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ABSTRACT 

 
Comparing Linear Mixed Models to Meta-Regression Analysis in the Greenville Air Quality 

Study 

 
 

by 
 

 
Lynsie M. Daley 

 
Utah State University, 2015 

 
 
Major Professor:  Dr. John R. Stevens 
Department:  Mathematics and Statistics 

 
 
 

The effect of air quality on public health is an important issue in need of better understanding. 

There are many stakeholders, especially in Utah and Cache Valley, where the poor air quality as 

measured by PM 2.5 levels and consequent inversions can sometimes be the very worst in the 

nation. This project focuses on comparing two statistical methods used to analyze an important 

air quality data set from the Greenville Air Quality Study, focusing on a lung function response 

variable. A linear mixed model, with a random factor for subject, gives slope estimates and their 

significance for predictor variables of interest, especially PM 2.5 levels. The method of meta-

regression in this analysis is extended from looking at multiple studies to looking at multiple 

subjects from the single air quality study and the effect of PM 2.5 on their lung function 

separately, finally combining the results using a model where the slope estimates for PM 2.5 act 

as the response. With other predictors mean-centered, this meta-regression allows for 

interpretation of the model intercept as the overall mean effect size of PM 2.5 on lung function. 

Both statistical methods were studied in depth in order to apply them appropriately to the data 
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set. The primary goal of applying both of these methods, aside from comparing their results, was 

to determine what significant role, if any, the PM 2.5 pollution levels played in the lung function 

of students after a 20 minute outdoor recess, therefore validating the results of previous analyses 

of the data.  
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1. ABOUT THE GREENVILLE AIR QUALITY STUDY 

 

The Greenville Air Quality study, conducted at Greenville Elementary in North Logan, 

Utah, was carried out between January and March of 2007. The timing was important, since 

elevated PM 2.5 levels are a seasonal problem and typically peak during the winter months. The 

study was designed to answer an important public health question: Is the exposure to PM 2.5 

during a 20 minute recess harmful enough to warrant keeping children inside when air quality is 

poor (Redd, 2015)?  PM 2.5, or particulate matter less than 2.5 microns in width, are tiny 

particles or droplets that cause the air to appear hazy when levels become elevated. The concern 

they present is their ability to travel deep into the respiratory tract and reach the lungs (New 

York Department of Health, 2011). Exposure to these particles has been linked to eye, nose, and 

throat irritation, as well as worsening asthma, lung function, and heart disease (New York 

Department of Health, 2011). In Cache Valley, these particles are comprised mainly of 

ammonium nitrate; however, it is mainly the particle itself and not the chemical composition that 

causes damage (Redd, 2015). 

Two years prior to the Greenville study, a pilot study was conducted at Hawthorne 

Elementary in Salt Lake City. This study was small and had little power for an analysis, but there 

they learned how to correctly measure for lung function and capacity (Packham, 2011). There 

were no other acute exposure studies in the literature, which prompted Dr. Edward Redd and the 

Bear River Health Department to design a more powerful study to capture both lung function and 

air quality data (Redd, 2015). 

The Bear River Health Department partnered with Greenville Elementary and recruited 

over 100 student volunteers from grades 3-5. Each student’s family submitted a demographic  
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Table 1 – Lung function measurements defined (Morgan Scientific, 2013) 

Measurement: Definition: Example:  

Forced Expiratory 
Flow (25-75%) 

The average rate of 
airflow during the mid-

portion of forced vital 
capacity.  

 

Peak Expiratory Flow 
Rate 

The maximum flow at the 
outset of forced 
expiration. Measured in 

liters/second  
Forced Vital Capacity The total volume of air 

expired after a full 
inspiration with maximum 
effort 

Forced Expiratory 
Volume, 1 Second 

The volume of air expired 
in the first second during 

maximum expiratory 
effort.  

 

questionnaire, and each day before and after recess the students would check in with a table 

staffed by interns from Utah State University to have their lung function measured by a 

calibrated spirometer. Approximately half of these students were asthmatic, which provided an 

opportunity to determine whether this condition created a greater adverse effect from the bad air 

exposure the students had outdoors. The air quality inside the school library was also measured 

as a control for the outdoor measurements. In addition, A.M. and P.M. temperatures and 

humidity were captured each day.  

Among the demographic data collected were information on the construction, heating 

type, and age of the students’ home, whether or not they lived with smokers, asthma diagnosis by 

a physician, and whether the students took medications daily. Ethnicity, language spoken at 

home, and age were also captured. Information was collected each day on whether each student 
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was experiencing any respiratory symptoms such as coughing, wheezing, or upper respiratory 

infections (URIs).  

Subject lung function was assessed using a spirometer, with students taking a deep breath 

and then blowing as hard and fast as they could into the spirometer tube. The lung function 

measurements collected were forced expiratory flow (FEF 25-75%), peak expiratory flow rate 

(PEFR), forced vital capacity (FVC), and forced expiratory volume in 1 second (FEV 1). See 

Table 1 for definitions of these measurements. It is understood that FEF 25-75% and the ratio 

between FEV 1 and FVC are the most sensitive to pollution particulates (Redd, 2015). Only FEF 

25-75% measurements were used for the purposes of this report. 

 Forced expiratory flow (FEF 25-75%), used as the response variable in this report, is the 

mean of the flow during the interval of 25%-75% of remaining forced vital capacity, and is 

measured in liters per second. To understand FEF, forced vital capacity must be defined. Forced 

vital capacity is the total volume of air expired after a full inspiration with maximum effort. FEF 

is a flow rate measurement, so the more air can be expelled during the middle portion of forced 

vital capacity, the healthier the result is. Because this is the case, larger values are healthier than 

smaller values. Average normal values depend mostly on gender and age, height, mass, and 

ethnicity. Predicted normal values can be calculated based on those characteristics (Arnall 2015).  

There were a couple of factors which affected the data collection in this study. 2007 was 

a generally mild year for poor air quality with fewer days where the pollution was considered to 

be at unhealthy levels. Also playing a role in the data collection was the fact that the Principal of  

Greenville Elementary had a policy of not allowing the children outdoors during recess if the PM 

2.5 levels were above 50 micrograms per cubic meter. The primary investigators did not want to 
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change any protocol or habits at the school during the study, so this was continued, although 

children were still tested even if they had indoor recess (Redd, 2015). 

