‖2 → 0 (n →∞),

where ‖ · ‖2 denotes Euclidean norm on Rd. Assumptions (5.2.2) and (5.2.3) re-

flect two common approaches to deriving an asymptotic distribution of change point

estimators, see for example, Csörgő and Horváth (1997) and references therein.
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We first state the result for the case (5.2.2).

Theorem 5.3. Let E[‖Y1‖4] < ∞. If δ 6= 0 is constant, then it holds under HA that

k̂∗n − k∗
D−→ min

{
k : P (k) = sup

j
P (j)

}
(n →∞),

where

P (k) =





(1− θ)‖δ‖2
2k + δTSk if k < 0,

0 if k = 0,

−θ‖δ‖2
2k + δTSk if k > 0,

with Sk defined by

Sk =
k∑

i=1

ξi +
−1∑

i=−k

ξi, −∞ < k < ∞.

Here (ξ−i) denotes an independent copy of (ξi) for all i ≥ 1 and, as usual, an empty

sum is set to equal zero.

Since δ does not vary with the number of observations, it appears naturally also

in the limit variable, which is given as the argument of the maximum of a two-sided

sequence of random variables with drift.

A corresponding result holds true for the case (5.2.3). It is stated next.

Theorem 5.4. Let E[‖Y1‖4] < ∞. If δ = δn 6= 0 is such that

‖δn‖2 → 0, but
n‖δn‖2

2

log log n
→∞ (n →∞),

then it holds under HA that

‖δn‖2
2

(
k̂∗n − k∗

) D−→ min
{
t : V (t) = sup

s
V (s)

}
(n →∞),
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where

V (t) =





(1− θ)t + W (t) if t ≤ 0,

0 if t = 0,

−θt + W (t) if t > 0,

with (W (t) : −∞ < t < ∞) denoting a two-sided standard Brownian motion.

Note that the limit processes P (k) and V (t) contain drift terms which attain their

maximum at 0, and whose slope on the negative and positive half line is determined

by the location θ of the change-point. If θ = 1/2, then the drift parts are symmetric,

while the change-point detection becomes significantly harder if θ is close to 0 (or 1).

In these cases, the slope of the drift for positive (or negative) arguments is close to

zero. In the case of Theorem 5.3, the constant order of magnitude of ‖δ‖2 also plays

a role, with larger changes naturally being more easily identifiable. Theorems 5.3 and

5.4 thus provide clear theoretical justification of the empirical properties discussed in

Section 5.3.

It is possible to develop a feel for the size of the function ∆ = ∆n which im-

plies the assumptions of Theorem 2.2. If ‖∆n‖ → 0, then ‖K̂ − K‖ → 0, so by

inequalities (4.38) and (4.44) of Bosq (2000), ‖ϕ̂` − ĉ`ϕ`‖ → 0 and λ̂` → λ` in prob-

ability. In view of lemma 5.2, we have that eigenvalues and eigenfunctions under

H0 and HA coincide in the limit. This means that δn,` ≈ cn,`λ
−1
`

∫
T

∆n(t)ϕ`(t)dt and

so ‖δn‖2 ≈ ∑d
`=1 λ−2

`

(∫
T

∆n(t)ϕ`(t)dt
)2

. Thus, by the Cauchy-Schwartz inequality,

‖∆n‖ → 0 implies ‖δn‖ → 0. A sufficient condition for n‖δn‖2/(log log n) → ∞
cannot be stated as easily, but it is roughly n‖∆n‖2/(log log n) →∞ because by Par-

seval’s inequality, for sufficiently large d,
∫

∆2
n(t)dt ≈ ∑d

`=1

(∫
T

∆n(t)ϕ`(t)dt
)2

. These

approximate calculations could be formalized, but our goal is to merely indicate that

Theorem 2.2 holds if ||∆n|| tends to zero at the rate slower than n−1/2.

Finally, we discuss the consistency of the estimator. Observe that we have as-

sumed in (5.2.2) and (5.2.3) that δ 6= 0. This means that there exists 1 ≤ ` ≤ d such
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that
∫

T
∆(t)ψ`(t)dt 6= 0. If instead the change function ∆ is orthogonal to ψ1, . . . , ψd,

that is if ∫ 1

0

∆(t)ψ`(t)dt = 0 for all ` = 1, . . . , d,

then k̂∗n cannot be a consistent estimator of k∗, since the principal components analysis

has been performed in an eigenspace with a too small dimension to capture the change.

On the other hand, see e.g. Chapter 8 of Ramsay and Silverman (2005), using large d

is not practical because it bears the difficulty of interpreting a multitude of principal

components. Moreover, since for large ` the eigenvalues λ` are generally very small

(the λ` are arranged in the decreasing order), such ψl explain only a very small part of

the variability of the data. Therefore the impact of a change occurring in a subspace

spanned by the ψl with large ` is small, and its detection less crucial.

5.3 Finite sample behavior

We carried out simulations to illustrate our theoretical results in finite samples.

We simulated change-point processes under conditions of Theorems 5.3 and 5.4 for

different sample sizes, and always used 1, 000 replications. For each replication we

estimated the location of a change-point k∗. We generated functional observations

according to (5.1.1). Without loss of generality, µ was chosen to be equal to zero.

Two different cases of Yi were considered, namely the trajectories of the standard

Brownian motion (BM), and the Brownian bridge (BB). The number d of the principal

components was chosen to be equal to 2 and 3 in order to explain at least 75% of

variability. The properties of the sampling distributions of the change-point estimator

k̂∗n are now briefly discussed.

To illustrate the simulation results based on Theorem 2.1 we introduced the

quantity τ ∗n = k∗n/n and the corresponding estimator τ̂ ∗n = k̂∗n/n. We concentrated

on τ̂ ∗n − τ ∗ rather than on k̂∗n − k∗ to show the effect of the increase in sample size

more clearly. Various functions ∆ were analyzed: ∆ = t, t2,
√

t, exp(t), sin(t), and

cos(t). To assess the accuracy of the estimator, bias, root mean square error (RMSE),
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and mean absolute error (MAE) of τ̂ ∗n were computed. To conserve space, we do not

display the whole set of tables we obtained, but rather display representative results in

Table 5.1, and discuss general findings. From Table 5.1 we see that by increasing the

sample size we attain a smaller bias, RMSE, and MAE. A similar pattern is observed

for the increase in the number of principal components. In all cases we considered,

the summary statistics indicate that estimation is more accurate if BB was used,

even though the same number of principal components explains more variability for

BM. This is easy to understand because the BB is a “smaller” process in the sense

that E[‖BB‖2] = 1/6 and E[‖BM‖2] = 1/4, so the same change function ∆ is more

pronounced if the Yi are the BB. As expected from the discussion following Theorem

5.4, the closer the change point is to the middle of the sample, the better the estimator

is. For τ ∗ equal to 0.25 and 0.75 an increased bias is observed.

