

15

2.3.1 Non-redundant Sender

Since the main objective of a NS is to transmit information to another layer, it is

expected that these nodes will be actively receiving information at their main input.

As a result, a1, which represents the status of the principal input for this node, will

be equal to 1. The status of the other inputs, namely the intra-layer inputs, will be

determined by the state of the intra-layer outputs of the left-adjacent node and the

following condition: if ai = 1 for i > 2, it is necessary that ai−1 = 1.

Once the status of the inputs is fixed for a particular NS, the status of its outputs

can be easily determined. The behavior of a non-redundant sender will be greatly

affected by the status of its principal output, namely if it has a break in its through-

silicon via or not. The former case, in which there is no break, will be considered

first.

If the main output’s via is intact, the NS is sending bits of information over to

the next layer. As a result, the output n-tuple will be as follows:

O = (ak, a1, . . . , ak−1, 0, . . . , 0),

where ak is the rightmost element of I with a value of 1 and ai = 1 for 1 ≤ i ≤ k ≤ n.

This assumes that some of the intra-layer inputs, specifically n − k, are not being

utilized. In the event that all of the intra-layer inputs are utilized, O will have the

following form:

O = (an, a1, . . . , an−1).

Let us now consider the case where the main output has a break in its through-

silicon via. The output n-tuple will look as follows:

16

O = (0, a1, a2, . . . , ak, 0, . . . , 0).

As before, this assumes that n − k intra-layer inputs are not being utilized. It

is also important to notice that all the intra-layer inputs could not be in use because

when the main output is broken the output vector can handle at most n− 1 non-zero

elements. Thus, it will be only possible to handle the main input and n − 2 of the

intra-layer inputs, and the output vector would have the following form:

O = (0, a1, . . . , an−1).

2.3.2 Redundant Sender

These nodes behave in a very similar manner to the non-redundant senders. The

only difference is that they do not receive any information at their main input. As a

result, a1 will always be equal to zero and the input n-tuple is:

I = (0, a2, a3, . . . , an),

where, as before, ai could be either zero or one.

Now, the form of the output vector will be considered. The first case to be

analyzed is when the main output’s via is intact. For this case the output vector

looks as follows:

O = (ak, a2, . . . , ak−1, 0, . . . , 0),

if n− k intra-layer inputs are not being utilized, or

O = (an, a2, . . . , an−1, 0),

17

if all the intra-layer inputs are being utilized.

The remaining case is when the main output has a break in its through-silicon

via, resulting in the following form of the output vector:

O = (0, a2, . . . , ak−1, . . . , ak, 0, , 0),

if n− k intra-layer inputs are not being utilized, or

O = (0, a2, . . . , an−1, an),

if all the intra-layer inputs are being utilized.

Both non-redundant and redundant senders are responsible for assuring that

information sent from a layer successfully arrives to the adjacent layer. However, in

the case of a break, some of the bits of information will not arrive to the same location

in the adjacent layer that they would have if there were no breaks at all. Therefore,

it is necessary to have a mechanism that restores the arriving bits to the position

they would have originally arrived at in the event that there were no breaks. This

restoring process is done by the receivers at each layer. The functions of the receivers

will be explained by dividing these into non-redundant and redundant receivers, as it

was done for the senders.

2.3.3 Non-redundant Receiver

The non-redundant receiver is very similar to the non-redundant sender. How-

ever, since the main objective of a NR is to receive information from another layer,

it is expected that these nodes will be actively sending information through their

main output. As a result, b1, which represents the status of the principal output for

this node, will be equal to 1. The status of the other outputs, namely the intra-layer

18

outputs, will be determined by the state of the intra-layer inputs of the right-adjacent

node. Nevertheless, if bi = 1 for i > 1, it is necessary that bi−1 = 1.

Once the status of the inputs is fixed for a particular NR, the status of its outputs

can be easily determined. The behavior of a non-redundant sender will be greatly

affected by the status of its principal input, namely if it has a break in its through-

silicon via or not. The first case, in which there is no break, will be considered first.

If the main input’s via is intact, the NR is receiving bits of information from the

previous layer. As a result, the output n-tuple will be as follows:

O = (ak, a1, a2, a3, . . . , ak−1, 0, . . . , 0),

where ak is the rightmost element of I with a value of 1. This assumes that some of

the intra-layer inputs, specifically n− k, are not being utilized. In the event that all

of the intra-layer inputs are utilized, O will have the following form:

O = (an, a1, a2, . . . , an−1).

If none of the intra-layer inputs are being utilized the output vector will look as

follows:

O = (a1, 0, 0, . . . , 0),

where the value of each ai is equal to 1 for all the previous cases.

In the event that the main input’s through-silicon via is broken, the output vector

will have the following form:

O = (ak, a2, a3, . . . , ak−1, 0, . . . , 0), 1 < k ≤ n.

19

Note that if the main input’s through-silicon via is broken at least one of the

intra-layer inputs has to be utilized.

2.3.4 Redundant Receiver

These nodes behave in a very similar manner to the non-redundant receivers.

The only difference is that they do not send any information through their main

output. As before, their output vector can be analyzed by looking at whether or not

their main input’s through-silicon via is broken.

First, the case in which the through-silicon via is not broken will be described.

For this case the output vector will look as follows:

O = (0, a1, a2, . . . , ak−1, ak, 0, . . . , 0).

For the case where the through-silicon via is broken the vector will be:

O = (0, a2, a3, . . . , ak−1, ak, 0, . . . , 0).

2.4 Node Internal Structure

After exploring the internal logic of the nodes it is possible to see that the key

concept consists in properly connecting the nodes’ inputs to the outputs. There are,

possibly, several ways in which we can create the internal structure for a node to

accomplish this task. For instance, implementing the nodes as n × n cross-bars is

one possibility. This will, in fact, allow connecting the inputs to the outputs in any

possible configuration. However, cross-bars are very costly to implement in terms

of the number of switching elements they require, which is O(n2). Moreover, a full

cross-bar implementation would not fully exploit the structure of the nodes routing

protocol.

20

If we analyze the fact that for the intra-layer inputs we have the property that

ai = 1 only if ai−1 = 1 and, similarly, for the intra-layer outputs bi = 1 only if

bi−1 = 1, it is possible to identify that only a certain number of connections between

the inputs and the outputs are allowed. As a result, it is not necessary to have a full

cross-bar for the nodes to effectively reroute. Figure 2.5 shows a simple circuit that

can be used to achieve the functionality of a node at a much lower cost. The number

of switching elements required for this configuration is O(n), specifically 4n+ 2. This

is considerably better than the full cross-bar in terms of complexity. The figure

shows both a sender and a receiver. Note that, as we mentioned before, they are

mirror images of each other. This configuration makes it possible for a given node to

behave as either non-redundant or redundant. Nevertheless, an external signal will

be required to select the type of behavior.

The decision to close and open the switches are based on three parameters:

the status of the through-silicon via (i.e., whether or not it is broken), the type of

node (redundant or non-redundant), and the information available at the inputs. The

status of the TSV could be obtained by measuring its impedance, since the impedance

is expected to change when the TSV breaks. Now, we consider three possible ways

to detect if information is available at the inputs. The first one is by using 3-state

switches at the outputs and implementing a way to sense the high impedance state

at the inputs. For example, suppose that the outputs of Node A are connected to

the inputs of Node B. The sensing mechanism in Node B will detect the status of the

outputs of Node A.

The second approach is to double the number of intra-layer outputs and pair

them in groups of two, so that one wire carries the information while the other

wire signals that information is being carried. The third approach is similar to the

second approach, but instead of doubling the number of intra-layer outputs only k

21

Fig. 2.5: Internal architecture of a node.

additional intra-layer outputs are introduced. The value of k is chosen such that

2k ≥ m, where m is the same as defined in the nodes description section. So, instead

of signaling which specific outputs are being used we only indicate how many outputs

are being utilized. This is possible, again, because of the order associated with the

rerouting process. This approach represents a substantial save in terms of the number

of outputs. Nevertheless, it will require additional circuitry at the inputs of the

adjacent node to interpret the received signal.

In order to control a given switch, only the status of some of the inputs, at most

three, are required to be known. For instance, to control the switch at the output b3

it is only necessary to know the status of the inputs a2, a3, and a4, even in the case

when there are more than four inputs. In general, to control the switch at the output

bi we need to know the status of inputs ai−1, ai, and ai+1. This has a great impact in

reducing the complexity of the controller.

