
SSC04-IV-7

McDermott 1 18th Annual AIAA/USU Conference on Small Satellites

Internal
ROM

Internal
RAM / L1

Data Registers

ALU

Microprocessor EDAC Hardware

L2 Cache

External Memory

ECC

ECC

Performs EDAC on all program
and data memory, transparently
to the processor. Can cost one

or more wait states.

Single-cycle access. Cannot be
EDAC protected by hardware outside
the processor, and is often disabled in

SEU-sensitive applications.

Cannot be EDAC protected by
hardware outside the processor,
but is not very SEU-susceptible.

0.25-2MB; typically
2-cycle access
without EDAC

Potentially Gigabytes;
sequential accesses up to

167MHz, see Table 1

Figure 1. Traditional Hardware EDAC

The Use of Overloaded Software Operators for Error Detection and Correction

Scott A. McDermott, Luis G. Jordán, Kalle Anderson
AeroAstro, Inc.

20145 Ashbrook Place, Ashburn, VA 20147; (703)723-9800
scott.mcdermott@aeroastro.com, luis.jordan@aeroastro.com, kalle.anderson@aeroastro.com

ABSTRACT: Performing error detection and correction (EDAC) for single-bit errors in software instead of
hardware has both advantages and cost. The largest advantage is the ability to use off-the-shelf computing
hardware, with high capability and low cost but no hardware-based EDAC. The largest cost is in speed and
complexity, where the software takes many instructions (coding effort) and many cycles (time) to perform the
EDAC function that can be performed single-cycle in hardware.

By using the object-oriented software concept of overloaded operators, the complexity can be almost entirely
removed, and the speed potentially improved, making software EDAC a much more useful option. In any language
that supports overloaded operators, a set of types can be created which represent EDAC-protected versions of basic
variable types. These types would include the basic bits of the original variable type, plus error checking bits,
wrapped into a single object. Any arithmetic operation which uses these protected types would then use a special
version of the operation (addition, dereferencing, assignment, and so forth) that takes error-protection bits into
account.

TRADITIONAL EDAC

In current small-space missions, where using a
processor from a radiation-hardened upset-immune
foundry is not viable, the spacecraft processor choice
quickly reduces to two options. Each option has its
own benefits and drawbacks: the purchase of an off-the-
shelf processor board with Error Detection And
Correction (EDAC) hardware included; or, the design
and development of a custom board with this same
hardware feature (Figure 1). This choice is particularly
bothersome at the micro- and nano-sat level, or in
situations where the processor is for a small subsystem,

where the ideal solution would actually be a single-chip
embedded controller. A single-chip solution does not
allow for hardware EDAC to be inserted.

EDAC is used to guard primarily against Single Event
Upsets (SEUs). SEUs can occur in one of four
fundamental types of registers:

1. A critical function register, such as the
microprocessor program counter, which will
definitely and almost immediately cause the unit to
malfunction. No known type of EDAC, beyond SEU
immunity in the chip itself, will guard against this.

McDermott 2 18th Annual AIAA/USU Conference on Small Satellites

0

200

400

600

800

1000

1200

1400

1600

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

0.0
1.0
2.0
3.0
4.0

5.0
6.0
7.0
8.0
9.0

Core speed (MHz)

Data bus (MHz)

Total on-chip memory (kB)

Memory access speed ratio (secondary axis)

Figure 2. Microprocessor parameters over time;
PowerPC 603 to 7447a

2. A device-internal data register, including Arithmetic
Logic Unit (ALU) registers and any internal
memory. Hardware EDAC cannot protect against
errors here, so typically, the amount of this memory
that is used is minimized.

3. An external memory register. This is the type of
register protected by hardware EDAC circuitry.

4. An unused memory or other register, whose value is
irrelevant.

One important note in this list is under #2: for
traditional EDAC approaches, on-board RAM (L1
cache, sometimes L2 cache, and/or memory-mapped
single-cycle access RAM) must be disabled as there is
no way to perform EDAC on this memory. Put another
way, systems which use EDAC on external memory but
still use processor-internal RAM are hybrid approaches
where mass storage is protected but operational
memory (the frequently-referenced data in cache) is
not. As on-chip cache size increases and the operating
voltages / feature size decrease, the likelihood of an
unrecoverable single-bit error in cache increases1.

Hardware EDAC

Error Correction Codes (ECCs) are employed in EDAC
hardware to perform their function. The most common
ECC for memory systems is a Single Error Correction,
Dual Error Detection (SECDED) Hamming code,
which has the following advantages:

ÿ It will correct a one-bit error anywhere in a word

ÿ It will detect a two-bit error where either error
occurs anywhere in a word

ÿ It will detect a significant number of errors greater
than two bits

ÿ It operates on a whole binary word in parallel, as
opposed to many ECCs (such as Cycling
Redundancy Checks or Forward Error Correction
codes) which operate on serial bit streams

ÿ It requires only six error-checking bits to protect a
32-bit data word

Hamming ECCs can be implemented combinatorially,
that is, with a series of logic gates that pass data from
memory to CPU (correcting single bit errors) and from
CPU to memory (creating error-check bits) without
needing to wait for a clock. However, for a 32-bit data
word, the memory-to-CPU path will require at least 4
stages of 4-input logic gates, plus pin input and output
times, totaling at least 5ns of delay in current
technology. For systems running at 100MHz memory
bus speed and above, as many modern processors do,
this is likely to introduce a full-cycle delay in memory

access times, and in worst case halve the throughput to
external memory. Compounded with the impact of
disabling internal memory, this can severely reduce
processor effectiveness. However, since modern
microprocessors are greatly overpowered for their
typical uses on small spacecraft, this “efficiency
impact” is usually ignorable. For example, the STPSat-
1 central computer, a PowerPC 750, runs all spacecraft
bus functions using only approximately 5% of its
performance capacity.

DIVERGENCE BETWEEN COMPUTER
TECHNOLOGY AND EDAC NEEDS

The development of microprocessor technology in the
last decade may reasonably be described as “pull more
onto the chip”. More memory, more functionality,
more calculation units are pulled inside the boundaries
of the microprocessor itself, so that the vast increases in
semiconductor density and speed can translate into
increased performance. Inter-chip communication has
not kept pace: the capacitive effects inherent in creating
a conduit from one chip through a pin to a board to
another pin on another chip prevent per-line speed from
increasing beyond a certain limit. This pattern is shown
in Figure 2 below.

What this chart indicates is that over the last decade,
while processor speeds have increased by a factor of 12,
external memory access speeds have only increased by
a factor of 3.3. Since on-chip memory is single-cycle
access, the “Memory access speed ratio” indicates how

McDermott 3 18th Annual AIAA/USU Conference on Small Satellites

much faster internal RAM accesses are relative to
external memory – from 2.4 times faster in 1994 to 8.5
times faster today. The amount of memory on-chip has
gone up an enormous 33 times. And a final note which
this chart cannot show: the increase in external memory
access speed, small as it is, is due largely to
optimization of memory accesses in order to update on-
chip memory. That is, the external memory speed
increases are only available for the kind of predictable,
sequential accesses that come from refilling an L1
cache line, not from the random accesses that an actual
software program would use.