Next we illustrate Theorem 5.4 which deals with nonconstant ∆. We chose

∆ = ∆n satisfying conditions of Theorem 2.2 and carried out the change-point esti-

mation. Several different forms of ∆n were considered, namely sin(t) nα√
n
, t nα√

n
,
√

t nα√
n
,

cos(t) nα√
n
, et nα√

n
, where α ∈ (0, 0.5). To illustrate Theorem 5.4, we concentrated on the

distribution of ‖δn‖2
2

(
k̂∗n − k∗

)
. We computed δ` from

√
γ`δ` =

∫
T

∆(t)ψ`(t)dt, where

for ` = 1, . . . , d

ψ`(t) =
√

2 sin

(
2` + 1

2
πt

)
, t ∈ [0, 1], and γ` =

4

[π(2` + 1)]2

are the eigenfunctions and eigenvalues of the BM and

ψ`(t) =
√

2 sin (`πt) , t ∈ [0, 1], and γ` =
1

[π`]2

are the corresponding eigenfunctions and eigenvalues of the BB.

As before, we chose k∗n to be the lower, middle and upper quartile of the sample

size. The graphs of the estimated density of ‖δn‖2
2

(
k̂∗n− k∗

)
are shown in Figures 5.1

and 5.2. The densities are close to each other, as Theorem 5.4 implies that they
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Table 5.1: Summary statistics for the change-point estimator. The change-point
processes were generated by combining BB and t + BB for three different locations
of the change-point τ ∗. We used d = 2 and d = 3 (in parenthesis).

τ ∗ Average(τ̂) Bias(τ̂) Median(τ̂) RMSE(τ̂) MAE(τ̂)
n = 60

0.25 0.27 (0.26) 0.0152 (0.0107) 0.25 (0.25) 0.0336 (0.0252) 0.0158 (0.0108)
0.50 0.50 (0.50) 0.0002 (-0.0003) 0.50 (0.50) 0.0108 (0.0058) 0.0038 (0.0018)
0.75 0.73 (0.74) -0.0152 (-0.0087) 0.75 (0.75) 0.0356 (0.0205) 0.0157 (0.0088)

n = 100

0.25 0.26 (0.26) 0.0096 (0.0052) 0.25 (0.25) 0.0220 (0.0122) 0.0101 (0.0053)
0.50 0.50 (0.50) 0.0002 (0.0000) 0.50 (0.50) 0.0063 (0.0039) 0.0024 (0.0011)
0.75 0.74 (0.74) -0.0096 (-0.0052) 0.75 (0.75) 0.0215 (0.0155) 0.0100 (0.0063)

n = 140

0.25 0.26 (0.25) 0.0062 (0.0039) 0.25 (0.25) 0.0141 (0.0096) 0.0064 (0.0040)
0.50 0.50 (0.50) -0.0001 (-0.0001) 0.50 (0.50) 0.0043 (0.0027) 0.0017 (0.0007)
0.75 0.74 (0.75) -0.0071 (-0.0039) 0.75 (0.75) 0.0147 (0.0093) 0.0068 (0.0040)

n = 200

0.25 0.25 (0.25) 0.0046 (0.0030) 0.25 (0.25) 0.0107 (0.0070) 0.0050 (0.0031)
0.50 0.50 (0.50) 0.0001 (0.0000) 0.50 (0.50) 0.0033 (0.0016) 0.0013 (0.0005)
0.75 0.75 (0.75) -0.0050 (-0.0023) 0.75 (0.75) 0.0110 (0.0062) 0.0052 (0.0024)

n = 300

0.25 0.25 (0.25) 0.0030 (0.0018) 0.25 (0.25) 0.0066 (0.0047) 0.0032 (0.0019)
0.50 0.50 (0.50) 0.0000 (0.0001) 0.50 (0.50) 0.0021 (0.0012) 0.0008 (0.0004)
0.75 0.75 (0.75) -0.0032 (-0.0018) 0.75 (0.75) 0.0079 (0.0048) 0.0034 (0.0019)

n = 600

0.25 0.25 (0.25) 0.0015 (0.0007) 0.25 (0.25) 0.0036 (0.0019) 0.0016 (0.0008)
0.50 0.50 (0.50) 0.0000 (0.0000) 0.50 (0.50) 0.0010 (0.0006) 0.0004 (0.0002)
0.75 0.75 (0.75) -0.0015 (-0.0009) 0.75 (0.75) 0.0037 (0.0022) 0.0016 (0.0009)
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Fig. 5.1: Estimated density of ‖δn‖2
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k̂∗n − k∗
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for the process obtained combining

BM and tn0.05√
n

+ BM .
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must be close to the limit distribution. In most cases, a convergence with increasing

n is also clearly visible. For example, in the top and middle panels of Figure 5.2,

the densities for n = 600 and n = 900 almost coincide. These properties hold for all

choices of α ∈ (0, 0.5), Figures 5.1 and 5.2 show the extreme cases of α = 0.05 and

α = 0.45.

5.4 Proofs

The proof section is divided into three parts. In the first subsection, we derive

a decomposition that will be used to derive Theorems 5.3 and 5.4, whose proofs will

be pursued in Subsections 5.4.2 and 5.4.3, respectively.

5.4.1 Preliminary calculations

Let R̂n(k) = Q̂n(k)− Q̂n(k∗). Since R̂n(k) and the original Q̂n(k) differ only by

the value Q̂n(k∗) which is independent of k, it holds that they attain their maximum

for the same value of k. Consequently, we have

k̂∗n = min

{
k : R̂n(k) = max

1≤j≤n
R̂n(j)

}
.

Denote by ζ̂i,` =
√

λ̂`ξ̂i,` =
∫

T
Yi(t)ϕ̂`(t)dt and β̂` =

√
λ̂`δ̂` =

∫
T

∆(t)ϕ̂`(t)dt the

counterparts of ζi,` and β` which are obtained by replacing the true eigenvalues and

eigenfunctions with the estimated versions. Note that the quantities ζ̂i,`, ξ̂i,`, β̂` and

δ̂` are unobservable. The proofs to come will fall back on the following decomposition
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of R̂n(k). First, we have for 1 ≤ k < k∗ that

R̂n(k) =
1

n

d∑

`=1

(
k∑

i=1

ξ̂i,` − k

n

n∑
i=1

ξ̂i,` − k
n− k∗

n
δ̂`

)2

− 1

n

d∑

`=1

(
k∗∑
i=1

ξ̂i,` − k∗

n

n∑
i=1

ξ̂i,` − k∗
n− k∗

n
δ̂`

)2

=
1

n

d∑

`=1

(
−

k∗∑

i=k+1

ξ̂i,` − k − k∗

n

n∑
i=1

ξ̂i,` − (k − k∗)
n− k∗

n
δ̂`

)

×
(

k∑
i=1

ξ̂i,` +
k∗∑
i=1

ξ̂i,` − k + k∗

n

n∑
i=1

ξ̂i,` − (k + k∗)
n− k∗

n
δ̂`

)

=
1

n

d∑

`=1

(
Ê

(1)
k,` + D̂

(1)
k,`

)(
Ê

(2)
k,` + D̂

(2)
k,`

)
,(5.4.1)

where Ê
(1)
k,` and Ê

(2)
k,` (D̂

(1)
k,` and D̂

(2)
k,`) denote the estimated random part (estimated

deterministic part) in the first and second bracket of (5.4.1), respectively. We will

refer to the expressions D̂
(1)
k,` and D̂

(2)
k,` as estimated deterministic in the following even

though it is understood that they depend on ϕ̃`. A similar expression can be obtained
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if k∗ < k ≤ n. Here it holds,