The control logic for the switches in a sender node will be described by separating

the switches into four groups. As shown in fig. 2.6, the groups are denoted as X,Y ,Z,

and W . Switches in group X are used when the node is configured as non-redundant

22

and switches in group Y are used for the redundant configuration. Switches in groups

Z and W are used in both configurations.

Let Si be the signal that indicates that the ith intra-layer input needs to be

active, (i.e., information will be received at this input). Recall that this signal will

come from the adjacent node or it will be produced by a sensing mechanism at the

inputs of the node. Let R be the signal that indicates that the node should be

configured as redundant. Finally, V is the signal that indicates a failure in the TSV

to which the node is connected. With this notation we can now describe the control

logic for the switches in a sender node. The letters x, y, z, and w are the signals that

control the switches.

Switches is group X are controlled by two signals, R and Si. These switches will

be active only if the node is configured as non-redundant, (i.e., R is low), and there

is information at the intra-layer input to which the switch is connected. Below is the

Boolean expression for the switches’ control signal:

Xi : xi = R̄ · Si.

Similarly, switches in group Y are controlled by R and Si. However, contrary to

those in group X, R needs to be high in order for them to be active. The boolean

expression is:

Yi : yi = R · Si.

Switches in group Z are used to create a path from the inputs to the main output.

There is a total of m+ 2 switches in this group. The control logic is the same for all

the switches in the group except for the one connected to the main input and the one

connected to the main output. The logic for the first one is the following:

23

X1

X2

X3

X4

Y4

Y3

Y2

Y1

Z6

Z5

Z4

Z3

Z2

Z1

W4

W3

W2

W1

Fig. 2.6: Sender internal structure with switches separated into groups

24

Z1 : z1 = R̄.

This switch will be closed whenever the node is configured as non-redundant and

open otherwise. The only function of this switch is to disconnect the node from the

main input. The switch is not truly necessary since there should be no information

at the main input of the node when it is configured as redundant, but it convenient

to have it available.

The Zm+2 switch will always be closed except when there is a break in the TSV

to which the node’s output is connected. The signal to control it is the following:

Zm+2 : zm+2 = V̄ .

The control signal for the ith switch in group Z is the following:

Zi : zi = R̄ · V̄ · S̄i−1 +R · V̄ · S̄i, 1 < i ≤ m+ 1.

First note that this switch is open whenever the TSV is open, (i.e., V is high).

Also, the behavior is different depending on whether the node is configured as redun-

dant or non-redundant. When the node is configured as non-redundant the switch

will be closed if there is no information at the (i− 1)th intra-layer input. When the

node is configured as redundant the state of the switch is determined by the status

of the ith input.

Following a similar reasoning we can write the following expressions for the con-

trol logic of the switches in group W :

25

W1 : w1 = R̄ · V + R̄ · S1 +R · V · S1 +R · S2,

Wi : w1 = R̄ · V · Si−1 + R̄ · Si +R · V · Si +R · Si+1,

Wm : w1 = R̄ · V · Sm−1 + R̄ · Sm +R · V · Sm.

26

Chapter 3

Performance Evaluation

Now that we have described the concept behind the micronetwork, it is neces-

sary to evaluate its performance. The two key factors that we investigated are the

ability of the micronetwork to handle multiple breaks on multilayer systems and the

delays introduced in the re-routing process. In addition, we analyzed the relationship

between the probability of failure of a single via and the probability of failure of a

layer in the 3D integrated circuit.

3.1 Relation Between Via Failure and Layer Failure

In order to find the relationship between the probability of layer failure and the

probability of via failure a simple model was created. The model was created using

fig. 3.1 as an abstract representation of the multilayer chip.

In this specific figure, there are five bits that need to find a path to go from one

Fig. 3.1: Simple abstraction of a multilayer chip.

27

layer to the next. Therefore, it is required to have at least five TSVs. However, if

the number of TSVs is the same as the number of bits to be transmitted, a single

via failure will make impossible the transmission of all the bits resulting in the entire

failure of the chip. As a result, it is necessary that the number of TSVs exceeds

the number of bits to be transmitted. The extra TSVs are denoted by R, the total

number of bits to be transmitted is denoted as B, and the total number of TSVs as

N, where N = B +R.

Note that a failure in the communication of any two layers could result in the

failure of the entire chip. Thus, finding the probability of failure between layers will,

in some sense, be similar to finding the probability of error of the entire chip. To do so,

it is assumed here that all the vias will fail independently with the same probability

α. The probability of failure between layers is the probability that the number of vias

that fail is greater than number of redundant vias,

pl =
N∑

i=R+1

(
N

i

)
αi (1− α)N−i,

where pl is the probability of failure between layers; N , as mentioned before, is the

total number of TSVs and R is the number of redundancies. This probability essen-

tially follows a binomial distribution. Finally, the failure probability for the chip will

be given by: pc = 1− (1− pl)l−1, where l is the number of layers.

To better visualize how the probability of failure between layers relates to the

number of redundancies and to the probability of failure of a single via (α), some

plots are presented. The plots show the relation between the layer failure probability

and the probability of failure of a single via. For all the curves the ratio R to N was

held constant at 20% while the values of N and B were changed.

Figures 3.2 and 3.3 show how the layer failure probability will increase as the

28

single via failure probability increases. It can also be seen that the relation not only

depends on the percentage of redundancies, but also depends on the total number of

TSVs. Figure 3.3, which is the same as fig. 3.2 but in a logarithmic scale, gives a

better idea on how the number of TSVs affects the layer failure probability. The plot

shows how increasing the number of TSVs will reduce the layer failure probability for

small values of α for the same ratio of R to N.

Figures 3.4 and 3.5 also show the relation between the layer failure probability

and the probability of failure of a single via. However, now N is kept constant while B

is allowed to take different values. This allows visualizing what happens for different

values of R
N

.

Finally, we analyzed the relation between the layer failure probability and the

percentage of redundancies. These results are shown in figs. 3.6 and 3.7. These

figures have a fixed value B = 100 and B = 500, and there are four curves for

different values of α. As expected, increasing the number of redundant vias decreases

the layer failure probability. This information may help to properly select the amount

of redundancy that will be introduced into the system. Moreover, this shows that

it is possible to achieve a low probability of layer failure despite a relatively high

probability of via failure. For instance, the upper part of fig. 3.7 shows that for

α = 0.02 it is possible to achieve a layer failure probability of 10−10 with less than

an 18% redundancy. Since the redundancy requirement depends on α, it is desired

to minimize the probability of via failure as much as possible because this minimizes

the number of redundant TSVs that are required.

The curves in fig. 3.7 show that the amount of redundancy required to maintain

a given probability of layer failure does not depend only on the probability of via

failure, but also on the number of non-redundant TSVs. This relationship is better

portrayed in fig. 3.8. Note that as the number of non-redundant TSVs increases

29

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
LFP Vs VFP, R/N constant

La
ye

r
F

ai
lu

re
 P

ro
ba

bi
lit

y

Single Via Failure Probability

N=10 B=8
N=20 B=16
N=30 B=24
N=100 B=80

Fig. 3.2: Layer failure probability vs. single via failure probability, R
N

constant.

10
−2

10
−1

10
0

10
−20

10
−15

10
−10

10
−5

10
0

LFP Vs VFP, R/N constant

La
ye

r
F

ai
lu

re
 P

ro
ba

bi
lit

y

Single Via Failure Probability

N=10 B=8
N=20 B=16
N=30 B=24
N=100 B=80

Fig. 3.3: Layer failure probability vs. single via failure probability, R
N

constant,
logarithmic scale.

30

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
LFP Vs VFP, N constant

La
ye

r
F

ai
lu

re
 P

ro
ba

bi
lit

y

Single Via Failure Probability

N=1000 B=600
N=1000 B=700
N=1000 B=800
N=1000 B=900

Fig. 3.4: Layer lailure probability vs. single via failure probability, N constant.

the required redundancy to maintain a given probability of layer failure decreases.

In particular, when B = 100 it is necessary to have a redundancy of 17% in order

to maintain the probability of layer failure below 10−10. On the other hand, when

B = 500 the redundancy requirement is of only 8%. For this particular example,

increasing the number of non-redundant TSVs by a factor of five requires that the

number of redundancies be increased by only a factor of three. This means that the

redundancy requirement does not grow linearly with the number of non-redundant

TSVs.

It is important to keep in mind that this model assumes that the TSV failures

are independent and that α does not depend on B. These assumptions may not be

true in reality. Nevertheless, it is expected that the TSV requirements will still follow

a similar trend.