The data from the Greenville study has since been analyzed by several groups. Steve 

Packham, PhD found no statistically significant decrease in FEV1/FVC or PEFR function as a 

response of asthma, PM 2.5, or activity associated with recess. He did however find a significant 

increase in pre-recess FVC over the course of the study, as well as a significant decrease in FVC 

in students with URI symptoms (Packham 2011). It is possible that an increase in pre-recess 

FVC over the course of the study was an artifact of the students learning how to blow into the 

spirometers and improving over time. These findings in the very least provided evidence that the 

spirometry methods could detect effects of air quality if there were any. The results led to the 

Utah Department of Health abandoning previous guidelines and shifting to an hourly PM 2.5 

monitoring guideline. Dr. Redd also stated that there was no significant decrease in lung function 

due to the air quality during the study in Cache Valley. This told him that short term exposure, 

20 minutes as the students had, may not be very harmful to most people. It is still unclear how 

damaging long term exposure to PM 2.5 may be (Redd, 2015). 
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2. LINEAR MIXED MODELS 

 

Mixed effects models are appropriate for use when there is a mix of different types of 

factors, both fixed and random. A random factor is defined as a factor which has many levels; all 

of interest, but only a representative sample of those levels is used in the analysis. Fixed effects 

include all levels available (Littell, 2002). These models work well for data that are correlated 

due to a grouping of subjects, repeated measurements over time, or multiple related outcome 

measurements at one point in time. Mixed models also handle uneven spacing of repeated 

measurements whether they are intentional or non-intentional. They allow for each level of a 

random factor to have its own intercept and slope randomly deviating from the mean intercept 

(Seltman, 2015). Linear mixed models are usually preferred with multiple profiles (subjects) of 

data and a smaller number of observations per subject (Jensen, 2006). The information from 

multiple subjects is pooled to improve estimates and inference (Seltman, 2015). 

            Variance-covariance structures are used in mixed models to describe the correlation 

present in the responses for a given subject. While the random effect for subject describes only 

the cause of correlation, a variance-covariance structure describes the type of correlation present 

(Seltman, 2015). The structures which were compared in the Greenville data analysis included 

compound symmetry (CS), autoregressive order 1 (AR(1)), and unstructured (SYMM). 

Compound symmetry indicates the same correlation between all pairs of measurements. 

A random intercept for each level is used, which will remove the correlation between the other 

fixed effects (Seltman, 2015). An example of compound symmetry is given by:  
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The autoregressive structure is one where the measurements are ordered, and adjacent 

measurements are more highly correlated than distant measurements (Seltman, 2015). An 

example of an AR(1) structure is given by:  

 

The unstructured covariance structure imposes no restraints to the values. Each variance 

and covariance is estimated uniquely from the data. This structure usually results in the best fit, 

but at the cost of using up many degrees of freedom, which can make it difficult to justify (SAS, 

2009). This structure is given by:  

 

 

 

Either maximum likelihood (ML) estimation or restricted maximum likelihood (REML) 

estimation may be used when fitting a mixed model. There are advantages and disadvantages to 

each. In ML, the response variable is assumed to be normal with the mean depending on the 

model parameters. In REML, the principle of maximum likelihood can be applied to the 

residuals in order to remove the fixed variable effects. This means that the residual distribution 

does not depend at all on the fixed effects estimate, just on the variance components. Using ML, 

the deviance statistic measures the lack of fit the model has to the data, though it is hard to 

interpret. ML and REML are not robust to the assumptions of normality of the response 

variables. The deviance statistic given by REML can only be used to compare models that have 

the same fixed effects and differ only in their random component. Variances tend to be more 

realistic under REML than they are under ML estimation. When there is a need to compare 
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models using a variable selection, or model reduction technique, ML must be used because of the 

absence of the fixed effects in REML estimation (SSI Central, 2015). For this reason, ML was 

used in the Greenville data model.  

As previously stated, the linear mixed model has fixed as well as random effects and is 

given by: 

𝑌𝑖 = 𝛽0 +  𝑋𝑖𝛽 + 𝑍𝑖𝛾 +  𝜖𝑖 , for i = 1, 2… m, m = number of subjects 

 𝑌𝑖 is a length 𝑛𝑖 vector of response measurements for subject i. 𝛽0 is a scalar representing the Y-

intercept of the regression model. β is a length p vector of fixed effect coefficients. 𝑋𝑖  is a 𝑛𝑖  𝑥 𝑝  

covariate matrix of fixed effects. 𝑍𝑖 is an 𝑛𝑖 x q matrix of predictor variables with random 

effects. 𝛾 is a length q vector of subject-specific random effects. 𝜖𝑖  is a length 𝑛𝑖 vector of the 

errors.  

The model can have two levels of correlation for the observations within a subject. The first 

comes from the random effects, 𝛾, which cause all profile (or subject) measurements to be 

correlated. The second results from the within-profile variance-covariance matrix 𝑅𝑖 (Jensen, 

2006), due to correlations among error terms within subject. The model is flexible enough to 

allow errors to be independent or correlated. If correlated, 𝑅𝑖 is usually a simple form such as 

compound symmetry or autoregressive order 1 to decrease the number of covariance parameters 

to be estimated. Autocorrelation is very common in time ordered data, as seen in the Greenville 

study. 

The assumptions for linear mixed models are as follows: 

 𝛾 ~ 𝑁𝑞  (0, 𝐺),  𝐺 𝑞 × 𝑞 and positive definite 

 𝜀𝑖  ∶= ( 

𝜀𝑖1

⋮
𝜀𝑖𝑛𝑖

) ~ 𝑁𝑛𝑖
 (0, R𝑖  ) , R𝑖  𝑛𝑖 × 𝑛𝑖 and positive definite 
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 𝛾 independent of 𝜀1, … , 𝜀𝑚 

o G = covariance matrix of random effects 𝛾 

o R𝑖  = covariance matrix of error vector 𝜀𝑖 in cluster (or subject) i   

o 𝑍𝑖  and 𝑋𝑖   are matrices of known covariates (Spinka, 2007). 