R̂n(k) =
1

n

d∑

`=1

(
k∑

i=1

ξ̂i,` − k

n

n∑
i=1

ξ̂i,` − (n− k)
k∗

n
δ̂`

)2

− 1

n

d∑

`=1

(
k∗∑
i=1

ξ̂i,` − k∗

n

n∑
i=1

ξ̂i,` − (n− k∗)
k∗

n
δ̂`

)2

=
1

n

d∑

`=1

(
−

k∑

k∗+1

ξ̂i,` − k − k∗

n

n∑
i=1

ξ̂i,` + (k − k∗)
k∗

n
δ̂`

)

×
(

k∑
i=1

ξ̂i,` +
k∗∑
i=1

ξ̂i,` − k + k∗

n

n∑
i=1

ξ̂i,` − (2n− k − k∗)
k∗

n
δ̂`

)

=
1

n

d∑

`=1

(
Ê

(3)
k,` + D̂

(3)
k,`

)(
Ê

(4)
k,` + D̂

(4)
k,`

)
,(5.4.2)

where Ê
(3)
k,` , Ê

(4)
k,` and D̂

(3)
k,` , D̂

(4)
k,` are the corresponding estimated random and drift

parts. Using (5.4.1) and (5.4.2), we proceed with the proof of Theorem 5.3 in the next

subsection. Since the arguments to be employed are symmetric for time lags before

and after the change-point, detailed expositions will only be given for 1 ≤ k < k∗.

5.4.2 Proof of Theorem 5.3

The proof is divided into two parts. At first, we show that the estimator k̂∗n will

be close to k∗ by showing that R̂n(k) will attain its maximum not too far from the

change-point. In the second step, we will derive the limit distribution.

Lemma 5.5. Under the assumptions of Theorem 5.3, it holds that

∣∣k̂∗n − k∗
∣∣ = OP (1) (n →∞).

Proof. To show the assertion of the lemma, we determine the behavior of those k

satisfying 1 ≤ k ≤ k∗ − N or k∗ + N ≤ k ≤ n for some N ≥ 1. Let 1 ≤ ` ≤ d. At
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first, we derive the order of magnitude of the estimated deterministic term in (5.4.1),

that is, of 1
n
D̂

(1)
k,`D̂

(2)
k,` . To this end, note that

max
1≤k≤k∗−N

k + k∗

n

(
n− k∗

n

)2

→ 2θ(1− θ)2 (n →∞).

In the next step, we shall replace δ̂` by δ`. To do so, observe that η̂` =
√

λ̂`δ̂`

and β` =
√

γ`δ` by definition. Moreover, part (ii) of Proposition 5.2 states that

‖ϕ̂` − ĉ`ψ`‖ → 0 in probability. Therefore,

η̂` =

∫

T

∆(t)ϕ̂`(t)dt = ĉ`

∫

T

∆(t)ψ`(t)dt + oP (1) = ĉ`β` + oP (1) (n →∞),

using that ∆(t) ∈ L2(T). Consequently, η̂2
` = β2

` + oP (1). Since the estimated

eigenvalues λ̂` converge in probability to γ` (see part (i) of Proposition 5.2), we arrive

at

(5.4.3) δ̂2
` = δ2

` + oP (1) (n →∞).

Combining the above arguments yields

max
1≤k≤k∗−N

1

n
D̂

(1)
k,`D̂

(2)
k,` = max

1≤k≤k∗−N
(k−k∗)δ2

`

k + k∗

n

(
n− k∗

n

)2

+oP (1) = −2δ2
` θ(1−θ)2N+oP (1).

It is shown in the next sections that this deterministic part is the dominating term

in (5.4.1). It follows thus that, for all K > 0,

(5.4.4) lim
N→∞

lim sup
n→∞

P

(
max

1≤k≤k∗−N
R̂n(k) > −K

)
= 0.

On the other hand, using (5.4.2), it can be proved in a similar fashion that

max
k∗+N≤k≤n

1

n
D̂

(3)
k,`D̂

(4)
k,` = −2θ2(1− θ)N + oP (1),
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which implies that, for all K > 0,

(5.4.5) lim
N→∞

lim sup
n→∞

P

(
max

k∗+N≤k≤n
R̂n(k) > −K

)
= 0.

Equations (5.4.4) and (5.4.5) now yield that

lim
N→∞

lim sup
n→∞

P
({

k̂∗n < k∗ −N
} ∪ {

k̂∗n > k∗ + N
})

= 0,

which consequently finishes the proof of the lemma.

To derive the limit distribution, it suffices to investigate the asymptotic behavior

of R̂n(k) for the range k∗ −N ≤ k ≤ k∗ + N of those time lags close to the change-

point. The result is presented as a lemma.

Lemma 5.6. Under the assumptions of Theorem 5.3, it holds that, for any N ≥ 1,

{
R̂n(k + k∗) : −N ≤ k ≤ N

} D−→ {
2θ(1− θ)P (k) : −N ≤ k ≤ N

}
(n →∞).

Proof. Let 1 ≤ ` ≤ d. Using (5.4.3), it is easy to see that, for any fixed N ≥ 1 and

as n →∞,

max
k∗−N≤k≤k∗

∣∣∣∣
1

n
D̂

(1)
k,`D̂

(2)
k,` − 2θ(1− θ)2δ2

` (k − k∗)

∣∣∣∣

= δ2
` N max

k∗−N≤k≤k∗

∣∣∣∣∣
k + k∗

n

(
n− k∗

n

)2

− 2θ(1− θ)2

∣∣∣∣∣ + oP (1)

= oP (1).

By a similar argument,

max
k∗≤k≤k∗+N

∣∣∣∣
1

n
D̂

(3)
k,`D̂

(4)
k,` + 2θ2(1− θ)δ2

` (k − k∗)

∣∣∣∣ = oP (1) (n →∞).
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In the following, we are dealing with the estimated random parts. The functional

central limit theorem implies that, for all x ∈ [0, 1],

1√
n

bnxc∑
i=1

ζi
d−→ Γ(x) (n →∞),

where
d−→ indicates weak convergence in the Skorohod space Dd[0, 1] and (Γ(x) : x ∈

[0, 1]) is an Rd-valued, zero mean stochastic process with covariance matrix Σ. Then,

sup
x∈(0,1)

1√
n

∣∣∣∣∣∣

bnxc∑
i=1

ζi,l −
bnxc∑
i=1

ζ̂i,`

∣∣∣∣∣∣

= sup
x∈(0,1)

∣∣∣∣∣∣

∫

T

1√
n

bnxc∑
i=1

Yi(t) [ĉ`ψ`(t)− ϕ̂`(t)] dt

∣∣∣∣∣∣

≤ sup
x∈(0,1)




∫

T


 1√

n

bnxc∑
i=1

Yi(t)




2

dt




1/2 (∫

T

[ĉ`ψ`(t)− ϕ̂`(t)]
2 dt

)1/2

=oP (1)(5.4.6)

by an application of Proposition 5.2. The same statement holds true also if ξi,l and

ξ̂i,l are used in place of ζi,` and ζ̂i,`.
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Equations (5.4.3) and (5.4.6) imply now that

max
k∗−N≤k≤k∗

∣∣∣∣∣

(
k − k∗

n

n∑
i=1

ξ̂i,`

) (
k + k∗

n

n− k∗

n
δ̂`

)∣∣∣∣∣

= max
k∗−N≤k≤k∗

∣∣∣∣∣

(
k − k∗

n

n∑
i=1

ξi,`

) (
k + k∗

n

n− k∗

n
δ`

)∣∣∣∣∣ + oP (1)

= O(1)
N

n

∣∣∣∣∣
n∑

i=1

∫

T

Yi(t)ψ`(t)dt

∣∣∣∣∣ + oP (1)

= oP (1).