31

10
−2

10
−1

10
0

10
−250

10
−200

10
−150

10
−100

10
−50

10
0

LFP Vs VFP, N constant

La
ye

r
F

ai
lu

re
 P

ro
ba

bi
lit

y

Single Via Failure Probability

N=1000 B=600
N=1000 B=700
N=1000 B=800
N=1000 B=900

Fig. 3.5: Layer failure probability vs. single via failure probability, N constant,
logarithmic scale.

3.2 Performance Under Multiple Breaks

The ability of the proposed micronetwork to handle multiple breaks on multilayer

systems was simulated using a Monte Carlo simulation. The simulator accepts as

primary inputs the number of layers (L), the number of non-redundant TSVs (B),

the number of redundant TSVs (R), and the number of iterations (I). The code used

to emulate the nodes’ logic is shown in the Appendix.

In order to determine how many breaks are required for the circuit to no longer

be able to accurately transmit information, we created models with L=10, B=100, I

= 500, and R=35, 40, 45, 50, 100. We started by randomly creating (R+1) breaks,

performing 500 instances of the simulation, and recording the number of failures. The

number of breaks was increased by one until we reached R ∗ (L−1) + 1 breaks, which

is the minimum number of breaks that guarantees that the circuit will fail. Figure

3.9 shows the results which are quite satisfactory. The x -axis in the top plot is the

32

0 5 10 15 20 25

0.2

0.4

0.6

0.8

1

La
ye

r
F

ai
lu

re
 P

ro
ba

bi
lit

y

Percentage of Redundancy

LFP Vs Percentage of Redundancy, B=100

α = 0.01

α = 0.02

α = 0.05

α = 0.1

0 5 10 15 20 25

0.2

0.4

0.6

0.8

1

La
ye

r
F

ai
lu

re
 P

ro
ba

bi
lit

y

Percentage of Redundancy

LFP Vs Percentage of Redundancy, B=500

Fig. 3.6: Layer failure probability vs. percentage of redundancies.

0 5 10 15 20 25
10

−15

10
−10

10
−5

10
0

La
ye

r
F

ai
lu

re
 P

ro
ba

bi
lit

y

Percentage of Redundancy

LFP Vs Percentage of Redundancy, B=100

α = 0.01

α = 0.02

α = 0.05

α = 0.1

0 5 10 15 20 25
10

−15

10
−10

10
−5

10
0

La
ye

r
F

ai
lu

re
 P

ro
ba

bi
lit

y

Percentage of Redundancy

LFP Vs Percentage of Redundancy, B=500

Fig. 3.7: Layer failure probability vs. percentage of redundancies, Y-log scale.

33

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

La
ye

r
F

ai
lu

re
 P

ro
ba

bi
lit

y

Percentage of Redundancy

LFP Vs Percentage of Redundancy, α = 0.02

0 5 10 15 20
10

−10

10
−5

10
0

La
ye

r
F

ai
lu

re
 P

ro
ba

bi
lit

y

Percentage of Redundancy

LFP Vs Percentage of Redundancy, α = 0.02

B = 10
B = 50
B = 100
B = 500

Fig. 3.8: Layer failure probability vs. percentage of redundancies, fixed α.

actual number of breaks that the system tolerated and the x -axis in the bottom plot

is the number of breaks as a percentage of the total number of TSVs in our model

of the 3D IC. It is possible to see that with 100 redundant TSVs we can tolerate, for

all the 500 iterations, around 38% of all the possible breaks. There are 1800 TSVs,

which is the same as the total number of possible breaks.

For these simulations, the breaks are assumed to be at random locations, but

in reality they may be more likely to occur in certain regions and in some specific

pattern. If this is the case, the performance could decrease. Nevertheless, some of

the redundant TSVs that are between layers with low probability of failure could be

removed and placed between those layers with higher probability of failure. This way

we can keep the performance constant, or perhaps improve it, without increasing the

total number of redundant TSVs.

The problem of quantifying the probability of failure for the 3D IC is analogous

to solving an occupancy problem. It can be thought of as having M = (L− 1) cells,

34

0 100 200 300 400 500 600 700 800 900 1000
0

20

40

60

80

100
Micronetwork Perfomance Curve

Number of breaks

P
er

ce
nt

ag
e

of
 s

uc
ce

ss
 o

ut
 o

f 5
00

 it
er

at
io

ns

0 10 20 30 40 50 60
0

20

40

60

80

100

Number of breaks as a percentage of the
 total number of possible breaks

P
er

ce
nt

ag
e

of
 s

uc
ce

ss
 o

ut
 o

f 5
00

 it
er

at
io

ns

Micronetwork Perfomance Curve

L=10 B= 100 R=35
L=10 B= 100 R=40
L=10 B= 100 R=45
L=10 B= 100 R=50
L=10 B= 100 R=100

Fig. 3.9: Performance curve.

where L is the number of layers, and T balls are thrown at random to the cells. Then,

it is necessary to find the probability that at least one cell contains at least K balls.

The range of T is R+1 = K ≤ T ≤M×(R+B), where R is the number of redundant

TSVs between any two layers and B is the number of non-redundant TSVs between

layers. A possible approach to solve this problem can be found in the work presented

by Williamson (2009) [22].

3.3 Delay Analysis

In addition to the parameters mentioned previously, it is also possible to select

how the redundant nodes are distributed in the layer. Figure 3.10 shows a screen-

shot of the simulator menu. As we can see, there are three options for the type of

distribution.

The first option, the default option, places all the redundant nodes together as

35

Fig. 3.10: Screenshot of second simulator menu.

a single group next to the group of non-redundant nodes. This type of distribution

is the one shown in figs. 2.1 and 2.2.

The second option, the evenly distributed option, distributes the redundant nodes

as evenly as possible, (i.e., alternating between small groups of redundant nodes and

small groups of non-redundant nodes). The size of the redundant group can be

specified by entering a value in the box adjacent to the evenly distributed label.

Figures 3.11 and 3.12 present this type of arrangement. These figures are snapshots

of the actual simulator. The black nodes are redundant and the blue nodes are non-

redundant. For this type of configuration it is necessary that the intra-layer outputs

of the last node are connected to the intra-layer inputs of the first node, this is not

explicitly shown in the figures.

The third option, the random option, places the redundant nodes at random.

This configuration allows us to better understand the impact that redundancy place-

ment has on the magnitude of the delay introduced to the system.

36

Fig. 3.11: Simulator screenshot of an even distribution, group size = 1.

Fig. 3.12: Simulator screenshot of an even distribution, group size = 2.

37

The way the delays are analyzed is by keeping track of how many nodes a par-

ticular bit goes through when moving from the first layer to the top layer. The delay

is described as delay in the node plus delay in the vias and intra-layer connections.

The delay introduced inside the nodes will only have an impact when a break occurs,

since a node may need several clock cycles to reconfigure correctly. The delay with

the greatest impact comes from the time required to cover the distance from one node

to another node. By assuming that the TSVs are equidistant, it is possible to obtain

the change in the interconnect length introduced in the rerouting process. We chose

to do it this way because the specific separation between the TSVs is not known since

it will depend on various different factors: the number of TSVs, the technology used

to fabricate the 3D IC, and the specific application [10]. Nevertheless, the count of

the number of nodes could be easily converted to actual units of time by multiplying

by the specific per node delay value. Thus, counting the number of nodes will provide

essentially the same information as measuring actual delays; the only difference will

be a constant factor.

The purpose of the delay analysis is to give a sense of the amount of delay that

the micronetwork could introduce and to understand how the redundancy placement

affects delays. For the first set of simulation we used the following parameters: L = 10,

B = 20, R = 20, and I = 10. Figures 3.13, 3.14, 3.15, 3.20, and 3.21 show five

curves, which correspond to the following: first non-redundant via, last non-redundant

via, average delay, average maximum delay, and maximum delay. First [last] non-

redundant via shows the amount of delay that will be encountered as information

travels from the first layer to the last layer through the first [last] via. In fig. 2.4,

the first non-redundant via would be the one connecting nodes NS1 and NR1, and

the last non-redundant via would be the one connecting NS6 and NR6.

The “average delay” is calculated by taking the average of all the TSVs delays

38

for each iteration, and then the average over all the iterations is taken. The “average

maximum delay” is calculated by taking the maximum delay from all TSV for each

iteration, and averaging these values over all the iterations. The “maximum delay”

is taken to be the greater delay at any particular TSV for any of the iterations; it is

the maximum delay over all the iterations. The y-axis shows the number of nodes

a particular bit of information has to go through. Note that a TSV has two nodes

between layers, which means that a 3D IC with 10 layers will have 18 nodes per TSV.