A similar pattern can be seen in processor power
efficiency, described as the number of (in millions)
instructions the processor can perform per Watt it
consumes. This MIPS/W factor has increased, for the
PowerPC line, from 7.3 to 74.7 over the timespan
shown; that is, for the same Wattage, ten times as many
instructions can be performed today compared to ten
years ago.

All of these trends indicate that external EDAC is going
to introduce more and more problems as time goes on:
either chip-internal memory is left unused, severely
impacting the performance of the machine; or, if
processor-internal memory is used, it is going to
represent an ever-increasing exposure of the system to
SEU faults.

SOFTWARE EDAC USING OPERATOR
OVERLOADING

If an efficient software method for performing EDAC
were available, the above trend would reverse:
increases in on-chip memory and MIPS/W would result
in more useful, instead of more wasted, processor
performance. That is, if the software itself were
performing error detection and correction on the
variables it was using, then it would not matter where
those variables were stored: in on-chip memory, off-
chip memory, even in the ALU data registers
themselves. The downside, of course, is that unlike an
efficient set of combinatorial logic performing a
Hamming ECC, the processor must itself spend cycles
during every variable operation checking to see if the
variable is healthy.

With the trends in processor capability shown earlier,
this downside is expected to lessen over time. This
then leads us to consider what the best way might be for
software to perform the EDAC function. One approach
is simply to ignore all preformed variable types offered
by a language, opting instead for specialized types and
functions to support them. In C, for example, the
following code would perform X=A+B+C using EDAC:

typedef struct {
 int src,err;
} ProtInt;

/* performs EDAC and returns good value */
int ProtIntRead(ProtInt val);

/* creates error-check value based on val */
int ProtIntErrmake(int val);

ProtInt ProtIntSet(int val);
 ProtInt result;
 Result.src = val;
 Result.err = ProtIntErrmake(val);
}

ProtInt ProtIntAdd(int val1, int val2) {
 ProtInt result;
 result = ProtIntSet(ProtIntRead(val1) +
ProtIntRead(val2));
 return(result);
}

void main(void) {
 ProtInt X,A,B,C;
 A = B = C = ProtIntSet(5);
 X = ProtIntAdd(A,ProtIntAdd(B,C));
}

There are somewhat more efficient ways to approach
this in a function-oriented language – having
ProtIntAdd take a variable number of arguments, for
instance – but ultimately, the code will remain
something close to unreadable, full of “set” and “add”
and other operations-become-functions. The number of
errors that would creep into the software simply due to
its convoluted appearance would likely exceed the
operational errors due to bit flips.

In order to leave the appearance of the source code
sensible, then, we can introduce a preprocessor stage,
where the source code can read X=A+B+C but the
compiler receives X = ProtIntAdd(A, ProtIntAdd
(B,C)). This recovers useful source code, but is rife
with potential for confusion. For instance,
foo(*ptr++) could translate to

foo (ProtIntAdd (ProtIntDeref (ptr),
 ProtIntSet (1)));

– which is wrong – or to

foo (ProtIntDeref (ptr)); ProtIntAdd (ptr,
 ProtIntSet (1));

which creates any amount of confusion during
debugging, as there is an entire new expression added
invisibly to the programmer. Similar problems occur if
a postprocessing step is added, where the compiler
output is transformed to perform EDAC operations
instead of simple operations.

McDermott 4 18th Annual AIAA/USU Conference on Small Satellites

Operator γ

Read operand1

Read operand2
(if present)

Calc γ (op1[,op2])
using base-type

operation

Calc error-check bits
on result

Return
protected result

Result may be
“exposed” here,

depending on the
ECC method;

comparable to
hardware EDAC,

where variables
are exposed

whenever they
are in the ALU

registers

Figure 3. Framework for EDAC-Enhanced
Operators

0
errors

?

1
error

?
Exception

This can take
“arbitrarily long”

Correct SEU

This must
be as fast

as possible

Read
operand

Return
source data

Figure 4. EDAC Read Function

Having tried a few simple approaches, and found them
lacking for various reasons, we can take a step back and
determine our desires in a software EDAC approach.
One such set might be:

Use native operators. We have found that if we’re
performing addition, we want it to look like addition,
not like a function call.

Don’t end-run the compiler. Avoid putting magic
steps between the source code and the compiler
(preprocessing), or the compiler and the object code
(postprocessing), as this makes debugging difficult.

Perform error detection on every read. Every time a
variable is accessed, check if it’s healthy. If it has an
SEU, correct it; if it is uncorrectable, raise an exception.

Record error-check bits on every write. This is
necessary to perform error detection later on.

Use at least SECDED ECC. For similarity with
hardware EDAC, the approach should be able to correct
any single bit error, and detect any double-bit error.

Minimize latency. The penalty for software EDAC is
that it takes processor cycles. It is ideally a small
number of cycles.

Minimize exposure. For many ECCs (except triple
save, where each variable is copied three times and
voting performed), there is a period where an SEU can
enter a calculation such that it will go undetected.

Balance memory usage with cycle usage. To some
extent, an ECC can be made to use few bits but many
processor cycles, or vice/versa. Finding a good balance
between the two is important.

The first two items are the most interesting ones, as
they focus on expression rather than function. Any
programming language can implement the functions
described – SECDED ECC, minimal latency – but the
expression, as explored earlier, may be cumbersome. It
is here that the subject of this paper comes into play.

Any language which offers operator overloading – the
ability to redefine the meanings of symbols otherwise
recognized to the compiler, such as “+” and “=” –
opens the opportunity to satisfy the expression-focused
desires listed above. Operator overloading is a way to
tell the compiler, “When an expression such as
X=A+B+C is encountered, use these special functions for
‘=’ and ‘+’ instead of the usual one.” The special
functions then perform the error correction and error-bit
creation tasks required for EDAC, much as
ProtIntAdd and ProtIntSet did earlier.

A given programming language will have some set of
base types, from which all other data structures are
built. When using operator overloading to perform
EDAC, the operations on these base types themselves
may be overloaded, or new types may be created which
are “EDAC-protected versions” of the base types. The
second option is generally favorable, since it leaves the
option open for the programmer to easily revert to
(unprotected) base types for speed or other reasons; it
also simplifies the process of allocating memory for the
error-check bits, as the new protected types can simply
include these bits. Either way, each operation that the
compiler implements for the given base type is re-
implemented basically as shown here (Figures 3 and 4):

McDermott 5 18th Annual AIAA/USU Conference on Small Satellites

ECC Choice

The choice of Error Correcting Code is what defines the
system’s ability to minimize latency, minimize
exposure, and balance memory usage with cycle usage.

Three options are shown in Table 1 below. Assembly
code demonstrating the implementation of the read
function for a 32-bit operand in a PowerPC architecture
is shown as an example. All of the routines place the
value pointed to by register r7, into the register r1.