Hence,

max
k∗−N≤k≤k∗

∣∣∣∣∣
1

n
Ê

(1)
k,` D̂

(2)
k,` + 2θ(1− θ)δ`

k∗∑

i=k+1

ξi,`

∣∣∣∣∣ = oP (1)

as n → ∞ for any N ≥ 1 which follows from (5.4.3) and (5.4.6) as well. Similar

arguments apply also to 1
n
Ê

(3)
k,` D̂

(4)
k,` for which k∗ ≤ k ≤ k∗ + N holds. In view of

the definition of the limit process P (k) in Theorem 5.3, it suffices to verify that the

remaining terms in (5.4.1) and (5.4.2) do not contribute asymptotically. To this end,

write

max
k∗−N≤k≤k∗

1

n

∣∣∣Ê(1)
k,` Ê

(2)
k,`

∣∣∣

= max
k∗−N≤k≤k∗

1

n

∣∣∣∣∣

(
k∗∑

i=k+1

ξ̂i,` +
k − k∗

n

n∑
i=1

ξ̂i,`

)(
k∑

i=1

ξ̂i,` +
k∗∑
i=1

ξ̂i,` − k + k∗

n

n∑
i=1

ξ̂i,`

)∣∣∣∣∣

≤ max
k∗−N≤k≤k∗

∣∣∣∣∣
k∗∑

i=k+1

ξ̂i,` +
k − k∗

n

n∑
i=1

ξ̂i,`

∣∣∣∣∣ max
k∗−N≤k≤k∗

1

n

∣∣∣∣∣
k∑

i=1

ξ̂i,` +
k∗∑
i=1

ξ̂i,` − k + k∗

n

n∑
i=1

ξ̂i,`

∣∣∣∣∣

= oP (1).

Here, the first maximum is OP (1), since the first sum
∑k∗

i=k+1 ξ̂i,` contains at most

N terms, while the second sum is oP (1) because of (5.4.6). Another application of
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(5.4.6) gives that the second maximum is oP (1). Moreover,

max
k∗−N≤k≤k∗

1

n

∣∣∣D̂(1)
k,`Ê

(2)
k,`

∣∣∣

= max
k∗−N≤k≤k∗

1

n

∣∣∣∣∣(k − k∗)
n− k∗

n
δ̂`

(
k∑

i=1

ξ̂i,` +
k∗∑
i=1

ξ̂i,` − k + k∗

n

n∑
i=1

ξ̂i,`

)∣∣∣∣∣

≤ max
k∗−N≤k≤k∗

∣∣∣∣(k − k∗)
n− k∗

n
δ̂`

∣∣∣∣ max
k∗−N≤k≤k∗

1

n

∣∣∣∣∣
k∑

i=1

ξ̂i,` +
k∗∑
i=1

ξ̂i,` − k + k∗

n

n∑
i=1

ξ̂i,`

∣∣∣∣∣

= oP (1).

The same arguments apply also to the remaining terms in (5.4.2) and the proof of

the lemma is therefore complete.

Proof of Theorem 5.3. The assertion follows immediately from Lemmas 5.5 and

5.6.

5.4.3 Proof of Theorem 5.4

We follow the proof steps developed in the previous subsection.

Lemma 5.7. Under the assumptions of Theorem 5.4, it holds that

‖δn‖2
∣∣k̂∗n − k∗

∣∣ = OP (1) (n →∞).

Proof. At first, we derive the order of magnitude of 1
n
D̂

(1)
k,`D̂

(2)
k,` in (5.4.1). Let

N ≥ 1 and define Nδ = N‖δn‖−2
2 . Recognizing that n−1Nδ → 0, since by assumption

n‖δn‖2
2 →∞, it follows that

max
1≤k≤k∗−Nδ

k + k∗

n

(
n− k∗

n

)2

=
2k∗ −Nδ

n

(
n− k∗

n

)2

→ 2θ(1− θ)2 (n →∞).
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Consequently, (5.4.3) yields

max
1≤k≤k∗−Nδ

1

n

d∑

`=1

D̂
(1)
k,`D̂

(2)
k,` = max

1≤k≤k∗−Nδ

(k − k∗)
k + k∗

n

(
n− k∗

n

)2 d∑

`=1

δ̂2
`

= max
1≤k≤k∗−Nδ

(k − k∗)
k + k∗

n

(
n− k∗

n

)2 d∑

`=1

δ2
` + oP (1)

= −2θ(1− θ)2N + oP (1).

It is shown in Section 5.4.5 that, under the assumptions of Theorem 5.4, this deter-

ministic part is the dominating contributor in (5.4.1). It follows thus that, for all

K > 0,

(5.4.7) lim
N→∞

lim sup
n→∞

P

(
max

1≤k≤k∗−Nδ

R̂n(k) > −K

)
= 0

Moreover, utilizing the decomposition in display (5.4.2), it can be proved similarly

that

max
k∗+Nδ≤k≤n

1

n

d∑

`=1

D̂
(3)
k,`D̂

(4)
k,` = −2θ2(1− θ)N + oP (1),

which implies that, for all K > 0,

(5.4.8) lim
N→∞

lim sup
n→∞

P

(
max

k∗+Nδ≤k≤n
R̂n(k) > −K

)
= 0.

Equations (5.4.7) and (5.4.8) now yield that

lim
N→∞

lim sup
n→∞

P
({

k̂∗n < k∗ −Nδ

} ∪ {
k̂∗n > k∗ + Nδ

})
= 0,

which, noticing the definition of Nδ, completes the proof of the lemma.



166

Lemma 5.8. Under the assumptions of Theorem 5.4, it holds that, for any N ≥ 1,

{
R̂n

(
k∗+

⌊
t‖δn‖−2

2

⌋ )
: t ∈ [−N, N ]} d−→ {2θ(1−θ)V (t) : t ∈ [−N, N ]} (n →∞),

where
d−→ indicates weak convergence in the Skorohod space D[−N, N ].

Proof. Denote by k the integer part of t‖δn‖−2
2 . Then, as n →∞,

sup
t∈[−N,0]

∣∣∣∣∣
1

n

d∑

`=1

D̂
(1)
k∗+k,`D̂

(2)
k∗+k,` + 2θ(1− θ)2t

∣∣∣∣∣ = OP (1) sup
t∈[−N,0]

(
t− ‖δn‖2

2

⌊
t‖δn‖−2

2 ‖⌋) = oP (1).

Similarly,

sup
t∈[0,N ]

∣∣∣∣∣
1

n

d∑

`=1

D̂
(3)
k∗+k,`D̂

(4)
k∗+k,` − 2θ2(1− θ)t

∣∣∣∣∣ = oP (1) (n →∞).