So, for the cases shown below, in the absence of breaks, each bit of information has

to go through 18 nodes when traveling from the first layer to the last layer.

Figure 3.13 shows the results for the default distribution. This configuration

will, on average, introduce a great amount of delay into the system. For example,

at 90 breaks, which is half of what the system can tolerate, we see that on average

every bit goes through 80 nodes. This is 4.5 times greater than the number of nodes

that it goes through when there are no breaks in the system. This is because when

a break occurs, all the bits to the right of the break are shifted. This is why the first

non-redundant via has a very small delay, while the last non-redundant via has an

extremely large delay.

Since the default configuration is not very practical, we decided to try other types

of configurations. To do this we selected the random distribution option. Figures 3.14

and 3.15 show the results for two cases of the random distribution. We can see that

in both cases there is a huge improvement over the default case. The increment in

the number of nodes that every bit goes through, at 90 breaks, is only double than

when there are no breaks. Moreover, these figures suggested that the average delay

was about the same in both cases, so we decided to run a few more simulations with a

random distribution and compared the results. These results are shown in fig. 3.16.

It is possible to see that the there is not a lot of variation in the average delay for

39

20 30 40 50 60 70 80 90 100 110
0

20

40

60

80

100

120

140

160

180

200

Number of Breaks

N
um

be
r

of
 N

od
es

Delay Analysis, L=10, B=20, R=20, I=10, Default

First Non−Redundant TSV
Last Non−Redundant TSV
Average Delay
Max Delay
Avg Max delay
Baseline Performance

Fig. 3.13: Delay analysis, L=10, B=20, R=20, I=10, default.

the different cases. This could allow us to estimate the expected delay of the system

for any random configuration. To support this observation another set of simulations

was executed. For these simulations the number of redundancies was decreased to

10 in order to speed up the process of collecting the data. Decreasing the number

of TSVs produces a higher standard deviation. Nevertheless, it is still possible to

appreciate that variation in the average delay for the different cases is not excessive.

For a total of 100 simulations the standard deviation and the mean were calculated

for the average delay (fig. 3.17), the maximum delay (fig. 3.18), and the average

maximum delay (fig. 3.19).

Finally, we evaluated the performance of the micronetwork under the evenly

distributed configuration. Figures 3.20 and 3.21 show the results for a group size of

one and a group size of two, respectively. At 90 breaks the group of size one shows an

average number of nodes travelled which is 1.5 times higher than the average number

of nodes travelled when there are no breaks, and this value is around 1.6 for the group

of size two. As the group size increases the delay increases. It can be seen that the

even distribution, with group of size one, introduces the smallest amount of delay.

40

20 30 40 50 60 70 80 90 100 110
10

20

30

40

50

60

70

80

90

Number of Breaks

N
um

be
r

of
 N

od
es

Delay Analysis, L=10, B=20, R=20, I=10, Random 1

First Non−Redundant TSV
Last Non−Redundant TSV
Average Delay
Max Delay
Avg Max delay
Baseline Performance

Fig. 3.14: Delay analysis, L=10, B=20, R=20, I=10, random 1.

20 30 40 50 60 70 80 90 100 110
10

20

30

40

50

60

70

80

90

Number of Breaks

N
um

be
r

of
 N

od
es

Delay Analysis, L=10, B=20, R=20, I=10, Random 2

First Non−Redundant TSV
Last Non−Redundant TSV
Average Delay
Max Delay
Avg Max delay
Baseline Performance

Fig. 3.15: Delay analysis, L=10, B=20, R=20, I=10, random 2.

41

20 30 40 50 60 70 80 90 100 110
20

30

40

50

60

70

80

90

Number of Breaks

N
um

be
r

of
 N

od
es

Delay Analysis, L=10, B=20, R=20, I=10, Random

Avg Delay R1
Max R1
Avg Max R1
Avg Delay R2
Max R2
Avg Max R2
Avg Delay R3
Max R3
Avg Max R3
Avg Delay R4
Max R4
Avg Max R4
Avg Delay R5
Max R5
Avg Max R5

Fig. 3.16: Delay analysis, L=10, B=20, R=20, I=10, random.

Fig. 3.17: Delay analysis, L=10, B=20, R=10, I=10, average delay.

42

Fig. 3.18: Delay analysis, L=10, B=20, R=10, I=10, max delay.

Fig. 3.19: Delay analysis, L=10, B=20, R=10, I=10, average max delay.

43

20 30 40 50 60 70 80 90 100 110
15

20

25

30

35

40

45

50

55

60

Number of Breaks

N
um

be
r

of
 N

od
es

Delay Analysis, L=10, B=20, R=20, I=10, Even 1

First Non−Redundant TSV
Last Non−Redundant TSV
Average Delay
Max Delay
Avg Max delay
Baseline Performance

Fig. 3.20: Delay analysis, L=10, B=20, R=20, I=10, even 1.

20 30 40 50 60 70 80 90 100 110
15

20

25

30

35

40

45

50

55

60

65

Number of Breaks

N
um

be
r

of
 N

od
es

Delay Analysis, L=10, B=20, R=20, I=10, Even 2

First Non−Redundant TSV
Last Non−Redundant TSV
Average Delay
Max Delay
Avg Max delay
Baseline Performance

Fig. 3.21: Delay analysis, L=10, B=20, R=20, I=10, even 2.

44

Chapter 4

On-layer Interconnection

So far we have presented the nodes in the micronetwork as connected one next to

another in a linear (1D) distribution. Moreover, in the previous chapter it was possible

to see how the distribution of the redundant nodes plays a role in the delay introduced

by the rerouting process. This suggests that it may be beneficial to modify the intra-

layer connections so that it is possible to deal with a broken TSV by rerouting the

information through any TSV in the layer and not necessarily to an adjacent TSV.

Thus a more efficient way to handle bursty breaks could be accomplished by creating

a better 2D distribution of the TSVs in a given layer.

The goal is to find a way to interconnect the nodes so that it is possible to

minimize the number of non-redundant nodes that are affected when a TSV breaks.

The idea was to connect one node to several nodes and not only to the adjacent

nodes, while maintaining the same level of complexity. When a group of j adjacent

non-redundant nodes suffer breaks at their TSVs, information will have to be rerouted

through at least j nodes and the number of nodes that are affected will depend on

how the redundant nodes are distributed. This idea will be clarified with the use of

an example.

Figure 4.1 shows 16 sender nodes on a layer, four of which are redundant. The

redundant nodes are evenly distributed throughout the circuit. In Chapter 3 this was

shown to be the best distribution. Now, suppose that nodes NS1 and NS2 suffer a

break at their TSV, forcing them to send the information they are receiving at their

main input to the adjacent nodes. The information that was at the main input of

45

NS1 will have to travel all the way to NS3 before it can reach the next layer and the

information at the main input of NS2 will have to travel to node RS1. Moreover,

nodes NS3, NS4, NS5, and NS6 will be affected as well. This “domino” effect is an

issue that needs to be addressed. The first attempt to alleviate this problem was to

modify the way the nodes are interconnected.

The objective was to give the nodes the possibility of re-routing in more than

one direction. The initial approach was to find a way to send all the m intra-layer

outputs of a given nodes to i other nodes. This creates a better set of options for

the re-routing process. However, a greater number of intra-layer connections will be

required, specifically m × i, which is not desired. Moreover, the node will have to

make a decision regarding to which node it should send the information. As a result,

the complexity of the nodes routing logic will increase. Another disadvantage is that

the receiver at the next layer will need to know what path was chosen by the sender,

which represent a further increment in the complexity. Due to the high complexity

this approach is not a very viable option.

The second approach also aimed to have a single node connected to multiple

nodes. However, instead of connecting each of the intra-layer outputs to i different

nodes, each intra-layer output is connected to a single, different, node. See fig. 4.2.

Note that the number of intra-layer connections will be equal to m, which is the same

as when all the intra-layer outputs connect to a single node. So, there exists the

possibility of maintaining the same routing logic. This solves the issues of the higher

complexity introduced by the need of choosing a path and could, with the proper

interconnections, reduce the number of non-redundant nodes that are affected in the

re-routing process.

It is necessary to address the issue of how the receivers will deal with the infor-

mation in order to route it to the right position. Since symmetry is the key piece

46

Fig. 4.1: On layer distribution, case 1.

Fig. 4.2: Modified nodes interconnection.