Issues with linear mixed models include zero estimates and non-convergence. When a 

negative estimate of a diagonal component of the variance-covariance matrix is given by the 

maximum likelihood algorithm, this is set to a zero estimate. It is set to zero, because it cannot be 

negative, thus causing the matrix to be singular. When no estimates are obtained due to the 

difficulty of maximizing the likelihood, non-convergence happens. This is more common when 

the data are unbalanced (Jensen, 2006). 

In order to interpret a mixed model, the variance for each random factor should be looked 

at, as well as the residual variance. When looking at the variance for an individual random effect, 

it should be close to zero, with the variation falling into the residuals. Following this, the 

estimates and standard errors for the fixed effects should be examined. P-values are not as 

straight-forward in mixed models, and it is common to use the likelihood ratio test to obtain 

them. The lme() function in the nlme R package (Pinheiro et al., 2015) does this automatically 

and provides a p-value for each fixed effect in the model. These should be looked at for 

significance, and the slope estimates are interpreted just as they would be in a linear regression 

model. In order to interpret the overall fit of the model, AIC values between models with various 

subsets of the effects can be compared in order to select a final model. Once a final model is 

decided upon, Verbeke and Molenberghs (2000) proposed to assess goodness of fit by 

calculating an 𝑅2 for each profile (Jensen, 2006). There are various ways to do this in the 
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literature, and there is not just one valid method. An overall goodness of fit can then be obtained 

by combining these values. 
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3. META-REGRESSION ANALYSIS 

 

Typically, we analyze one group (study) of data as a whole and look at the effect of one 

or more covariates on a dependent response variable using regression methods. This practice is 

extended in meta-analysis where parameters are at the level of a study, or in the case of the 

Greenville data, a subject, and not at an individual observation level. Specifically, the effect of 

PM 2.5 on lung function can be quantified for each subject separately, due to repeated 

measurements. These subject-specific PM 2.5 effects can be combined across subjects while 

accounting for between-subject differences, to get a clearer picture of the true underlying effect 

size of interest. The dependent variable, such as the PM 2.5 effects in the Greenville study, 

becomes the effect size in the study. This field, meta-regression, is a branch of meta-analysis 

(Borenstein et al., 2009). Moving from regression to meta-regression, there are several 

differences that must be addressed and will be discussed in this section. They include weighting 

each study (subject), using the right type of model, and considering the ratio of studies (or 

subjects) to covariates. 

 A statistical problem that arises in meta-regression is that the estimated effect sizes  

from each study will have different variances, due in part to different sample sizes in the studies. 

To solve this problem, weighted least squares (WLS) is used in the meta-regression model, 

applying weights of 
1

𝑆𝐸2 , where SE is the standard error of the effect size estimate, to each study 

(Stanley, 2013). Becker and Wu (2007) refer to the meta-regression weight as the “reciprocal of 

the slope variance”. 

The procedures of regression are used in meta-analysis to examine covariates and 

predicted effect size in subjects with certain characteristics. The fixed effect model assumes all 
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studies (subjects) in the meta-analysis are samples of a single, larger study and that all of their 

results reflect a single underlying true effect size. The random effect model assumes the studies 

are conducted independently, each reflects a separate true effect size, and the meta-regression is 

a combination of studies of the same matter.  

            Before building a meta-regression model, linear regression models are fitted to each 

subject in the study separately, using the response variable of interest. In the case of this analysis, 

the difference in FEF before and after recess is considered. The response variable, 𝑦𝑖 , is 

regressed on the covariates of interest, with the exception of covariates whose values remain 

constant throughout subject i’s observations. These covariates do not provide any information 

and are omitted from the individual models, but introduced back into the aggregate meta-

regression model. The model for subject i is given by the typical linear regression model form:  

𝑌𝑖 =  𝛽0 +  𝑋𝑖𝛽 +  𝜖𝑖 

Here, 𝑌𝑖 is the vector of response measurements for subject i, length 𝑛𝑖, 𝛽0 is the model intercept, 

β is a length p vector of fixed effect coefficients, 𝑋𝑖  is a 𝑛𝑖  𝑥 𝑝  covariate matrix, and 𝜖𝑖  is a 

length 𝑛𝑖 vector of the errors. 

 Once this model has been fit for each subject, the results are aggregated into a matrix for 

the meta-analysis. The results of the model included in this matrix are the slope estimates for the 

effect of interest from each model, in this case, the PM 2.5 effect, and their respective standard 

errors, the constant covariates are also introduced into the matrix for the meta regression model.  

The typical model for a meta-regression is given by:  

𝜃𝑖 =  𝛽0  +  𝛽1𝑥𝑖1 + ⋯ + 𝛽𝑝𝑋𝑖𝑝 + 𝑢𝑖 +  𝜖𝑖                   

Here, 𝜃𝑖  is the effect size (PM 2.5 effect) estimated in study i (or subject i in the Greenville meta-

regression), 𝛽0 is the model intercept, 𝛽 represents the effect for the jth covariate in the model, 
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𝑋𝑖𝑗 is the value of covariate j for subject i, 𝑢𝑖 represents a random effect explaining study-to-

study variance (Viechtbaur, 2014), and 𝜖𝑖  are the sampling errors. The assumptions for this 

model are:    

𝑢𝑖  ~ 𝑁(0, 𝜏2)  

𝜖𝑖  ~ 𝑁(0, 𝑣𝑖) 

Here, 𝑣𝑖  are the known sampling variances of the observed outcomes of effect size estimates, and 

𝜏2 is a between subject (study) variance, with the square root of this estimate representing the 

estimated standard deviation of the underlying effect across subjects (studies)  (Viechtbaur 

2014). In this meta-regression model, observation i is weighted by 
1

𝑆𝐸𝑖
2 , where 𝑆𝐸𝑖 is the 

standard error of the 𝑌𝑖 estimate.  