Note next that, after an application of (5.4.6) and the law of the iterated logarithm

[see, for example, Section 9 in Billingsley (1995)]

sup
t∈[−N,0]

|t|
n‖δn‖2

2

∣∣∣∣∣
d∑

`=1

δ`

n∑
i=1

ξi,`

∣∣∣∣∣ = OP (1)
1

n‖δn‖2

∣∣∣∣∣
d∑

`=1

n∑
i=1

ξi,`

∣∣∣∣∣ = OP (1)

√
log log n

n‖δn‖2
2

= oP (1)

by assumption on δn. It follows from the weak convergence of partial sum processes

that there exist independent standard Brownian motions (W`(t) : t ≥ 0), 1 ≤ ` ≤ d

[see, for example, Billingsley (1968)], such that

‖δn‖2

k∗∑

i=k∗+k+1

ξi,`
D
= ‖δn‖2

−k∑
i=1

ξi,`
D[−N,0]−→ W`(−t),
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where k is the integer part of t‖δn‖−2
2 . Checking the finite-dimensional distributions,

it follows that the process

(
1

‖δ‖2

d∑

`=1

δ`W`(t) : t ≥ 0

)

is a standard Brownian motion. Therefore, there exists a standard Brownian motion

(W (1)(t) : t ≥ 0) such that

sup
t∈[−N,0]

∣∣∣∣∣
1

n

d∑

`=1

Ê
(1)
k+k∗,`D̂

(2)
k+k∗,` − 2θ(1− θ)W (1)(t)

∣∣∣∣∣

= sup
t∈[−N,0]

∣∣∣∣∣
2k∗ + k

n

n− k∗

n

d∑

`=1

δ`

(
k∗∑

i=k∗+k+1

ξi,` +
t

n‖δn‖2
2

n∑
i=1

ξi,`

)
− 2θ(1− θ)W (1)(t)

∣∣∣∣∣ + oP (1)

= O(1) sup
t∈[−N,0]

∣∣∣∣∣
d∑

`=1

δ`

k∗∑

i=k∗+k+1

ξi,` −W (1)(t)

∣∣∣∣∣ + oP (1)

= oP (1).

A similar string of arguments yields that there is a standard Brownian motion (W (2)(t) :

t ≥ 0) such that

sup
t∈[0,N ]

∣∣∣∣∣
1

n

d∑

`=1

Ê
(3)
k+k∗,`D̂

(4)
k+k∗,` − 2θ(1− θ)W (2)(t)

∣∣∣∣∣ = oP (1).
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It remains to verify that the remaining parts in displays (5.4.1) and (5.4.2) do not

contribute to the limit distribution. So, consider first

max
k∗−Nδ≤k≤k∗

1

n

∣∣D̂(1)
k,`Ê

(2)
k,`

∣∣

= max
k∗−Nδ≤k≤k∗

∣∣∣∣∣
k∗ − k

n

n− k∗

n
δ`

(
k∑

i=1

ξi,` +
k∗∑
i=1

ξi,` − k + k∗

n

n∑
i=1

ξi,`

)∣∣∣∣∣ + oP (1)

= O(1) max
k∗−Nδ≤k≤k∗

∣∣∣∣∣
1

n‖δn‖2

(
k∑

i=1

ξi,` +
k∗∑
i=1

ξi,` − k + k∗

n

n∑
i=1

ξi,`

)∣∣∣∣∣ + oP (1)

= oP (1),

since, for example,

max
k∗−Nδ≤k≤k∗

1

n‖δn‖2

∣∣∣∣∣
k∑

i=1

ξi,`

∣∣∣∣∣ = OP (1)

√
log log n

n‖δn‖2
2

+ oP (1) = oP (1)

by (5.4.6), the law of the iterated logarithm and assumption on δn. All other terms

can be handled in the same way. Next, note that by (5.4.6) and the law of the iterated

logarithm, it holds that

max
k∗−Nδ≤k≤k∗

k∗∑

i=k+1

ξi,` = OP

(√
Nδ

)
and max

k∗−Nδ≤k≤k∗

k∗ − k

n

∣∣∣∣∣
n∑

i=1

ξi,`

∣∣∣∣∣ = oP (1),
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respectively. Hence,

max
k∗−Nδ≤k≤k∗

1

n

∣∣Ê(1)
k,` Ê

(2)
k,`

∣∣

= max
k∗−Nδ≤k≤k∗

1

n

∣∣∣∣∣

(
k∗∑

i=k+1

ξ̂i,` +
k − k∗

n

n∑
i=1

ξ̂i,`

)(
k∑

i=1

ξ̂i,` +
k∗∑
i=1

−k + k∗

n

n∑
i=1

ξ̂i,`

)∣∣∣∣∣

OP (1) max
k∗−Nδ≤k≤k∗

√
Nδ

n

∣∣∣∣∣
k∑

i=1

ξ̂i,` +
k∗∑
i=1

−k + k∗

n

n∑
i=1

ξ̂i,`

∣∣∣∣∣

= oP (1),

since, by (5.4.6) and the law of the iterated logarithm,

max
k∗−Nδ≤k≤k∗

√
N

n‖δ̂n‖2

∣∣∣∣∣
k∑

i=1

ξ̂i,`

∣∣∣∣∣ = OP (1)

√
log log n

n‖δn‖2
2

+ oP (1) = oP (1).

Similar for the other two terms and also for the terms coming from (5.4.2). The proof

is complete.

5.4.4 Verification of equation (5.4.4)

Lemma 5.9. Under the assumptions of Theorem 5.3 it holds that, for all 1 ≤ ` ≤ d

and ε > 0,

lim
N→∞

lim sup
n→∞

P

(
max

1≤k≤k∗−N

|Ê(1)
k,` Ê

(2)
k,` |

|D̂(1)
k,`D̂

(2)
k,` |

≥ ε

)
= 0.

Proof. Let 1 ≤ ` ≤ d and 1 ≤ k ≤ k∗ − N for some N ≥ 1. From the definition in

(5.4.1) and the argument leading to display (5.4.3) it follows that the absolute value

of the estimated deterministic term |D̂(1)
k,`D̂

(2)
k,` | has precise stochastic order n(k∗ − k).

Hence,

max
1≤k≤k∗−N

|Ê(1)
k,` Ê

(2)
k,` |

|D̂(1)
k,`D̂

(2)
k,` |

= O(1) max
1≤k≤k∗−N

|Ê(1)
k,` |

k∗ − k
max

1≤k≤k∗−N

|Ê(2)
k,` |
n

= OP (1)M1(N, n)M2(N, n).
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We start by examining M1(N,n). The law of the iterated logarithm in combination

with (5.4.6) imply that

max
1≤k≤k∗−N

1

k∗ − k

∣∣∣∣∣
k∗∑

i=k+1

ξ̂i,`

∣∣∣∣∣ = OP

(
max

1≤k≤k∗−N

1

(k∗ − k)1−α

)
= OP

(
1

N1−α

)
,

for any 1/2 < α < 1. Moreover, on account of (5.4.6),

max
1≤k≤k∗−N

1

n

∣∣∣∣∣
n∑

i=1

ξ̂i,`

∣∣∣∣∣ =
1

n

∣∣∣∣∣
n∑

i=1

ξ̂i,`

∣∣∣∣∣ = oP (1) (n →∞).