47

behind the micronetwork’s low complexity, it was assumed that maintaining the sym-

metry was the way to solve the problem. So, if the k intra-layer output of node

NSx is connected to the k intra-layer input of node NSy, the assumption was that

connecting the k intra-layer output of node NRy to the k intra-layer input of node

NRx was the right approach. NRx represents an arbitrary non-redundant receiver

and NSx represents an arbitrary non-redundant sender. The same logic applies for

the connections involving redundant nodes. This configuration is able to handle effec-

tively some break patterns, as is shown in fig. 4.3. Nevertheless, this will not work

in general. Figure 4.4 shows an example of a re-routing failure. Moreover, note that

fig. 4.3 shows a worse performance than the one from the standard interconnection.

Other interconnections were tested and similar results were obtained.

It may be possible to find a way to interconnect the nodes that will work for

all the cases, perhaps with a small modification of the logic. Unfortunately, we were

unable to find such an interconnection. Moreover, we believe that achieving this

type of interconnectivity will require nodes which have a considerably more complex

logic. Moreover, it may require that information for rerouting decisions is exchanged

between adjacent layers. Inter-layer communication is not desirable and it could offset

any benefits obtained from the modified intra-layer interconnection.

The potential inconveniences that could be introduced by a change in the inter-

connections suggest that it might be necessary to find another way to deal with the

problem of increased delays in the presence of bursty breaks. In order to do so, we

will first try to better understand the effect of bursty errors in the amount of delay

introduced by the micronetwork. The analysis presented is for a simulation with 100

non-redundant TSVs, 25 redundant TSVs, and two layers. Figure 4.5 shows the

delay analysis when the TSV fails independently and the redundant nodes are evenly

distributed, for a single iteration. Several simulations of a single iteration were per-

48

`

b1 b2 b3 b4

b1 b2 b3 b4

b2 b3 b4 b1

NS

NR RR

RS

Fig. 4.3: Modified interconnection, example of successful routing.

`

b1 b2 b3 b4

b3 b2 b4 b1

b2 b3b4b1

NS

NR RR

RS

Fig. 4.4: Modified interconnection, example of a routing failure.

49

formed, with the results following a similar trend each time. It can be seen that on

average the amount of delay introduced is quite low. However, the maximum delay

measured shows that there is at least one via that encounters a substantial delay.

But this is an issue that would not be solved even with a different arrangement of

the interconnections. Any particular TSV could face a delay as big as the number of

breaks, even in the presence of an optimal interconnection. This is due to the routing

logic and the random nature of the breaks.

Figure 4.6 shows the results for the same simulation parameter that is shown in

fig. 4.5, but now considering the possibility that bursty breaks can occur. For this

example, every time a TSV breaks, there is a 90% chance that the either of the two

adjacent TSVs will break. We see that the delays are higher than in the previous

case. This is what we were expecting from the discussion that led to the desire of

finding an alternative way of interconnecting the nodes. However, we propose that

instead of looking for an alternative way to interconnect the nodes, we remain with

the same interconnection, and to avoid interconnecting nodes that are expected to

fail together.

Once there is information about which TSVs are more likely to fail, it is possible

to connect the nodes at those TSVs to nodes at TSVs that are less likely to fail and

with independent probability of failure. Moreover, the distance between the nodes

needs to be considered as well. This way the wring length could be minimized. Hence,

the expected delay is minimized. We illustrate this idea with the use of an example.

Suppose that in fig. 4.7 the TSVs associated to nodes NS1, NS2, NS7, and

NS8 have a higher probability of failure and that their probability of failure is not

independent. The scenario described could be typical in a 3D IC, since the center

part of the layer tends to be at a higher temperature. The failure pattern that was

described in fig. 4.1, failure of the TSVs at NS1 and NS2, is likely to emerge in

50

0 5 10 15 20 25
2

4

6

8

10

12

14

16

18

20

Number of Breaks

N
um

be
r

of
 N

od
es

Delay Analysis, L=2, B=100, R=25, I=1, Even 1

First Non−Redundant TSV
Last Non−Redundant TSV
Average Delay
Max Delay

Fig. 4.5: Delay analysis, two layers, single iteration.

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

Number of Breaks

N
um

be
r

of
 N

od
es

Delay Analysis, L=2, B=100, R=25, I=1, Even 1, Bursty α = 90%

First Non−Redundant TSV
Last Non−Redundant TSV
Average Delay
Max Delay

Fig. 4.6: Delay analysis, two layers, single iteration, bursty.

51

Fig. 4.7: Modified nodes interconnection.

the described scenario. Nevertheless, the way the nodes are now interconnected will

prevent the undesired domino effect that was present in the configuration shown in

fig. 4.1. Nodes associated to TSVs that are more likely to fail are directly connected

to non-redundant nodes, which reduces the interaction between non-redundant nodes.

The previous example shows that with the appropriate information concerning

failure patterns it is possible to minimize the expected delay. However, this only

improves expected values while the worst case scenario remains the same. The worst

delay is experienced whenever TSVs at interconnected nodes fail together and this

depends on the number breaks we intent to tolerate. The maximum delay could be as

big as the number of breaks we want to tolerate, because that is the maximum number

of interconnected TSVs that could break together. Together does not necessarily mean

at the same time, but that at some point in time they all have failed. Nevertheless,

by interconnecting nodes that are associated to TSVs with independent probability

52

of failure we reduce the chances of getting anywhere close to the maximum delay.

So, we do not change the maximum delay, but we decrease the probability of ever

experiencing it.

53

Chapter 5

Conclusions

In this chapter a summary of the results and some ideas for future work are

discussed.

5.1 Summary

A model to mitigate the communication problem in 3D integrated circuits caused

by the breaks at the through-silicon vias (TSVs) was developed in this thesis. Using

a low complexity network, the introduction of redundant TSVs makes it possible to

re-route around breaks to maintain effective communication between layers. This

was developed while maintaining a local on-layer communication, a small area, a low

complexity circuitry, and local routing.

Chapter 2 describes the principles of operation of the micronetwork. In addition,

a detailed description of the routing logic is presented. An idea for the internal

structure of the nodes is described. This shows that the cost of creating the nodes

circuitry is relatively low, due to their low complexity.

In Chapter 3, an analysis of the micronetwork performance is presented. The

relationship between the probability of failure of a single via and the probability of

failure of a single layer was studied. This helps assessing the number of redundancies

that are required for the system to operate reliably. It was shown that with the

introduction of a relative small amount of redundancy it is possible to improve the

reliability of the system considerably. In most cases the robustness improved by

several orders of magnitudes with a redundancy of less than 15%.

54

In addition, the performance of the micronetwork under multiple breaks was

assessed, and promising results were obtained. The chapter also covers an analysis of

the delay introduced in the rerouting process. It was observed that delays are closely

tied to the distribution of the nodes in the layer.

Chapter 4 further expands on the delay analysis. The idea is to modify the intra-

layer connections in order to reduce the delay introduced in the re-routing process.

Two approaches were discussed. The first, connecting all the intra-layer outputs to

different nodes, has the potential of reducing the delay to the very minimum, but it

would be extremely complex to implement. The other, connecting each intra-layer

output to a single, different, node is more appealing since it has a lower complexity

than the first approach. Unfortunately, the level of complexity is still too high when

compared to the interconnection described in Chapter 2. We conclude that the best

way to deal with the delay is by properly distributing the nodes. Nodes associated

with TSVs that are more likely to fail should be connected as close as possible to non-

redundant nodes, and nodes that are connected together should have a probability of

failure as independent as possible.

The results show that the micronetwork approach to the TSV failure problem

is able to provide significant protection against multiple breaks while maintaining

computation local. Moreover, most additional communication is on-plane (2D) and

the latency or decoding delays are reasonably small. The micronetwork is a low

complexity system that enhances the reliability of 3D integrated circuits.

5.2 Future Work

This research creates new opportunities for study. As it was mentioned in the

introduction, research on how to deal with TSVs failure from an error correction

perspective is practically inexistent. There is still a lot of uncertainty around many

55

aspects of 3D integrated circuits, and because of that, the micronetwork idea was

developed on assumptions that need to be verified. For instance, it was assumed that

the on-layer interconnections will not fail and that it is possible to determine when a

TSV fails. If we allow the possibility for the on-layer interconnections to fail, it will

be necessary to modify the nodes logic to account for this type of events. This should

not be a major issue, but it will increase the complexity of the nodes. It will also

require the introduction of redundant on-layer interconnections.