Table 1: Error Correcting Code Options

Method Read coding
#

instr.
Instruction ratio
with non-EDAC

Memory ratio
with non-EDAC Comments

Non-EDAC lwz r1,0(r7) 1 1X 1X Assumes EDAC
handled by hardware;
cannot do EDAC on
internal memory.

Triple Save lwz r1,0(r7)
lwz r2,1(r7)
lwz r3,2(r7)
cmpd r1,r2
bcl 4,2,UpsetHandler
cmpd r1,r3
bcl 4,2,UpsetHandler

7 7X 3X Variables are never
exposed. Can be
fooled by some dual-
errors, but otherwise
is a very strong ECC.

Triple XOR lwz r1,0(r7)
rotlwi r2,r1,1
xor r3,r1,r2
rotlwi r2,r1,2
xor r3,r3,r2
lwz r2,1(r7)
xor. r3,r3,r2
bcl 4,2,UpsetHandler

8 8X 2X Achieves SECDED.
Good overall
cycle/memory
balance.

Hamming (Too long to show) >>50 >>50X 1.25X For comparison only;
not a sensible
software ECC.

The triple save method stores three copies of every
variable, so that a single bit error in any one of the
copies is recoverable from the other two copies. In fact,
any number of errors in any one copy of the variable
are recoverable, protecting against other types of
failures than single-event upsets. Triple-save actually
does not satisfy the desire to detect all dual-bit errors;
however, it can always come up with a “best-guess”
result based on voting among the three copies of the
variable. Its strongest feature is that, assuming an
operation like addition is encoded as

add sum_copy1,addend1_copy1,addend2_copy1

add sum_copy2,addend1_copy2,addend2_copy2

add sum_copy3,addend1_copy3,addend2_copy3

then there is never a moment when an SEU can occur
that will go undetected in the result. That is, there is no
variable exposure at any time while using EDAC-
protected operations.

The triple XOR method takes the source data, rotates it
by one bit, rotates it also by two bits, and exclusive-
ORs all three values together to create the error-check

bits. A single-bit error in the source data word shows
up as three sequential bits different in the error-check
word. A single-bit error in the error-check word shows
up as that single bit being in error. Dual-bit errors show
up as 2, 4, 5, or 6 discrepancies in the error-check word.
This approach is more memory efficient than triple save
and fully adheres to the desire for SECDED
performance, but it takes slightly longer per read and
does leave the result of an operation exposed to an SEU
if it occurs between the read of the operands and the
creation of the result’s error-check bits. Again note that
this is the same as hardware EDAC, where an SEU in a
processor register will cause a result to be calculated
incorrectly but undetectably so.

One important note is that since operators can be
overloaded corresponding to any variable type, the error
coding can be customized to be optimal for each word
size or variable usage. An EDAC-protected floating-
point variable, for example, might employ an ECC that
captures errors in the exponent better than in the
mantissa. Triple save may be more useful for byte-
wide variables, while triple XOR is used for 32-bit
variables.

McDermott 6 18th Annual AIAA/USU Conference on Small Satellites

The above list is by no means canonical. Many other
ECCs can be created, optimized around processor
instruction sets, or variable usage, or expected error
pattern, or any other situation. Nor do ECCs need to
adhere to the “source data word plus error check
word(s)” pattern assumed in this table. The data dealt
with by the read function does not necessarily need to
resemble the source data in any way, as long as
operations on the data (as redefined by operator
overloading) produce the correct results. One
particularly promising avenue is an ECC which
survives arithmetic operations without exposing the
source data at all; that is, where X=A+B can be
performed as a single true addition, as opposed to a
source data recovery - addition - result error check
creation process.

CODE EXAMPLE

Following is a sample of software EDAC using
operator overloading. C++ is the example language, as
it is the most commonly used and available language
that supports operator overloading. However, none of
the specific coding techniques shown here – the use of
class templates, the set of base types – is canonical or
inherently necessary to perform software EDAC. Many
of the specific coding choices shown here are for ease
of demonstration.

While C++ itself defines twelve basic data types – bool,
char, unsigned char, int, unsigned int, short, unsigned
short, long, unsigned long, float, double, and long
double – we are better off being more specific in our
typing. This is the first of a series of opportunities to
make protected variables behave largely like their
unprotected counterparts, but with more safeguards. So
the nine quasi-basic types we will utilize are:

bool takes values TRUE or FALSE

int8 8-bit signed integer

uint8 8-bit unsigned integer

int16 16-bit signed integer

uint16 16-bit unsigned integer

int32 32-bit signed integer

uint32 32-bit unsigned integer

float 32-bit floating-point

double 64-bit floating-point

Note that pointers to each of these types; as well as
pointers to user-defined types, particularly structures or
classes; also exist. They will be dealt with separately
below, but for purposes of the present discussion, we

can assume that they behave generally like 32-bit
unsigned integers.

From these base types, we will create new types –
EDAC-protected versions of each of the nine types
listed above. They will be implemented as object
classes, as that is an excellent way of capturing the idea
of software EDAC: variables that act in a certain way,
but with the internals hidden from the user. Each
EDAC-protected class will have members that contain
the source data and error checking bits, member
functions for performing read and write, and finally,
member functions that perform all of the operations that
the base type supports. A variable declared as one of
these classes will behave just like the corresponding
base type, but behind the scenes, error detection and
correction will be occurring.

For purposes of this example, triple XOR ECC will be
used, primarily because it bears the greatest functional
resemblance – full SECDED, some variable exposure –
to hardware EDAC. Given that, it quickly becomes
evident that many of the operators to be overloaded
look identical for all of these variable types – addition,
for example, looks like addition whether the variable is
an 8-bit integer or a 64-bit double. For any given
EDAC-protected type ptype, the general appearance
of an operator becomes

ptype operatorγ(ptype val) {
 ptype result;

 result = this->read() γ val2.read();
 result.errmake();
 return(result);
}

Since this pattern applies to so many different types, the
C++ tool of class templates is very useful. The specific
types will be derived from this template. Each type can
override the standard functions implemented by the
template. Note that in the following code examples, the
assumption is made that triple XOR is used for all
types, so the source-data and error-check members can
be part of the template.

One of the advantages of wrapping these behavior into
object classes, however, is that any of this can be
changed – different ECCs for different types, different
behaviors for the same operators under different types –
and it all remains completely transparent to the
programmer using these EDAC-protected classes. As
long as the variables continue to behave like their base-
type counterparts, what goes on within the classes
related to EDAC is completely adjustable.