Three further applications of (5.4.6) to M2(N, n) yield that

lim
N→∞

lim sup
n→∞

P
(
M1(N, n)M2(N,n) ≥ ε

)
= 0

and the lemma is proved.

Lemma 5.10. Under the assumptions of Theorem 5.3 it holds that, for all 1 ≤ ` ≤ d

and ε > 0,

lim
N→∞

lim sup
n→∞

P

(
max

1≤k≤k∗−N

|Ê(1)
k,` D̂

(2)
k,` |

|D̂(1)
k,`D̂

(2)
k,` |

≥ ε

)
= 0.

Proof. Write

max
1≤k≤k∗−N

|Ê(1)
k,` D̂

(2)
k,` |

|D̂(1)
k,`D̂

(2)
k,` |

= OP (1) max
1≤k≤k∗−N

|Ê(1)
k,` |

k∗ − k
max

1≤k≤k∗−N

|D̂(2)
k,` |
n

= OP (1)M1(N, n)M3(N, n),

where M1(N,n) has already been dealt with in Lemma 5.9. Noticing that

M3(N, n) = max
1≤k≤k∗−N

k + k∗

n

n− k∗

n
δ` + oP (1) = OP (1)

hence yields the assertion.
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Lemma 5.11. Under the assumptions of Theorem 5.3 it holds that, for all 1 ≤ ` ≤ d

and ε > 0,

lim
N→∞

lim sup
n→∞

P

(
max

1≤k≤k∗−N

|D̂(1)
k,`Ê

(2)
k,` |

|D̂(1)
k,`D̂

(2)
k,` |

≥ ε

)
= 0.

Proof. In an analogous fashion, we obtain

max
1≤k≤k∗−N

|D̂(1)
k,`Ê

(2)
k,` |

|D̂(1)
k,`D̂

(2)
k,` |

= O(1) max
1≤k≤k∗−N

|D̂(1)
k,` |

k∗ − k
max

1≤k≤k∗−N

|Ê(2)
k,` |
n

= OP (1)M4(N, n)M2(N, n)

with M2(N,n) from Lemma 5.9. Therefore

M4(N, n) = max
1≤k≤k∗−N

n− k∗

n

k∗ − k

k∗ − k
δ` + oP (1) = OP (1)

gives the result.

Similar calculations can be be performed for the terms appearing in display

(5.4.2). Details are omitted.

5.4.5 Verification of equation (5.4.7)

Lemma 5.12. Under the assumptions of Theorem 5.4 it holds that, for all ε > 0,

lim
N→∞

lim sup
n→∞

P

(
max

1≤k≤k∗−Nδ

∑d
`=1 |Ê(1)

k,` Ê
(2)
k,` |∑d

`=1 |D̂(1)
k,`D̂

(2)
k,` |

≥ ε

)
= 0.

Proof. Observe that, uniformly in k,

d∑

`=1

|D̂(1)
k,`D̂

(2)
k,` | ∼P n(k∗ − k)‖δn‖2

2.
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Therefore, for any 1 ≤ ` ≤ d,

max
1≤k≤k∗−Nδ

|Ê(1)
k,` Ê

(2)
k,` |∑d

`=1 |D̂(1)
k,`D̂

(2)
k,` |

= OP (1) max
1≤k≤k∗−Nδ

|Ê(1)
k,` |

(k∗ − k)‖δn‖2

max
1≤k≤k∗−Nδ

|Ê(2)
k,` |

n‖δn‖2

= OP (1)M δ
1 (N, n)M δ

2 (N, n).

We first study the asymptotics of M δ
1 (N, n). To this end note that

max
1≤k≤k∗−Nδ

|∑k∗
i=k+1 ξi,`|

(k∗ − k)‖δn‖2

D
= max

1≤k≤k∗−Nδ

|∑k∗−k
i=1 ξi,`|

(k∗ − k)‖δn‖2

= OP (1) max
1≤k≤k∗−Nδ

1

(k∗ − k)‖δn‖2

= OP

(
1√
N

)
.

Furthermore, from the law of the iterated logarithm,

max
1≤k≤k∗−Nδ

|∑n
i=1 ξi,`|

n‖δn‖2

= oP (1) (n →∞).

Since the same arguments apply also to the term M δ
2 (N, n), it follows from (5.4.6)

that

lim
N→∞

lim sup
n→∞

P
(
M δ

1 (N, n)M δ
2 (N,n) ≥ ε

)
= 0.

This proves the assertion.

Lemma 5.13. Under the assumptions of Theorem 5.4 it holds that, for all ε > 0,

lim
N→∞

lim sup
n→∞

P

(
max

1≤k≤k∗−Nδ

∑d
`=1 |Ê(1)

k,` D̂
(2)
k,` |∑d

`=1 |D̂(1)
k,`D̂

(2)
k,` |

≥ ε

)
= 0.
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Proof. Along the lines of the previous proof, we may write

max
1≤k≤k∗−Nδ

|Ê(1)
k,` D̂

(2)
k,` |∑d

`=1 |D̂(1)
k,`D̂

(2)
k,` |

= OP (1) max
1≤k≤k∗−Nδ

|Ê(1)
k,` |

(k∗ − k)‖δn‖2

max
1≤k≤k∗−Nδ

|D̂(2)
k,` |

n‖δn‖2

= OP (1)M δ
1 (N, n)M δ

3 (N, n),

where

M δ
3 (N, n) = max

1≤k≤k∗−Nδ

k + k∗

n

n− k∗

n

δ`

‖δn‖2

+ oP (1) = OP (1).

Since M δ
1 (N,n) has already been estimated in Lemma 5.12, the proof is complete.

Lemma 5.14. Under the assumptions of Theorem 5.4 it holds that, for all ε > 0,

lim
N→∞

lim sup
n→∞

P

(
max

1≤k≤k∗−Nδ

∑d
`=1 |D̂(1)

k,`Ê
(2)
k,` |∑d

`=1 |D̂(1)
k,`D̂

(2)
k,` |

≥ ε

)
= 0.

Proof. Write

max
1≤k≤k∗−Nδ

|D̂(1)
k,`Ê

(2)
k,` |∑d

`=1 |D̂(1)
k,`D̂

(2)
k,` |

= OP (1)M δ
4 (N, n)M δ

2 (N, n)

with

M δ
4 (N, n) = max

1≤k≤k∗−Nδ

k − k∗

n

n− k∗

n

δ`

‖δn‖2

+ oP (1) = OP (1)

and the lemma is proved.

Again, the same arguments give the corresponding results for the terms in (5.4.2).
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CHAPTER 6

SUMMARY AND CONCLUSIONS

This thesis introduced some novel methods in functional data analysis, namely

goodness-of-fit and change point tests. These tests were motivated by data derived

from nearly continuous times series records.

We developed a test for independence and identical distribution of functional ob-

servations. To reduce dimension, curves were projected on the most important func-

tional principal components. Then a test statistic based on lagged cross–covariances

of the resulting vectors was constructed. We showed that this dimension reduction

step introduces asymptotically negligible terms, i.e. the projections behave asymptot-

ically as iid vector–valued observations. A complete asymptotic theory based on cor-

relations of random matrices, functional principal component expansions and Hilbert

space techniques was developed. The test statistic has χ2 asymptotic null distribu-

tion. It can be readily computed using the R package fda. The test has good empirical

size and power which, in our simulations and examples, is not affected by the choice

of the functional basis. Its application is illustrated on two data sets: credit card

sales activity and geomagnetic records.