           Most of the time in meta-regression, the test for significance of covariate effects is based 

on the standard normal distribution. The Z test to test for significance of the slope is given as 

 
�̂�

𝑆𝐸(�̂�)
 , with the null hypothesis that the coefficient, 𝛽, is equal to zero. The Z test can be used to 

test the significance of a single coefficient, 𝛽𝑗.  

            A consideration of the ratio of subjects to covariates is needed for valid interpretation. A 

rule of thumb here is that there should be at least 10 subjects for each covariate, though there are 

no hard and fast rules on this (Borenstein et al., 2009). 

Interpretation of the model, once the effect sizes, intercept, and p-value are obtained 

focuses mainly on the intercept estimate. It is a good practice to center all covariates to their 

respective mean. This allows for interpretation of the intercept, 𝛽0, as the population mean effect 

size (Cooper and Hedges, 1994), which gives the overall picture of the effect size of interest. 
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4. RESULTS 

4.1 Linear Mixed Model Results 

Table 2 – AIC values for correlation structures in the mixed model 

Correlation Structure: Akaike 

Information 

Criterion (AIC) 
AR(1) -267.7231 

US (SYMM) Failed to Converge 

Compound Symmetry -266.9819 

 

Using a linear mixed model, the Greenville data were analyzed taking into account a 

random effect for subject (student), and an AR(1) correlation structure. The correlation structure 

of the model was selected by comparing AIC values using the various structures (see Table 2). 

The AIC values were very similar, aside from compound symmetry, which would not allow the 

model to converge, leading to AR(1) being chosen as it made the most sense for the repeated 

measures over time in these data.  

The original data included 101 students with a total of 4563 observations. 5 students were 

eliminated from the analysis due to all of the outcomes data missing, leaving 96 distinct students 

in the model. Approximately 1/3 of the rows also had to be eliminated for missing values which 

rendered them useless in the analysis. This resulted in 2837 remaining rows. 𝑛𝑖, referred to in the 

models on pages 15 and 19 as the number of observations for subject i, ranges from 13 to 37.  

This distribution is shown in Figure 1, which is slightly skewed toward the lower range of 

subject observations. 
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Figure 1: Histogram of 𝑛𝑖 values 

 

 

 

 

 

 

 

 

 

 

The response, or dependent variable in the model, was the difference between the post-

recess and pre-recess forced expiratory flow (FEF 25-75%). This was calculated from the data 

as: [post-recess FEF – pre-recess FEF]. Pre-Recess FEF values ranged from .33 to 4.64 

liters/second, while post-recess FEF values ranged from .45 to 3.79 liters/second. Recall that 

higher values of FEF 25-75% are healthier, therefore negative values of FEF difference would 

mean that FEF values and lung function decreased over the period of recess, while positive 

values would mean that lung function increased during recess. The more negative or positive the 

value is, the more lung function decreased or increased. FEF difference ranged from -1.82 to 

2.44 liters/second in difference. This variable appears symmetric, but long-tailed, without the use 

of a transformation (Figure 2). 
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Figure 2 – Histogram of FEF difference and normal Q-Q plot of FEF difference 

 

 
 
 
 

 
 
 
 

 
 
 

 

 

 

Table 3 – Variables included in full linear mixed model 
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Table 4 – Effect estimates for final linear mixed model 

 

 

 

 

 

 

 

 

 

 

 

The random effect in the model was the subject ID denoting each student. See Table 3 for 

the list of fixed effects and factors included in the full model. The model was fit in R using the 

lme() function from the nlme package (Pinheiro et al., 2015). Once the full model was fit, a 

backward selection using AIC was implemented to reduce the model to the most important 

factors. The final model gives an AIC of -297.294, and the parameter estimates are shown in 

Table 4. An R squared for the mixed model can be calculated as:  

𝑅2 = 1 −  
𝑅𝑆𝑆𝑀𝑜𝑑𝑒𝑙

𝑅𝑆𝑆𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 𝑂𝑛𝑙𝑦 𝑀𝑜𝑑𝑒𝑙
 

Here, 𝑅𝑆𝑆𝑀𝑜𝑑𝑒𝑙 are the residual sum of squares for the full model and 𝑅𝑆𝑆𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 𝑂𝑛𝑙𝑦 𝑀𝑜𝑑𝑒𝑙 are 

the residual sum of squares for the null, or intercept only model. The R squared for the mixed 

model was .033, meaning that the full model explains approximately 3% of the variation in the 

data. The residuals (Figures 3 and 4)  look symmetric, but long-tailed. Mixed model assumptions 
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include normality of error terms, but it is the symmetry that is essential as the mixed model 

methods are robust against this kind of departure from normality.  

 

Figure 3  - Normal Q-Q plot of residuals and residuals vs. fitted values from mixed model 

 

(a)                        (b) 

  

         

 
 
 

 
 
 
  

 
 
 
 

 

Figure 4 – Histogram of residuals from mixed model 
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Figure 5 – Boxplots of FEF difference by ethnicity 

 

 

 

 

 

 

 

 

 

The following conclusions can be made from this model, based on the summary in Table 4:  

 Several spirometers used seem to have a significant effect on the difference in FEF 

measurements taken before and after recess. Using a post-hoc means comparison, 

spirometer 1 differs significantly from spirometer 2, and spirometer 2 differs significantly 

from spirometer 3. 

 Students of Japanese (race level 3) descent appear to differ significantly in their lung 

function, all other factors constant (see Figure 5). They have significantly greater lung 

function, based on the difference in FEF before and after recess, compared to other races 

in a post hoc comparison. It is worth noting that only 1 of the 96 students, or 1.5% of 

them, were of Japanese descent.  

 The presence of URI (upper respiratory infection) symptoms seemed to have a positive 

effect (.036) on FEF difference. One reason for this could be that a period of activity, 
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such as recess, may have helped lung function for students who were having those 

symptoms upon going outside. 

 An indoor recess seems to have the largest positive impact on FEF Difference by a factor 

of .083, all other factors held constant. This is significant with a p-value < .0001 

 As outdoor PM 2.5 increases, FEF difference actually increases by a factor of .001, which 

is marginally significant (p-value .0573). 