The fundamental EDAC-protected class template thus
looks like this:

McDermott 7 18th Annual AIAA/USU Conference on Small Satellites

template <class Type>
class Prot {
public:
 Prot<Type> () {}
 Prot<Type> (Type val) {src=val; errmake();}
 ~Prot<Type> () {}

 Prot<Type> operator+();
 Prot<Type> operator+(Prot<Type> &val);
 Prot<Type> operator-();
 Prot<Type> operator-(Prot<Type> &val);
 Prot<Type> operator*(Prot<Type> &val);
 Prot<Type> operator/(Prot<Type> &val);
 Prot<Type> operator%(Prot<Type> &val);

 Prot<Type> operator~();
 Prot<Type> operator&(Prot<Type> &val);
 Prot<Type> operator|(Prot<Type> &val);
 Prot<Type> operator^(Prot<Type> &val);
 Prot<Type> operator>>(Prot<int32> &val);
 Prot<Type> operator<<(Prot<int32> &val);

 Prot<Type> &operator=(Type val);
 Prot<Type> &operator=(Prot<Type> &val);
 Prot<Type> &operator+=(Prot<Type> &val);
 Prot<Type> &operator-=(Prot<Type> &val);
 Prot<Type> &operator*=(Prot<Type> &val);
 Prot<Type> &operator/=(Prot<Type> &val);
 Prot<Type> &operator%=(Prot<Type> &val);
 Prot<Type> &operator&=(Prot<Type> &val);
 Prot<Type> &operator^=(Prot<Type> &val);
 Prot<Type> &operator|=(Prot<Type> &val);
 Prot<Type> &operator>>=(Prot<Type> &val);
 Prot<Type> &operator<<=(Prot<Type> &val);

 Prot<Type> operator++();
 Prot<Type> operator++(int val);
 Prot<Type> operator--();
 Prot<Type> operator--(int val);

 ProtBool operator>(Prot<Type> &val);
 ProtBool operator<(Prot<Type> &val);
 ProtBool operator!=(Prot<Type> &val);
 ProtBool operator==(Prot<Type> &val);
 ProtBool operator>=(Prot<Type> &val);
 ProtBool operator<=(Prot<Type> &val);

 ProtPtr<Prot<Type>> operator&();

 Type to_unprotected()
 {return(this->read());}

protected:
 Type read();
 void errmake();
 void UpsetHandler();

 Type src;
 Type err;
};

Several items should be noticed in this template:

ÿ There are two ways to go from an unprotected to a
protected variable: using a constructor
(Prot<Type> (Type val)) or using the assignment
operator (operator=(Type val)). Only variables
of the given base type can be converted to

protected variables this way. Upcasting is a
significant issue discussed later.

ÿ Bit-shift operators are assumed to take an int32
type. This is a safe way to start, though as always,
more operator overloading can increase efficiency
by avoiding unnecessary upcasting to int32.

ÿ Most operands are passed by reference to these
member functions. In general, when using EDAC-
protected variables, passing by reference should be
avoided. This is contrary to usual good practice in
C++, where passing by reference is more elegant
than passing pointers2. However, passing by
reference causes the compiler to actually send a
pointer, unprotected, to the receiving function.
Passing protected pointers (discussed later), as in
traditional C, is a better approach to letting the
function adjust a variable in its parameter list.
Passing by reference is necessary for these class
member functions, uniquely, so that any errors
detected during the read of the right-hand value
(val) can be corrected in the actual variable
instead of a copy.

ÿ ProtBool is not Prot<bool>. This is because
the bool type is, by custom, FALSE=0 and
TRUE=1, which is not a good foundation for strong
error-checking. ProtBool is therefore defined as
a separate class independent of the actual bool
base class.

Under this template, most operators are implemented in
the format shown earlier:

template <class Type> Prot<Type>
Prot<Type>::operator+() {
 this->read(); return(*this);
}

template <class Type> Prot<Type>
Prot<Type>::operator+(Prot<Type> val) {
 Prot<Type> ret;
 ret.src=read()+val.read(); ret.errmake();
 return(ret);
}

template <class Type> Prot<Type>
Prot<Type>::operator~() {
 Prot<Type> ret;
 ret.src=~read(); ret.errmake();
 return(ret);
}

template <class Type> Prot<Type>
Prot<Type>::operator&(Prot<Type> val) {
 Prot<Type> ret;
 ret.src=read()&val.read(); ret.errmake();
 return(ret);
}

template <class Type> Prot<Type>
Prot<Type>::operator>>(Prot<int32> val) {
 Prot<Type> ret;

McDermott 8 18th Annual AIAA/USU Conference on Small Satellites

 ret.src=read()>>val.read(); ret.errmake();
 return(ret);
}

template <class Type> Prot<Type>
&Prot<Type>::operator=(Type val) {
 src=val; errmake();
 return(*this);
}

template <class Type> Prot<Type>
&Prot<Type>::operator=(Prot<Type> val) {
 src=val.read(); errmake();
 // Can check for this->err == val.err
 return(*this);
}

template <class Type> Prot<Type>
&Prot<Type>::operator+=(Prot<Type> val) {
 src=read()+val.read(); errmake();
 return(*this);
}

template <class Type> Prot<Type>
Prot<Type>::operator++() {
 src=read()+1; errmake();
 return(*this);
}

template <class Type> Prot<Type>
Prot<Type>::operator++(int val) {
 src=read()+1; errmake();
 return(*this);
}

template <class Type> ProtBool
Prot<Type>::operator<(Prot<Type> val) {
 if (read()<val.read())
 return(PROTTRUE);
 else return(PROTFALSE);
}

template <class Type> ProtBool
Prot<Type>::operator!=(Prot<Type> val) {
 if (read()!=val.read())
 return(PROTTRUE);
 else return(PROTFALSE);
}

template <class Type> ProtBool
Prot<Type>::operator==(Prot<Type> val) {
 if (read()==val.read())
 return(PROTTRUE);
 else return(PROTFALSE);
}

template <class Type> ProtPtr<Prot<Type>>
Prot<Type>::operator&() {
 ProtPtr<Prot<Type>> ret;
 ret.src = this; ret.errmake();
 return(ret);
}

More items to notice:

ÿ ProtBool has two constants associated with it,
unsurprisingly, PROTTRUE and PROTFALSE.

ÿ It will generally be useful to inline these functions
rather than incurring the overhead of function
call/return. This will significantly increase
program executable size, but also significantly
increase program speed, and in fact removes any
latent problems with passing-by-reference into
Prot<Type> member functions, because an
inlined function would not actually cause a
reference pointer to be created. Once debugging is
completed, the inline keyword may be added to
the member function declarations, or the
definitions added to the class declaration. The
compiler should then in most circumstances be
trusted to make the right decision regarding
inlining.

ÿ The use of the template allows the compiler to
complain when the programmer attempts to
perform insensible operations. For example, if the
programmer attempts to perform a bit-negation on
a floating-point type, the template will expand
operator~, then find in the ret.src=~read();
statement that this operation is invalid.

ÿ Conversely, valid combinations of different types –
the addition of an 8-bit integer to a 32-bit integer,
for example – are not supported yet. These will be
handled in the specific classes that derive from this
base template.

ÿ This template is not necessarily limited to base
types. A user-defined class, for example, can be
protected – Prot<UserType> – as long as
read() and errmake() are defined for that
type. Or alternately, the read() and
errmake() in the template can be completely
generic, and more efficient, specific versions of
these functions can be implemented for the
fundamental (integer, floating point, pointer)
protected types.