We proposed two inferential tests for error correlation in the functional linear

model, which complement the available graphical goodness of fit checks. To con-

struct them, finite dimensional residuals were computed in two different ways, and

then their autocorrelations were suitably defined. From these autocorrelation matri-

ces, two quadratic forms were constructed whose limiting distribution are chi–squared

with known numbers of degrees of freedom (different for the two forms). The asymp-

totic approximations are suitable for moderate sample sizes. The test statistics can

be relatively easily computed using the R package fda, or similar MATLAB software.

Application of the tests was illustrated by weather, magnetometer and financial data.



175

The asymptotic theory emphasizes the differences between the standard vector lin-

ear regression and the functional linear regression. To understand the behavior of

the residuals obtained from the functional linear model, the interplay of three types

of approximation errors must be considered, whose sources are: projection on a fi-

nite dimensional subspace, estimation of the optimal subspace and estimation of the

regression kernel.

We developed a test, based on functional principal component scores, for detect-

ing a change point in the mean of functional observations. The test can be readily

computed in the R package fda. The null distribution of the test statistic is asymp-

totically pivotal with a well-known asymptotic distribution. The asymptotic test has

excellent finite sample performance. Its application is illustrated by temperature data

from England.

We also developed a comprehensive asymptotic theory for the estimation of a

change–point in the mean function of functional observations. We considered both:

the case of a constant change size, and the case of a change whose size approaches

zero, as the sample size tends to infinity. We showed how the limit distribution

of a suitably defined change–point estimator depends on the size and location of

the change. The theoretical insights were confirmed by a simulation study which

illustrated the behavior of the estimator in finite samples.

Functional data analysis still has many interesting open questions and the work

in this dissertation shows many appealing techniques and properties that have great

potential in applied statistics.
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Hörmann, S. and Kokoszka, P. (2010). Weakly dependent functional data. Ann.

Statistics, 38, 1845–1884.

Horn, R. A. and Johnson, C. R. (1991). Topics in Matrix Analysis. Cambridge:

Cambridge University Press.
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Phone: (435) 512-9192

Fax: (435) 797-1822

Journal of the Royal Statistical Society Series B

Phone: (44) 020-7614-3914

Fax: (44) 020-7614-3905

E - mail: m.owen@rss.org.uk

Dear Dr. Owen:

I am preparing my dissertation in the Department of Mathematics and Statistics at

Utah State University and I plan to complete my degree in the Summer of 2010.

The Journal of the Royal Statistical Society Series B article, Detecting Changes in

the Mean of Functional Observations (Vol. 71, Issue 5, pages 927–946, 2009), of

which I am one of the authors, reports an essential part of my dissertation research. I

would like permission to reprint it as a chapter in my dissertation. (Reprinting it as a

chapter may require making some revision.) Please note that USU sends dissertations

to Bell & Howell Dissertation Services to be made available for reproduction.

I will include an acknowledgment to the article on the first page of the chapters, as

shown below. Copyright and permission information will be included in a special

appendix. If you would like a different acknowledgment, please so indicate.

Please indicate your approval of this request by signing in the space provided below,
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and attach any other form necessary to confirm permission. If you charge a reprint

fee for use of an article by the author, please indicate that as well.

If you have any questions, please call me at the number above or send me an e-mail

message at the above address.

Thank you for your assistance.

Robertas Gabrys

I hereby give permission to Robertas Gabrys to reprint the requested article in his

dissertation, with the following acknowledgment:

Berkes, I., Gabrys, R. Horváth, L., Kokoszka, P. (2009). Detecting changes in the

mean of functional observations, Journal of the Royal Statistical Society, Series B,

71, 927–946.

Signed

Date
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from Owen, Martin <M.Owen@rss.org.uk>

to Robertas Gabrys <gabrys.robertas@gmail.com>

date Fri, Jun 11, 2010 at 1:55 AM subject

RE: Request for permission to reprint my article published in JRSS

(B)

Dear Robertas

As I said, the form indicates that you do not need to apply for

permission for use in this way, and the Society has no objection.

Yours sincerely

Martin Owen

Executive Editor

Royal Statistical Society

12 Errol Street

London, EC1Y 8LX, UK



192

Direct: (44) 020 7614 3914

Switchboard: (44) 020 7638 8998

Fax: (44) 020 7614 3905

E-mail: m.owen@rss.org.uk

Internet: http://www.rss.org.uk
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June 2nd 2010

Robertas Gabrys

Department of Mathematics and Statistics

Utah State University

3900 Old Main Hill

Logan, UT 84322-3900

E-mail: gabrys.robertas@gmail.com

Phone: (435) 512-9192

Fax: (435) 797-1822

Journal of Multivariate Analysis

Phone: (+44) 1865-843-830

Fax: (+44) 1865-853-333

E - mail: permissions@elsevier.com

To whom it may concern:

I am preparing my dissertation in the Department of Mathematics and Statistics at

Utah State University and I plan to complete my degree in the Summer of 2010.

The Journal of Multivariate Analysis article, Estimation of a Change–Point in the

Mean Function of Functional Data (Vol. 100, No. 10, pages 2254–2269, 2009), of

which I am one of the authors, reports an essential part of my dissertation research. I

would like permission to reprint it as a chapter in my dissertation. (Reprinting it as a

chapter may require making some revision.) Please note that USU sends dissertations

to Bell & Howell Dissertation Services to be made available for reproduction.

I will include an acknowledgment to the article on the first page of the chapters, as

shown below. Copyright and permission information will be included in a special

appendix. If you would like a different acknowledgment, please so indicate.

Please indicate your approval of this request by signing in the space provided below,
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and attach any other form necessary to confirm permission. If you charge a reprint

fee for use of an article by the author, please indicate that as well.

If you have any questions, please call me at the number above or send me an e-mail

message at the above address.

Thank you for your assistance.

Robertas Gabrys

I hereby give permission to Robertas Gabrys to reprint the requested article in his

dissertation, with the following acknowledgment:

Aue, A., Gabrys, R., Horváth, L., Kokoszka, P. (2009). Estimation of a change–

point in the mean function of functional data, Journal of Multivariate Analysis, 100,

2254–2269.

Signed

Date
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Dear Dr Gabrys,

Thank you for your e-mail.

As a journal author, you retain article rights for large number of

author uses, including use by your employing institute or company.

These rights are retained and permitted without the need to obtain

specific permission from Elsevier. This includes:

- the right to include the journal article, in full or in part, in a

thesis or dissertation;

Or contact our Global Rights Department:

Elsevier Global Rights Department phone (+44) 1865 843 830 fax (+44)

1865 853 333 email: permissions@elsevier.com

Yours sincerely,

Nobilie F. Niz

Elsevier Customer Support
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June 2nd 2010

Robertas Gabrys

Department of Mathematics and Statistics

Utah State University

3900 Old Main Hill

Logan, UT 84322-3900

E-mail: gabrys.robertas@gmail.com

Phone: (435) 512-9192

Fax: (435) 797-1822

Prof. Lajos Horváth

Department of Mathematics

University of Utah

155 S. 1400 E. Room JWB 222

Salt Lake City, UT 84112-0090

E-mail: horvath@math.utah.edu

Phone: (801) 581-8159

Fax: (801) 581-4148

Dear Prof. Horváth:

I am preparing my dissertation in the Department of Mathematics and Statistics at

Utah State University and I plan to complete my degree in the Summer of 2010.