It is also necessary to find practical values for the number of TSV that a typical

3D IC will posses. In addition, it is required to have better estimates of the probability

of failure for individual TSVs. A better knowledge of these parameters will allow

a better study of the micronetwork, since its performance is dependent on those

parameters. Moreover, this will be necessary for a better study of bursty breaks.

The simulations that were created to test the micronetwork were only behavioral.

It will be useful to simulate the micronetwork at the transistor or gate level. This will

make it possible to see the effect of the micronetwork on the data. The micronetwork

creates new paths for the data to travel, and it is important to analyze the changes

in parameters like resistance, capacitance, and inductance of the new path. It is

necessary to assure that the micronetwork will not corrupt the information.

It may be the case that the number of redundant TSVs in a given 3D IC is large

enough to make impractical the implementation of the micronetwork. The problem

is that the intra-layer connections are proportional to the number of redundant TSV,

and if they are too many they will end up occupying too much area on the silicon.

This problem could be approached by dividing the micronetwork into several smaller

and unrelated groups. This is not the optimal way to take advantage of all the

redundancy, but it will allow for less complex nodes. For example, if there is a 3D IC

with 300 non-redundant TSVs and 50 redundant TSVs, denote this arrangement as

56

300/50, there will be 50 intra-layer connections between any two nodes. The number

of intra-layer connections could be reduced by dividing the TSV into two groups, one

of size 180/30 and one of size 170/20. Note that in the group of size 170/20 it is only

possible to tolerate 20 failures. Nevertheless, the size of the groups can be arranged in

a way that the probability of failure is minimized by taking into consideration what

the expected patterns of failure are.

The micronetwork only re-routes information in one direction on the layer, this

is why the number of intra-layer connection has to be the same as the number of

redundant TSVs. Nevertheless, this number could be cut in half by allowing the re-

routing process to be in two directions. The node could be modified so that it routes

in one direction by default and when it is not possible to route in that direction, it

re-routes in the opposite direction. This modification will require an additional line

of communication between adjacent nodes so that a node can notify to the adjacent

node that there has been a change in the re-routing direction.

Figure 5.1 illustrates this idea. Part A it is shows a section of the micronetwork

that routes unidirectionally; this circuit can support/needs four redundant TSVs, but

they are not shown. Part B and C show a modified version of circuit A; this version

can support/needs eight redundant TSV, while it maintains the same number of intra-

layer connections. It also requires an additional communication line, shown in green,

that will be used to communicate the need of a change in the routing direction. When

the fifth break occurs in circuit B, node NS6 is unable to handle all the information

it is receiving. As a result, it signals node NS5, through the communication line

(green line), that it cannot handle all the information it is receiving, and node NS5

signals node NS4 about the problem; the same behavior is repeated until the message

reaches to node NS1. Node NS1 then realizes that it is the one causing the problem,

since it is not receiving information from any other node. So, NS1 decides to send its

57

information in the other direction. Once circuit B has finished the decision process,

the nodes will look as shown in part C.

Implementing this logic will be far more complex, and it will only be necessary

if the number of intra-layer connections becomes a problem. The concept behind this

logic is very similar to what we have described for the unidirectional communication,

but the internal structure of the nodes will be different. The node will need more

switches and a control logic, which is significantly more complex.

A

B

C

NR 1

NS 1

NR 7

NS 7

NR 1

NS 1

NR 7

NS 7

NR 1

NS 1

NR 7

NS 7

Fig. 5.1: Example of bidirectional routing.

58

References

[1] B. R. S. Patti, “Three-dimensional integrated circuits and the future of system-
on-chip designs,” Proceedings of the IEEE, vol. 94, no. 6, 2006.

[2] K. Nomura, K. Abe, S. Fujita, and A. DeHon, “Novel design of three-dimensional
crossbar for future network on chip based on post-silicon devices,” 2006 1st
International Conference on Nano-Networks and Workshops, pp. 1–5, Sept. 2006
[Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.

htm?arnumber=4152809.

[3] C. Scheiring, H. Kostner, P. Lindner, S. Pargfrieder, and E. V. Group,
“Advanced-chip-to-wafer technology: enabling technology for volume produc-
tion of 3D system integration on wafer level,” in Integration The VLSI Journal,
2004.

[4] J.-q. Lu, K. Rose, and S. Vitkavage, “3D Integration: why, what, who, when?”
pp. 25–27, 2007 [Online]. Available: http://www.future-fab.com/.

[5] C. Ababei, B. Goplen, H. Mogal, K. Bazargan, and S. Sapatnekar,
“Placement and routing in 3D integrated circuits,” IEEE Design and Test of
Computers, vol. 22, no. 6, pp. 520–531, June 2005 [Online]. Available: http:

//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1541914.

[6] B. M. Motoyoshi, “Through-silicon via (TSV),” Proceedings of the IEEE, vol. 97,
no. 1, pp. 43–48, 2009.

[7] W. R. Davis, J. Wilson, S. Mick, J. Xu, H. Hua, C. Mineo, A. M. Sule, M. Steer,
and P. D. Franzon, “Demystifying 3D ICs: the pros and cons of going vertical,”
Integration The VLSI Journal, pp. 498–510, 2005.

[8] N. Ranganathan, K. Prasad, N. Balasubramanian, and K. L. Pey, “A study
of thermo-mechanical stress and its impact on through-silicon vias,” Journal
of Micromechanics and Microengineering, vol. 18, no. 7, p. 075018, July 2008
[Online]. Available: http://stacks.iop.org/0960-1317/18/i=7/a=075018?

key=crossref.e761459d7744dca9701ca7243241e241.

[9] A.-M. Corley, “Chipmakers bet on a stacked deck,” IEEE Spectrum,
vol. 47, no. 4, pp. 14–14, Apr. 2010 [Online]. Available: http:

//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5434837.

59

[10] J. U. Knickerbocker, P. S. Andry, B. Dang, R. R. Horton, M. J. Interrante, C. S.
Patel, R. J. Polastre, K. Sakuma, R. Sirdeshmukh, E. J. Sprogis, A. M. Stephens,
A. W. Topol, C. K. Tsang, B. C. Webb, and S. L. Wright, “Three-dimensional
silicon integration,” International Business, vol. 52, no. 6, pp. 553–569, 2008.

[11] N. Khan, V. S. Rao, S. Lim, H. S. We, V. Lee, Z. X. Wu, Y. Rui, and L. Ebin,
“Development of 3D silicon module with TSV for system in packaging,” Com-
ponents, pp. 550–555, 2008.

[12] C. S. Selvanayagam, J. H. Lau, X. Zhang, S. K. W. Seah, K. Vaidyanathan,
and T. C. Chai, “Nonlinear thermal stress / strain analyses of copper filled TSV
(Through Silicon Via) and their flip-chip microbumps,” Components, pp. 1073–
1081, 2008.

[13] H.-H. S. Lee and K. Chakrabarty, “Test challenges for 3D integrated circuits,”
IEEE Design & Test of Computers, vol. 26, no. 5, pp. 26–35, Sept. 2009
[Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.

htm?arnumber=5286146.

[14] A. Contreras, T. Moon, A. Dasu, and J. Gunther, “Micronetworking: reliable
communication on 3D integrated circuits,” Electronics Letters, vol. 46, no. 4,
p. 291, 2010 [Online]. Available: http://link.aip.org/link/ELLEAK/v46/i4/
p291/s1\&Agg=doi.

[15] Z. Li, X. Hong, Q. Zhou, S. Zeng, J. Bian, H. Yang, V. Pitchumani, and
C.-K. Cheng, “Integrating dynamic thermal via planning with 3D floorplanning
algorithm,” Proceedings of the 2006 International Symposium on Physical
Design, p. 178, 2006 [Online]. Available: http://portal.acm.org/citation.

cfm?doid=1123008.1123048.

[16] S. Pasricha, “Exploring serial vertical interconnects for 3D ICs,” Proceedings
of the 46th Annual Design Automation Conference, p. 581, 2009 [Online].
Available: http://portal.acm.org/citation.cfm?doid=1629911.1630061.

[17] B. Goplen and S. Sapatnekar, “Thermal via placement in 3D ICs,” Proceedings
of the 2005 International Symposium on Physical Design - ISPD ’05, p.
167, 2005 [Online]. Available: http://portal.acm.org/citation.cfm?doid=

1055137.1055171.

[18] D. Sekar, C. King, B. Dang, T. Spencer, H. Thacker, and P,
“A 3D-IC technology with integrated microchannel cooling,” In-
terconnect Technology, pp. 13–15, June 2008 [Online]. Available:
http://scholar.google.com/scholar?hl=en\&btnG=Search\&q=intitle:

A+3D-IC+Technology+with+Integrated+Microchannel+Cooling\#0.