For now, however, we will take the opposite tack,
implementing the read() and errmake() functions
under the template which will function well for all
integer types.

template <class Type> Type
Prot<Type>::read() {
 if ((src ^ (src<<1) ^ (src<<2) ^
 ((src>>((8*sizeof(src))-1))&1) ^
 ((src>>((8*sizeof(src))-2))&3)) ^
 err) UpsetHandler();
 return(src);
}

template <class Type> void
Prot<Type>::errmake() {
 err = src ^ (src<<1) ^ (src<<2) ^
 ((src>>((8*sizeof(src))-1))&1) ^
 ((src>>((8*sizeof(src))-2))&3);
}

McDermott 9 18th Annual AIAA/USU Conference on Small Satellites

The gyrations with bitshifts are because C does not
support a wraparound rotation operation. As indicated
in Table 1: Error Correcting Code Options, the actual
read() function would ultimately be implemented as
a tight assembly routine optimized for the variable size
and microprocessor instruction set. These C-language
functions are shown as an example of how to start in
the creation of an EDAC-protected type library, less
time-efficient but more portable and easier to debug.

More important is the convention demonstrated in
read(). A read() function should be optimized for
the non-error case, and bail out to a much more
extensive function (UpsetHandler()) if any errors
are found. UpsetHandler() takes no arguments
and returns no value. It will change this->src if it
can correct the error, and will raise any necessary
exceptions if the failure is unrecoverable. read()
always returns this->src. The net result is that
read() can go through the error check, to a
conditional branch with no stack maintenance, to a
return of this->src. Note that in the process of
making read() fast, errmake() will naturally be
made fast as well, as it is usually performing the same
basic calculation as read().

At this point, we could actually stop – once we have
written the rest of the operators in the same form as the
ones shown, and written an UpsetHandler()
routine – and start using the template directly. We
could declare variables as P r o t < i n t > , or
Prot<long>, or even Prot<void *>, and they
would consist of their source data plus error checking
bits. (We would not have protected floating-point
types, because read() and errmake() above use
bitwise operations that are only valid for integers.
Custom read() and errmake() functions for
floating-point types are discussed in a later section,
though their functionality is the same as the ones
shown.) Every time an operation was performed on our
protected variables, all the correct error-checking would

be done, and every time a protected variable was
assigned, it would calculate its error-checking bits.
However, this is not quite enough to make a program
behave with protected variables the same way it would
with base-type variables, because a host of convenient
automatic conversions among types would not be
available.

Casting

If we never had to worry about mixing two different
kinds of EDAC-protected variable, and we never
wanted to use constants in an expression, we could
simply write special read() and errmake()
functions for our floating-point variable types and be
done. However, no sensible program is so strict in its
typing that an 8-bit value cannot be added to a 32-bit
value, or a constant must be explicitly given a bit width
in order to behave correctly in an expression.
Therefore, instead of declaring variables based directly
on the Prot<Type> template, we will create a set of
type-specific classes derived from this template; and for
each of these type-specific classes, we will create
constructors that allow type promotion to occur.

Here is another situation where, while we desire
operations with EDAC-protected variables to behave
identically to operations with their unprotected
counterparts, we can take the opportunity when it
presents itself to guard ourselves a little more than the
C standard demands. In this case, we will only allow
lossless promotions, that is, only type conversions
where the destination type range includes the entire
source type range will be allowed. (Promotions from
integer to floating-point variables will always be
allowed; even if this results in loss of precision, it will
not result in loss of accuracy.) Any other type
conversions must be done explicitly, and preferably
with checks to make sure that (for example) a uint8
with a value of 200 does not get converted into an
int8 with a value of –56. Using our nine chosen base
types, we end up with the following hierarchy:

class pi8 : public Prot<int8> {
};

class pui8 : public Prot<uint8> {
};

class pi16 : public Prot<int16> {
public:
 pi16(int8 val) {src=static_cast<int16>val; errmake();}
 pi16(pi8 val) {src=static_cast<int16>val.to_unprotected(); errmake();}
 pi16(uint8 val) {src=static_cast<uint16>val; ermake();}
 pi16(pui8 val) {src=static_cast<int16>val.to_unprotected(); errmake();}
};

class pui16 : public Prot<uint16> {

McDermott 10 18th Annual AIAA/USU Conference on Small Satellites

public:
 pui16(uint8 val) {src=static_cast<uint16>val; errmake();}
 pui16(pui8 val) {src=static_cast<uint16>val.to_unprotected(); errmake();}
};

class pi32 : public Prot<int32> {
public:
 pi32(int8 val) {src=static_cast<int32>val; errmake();}
 pi32(pi8 val) {src=static_cast<int32>val.to_unprotected(); errmake();}
 pi32(uint8 val) {src=static_cast<int32>val; errmake();}
 pi32(pui8 val) {src=static_cast<int32>val.to_unprotected(); errmake();}
 pi32(int16 val) {src=static_cast<int32>val; errmake();}
 pi32(pi16 val) {src=static_cast<int32>val.to_unprotected(); errmake();}
 pi32(uint16 val) {src=static_cast<int32>val; errmake();}
 pi32(pui16 val) {src=static_cast<int32>val.to_unprotected(); errmake();}
};

class pui32 : public Prot<uint16> {
public:
 pui32(uint8 val) {src=static_cast<int32>val; errmake();}
 pui32(pui8 val) {src=static_cast<int32>val.to_unprotected(); errmake();}
 pui32(uint16 val) {src=static_cast<int32>val; errmake();}
 pui32(pui16 val) {src=static_cast<int32>val.to_unprotected(); errmake();}
};

class pfloat : public Prot<float> {
public:
 pfloat(int8 val) {src=static_cast<float>val; errmake();}
 pfloat(pi8 val) {src=static_cast<float>val.to_unprotected(); errmake();}
 pfloat(uint8 val) {src=static_cast<float>val; errmake();}
 pfloat(pui8 val) {src=static_cast<float>val.to_unprotected(); errmake();}
 pfloat(int16 val) {src=static_cast<float>val; errmake();}
 pfloat(pi16 val) {src=static_cast<float>val.to_unprotected(); errmake();}
 pfloat(uint16 val) {src=static_cast<float>val; errmake();}
 pfloat(pui16 val) {src=static_cast<float>val.to_unprotected(); errmake();}
 pfloat(int32 val) {src=static_cast<float>val; errmake();}
 pfloat(pi32 val) {src=static_cast<float>val.to_unprotected(); errmake();}
 pfloat(uint32 val) {src=static_cast<float>val; errmake();}
 pfloat(pui32 val) {src=static_cast<float>val.to_unprotected(); errmake();}
};

class pdouble : public Prot<double> {
public:
 pdouble(int8 val) {src=static_cast<double>val; errmake();}
 pdouble(pi8 val) {src=static_cast<double>val.to_unprotected(); errmake();}
 pdouble(uint8 val) {src=static_cast<double>val; errmake();}
 pdouble(pui8 val) {src=static_cast<double>val.to_unprotected(); errmake();}
 pdouble(int16 val) {src=static_cast<double>val; errmake();}
 pdouble(pi16 val) {src=static_cast<double>val.to_unprotected(); errmake();}
 pdouble(uint16 val) {src=static_cast<double>val; errmake();}
 pdouble(pui16 val) {src=static_cast<double>val.to_unprotected(); errmake();}
 pdouble(int32 val) {src=static_cast<double>val; errmake();}
 pdouble(pi32 val) {src=static_cast<double>val.to_unprotected(); errmake();}
 pdouble(uint32 val) {src=static_cast<double>val; errmake();}
 pdouble(pui32 val) {src=static_cast<double>val.to_unprotected(); errmake();}
 pdouble(float val) {src=static_cast<double>val; errmake();}
 pdouble(pfloat val) {src=static_cast<double>val.to_unprotected(); errmake();}
};