The Journal of the American Statistical Association article, Tests for Error Cor-

relation in the Functional Linear Model (forthcoming), The Journal of the Royal

Statistical Society Series B article, Detecting Changes in the Mean of Functional Ob-

servations (Vol. 71, Issue 5, pages 927–946, 2009), and The Journal of Multivariate

Analysis article, Estimation of a Change–Point in the Mean Function of Functional

Data (Vol. 100, No. 10, pages 2254–2269, 2009), of which I am one of the authors,
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report an essential part of my dissertation research. I would like permission to reprint

them as three chapters in my dissertation. (Reprinting them as chapters may require

making some revision.) Please note that USU sends dissertations to Bell & Howell

Dissertation Services to be made available for reproduction.

I will include an acknowledgment to the articles on the first page of the chapters,

as shown below. Copyright and permission information will be included in a special

appendix. If you would like a different acknowledgment, please so indicate.

Please indicate your approval of this request by signing in the space provided below,

and attach any other form necessary to confirm permission.

If you have any questions, please call me at the number above or send me an e-mail

message at the above address.

Thank you for your assistance.

Robertas Gabrys

I hereby give permission to Robertas Gabrys to reprint the requested articles in his

dissertation, with the following acknowledgment:

Gabrys, R., Horváth, L., Kokoszka, P. (2010) Tests for error correlation in the func-

tional linear model, Journal of the American Statistical Association, forthcoming.

Berkes, I., Gabrys, R. Horváth, L., Kokoszka, P. (2009). Detecting changes in the

mean of functional observations, Journal of the Royal Statistical Society, Series B,

71, 927–946.

Aue, A., Gabrys, R., Horváth, L., Kokoszka, P. (2009). Estimation of a change–

point in the mean function of functional data, Journal of Multivariate Analysis, 100,

2254–2269.
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from horvath@math.utah.edu

to Robertas Gabrys <gabrys.robertas@gmail.com>

date Mon, Jun 14, 2010 at 8:01 PM subject

Re: [Fwd: Permission to reprint the articles we coauthored in my

dissertation] mailed-by math.utah.edu

Please accept this as confirmation that I gladly agree to you

including our joint journal articles, in full or in part, in your

thesis or dissertation.

Lajos Horvath
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June 2nd 2010

Robertas Gabrys

Department of Mathematics and Statistics

Utah State University

3900 Old Main Hill

Logan, UT 84322-3900

E-mail: gabrys.robertas@gmail.com

Phone: (435) 512-9192

Fax: (435) 797-1822

Prof. Alexander Aue

Department of Statistics

University of California

One Shields Avenue

Davis, CA 95616

E-mail: alexaue@wald.ucdavis.edu

Phone: (530) 554-1555

Fax: (530) 752-7099

Dear Prof. Aue:

I am preparing my dissertation in the Department of Mathematics and Statistics at

Utah State University and I plan to complete my degree in the Summer of 2010.

The Journal of Multivariate Analysis article, Estimation of a Change–Point in the

Mean Function of Functional Data (Vol. 100, No. 10, pages 2254–2269, 2009), of

which I am one of the authors, report an essential part of my dissertation research. I

would like permission to reprint them as three chapters in my dissertation. (Reprint-

ing it as a chapter may require making some revision.) Please note that USU sends
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dissertations to Bell & Howell Dissertation Services to be made available for repro-

duction.

I will include an acknowledgment to the article on the first page of the chapters, as

shown below. Copyright and permission information will be included in a special

appendix. If you would like a different acknowledgment, please so indicate.

Please indicate your approval of this request by signing in the space provided below.

If you have any questions, please call me at the number above or send me an e-mail

message at the above address.

Thank you for your assistance.

Robertas Gabrys

I hereby give permission to Robertas Gabrys to reprint the requested article in his

dissertation, with the following acknowledgment:

Aue, A., Gabrys, R., Horváth, L., Kokoszka, P. (2009). Estimation of a change–

point in the mean function of functional data, Journal of Multivariate Analysis, 100,

2254–2269.

Signed

Date
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from Alexander Aue <alexaue@wald.ucdavis.edu>

to Robertas Gabrys <gabrys.robertas@gmail.com>

date Thu, Jun 10, 2010 at 4:40 PM subject

Re: Permission to reprint the article we coauthored in my

dissertation mailed-by wald.ucdavis.edu

Dear Robertas,

Please accept this as confirmation that I gladly agree to you

including our joint journal article, in full or in part, in your

thesis or dissertation.

Best,

Alex
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June 2nd 2010

Robertas Gabrys

Department of Mathematics and Statistics

Utah State University

3900 Old Main Hill

Logan, UT 84322-3900

E-mail: gabrys.robertas@gmail.com

Phone: (435) 512-9192

Fax: (435) 797-1822

Prof. István Berkes

Institute of Statistics

Graz University of Technology

Mnzgrabenstrae 11/III

A-8010 Graz, Austria

E-mail: berkes@tugraz.at

Phone: (+43) 316-873-6976

Fax: (+43) 316-873-6977

Dear Prof. Berkes:

I am preparing my dissertation in the Department of Mathematics and Statistics at

Utah State University and I plan to complete my degree in the Summer of 2010.

The Journal of the Royal Statistical Society Series B article, Detecting Changes in the

Mean of Functional Observations (Vol. 71, Issue 5, pages 927–946, 2009), of which I

am one of the authors, report an essential part of my dissertation research. I would like

permission to reprint them as three chapters in my dissertation. (Reprinting it as a

chapter may require making some revision.) Please note that USU sends dissertations

to Bell & Howell Dissertation Services to be made available for reproduction.
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I will include an acknowledgment to the article on the first page of the chapters, as

shown below. Copyright and permission information will be included in a special

appendix. If you would like a different acknowledgment, please so indicate.

Please indicate your approval of this request by signing in the space provided below.

If you have any questions, please call me at the number above or send me an e-mail

message at the above address.

Thank you for your assistance.

Robertas Gabrys

I hereby give permission to Robertas Gabrys to reprint the requested article in his

dissertation, with the following acknowledgment:

Berkes, I., Gabrys, R. Horváth, L., Kokoszka, P. (2009). Detecting changes in the

mean of functional observations, Journal of the Royal Statistical Society, Series B,

71, 927–946.

Signed

Date
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from Istvan Berkes <berkes@tugraz.at>

to Robertas Gabrys <gabrys.robertas@gmail.com>

cc berkes@tugraz.at

date Thu, Jun 10, 2010 at 12:18 PM

subject Permission to reprint the article we coauthored in your

dissertation

signed-by tugraz.at

Dear Robertas,

Thank you for your e-mail.

I herewith give you permission to reprint the article: "Detecting

changes in the mean of functional observations", J. Royal Stat. Soc.

B 71 (2009), 927--946, coauthored by you, Lajos Horvath and myself,

in your PhD dissertation or use it in any way you find appropriate.

Do not hesitate to contact me if you have any questions.

Best regards,

Istvan Berkes
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