60

[19] IBM, “Made in IBM labs: IBM cools 3-D chips with H2O,” June 2008 [Online].
Available: http://www-03.ibm.com/press/us/en/pressrelease/24385.wss.

[20] U. Kang, H.-J. Chung, S. Heo, S.-H. Ahn, H. Lee, S.-H. Cha, J. Ahn, D. Kwon,
J. H. Kim, J.-W. Lee, H.-S. Joo, W.-S. Kim, H.-K. Kim, E.-M. Lee, S.-R. Kim,
K.-H. Ma, D.-H. Jang, N.-S. Kim, M.-S. Choi, S.-J. Oh, J.-B. Lee, T.-K. Jung,
J.-H. Yoo, and C. Kim, “8Gb 3D DDR3 DRAM using through-silicon-via tech-
nology,” in Solid-State Circuits Conference - Digest of Technical Papers, 2009.
ISSCC 2009. IEEE International, pp. 130 –131,131a, 2009.

[21] I. Loi, S. Mitra, T. H. Lee, S. Fujita, and L. Benini, “A low-overhead fault
tolerance scheme for TSV-based 3D network on chip links,” 2008 IEEE/ACM
International Conference on Computer-Aided Design, pp. 598–602, Nov. 2008
[Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.

htm?arnumber=4681638.

[22] P. P. Williamson, “Revisiting the classical occupancy problem,” The American
Statistician, vol. 63, no. 4, pp. 356–360, Nov. 2009 [Online]. Available:
http://pubs.amstat.org/doi/abs/10.1198/tast.2009.08104.

61

Appendix

62

Appendix

Code for the Nodes Processing Logic

import java . awt . ∗ ;

import javax . swing . ∗ ;

//Micronetworking : Re l i ab l e communication on 3D Integ ra t ed C i r c u i t s

//This c l a s s implements the p ro c e s s i ng l o g i c f o r the nodes . There are

// four types o f nodes : Non−Redundant Lower , Non−Redudnat Upper ,

//Redundant Lower , and Redundant Upper . On the t h e s i s t h i s names were

// changed from Upper to Sender and from Lower to Rece iver .

pub l i c c l a s s Node {

i n t MAXINPUTS ;

i n t MAXOUTPUTS;

//These are the 4 d i f f e r e n t types o f Nodes .

pub l i c enum nodeType {RUPPER,NRUPPER,NRLOWER,RLOWER} ;

//Each node conec t s to 4 ne ighbors .

pub l i c enum nodeSide {UPPER,LOWER,LEFT,RIGHT} ;

// Ports are the p r i n c i p a l inputs and outputs o f the nodes .

pub l i c enum portStatus {OPEN,CLOSE}

63

pr i va t e Node rightNode ;

p r i va t e Node l e f tNode ;

p r i va t e Node upperNode ;

p r i va t e Node lowerNode ;

// Var iab le to s t o r e the node type .

p r i va t e nodeType type ;

p r i va t e St r ing name ;

p r i va t e i n t coordinateX ;

p r i va t e i n t coordinateY ;

p r i va t e boolean canIProces s ;

p r i va t e Color nodeColor ;

p r i va t e i n t nodeLenght ;

p r i va t e i n t nodeWidth ;

//This i s a he lpe r c l a s s to draw the inputs and outputs o f the nodes

//This i s a c l a s s that has in fo rmat ion concern ing the s t a tu s o f

// the por t s .

pub l i c c l a s s Port

{

pr i va t e i n t port ;

p r i va t e Color c o l o r ;

p r i va t e Node . por tStatus s t a tu s ;

p r i va t e i n t ver tex [] [] ;

pub l i c Counter count ;

i n t heigth , width ;

Port ()

{

64

t h i s . s t a tu s=portStatus .CLOSE;

//We s e t port to −1 to symbol ize that i t does not have

// in fo rmat ion (0 or 1)

t h i s . port=−1;

t h i s . c o l o r=Color .GREEN;

ver tex = new in t [1] [2] ;

count = new Counter () ;

}

//This c l a s s r e s e t the port va lue s . This w i l l be used when the

//node type i s changed . This way we r e s e t the va lue s and l e t

// the node know that i t need to r e c on f i g u r e .

pub l i c void r e s e tPo r t (i n t in){

i f (t h i s . s t a tu s==Node . por tStatus .CLOSE) ;

t h i s . c o l o r=Color .GREEN;

t h i s . port=in ; // in i s e i t h e r 1 ,0 or −1.

t h i s . count= new Counter () ;

}

pub l i c void se tCo lo r (Color c){

t h i s . c o l o r=c ;

}

pub l i c void se tPort (i n t va l){

t h i s . port=va l ;

}

pub l i c void s e tS ta tu s (Node . por tStatus s){

t h i s . s t a tu s=s ;

65

}

pub l i c Color getColor ()

{

i f (t h i s . s t a tu s==Node . por tStatus .OPEN) return Color .RED;

e l s e i f (t h i s . port == −1) re turn Color .GREEN;

return t h i s . c o l o r ;

}

pub l i c i n t [] [] getVertex (){

re turn t h i s . ve r tex ;

}

pub l i c i n t getHeigth (){

re turn t h i s . he ig th ;

}

pub l i c i n t getWitdh (){

re turn t h i s . width ;

}

} ;

//This c l a s s i s used f o r the int ra−l a y e r por t s

pub l i c c l a s s SidePort

{

pr i va t e i n t [] s i d e ;

p r i va t e Color [] s i d eCo lo r ;

p r i va t e i n t ver tex [] [] ;

pub l i c Counter [] count ;

66

pub l i c Node [] outputs ;

i n t heigth , width ;

SidePort (i n t maxOut)

{

s i d e= new in t [maxOut] ;

s i d eCo lo r= new Color [maxOut] ;

ve r tex= new in t [maxOut] [2] ;

count = new Counter [maxOut] ;

f o r (i n t i = 0 ; i < MAXINPUTS; i++) {

t h i s . s i d e [i] = −1;

t h i s . s i d eCo lo r [i] = Color .GREEN;

count [i]=new Counter () ;

}

}

pub l i c void r e s e tS i d ePo r t s (){

f o r (i n t i = 0 ; i < MAXINPUTS; i++) {

t h i s . s i d e [i] = −1;

t h i s . s i d eCo lo r [i] = Color .GREEN;

t h i s . count [i]= new Counter () ;

}

}

pub l i c Color [] getColor ()

{

67

Color tempColor [] = new Color [t h i s . s i d eCo lo r . l ength] ;

f o r (i n t i =0; i<t h i s . s i d eCo lo r . l ength ; i++)

{

tempColor [i]= s ideCo lo r [i] ;

i f (t h i s . s i d e [i]==−1) tempColor [i]= Color .GREEN;

}

re turn tempColor ;

}

pub l i c i n t [] [] getVertex (){

re turn t h i s . ve r tex ;

}

pub l i c i n t getWitdh ()

{

re turn t h i s . width ;

}

pub l i c i n t getHeigth ()

{

re turn t h i s . he ig th ;

}

} ;

68

//This c l a s s i s used to keep track o f the number

// o f nodes a p a r t i c u l a r b i t goes through

pub l i c c l a s s Counter

{

pr i va t e St r ing counter [] ;

Counter (){

t h i s . counter = new St r ing [1] ;

t h i s . counter [0] = Node . t h i s . name ;

}

// t h i s func t i on s e t the in tput s counter s

pub l i c void setCounter (S t r ing [] inCount)

{

t h i s . counter = new St r ing [inCount . l ength] ;

System . arraycopy (inCount , 0 , t h i s . counter , 0 , inCount . l ength) ;

i f (t h i s . counter [0]== nu l l) t h i s . counter [0] = Node . t h i s . name ;

}

// t h i s f un c t i on r s e t the outputs counter s

pub l i c void setCounter (S t r ing [] inCount , S t r ing add)

{

t h i s . counter = new St r ing [inCount . l ength +1] ;

System . arraycopy (inCount , 0 , t h i s . counter , 0 , inCount . l ength) ;

counter [inCount . l ength]=add ;

69

i f (t h i s . counter [0]== nu l l) t h i s . counter [0] = Node . t h i s . name ;

}

pub l i c S t r ing [] getCounter () {

re turn t h i s . counter ;