A C++ compiler will attempt to make one type cast per
operand in order to make an expression work.
Therefore, if an expression is full of 32-bit EDAC-
protected variables (pi32) and one 8-bit EDAC-
protected variable (pi8), the pi8 will be converted to
a temporary pi32 via the pi32(pi8) constructor and
the expression will work. This is exactly what we want.
However, if a signed 16-bit variable (pi16) tries to get
assigned to a smaller (pi8) or unsigned (pui16)

variable, the compiler will not allow it. This is again
what we want, because we never want to perform such
a potentially lossy conversion accidentally or
unknowingly.

Special Cases: bools, floats, and pointers

Earlier explanations have pointed out exceptions for
Boolean types, floating point error check calculations,

McDermott 11 18th Annual AIAA/USU Conference on Small Satellites

and pointers-to-anything. These exceptions are now
revisited for resolution.

Creating read() and errmake() functions for
floating-point types is relatively straightforward; treat
the source data as one or two 32-bit integers and
perform the same check as before:

float pfloat::read() {
 uint32 srcint;
 srcint=*(static_cast<uint32*>&src);
 if ((srcint ^ (srcint<<1) ^ (srcint<<2) ^
 (srcint>>((8*sizeof(srcint))-1)) ^
 (srcint>>((8*sizeof(srcint))-2))) ^
 (static_cast<uint32>&err))
 UpsetHandler();
 return(src);
}

void pfloat::errmake() {
 uint32 srcint;
 srcint=*(static_cast<uint32*>&src);
 (static_cast<uint32>&err)=srcint ^
 (srcint<<1) ^ (srcint<<2) ^
 (srcint>>((8*sizeof(srcint))-1)) ^
 (srcint>>((8*sizeof(srcint))-2));
}

double pdouble::read() {
 uint32 srcint,*srcptr, errint,*errptr;
 srcptr=static_cast<uint32*>&src;
 errptr=static_cast<uint32*>&err;
 srcint=*srcptr;
 errint=*errptr;
 if ((srcint ^ (srcint<<1) ^ (srcint<<2) ^
 (srcint>>((8*sizeof(srcint))-1)) ^
 (srcint>>((8*sizeof(srcint))-2))) ^
 errint) UpsetHandler();
 srcint=*(srcptr+1);
 errint=*(errptr+1);
 if ((srcint ^ (srcint<<1) ^ (srcint<<2) ^
 (srcint>>((8*sizeof(srcint))-1)) ^
 (srcint>>((8*sizeof(srcint))-2))) ^
 errint) UpsetHandler();
 return(src);
}

void pdouble::errmake() {
 uint32 srcint,*srcptr, errint,*errptr;
 srcptr=static_cast<uint32*>&src;
 errptr=static_cast<uint32*>&err;
 srcint=*srcptr;
 *errptr = srcint ^
 (srcint<<1) ^ (srcint<<2) ^
 (srcint>>((8*sizeof(srcint))-1)) ^
 (srcint>>((8*sizeof(srcint))-2));
 errint) UpsetHandler();
 srcint=*(srcptr+1);
 *(errptr+1) = srcint ^
 (srcint<<1) ^ (srcint<<2) ^
 (srcint>>((8*sizeof(srcint))-1)) ^
 (srcint>>((8*sizeof(srcint))-2));
}

These functions are, in a word, ugly. They are offered
for completeness’ sake, not because these are the
correct ways to implement floating-point error-

checking in an operational system, but more because
they bring out some connected points:

ÿ When starting out developing a set of protected-
variable classes, results matter, not the route to get
there. Start off with a straightforward, even
pedantic, set of overloaded functions in order to
implement the functionality of EDAC protection.
Then, when the functionality itself is proven, start
replacing these underlying functions with more
efficient versions – assembly-coded, type-specific,
dense and less plain-written than the original
versions, but implementing the same result.

ÿ At the beginning of development, it is tempting to
code elegantly, not rewriting the same function
over and over for subtle differences in base types.
The use of the Prot<Type> template is this sort
of effort; the creation of specific read() and
errmake() functions for pfloat and
pdouble seem to violate this elegance. However,
the opposite approach is usually ultimately called
for: the goal is a library included as a black box
into SEU-sensitive programming projects, where
the elegance of the source code is much less
relevant than the speed of the resulting object code.
With this priority, it is likely that nearly every
function in the library will be hand-coded,
optimized for speed, in its final form. The only
elegance required of the source code, then, is that it
smoothly transition from readable / debuggable to
optimized / fast without a major overhaul. The
ability to override functions from the (source code-
efficient) template with (speed-efficient) type-
specific routines achieves this.

ÿ In the specific case of floating-point variables, it is
often the case that a single set of data registers are
available to the microprocessor’s ALU, and both
bit-manipulation and floating-point instructions are
available to work on these registers. All of the
complications of casting then disappear when the
read() and errmake() functions are
implemented in assembly. Alternately, if the
chosen processor has a distinct Floating-Point Unit
with its own register set, then a wholly different
ECC approach can be employed that uses only
FPU instructions. Again, the user of the library
never needs to know the details of how EDAC
protection is provided.

ProtBool is an even more particular case. It does not
derive from Prot<Type> at all, because as noted
earlier, two bool types do not form a good source-data
/ error-check combination as it does for the other types.

McDermott 12 18th Annual AIAA/USU Conference on Small Satellites

That said, the ProtBool class does still look similar
to Prot<Type>.

class ProtBool;

typedef int8 boolinternal;

const boolinternal BASEPROTTRUE=-1;
const boolinternal BASEPROTFALSE=0;

const ProtBool PROTTRUE(BASEPROTTRUE);
const ProtBool PROTFALSE(BASEPROTFALSE);

class ProtBool {
public:
 ProtBool() {}
 ProtBool(boolinternal val) {src=val;}
 ProtBool(bool val)
 {if (val) src=BASEPROTTRUE;
 else src=BASEPROTFALSE;}
 ProtBool(ProtBool val) {src=val.read();}

 ProtBool &operator=(bool val)
 {if (val) src=BASEPROTTRUE;
 else src=BASEPROTFALSE; return(*this);}