 Taking daily medication for asthma has a positive effect on the FEF difference. Daily 

medication increases that difference by a factor of .078 

 As temperature outdoors increases, FEF increases by a factor of .003 

            In order to look separately at how an indoor recess and asthma together with air quality 

affected the FEF difference, a couple of additional models were considered, both in the linear 

model framework, still with a random effect for subject, and an AR(1) correlation structure. The 

first model looks at the asthma variable interacting with the PM 2.5 measurements. The results of 

this model are shown in Table 5. Looking at asthma and PM 2.5, we can see that their interaction 

is non-significant, and neither of these covariates are significant alone. We cannot show that 

asthma has any effect on the FEF difference, while also controlling for the effect of PM 2.5, and 

there is also no evidence that the effect of PM 2.5 depends on asthma status. 

           The second additional model looks at the effect of indoor recess on the FEF difference, 

controlling for PM 2.5 levels. The results of this model are shown in Table 6. These results show 

that there is no interaction present between indoor recess and the PM 2.5 levels, so the effects of 

PM 2.5 do not depend on having recess indoors versus outdoors. There is however, a substantial 

effect of indoor recess alone on FEF difference. The results show that controlling for PM 2.5 

levels, the FEF difference increases by a factor of .073 for students that stay inside for recess.    
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Table 5 – Results of PM 2.5 and asthma model 

 

Table 6 – Results of PM 2.5 and indoor recess model 

 

 

 

           Overall, the linear mixed model does not seem to show an adverse effect from PM 2.5 

exposure during recess by looking at the FEF levels before and after, all other measured factors 

held constant. This is in line with what has been found in previous analyses of these data. 

 

4.2 Meta-Regression Results 

Table 7- Covariates included in individual linear regression models 

Covariates: 

P.M. measurements of PM 2.5 

Indoor Recess Flag 

P.M. Temperature 

P.M. Humidity 

 

             The results of a meta-regression modeling the effect size of the PM 2.5 measurement 

taken in the afternoon will now be looked at. In order to perform a meta-regression on these data,  
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a linear regression was first performed for each student individually using the lmList() function 

in R from the package lme4 (Bates et al., 2015). This generated a PM 2.5 effect estimate for each 

student, as well as the standard error of that estimate. See Table 7 for a list of predictor variables 

included in the individual linear regressions. 

Categorical variables which were constant throughout each day of the study were 

excluded from the individual models, but their values are later included in the meta-regression. 

See Table 8 for a list of these constant covariates. The matrix created to implement the meta-

regression includes an individual slope estimate for the effect of interest (outdoor PM 2.5), their 

standard errors, and the various constant covariates to be included in the analysis. A portion of 

this matrix is shown in Table 9. Once the matrix from the individual regressions was defined, a 

weighted multiple regression was applied using the effect sizes of the PM 2.5 measurement as a 

response, and weights given by the inverse of the squared standard error of the PM 2.5 effect. 

 

Table 8: List of constant covariates included in meta-regression model 

Constant Covariates: 

Spirometer ID (6 flag variables for 7 

spirometers) 

Gender 

Asthma Flag 

Race (4 flag variables for 5 levels) 

Upper Respiratory Infection (URI) Flag 

Wheezing with Trouble Breathing Flag 

Physician Diagnosis of Asthma Flag 

Taking Medication Daily Flag (2 flag 

variables for 3 levels) 
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Table 9 – Partial matrix to set up meta-regression, with a row for each subject, and predictor 

columns mean-centered 

 

 

This meta-regression was carried out using the lm() function in R with the weights 

option. The covariates were centered around their means so that the intercept could be 

interpreted as the overall population mean effect size, denoting whether there is a significant 

effect (not equal to 0) of PM 2.5 on lung function, specifically the difference of FEF before and 

after recess.  

The possible right-skewness of the residuals (Figures 6 and 7) suggests the need to 

consider a transformation as follows. Let Y = PM 2.5 effect (slope for subject) and Var [Y] ≈ 

(𝑆𝐸 𝑜𝑓 𝑃𝑀 2.5 𝑒𝑓𝑓𝑒𝑐𝑡) 2. Consider the transformation 𝑌′ = (𝑐 + 𝑌) 𝜆 = 𝑓(𝑌) for some 

constants c and 𝜆. By the Delta method (Rice 1995), 𝑉𝑎𝑟[𝑓(𝑌)] ≈ [𝑓′(𝜇𝑦)]
2

∗ 𝑉𝑎𝑟(𝑌). 

Therefore, 𝑉𝑎𝑟[𝑌′] ≈ [𝜆(𝑐 +  𝜇𝑦)
𝜆−1

]
2

∗ 𝑉𝑎𝑟 (𝑌) ≈  [𝜆(𝑐 + 𝑌) 𝜆−1]
2

∗ 𝑉𝑎𝑟(𝑌).  
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Figure 6- Meta-regression residuals vs. fitted and normal Q-Q plot of residuals 

        (a)            (b)  

        

 

 

 

 
 
 

 
 
 
 

 
Figure 7- Meta-regression histogram of residuals 
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Figure 8 – Residual and normal Q-Q plots of residuals of transformed Y 

          (a)             (b)  

 

 

 

 

 

 

 

 

Figure 9 – Histogram of residuals of transformed Y 
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When running the meta-regression again, Y was transformed as follows: 𝑌′ =

(𝑐 + 𝑃𝑀 2.5 𝑆𝑙𝑜𝑝𝑒)𝜆, and the weights were redefined as weight = [𝜆(𝑐 + 𝑃𝑀 2.5 𝑆𝑙𝑜𝑝𝑒) 𝜆−1 ∗

(𝑆𝐸 𝑃𝑀 2.5 𝑆𝑙𝑜𝑝𝑒)]−2, where c = -min(PM 2.5 slopes for all subjects) = .00651, and 𝜆 = .5. This 

transformation produced generally normal residuals, centered around 0 with no evidence of 

heteroscedasticity (see Figures 8 and 9). 

Table 10 – Meta-regression results (with transformed Y) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The results from the meta-regression model in R are shown in Table 10. The important 

result from the model is the effect size of the intercept. For the Greenville data, after back 

transforming, the intercept estimate was .0015 with a 95% confidence interval of (.00082, 
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.00227). Because this interval does not contain 0, we conclude from this meta-regression analysis 

that the mean effect of the PM 2.5 level on the difference in FEF lung function before and after 

recess is, controlling for other factors, significant. The positive effect size suggests that for each 

increase of 1 ppm in the PM 2.5 measurements, lung function increases by .0015. Note also, that 

there are no other significant effects in the meta-regression except for spirometer, which suggests 

a difference in FEF difference depending on which spirometer was used. All of the other 

covariate p-values are well above the threshold of .05. 

 

4.3 Comparison 

Comparing meta-regression to a mixed model with the Greenville Air Quality Study data, 

there are not a lot of differences in the results. The 95% confidence interval for the effect of PM 

2.5 on lung function in the linear mixed model was (-.00002, .0017). This confidence interval in 

the meta-regression was (.00082, .00227), which is a similar interval but not including 0. 

Because the meta-regression confidence interval does not include 0, this method concluded that 

there is a significant effect on FEF difference by PM 2.5 measurements, by a factor of .0015. In 

the mixed model, we treated subject as a random factor with repeated measurements. In the 

meta-regression, we considered each subject separately and aggregated the PM 2.5 effect size 

estimates across subjects. In both methods, each subject had its own intercept estimate. In the 

linear mixed model, this is due to the fact that subject was treated as a random factor. 

Considering each subject separately may have allowed for a clearer picture of how PM 2.5 really 

affected FEF difference before and after recess. Although the difference in the PM 2.5 slope 

estimates from the two methods was small, it was a large enough difference that a significant 

result was found using meta-regression. 
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5. DISCUSSION 
 
 

Considering the results of the various analyses performed on these data, it is possible that 

when we look at the difference in FEF lung function after a 20 minute recess with exposure to 

the outside air, which may be polluted by an inversion, there is no evidence of a significant, 

adverse effect to the children playing outside for that period of time. It is interesting that the 

more traditional method of using a mixed model produced a non-significant result, while meta-

regression showed a slight positive significant difference in lung function after an exposure to 

the PM 2.5 outdoors. Whether or not a child had asthma did not change the effect of PM 2.5 on 

lung function. This was shown by the non-significant effect of the asthma covariate when a 

model was run looking just at asthma and PM 2.5 levels and their effect on the lung function 

difference. Speaking with Dr. Redd who was instrumental in this study, he and the staff of 

Greenville felt the results of the study show that for a healthy child, playing outside may actually 

be safer than an indoor recess on those poor air days. This was due to observation during the 

course of the study on indoor recess days that more students were prone to injuries as a result of 

being active in such a confined space; for example, running into walls, other students, etc. (Redd 

2015).  

Ultimately, each school or school district in the state of Utah will choose their own 

course of action, with this depending on the resources they have available to them. Schools in 

Cache, Davis, Weber, and Salt Lake counties all have access to hourly air quality data, which 

allows them to make the decision each time they are going to send kids to recess. Some schools 

have created a PM 2.5 cutoff, while others are still considering all of the factors involved before 

making a decision. The recommendation from the State of Utah is shown in Figure 10 (Packham 

2011). The analysis of this data supports the notion of continuing to leave the decision of how to 
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Figure 10 – Recess Guidelines for Utah Schools on Air Quality (Utah Dept of Health 2008) 

 

 

 

 

 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 

 
 

handle poor air quality and when to restrict outdoor recess up to individual schools and districts 

in the state of Utah. Future study of this issue is being considered by Utah State University 

student health, and Dr. Redd recommends future study of long term exposure to poor air, 

something we don’t know the effect of just yet (Redd 2015).  
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APPENDIX A: R CODE 
 
 
##Read in dataset  

data = read.csv("asthma.csv",header=TRUE) 

 

##Pre-analysis data exploration 

hist(data$Spiro,xlab="Spiro ID",main="Spirometer Use",col="black") 

hist(data$Grade,xlab="Grade",main="Grade Distribution",col="black") 

hist(data$Age,xlab="Age",main="Age Distribution",col="black") 

summary(data$Gender) 

summary(data$Race) 

summary(data$Language) 

table(data$Home_Type) 

table(data$Built) 

table(data$Construct) 

hist(data$Num_Smoke,xlab="Number of Smokers in Home",main="Num Smokers 

Distribution",col="black") 

table(data$Stove) 

table(data$Heat) 

hist(data$Cough_Stay,xlab="Cough Won't Go 

Away",main="Distribution",col="black") 

hist(data$Wheeze_Cold,xlab="Wheezing with 

Cold",main="Distribution",col="black") 

hist(data$Wheeze_No_Cold,xlab="Wheezing with No 

Cold",main="Distribution",col="black") 

hist(data$Wheeze_Hard_Breath,xlab="Wheezing Hard to 

Breathe",main="Distribution",col="black") 

hist(data$Wheeze_Exercise,xlab="Wheezing with 

Exercise",main="Distribution",col="black") 

hist(data$Cough_Exercise,xlab="Cough with 

Exercise",main="Distribution",col="black") 

hist(data$Chest_Tight,xlab="Chest Tight",main="Distribution",col="black") 

hist(data$Sleep_Prob,xlab="Sleep Problems",main="Distribution",col="black") 

table(data$Dr_Dx) 

table(data$Asthma1) 

table(data$Bronchitis) 

table(data$Rad) 

table(data$Pneumonia) 

table(data$Asth_Bronch) 

table(data$Med_Rx) 

table(data$Med_Daily) 

table(data$Asthma) 

hist(data$Crit13,xlab="Criteria 1-3",main="Distribution",col="black") 

hist(data$Crit22,xlab="Criteria 2-2",main="Distribution",col="black") 

hist(data$Crit32,xlab="Criteria 3-2",main="Distribution",col="black") 

hist(data$Sum_Crit,xlab="Sum of Criteria",main="Distribution",col="black") 

table(data$Color) 