 ProtBool &operator=(ProtBool val)
 {src=val.read(); return(*this);}

 ProtBool operator==(ProtBool val)
 {return(val.read()==read());}

 ProtBool operator!=(ProtBool val)
 {return(val.read()!=read());}

 ProtBool operator!()
 {return(~read());}

 ProtBool operator&&(ProtBool val)
 {return(val.read()&read());}

 ProtBool operator||(ProtBool val)
 {return(val.read()|read());}

 operator int()
 {return(static_cast<int>src);}

private:
 boolinternal read()
 {if (src==BASEPROTTRUE)
 return(BASEPROTTRUE);
 else if (src==BASEPROTFALSE)
 return(BASEPROTFALSE);
 else UpsetHandler();}
 void UpsetHandler();

 boolinternal src;
};

Note that the AND and OR operators turn into bytewise
operations, creating 8-fold redundancy to make sure the
result is calculated correctly with no variable exposure.
An automatic conversion to ProtBool is performed at
the return l ine, using the constructor
ProtBool(boolinternal val). That is,

 {return(val.read()&read());}

is equivalent to

 {ProtBool temp;
 temp.src = val.read() & read();
 return(temp);}

Also in the topic of automatic conversions is the
operator int() line. This is a dangerous automatic
conversion to offer as it allows ProtBool types to be
arithmetically combined with integer types, with
unexpected results, especially if the C convention of
T R U E = 1 is expected. However, this allows
ProtBool types to be evaluated inside if()
expressions, which is ultimately necessary for a useful
ProtBool type. A note in this regard: with the
assignments of PROTFALSE=0 and PROTTRUE=-1, a
single bitflip can change a false to a true, but not
vice/versa. It may be that a safer approach is to “bias
toward false”, that is to make PROTFALSE=-1 and
PROTTRUE=0 and change the operators to match; this
guards against situations like

if (fire_pyrotechnics) irrevocable_action();

causing bad operational behavior due to a single bit flip.

As with all of the earlier examples, this is only one
possible implementation of ProtBool ; and it is
neither efficient nor elegant, only demonstrative.

The final special case is pointers. Pointers can point to
anything – basic types, EDAC-protected types, user-
defined types, even the nondescript pointer void * –
so we cannot enumerate all possible pointers. We could
create a pointer type that essentially reduced to
void *, but then we would lose all of the type-
checking capabilities that the compiler offers during
assignment and dereferencing.

For pointers, we want to use a template, creating a
different kind of EDAC-protected pointer type for each
different object the program points to. The existing
Prot<Type> template would work to some extent,
but would fail for arithmetic operations, since pointer
types cannot be universally arithmetically combined
with each other. Pointers can be differenced, but not
summed; and the difference between two pointers is
different than subtracting an integer from a pointer. For
all of these reasons, we find we must create a
ProtPtr<Type> template.

template <class Type>
class ProtPtr {
public:
 ProtPtr<Type> () {}
 ProtPtr<Type> (Type *val){src=val;errmake();}
 ~Prot<Type> () {}

McDermott 13 18th Annual AIAA/USU Conference on Small Satellites

ProtPtr<Type> operator+(Prot<int32> val);
 ProtPtr<Type> operator-(Prot<int32> val);
 ProtPtr<Type> operator-(ProtPtr<Type> val);

 ProtPtr<Type> operator~();
 ProtPtr<Type> operator&(Prot<uint32> val);
 ProtPtr<Type> operator|(Prot<uint32> val);
 ProtPtr<Type> operator^(Prot<uint32> val);
 ProtPtr<Type> operator>>(Prot<int32> val);
 ProtPtr<Type> operator<<(Prot<int32> val);

 void operator=(Type *val);
 void operator=(ProtPtr<Type> val);
 void operator+=(Prot<int32> val);
 void operator-=(Prot<int32> val);
 void operator-=(ProtPtr<Type> val);
 void operator&=(Prot<uint32> val);
 void operator^=(Prot<uint32> val);
 void operator|=(Prot<uint32> val);
 void operator>>=(Prot<int32> val);
 void operator<<=(Prot<int32> val);

 ProtPtr<Type> operator++();
 ProtPtr<Type> operator++(int val);
 ProtPtr<Type> operator--();
 ProtPtr<Type> operator--(int val);

 ProtBool operator>(ProtPtr<Type> val);
 ProtBool operator<(ProtPtr<Type> val);
 ProtBool operator!=(ProtPtr<Type> val);
 ProtBool operator==(ProtPtr<Type> val);
 ProtBool operator>=(ProtPtr<Type> val);
 ProtBool operator<=(ProtPtr<Type> val);

 ProtPtr<ProtPtr<Type> > operator&();
 Type operator*();

 Type *to_unprotected() {return(read());}

private:
 Type *read();
 void errmake();
 void UpsetHandler();

 Type *src;
 uint32 err;
};

The implementation of these functions is entirely
analogous to all those shown already. Unlike the
Prot<Type> template, though, which is really only a
base class for types like pui16 and pfloat,
ProtPtr<Type> will be used in its template form in
the software itself. For example,

void foo() {
 pi32 variable;
 ProtPtr<pi32> variable_ptr;
 struct userstruct mystrucutre;
 ProtPtr<struct userstruct> mystructure_ptr;

 variable_ptr = &variable;
 mystructure_ptr = &mystructure;
}

would be a typical usage of EDAC-protected pointers.

There is an important option that presents itself when
working with the ProtPtr<Type> class. A similar class
could be created which is a pointer that protects not
only itself but the value that it points to:

template<Type,ErrorCoder=default_ecc<Type> >
class edac_pointer {
public:
 const Type &operator*() const {
 return edac.read(data);
 } // read only version
 edac_reference<Type> operator*() {
 return edac_reference<Type>(*this);
 } // writable version
protected:
 friend class edac_reference<Type>;
 Type &data;
 ErrorCoder edac;
};

template<Type>
class edac_reference {
public:
 edac_reference &operator=(const Type &val) {
 pointer.edac.write(val);
 return(*this);}
 operator Type () const {return(*pointer);}
protected:
 friend class edac_pointer<Type>;
 // hide the constructor, so that these only
 // get created by deref’ing an edac_pointer
 edac_reference<Type>(edac_pointer<Type>
 &_pointer) : pointer(_pointer) { }
 edac_pointer<Type> &pointer;
};

At that point, a wrapper function can be created that
makes the operation of this pointer look like operating
on a variable of type <Type>:

template <class Type>
class edac_variable {
public:
 edac_variable() : pointer(data) { }
 edac_variable(const Type &val) :
 pointer(data) {(*pointer) = value;}
 operator Type &() {return (*pointer);}
 edac_variable &operator=(Type &value) {
 (*pointer) = value;}

protected:
 edac_pointer<Type> pointer;

private:
 Type data;
};

As with the series of Prot<Type>-derived variables,
an edac_variable<Type> would behave just like
a variable of type Type, with the compiler taking care
of all type promotions and conversions, and the
particular ErrorCoder taking care of the EDAC
functions. The tradeoff here is executable complexity
versus source code complexity. Using an
edac_variable<Type> requires less complexity

McDermott 14 18th Annual AIAA/USU Conference on Small Satellites

within the EDAC-protected classes themselves, since
they are essentially pointers to base types that the
compiler itself understands, and the long series of
operators (multiplication, equality tests, and so forth)
do not need to be overloaded. This is in exchange for
more referencing / dereferencing operations in the code
executable.