hist(data$Pre_FEF,xlab="Pre Recess FEF",main="Distribution",col = "grey") 

hist(data$Pre_PEFR,xlab="Pre Recess PEFR",main="Distribution",col="grey") 

hist(data$Post_FEF,xlab="Post Recess FEF",main="Distribution",col="grey") 

hist(data$Post_PEFR,xlab="Post Recess PEFR",main="Distribution",col="grey") 

table(data$URI) 

table(data$Indoor_Recess) 

table(data$Passive_Recess) 

table(data$Asthma_Meds) 
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hist(data$Pre_FVC,xlab="Pre Recess FVC",main="Distribution",col="grey") 

hist(data$Pre_FEV,xlab="Pre Recess FEV",main="Distribution",col="grey") 

hist(data$Pre_FEVFVC,xlab="Pre Recess FEV FVC 

Ratio",main="Distribution",col="grey") 

hist(data$Post_FVC,xlab="Post Recess FVC",main="Distribution",col="grey") 

hist(data$Post_FEV,xlab="Post Recess FEV",main="Distribution",col="grey") 

hist(data$Post_FEVFVC,xlab="Post Recess FEV FVC 

Ratio",main="Distribution",col="grey") 

hist(data$AM25OUT,xlab="Avg Outdoor PM2.5 

AM",main="Distribution",col="black") 

hist(data$PM25OUT,xlab="Avg Outdoor PM2.5 

PM",main="Distribution",col="black") 

hist(data$INPM25,xlab="Avg Indoor PM2.5 PM",main="Distribution",col="black") 

hist(data$AMTEMP,xlab="Avg AM Outdoor 

Temperature",main="Distribution",col="black") 

hist(data$PMTEMP,xlab="Avg PM Outdoor 

Temperature",main="Distribution",col="black") 

hist(data$PMHUMID,xlab="Avg PM Humidity 

Outdoors",main="Distribution",col="black") 

 

##create lung function differences 

data$FEF_Diff = data$Post_FEF - data$Pre_FEF 

data$FVC_Diff = data$Pre_FVC - data$Post_FVC 

data$FEV_Diff = data$Post_FEV - data$Pre_FEV 

data$FEVFVC_Diff = data$Post_FEVFVC - data$Pre_FEVFVC 

 

##check response variable for normality 

hist(data$FEF_Diff,xlim = c(-.5,.75)) 

qqnorm(data$FEF_Diff) 

 

##check for interactions among continuous variables 

pairs(data$AM25OUT,data$PM25OUT,data$AMTEMP,data$PMTEMP,data$PMHUMID) 

 

##define nominal and ordinal factors in the data 

data$race.f = factor(data$Race) 

data$spiro.f = factor(data$Spiro) 

data$grade.f = ordered(data$Grade) 

data$gender.f = factor(data$Gender) 

data$lang.f = factor(data$Language) 

data$hometype.f = factor(data$Home_Type) 

data$built.f = factor(data$Built) 

data$construct.f = factor(data$Construct) 

data$stove.f = factor(data$Stove) 

data$heat.f = factor(data$Heat) 

data$meddaily.f = ordered(data$Med_Daily) 

 

hist(data$FEF_Diff,xlab="FEF Difference",col="grey",main="Histogram of FEF 

Difference",breaks=24) 

 

##Perform a linear mixed effects regression 

library(nlme) 

 

aqmod = lme(FEF_Diff ~ Date + spiro.f + grade.f + Age + gender.f + Sum_Crit 

      + race.f + hometype.f + Num_Smoke + URI + Indoor_Recess*PM25OUT + 

Passive_Recess 

        + Cough_Stay + Wheeze_Cold + Wheeze_No_Cold + Wheeze_Hard_Breathe + 

Wheeze_Exercise 
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        + Cough_Exercise + Chest_Tight + Dr_Dx + meddaily.f + Asthma_Meds  

   + AMTEMP + PMTEMP + PMHUMID,data=data,random=~1|Subject,method="ML") 

 

#introduce correlation structure into the model 

Aqmodcor = update(aqmod, correlation = corAR1()) 

 

#create a null model for comparison 

nmod = lme(FEF_Diff ~ 1, data=data,random=~1|Subject,method="ML") 

naqmod <- update(nmod, correlation = corAR1()) 

 

smrnull = summary(naqmod) 

smraqmod = summary(Aqmodcor) 

 

#Look at other correlation structures and compare AIC values 

aqmod2 <- update(aqmod, correlation = corCAR1()) 

a2 = summary(aqmod2) 

aqmod3 <- update(aqmod, correlation = corCompSymm()) 

a3 = summary(aqmod3) 

aqmod9 <- update(aqmod, correlation = corSymm()) 

a4 = summary(aqmod9) 

     

#backward selection for model reduction 

library(MASS) 

aqmodr = stepAIC(Aqmodcor,direction="backward") 

summary(aqmodr) 

 

aqmodr = update(aqmodr,~.+Indoor_Recess*PM25OUT) ##add back in 

#check the residuals of the model 

Summary(aqmodr) 

plot(aqmodr) 

 

## calculate a pseudo-rsquared 

rssfull = sum(aqmodr$residuals^2) 

rssnull = sum(naqmod$residuals^2) 

rsq = 1 – (rssfull/rssnull) 

rsq 

 

hist(aqmodr$residuals, main= "Residuals: Linear Mixed Model", 

col="grey",breaks = 24) 

 

#post hoc means comparisions on significant factors 

pairwise.t.test(data$FEF_Diff,data$spiro.f,p.adj="none") 

pairwise.t.test(data$FEF_Diff,data$race.f,p.adj="none") 

pairwise.t.test(data$FEF_Diff,data$meddaily.f,p.adj="none") 

 

#looking at boxplots of FEF difference by factor 

boxplot(data$FEF_Diff~data$spiro.f,col="blue") 

boxplot(data$FEF_Diff~data$race.f,col="blue") 

boxplot(data$FEF_Diff~data$gender.f,col="blue") 

boxplot(data$FEF_Diff~data$Asthma,col="blue") 

boxplot(data$FEF_Diff~data$URI,col="blue") 

boxplot(data$FEF_Diff~data$Indoor_Recess,col="blue") 

boxplot(data$FEF_Diff~data$Wheeze_Hard_Breathe,col="blue") 

boxplot(data$FEF_Diff~data$Dr_Dx,col="blue") 

boxplot(data$FEF_Diff~data$meddaily.f,col="blue") 
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##additional models to look at effect of asthma, indoor recess with PM 2.5 on 

FEF_Difference 

asth= lme(FEF_Diff ~ Asthma*PM25OUT,data=data,random=~1|Subject,method="ML") 

asth = update(asth, correlation = corAR1()) 

summary(asth) 

plot(asth) 

 

asth2 = lme(FEF_Diff ~ Dr_Dx*PM25OUT,data=data,random=~1|Subject,method="ML") 

asth2 = update(asth2, correlation = corAR1()) 

summary(asth2) 

plot(asth2) 

 

recess = lme(FEF_Diff ~ Indoor_Recess*PM25OUT, 

data=data,random=~1|Subject,method="ML") 

recess = update(recess, correlation = corAR1()) 

summary(recess) 

plot(recess) 

 

#performing individual linear regressions on each subject 

library(lme4) 

fits = lmList(FEF_Diff~PM25OUT + Indoor_Recess + PMTEMP + PMHUMID | Subject, 

data=data) 

summ = summary(fits) 

 

##creating histogram of ni values 

ni = tapply(data$Subject,data$Subject,length) 

ni = as.vector(ni) 

hist(ni) 

 

##extracting needed coefficients and standard errors into a matrix for meta 

regression 

coefs25OUT = summ$coefficients[,1,2] 

SE25OUT = summ$coefficients[,2,2] 

coefs25OUTIN = as.vector(coefs25OUT) 

SE25OUTIN = as.vector(SE25OUT) 

 

spiro = tapply(data$Spiro,data$Subject,max) 

spiro.f2 = as.numeric(spiro==2) 

spiro.f3 = as.numeric(spiro==3) 

spiro.f4 = as.numeric(spiro==4) 

spiro.f5 = as.numeric(spiro==5) 

spiro.f6 = as.numeric(spiro==6) 

spiro.f7 = as.numeric(spiro==7) 

spiro.f2 = as.vector(spiro.f2-mean(spiro.f2)) 

spiro.f3 = as.vector(spiro.f3-mean(spiro.f3)) 

spiro.f4 = as.vector(spiro.f4-mean(spiro.f4)) 

spiro.f5 = as.vector(spiro.f5-mean(spiro.f5)) 

spiro.f6 = as.vector(spiro.f6-mean(spiro.f6)) 

spiro.f7 = as.vector(spiro.f7-mean(spiro.f7)) 

gender = tapply(data$Gender,data$Subject,max) 

gender = as.vector(gender-mean(gender)) 

asthma = tapply(data$Asthma,data$Subject,max) 

asthma = as.vector(asthma-mean(asthma)) 

race = tapply(data$Race,data$Subject,max) 

race.f2 = as.numeric(race==2) 

race.f3 = as.numeric(race==3) 

race.f4 = as.numeric(race==4) 
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race.f5 = as.numeric(race==5) 

race.f2 = as.vector(race.f2-mean(race.f2)) 

race.f3 = as.vector(race.f3-mean(race.f3)) 

race.f4 = as.vector(race.f4-mean(race.f4)) 

race.f5 = as.vector(race.f5-mean(race.f5)) 

URI = tapply(data$URI,data$Subject,max) 

URI = as.vector(URI–mean(URI)) 

whb = tapply(data$Wheeze_Hard_Breathe,data$Subject,max) 

whb = as.vector(whb–mean(whb)) 

dx = tapply(data$Dr_Dx,data$Subject,max) 

dx = as.vector(dx–mean(dx)) 

med = tapply(data$Med_Daily,data$Subject,max) 

med.f.L = as.numeric(med==1) 

med.f.Q = as.numeric(med==2) 

med.f.L = as.vector(med.f.L–mean(med.f.L)) 

med.f.Q = as.vector(med.f.Q-mean(med.f.Q)) 

amat = 

as.data.frame(cbind(coefs25OUTIN,SE25OUTIN,spiro.f2,spiro.f3,spiro.f4,spiro.f

5,spiro.f6,spiro.f7,gender,asthma,race.f2,race.f3,race.f4,race.f5,URI,whb,dx,

med.f.L,med.f.Q)) 

 

 

w = 1/(amat$SE25OUTIN^2) 

 

#perform metaregression 

metareg = lm(coefs25OUT ~ spiro.f2 + spiro.f3 + spiro.f4 + spiro.f5 + 

spiro.f6 + spiro.f7 + gender + asthma + race.f2 + race.f3 + race.f4 + race.f5 

+ URI + whb + dx + med.f.L + med.f.Q,data=amat,weights=w) 

summmeta = summary(metareg) 

plot(metareg) 

hist(metareg$residuals) 

 

 

##transform coefs25OUT 

amat$ytr = (-min(amat$coefs25OUTIN)+amat$coefs25OUTIN)^.5 

 

#define weights for meta regression transformed 

wt1 = .5*(-min(amat$coefs25OUTIN)+amat$coefs25OUTIN)^-.5 

wt2 = wt1*amat$SE25OUTIN 

wtt = wt2^-2 

 

#perform metaregression transformed 

metareg = lm(ytr ~ spiro.f2 + spiro.f3 + spiro.f4 + spiro.f5 + spiro.f6 + 

spiro.f7 + gender + asthma + race.f2 + race.f3 + race.f4 + race.f5 + URI + 

whb + dx + med.f.L + med.f.Q,data=amat,weights=wtt) 

summmeta = summary(metareg) 

 

#check residuals of metaregression 

plot(metareg) 

hist(metareg$residuals,xlab="Residuals",main="Histogram of Meta-Regression 

Residuals",col="grey",breaks=24) 

 

#95% confidence interval for intercept effect size 

confint(metareg,'(Intercept)',level=.95) 

intervals(aqmodr,level=.95) 
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