The UpsetHandler Function

No examples have been given thus far for an
UpsetHandler() function. This is essentially
because, while the purpose of this function is easily
described (see Figure 4), it tends for any given base
type to be an extensive amount of code to take care of
all the various possibilities of errors that may have
occurred. As noted in the beginning of this discussion,
once a read() function has determined that at least
one error exists in an EDAC-protected variable, it
“bails out” to UpsetHandler(), which can take –
relatively speaking – a large amount of time correcting
or otherwise dealing with the error(s).
UpsetHandler() should be as thoroughly careful as
any function in the software suite, because it must at
some point deal with the most dangerous situation short
of a microprocessor hardware failure: the knowledge
that a data value is erroneous, without the ability to
correct it.

OTHER ISSUES

It has already been explored that EDAC-protected
versions of different base types can use a variety of
ECCs and other encodings optimized for the particular
microprocessor and the typical usage of that type of
variable. A Boolean type, for example, is not used for
calculations, but for decisions; and thus it is handled
differently than, for example, a double-precision
floating-point variable, which is likely being used for
vehicle control or other similar math-intensive
operation. Distinctions need not be made only on this
basis, however. For example, variables that are used
only for recording telemetry can suffer bit errors much
more innocuously than variables that are used for
important operations like propulsion control. Different
levels of protection can then be offered – relatively
efficient triple XOR for most variables, then highly
robust and exposure-free triple save for critical ones –
and the software designer can judge the cost/benefit for
each variable used in the software suite. As long as
casting operations can convert among the types
sensibly, this approach retains the ease-of-use of
EDAC-protected variable types.

While casting is the most straightforward method of
allowing sensible combinations of different variable

types, an even more time-efficient option is to create
global-scope operators that take two different types and
combine them directly. For example, the code

void bar() {
 pi32 bigvar=5000;
 pi8 littlevar=10;
 pi32 sum;

 sum = bigvar + littlevar;
}

will convert littlevar to a temporary pi32, then
perform a pi32::operator+. This is perfectly
effective, but creates an unnecessary temporary pi32
variable during the calculation. If instead, functions
were declared that took the two types directly and
added them, and these functions were friends of the
pi8 and pi32 types, then we would have

pi32 operator+(pi32 val1, pi8 val2) {
 return(val1.read()+val2.read());
}

pi32 operator+(pi8 val1, pi32 val2) {
 return(val1.read()+val2.read());
}

A temporary int32 would theoretically be created by
the compiler to perform the addition, but that is much
less overhead than creating a new pi32 with its
errmake() function. Indeed this “temporary int32
variable” would likely never actually need to be
created, given how ALUs operate (with registers of a
fixed width). This use of operators that take two
variables of different EDAC-protected types is yet
another example of trading source code efficiency for
object code efficiency: a great many operators of this
type must be created to cover all the combinations of
different variable types, but once that coding is done,
all the user sees is faster operation producing the same
behavior.

An entirely different set of approaches is available to
augment the variable-level protection against bit flips3,4.
They may be described broadly as “algorithm-level
EDAC”, where an entire calculation – an attitude
control system control loop, for example – is performed
multiple times, and the results compared in toto with
each other. With this approach, variable-level
protection becomes less necessary, even superfluous for
variables which exist only within the overall protected
calculation. This approach also takes advantage of the
trends in microprocessor capability, where a device can
easily perform three calculations using its internal
memory in less time than it can perform the same
calculation once using external memory filtered through
hardware EDAC. Variable-level and algorithm-level

McDermott 15 18th Annual AIAA/USU Conference on Small Satellites

EDAC can easily be combined in the same software
suite, where math-intensive speed-sensitive calculations
with a few values in and a few values out can use
unprotected types and algorithm-level EDAC, while
other more mundane operations can use variable-level
EDAC.

CONCLUSION

Software EDAC provides several advantages over
hardware EDAC:

ÿ It protects microprocessor-internal memory,
including on-chip RAM, L1 cache, and to some
extent ALU registers.

ÿ It allows any microprocessor or microcontroller or
computer board to be EDAC-protected, including
COTS products and single-chip systems.

ÿ It takes advantage of the trend in processor
technology, toward more memory and functionality
pulled into the processor device itself.

ÿ It provides various levels of protection that can be
applied selectively according to the need in the
software.

ÿ It can be applied to existing, fielded computing
hardware, not necessarily limited to aerospace
applications.

It has a number of penalties as well, which must be
recognized:

ÿ Software EDAC takes many processor cycles to
perform the EDAC function. With internal
memory accesses 8.5 times faster than external
memory accesses, and software EDAC routines
taking 7-8 times as many instructions as the same
routine without EDAC, this penalty is quickly
becoming irrelevant.

ÿ Hardware EDAC requires less than 25% extra
memory. Efficient software EDAC requires at
least 100% extra memory.

ÿ Software EDAC cannot protect program memory,
only data. If the program is read from (often
processor-internal) ROM, this is less important,
because ROM is enormously less subject to bit
flips. Program memory, which does not change,
can also be protected by checksums and the
retention of multiple copies in ROM. Note that
neither hardware nor software EDAC can protect
L1 instruction cache.

Software EDAC in a function-oriented language (such
as standard C or FORTRAN) is very cumbersome to
express. For languages that support operator
overloading, however, EDAC-protected variable types
may be created that behave the same as variable types
native to the language, but perform error detection and
correction on every variable access. By creating
protected variable types, the processor only spends time
protecting memory that is actually in use; the system
need not waste time scrubbing unused memory space.
By using overloaded operators, code readability is
maintained – arithmetic, bitwise, Boolean, assignment,
and other functions appear in their natural form – but
“behind the scenes”, variables are protected against
single event upsets. The particular methods employed
to protect a given variable type are completely
transparent to the user of the variable type, as long as
the operations behave as expected.

The particular means of implementing EDAC-protected
variable types depends on the programming language,
the microprocessor, and the type of error protection
desired. The implementation details can become
extensive, but as long as all of the resulting variable
operations behave as they do for the corresponding base
types, software EDAC using operator overloading can
be a powerful tool for bringing error detection to
devices that would not otherwise support it.

REFERENCES

1. Engineering Directorate / Avionics Systems
Division, “Radiation Test Report, Universal Mini
Controller.” National Aeronautics and Space
Administration – Johnson Space Flight Center,
December 1999.

2. Scott Meyers, Effective C++. Addison-Wesley,
Boston Massachusetts, 1998.

3. Chung-Yu Lui, “A study of flight-critical computer
system recovery from space radiation-induced
error.” Proceedings of the 20th Digital Avionics
Systems Conference, Daytona Beach Florida, 2001.

4. J.R. Samson Jr, L. DeLa Torre, P. Wiley, T. Stottlar,
“A comparison of algorithm-based fault tolerance
and traditional redundant self-checking for SEU
mitigation.” Proceedings of the 20th Digital
Avionics Systems Conference, Daytona Beach
Florida, 2001.