}

pub l i c void setCounter (S t r ing inCount , i n t p){

i f (p<t h i s . counter . l ength)

t h i s . counter [p]= inCount ;

i f (t h i s . counter [0]== nu l l) t h i s . counter [0] = Node . t h i s . name ;

}

}

pr i va t e SidePort s ide Input ;

p r i va t e SidePort sideOutput ;

p r i va t e Port nodeInput ;

p r i va t e Port nodeOutput ;

//This i s the con s t ruc to r to s e t the i n i t i a l va lue s .

pub l i c Node (i n t max)

{

MAXINPUTS=max ;

MAXOUTPUTS=max ;

t h i s . type = nodeType .RUPPER ;

70

t h i s . s ide Input= new SidePort (MAXINPUTS) ;

t h i s . s ideOutput= new SidePort (MAXINPUTS) ;

t h i s . l e f tNode= nu l l ;

t h i s . r ightNode=nu l l ;

t h i s . upperNode=nu l l ;

t h i s . lowerNode=nu l l ;

t h i s . canIProces s=true ;

t h i s . nodeInput = new Port () ;

t h i s . nodeOutput = new Port () ;

t h i s . name = ”NA” ;

}

pub l i c Node (nodeType nT, i n t maxout)

{

t h i s (maxout) ;

t h i s . setType (nT) ;

}

//This func t i on attach a node to i t s ne ighbors . newNode i s the node to be

// attached and x i s the s i d e were the node i s going to be attached .

pub l i c void attachNode (Node newNode , nodeSide x)

{

switch (x)

{

case LOWER:

71

t h i s . lowerNode=newNode ;

break ;

case UPPER:

t h i s . upperNode=newNode ;

break ;

case RIGHT:

t h i s . r ightNode=newNode ;

break ;

case LEFT:

t h i s . l e f tNode=newNode ;

break ;

}

}

//This func t i on attached the ne ighbors nodes a l l at once . I t s t a r t s at the

//upper node and goes c l o ck wise u n t i l the l e f t node .

pub l i c void attachNode (Node uN, Node rN , Node dN, Node lN)

{

t h i s . l e f tNode=lN ;

t h i s . lowerNode=dN;

t h i s . r ightNode=rN ;

t h i s . upperNode=uN;

}

//This func t i on r e tu rn s an array conta in ing the four ne ighbor nodes

pub l i c Node [] getAdjacentNodes ()

{

72

Node newNode []= new Node [4] ;

newNode [0]= t h i s . upperNode ;

newNode [1]= t h i s . r ightNode ;

newNode [2]= t h i s . l e f tNode ;

newNode [3]= t h i s . lowerNode ;

re turn newNode ;

}

pub l i c void setType (nodeType T){

t h i s . type = T;

}

pub l i c nodeType getType (){

re turn t h i s . type ;

}

//Here i s were every node proce s s how to handle the in fo rmat ion

// at i t s inputs .

pub l i c void proccessNode () {

i n t i = MAXINPUTS − 1 ;

synchron ized (t h i s) {

whi le (i >= 0 && th i s . s ide Input . s i d e [i] == −1) {

i−−;

}

73

switch (t h i s . type) {

case RUPPER:

t h i s . processRUpper (i) ;

t h i s . setUpperNodeIn (t h i s . nodeOutput) ;

t h i s . setRightNodeSide (sideOutput) ;

break ;

case RLOWER:

t h i s . processRLower (i) ;

t h i s . s e tLe f tNodeSide (sideOutput) ;

break ;

case NRUPPER:

t h i s . processNRUpper (i) ;

t h i s . setUpperNodeIn (t h i s . nodeOutput) ;

t h i s . setRightNodeSide (sideOutput) ;

break ;

case NRLOWER:

t h i s . processNRLower (i) ;

t h i s . setUpperNodeIn (t h i s . nodeOutput) ;

t h i s . s e tLe f tNodeSide (sideOutput) ;

break ;

}

}

74

}

// r e v i s t e d 1 .0

pub l i c void processRUpper (i n t s t a r t)

{

i f (s t a r t !=−1)

{

i f (t h i s . nodeOutput . s t a tu s==portStatus .CLOSE)

{

t h i s . nodeOutput . port=th i s . s ide Input . s i d e [s t a r t] ;

t h i s . nodeOutput . c o l o r=th i s . s ide Input . s i d eCo lo r [s t a r t] ;

t h i s . nodeOutput . count . setCounter

(t h i s . s ide Input . count [s t a r t] . getCounter () , t h i s . name) ;

}

e l s e

{

t h i s . s ideOutput . s i d e [s t a r t]= t h i s . s ide Input . s i d e [s t a r t] ;

t h i s . s ideOutput . s i d eCo lo r [s t a r t]= t h i s . s ide Input . s i d eCo lo r [s t a r t] ;

t h i s . s ideOutput . count [s t a r t] . setCounter

(t h i s . s ide Input . count [s t a r t] . getCounter () , t h i s . name) ;

}

f o r (i n t k=0;k<s t a r t ; k++)

75

{

t h i s . s ideOutput . s i d e [k]= t h i s . s ide Input . s i d e [k] ;

t h i s . s ideOutput . s i d eCo lo r [k]= t h i s . s ide Input . s i d eCo lo r [k] ;

t h i s . s ideOutput . count [k] . setCounter

(t h i s . s ide Input . count [k] . getCounter () , t h i s . name) ;

}

}

}

pub l i c void processRLower (i n t s t a r t) {

i n t j ;

i f (t h i s . nodeInput . s t a tu s == portStatus .CLOSE) {

t h i s . s ideOutput . s i d e [0] = t h i s . nodeInput . port ;

t h i s . s ideOutput . s i d eCo lo r [0] = t h i s . nodeInput . c o l o r ;

t h i s . s ideOutput . count [0] . setCounter

(t h i s . nodeInput . count . getCounter () , t h i s . name) ;

j = 1 ;

} e l s e {

j = 0 ;

76

}

f o r (i n t k = 0 ; k <= s t a r t ; k++) {

t h i s . s ideOutput . s i d e [k + j] = t h i s . s ide Input . s i d e [k] ;

t h i s . s ideOutput . s i d eCo lo r [k + j] = t h i s . s ide Input . s i deCo lo r [k] ;

t h i s . s ideOutput . count [k + j] . setCounter

(t h i s . s ide Input . count [k] . getCounter () , t h i s . name) ;

}

}

pub l i c void processNRLower (i n t s t a r t)

{

i n t j ;

i f (s t a r t !=−1)

{

t h i s . nodeOutput . port=th i s . s ide Input . s i d e [s t a r t] ;

t h i s . nodeOutput . c o l o r=th i s . s ide Input . s i d eCo lo r [s t a r t] ;

t h i s . nodeOutput . count . setCounter

(t h i s . s ide Input . count [s t a r t] . getCounter () , t h i s . name) ;

}

i f (t h i s . nodeInput . s t a tu s==portStatus .CLOSE)

77

{

i f (s t a r t==−1)

{

t h i s . nodeOutput . port=th i s . nodeInput . port ;

t h i s . nodeOutput . c o l o r=th i s . nodeInput . c o l o r ;

t h i s . nodeOutput . count . setCounter

(t h i s . nodeInput . count . getCounter () , t h i s . name) ;

}

e l s e

{

t h i s . s ideOutput . s i d e [0]= t h i s . nodeInput . port ;

t h i s . s ideOutput . s i d eCo lo r [0]= t h i s . nodeInput . c o l o r ;

t h i s . s ideOutput . count [0] . setCounter

(t h i s . nodeInput . count . getCounter () , t h i s . name) ;

}

j =1;

}

e l s e

{

j =0;

}

f o r (i n t k=0;k<s t a r t ; k++)

{

t h i s . s ideOutput . s i d e [k+j]= t h i s . s ide Input . s i d e [k] ;

t h i s . s ideOutput . s i d eCo lo r [k+j]= t h i s . s ide Input . s i deCo lo r [k] ;

78

t h i s . s ideOutput . count [k + j] . setCounter

(t h i s . s ide Input . count [k] . getCounter () , t h i s . name) ;

}

}

pub l i c void processNRUpper (i n t s t a r t) {

i f (t h i s . nodeOutput . s t a tu s == portStatus .CLOSE) {

i f (s t a r t != −1) {

t h i s . nodeOutput . port = th i s . s ide Input . s i d e [s t a r t] ;

t h i s . nodeOutput . c o l o r = th i s . s ide Input . s i d eCo lo r [s t a r t] ;

t h i s . nodeOutput . count . setCounter

(t h i s . s ide Input . count [s t a r t] . getCounter () , t h i s . name) ;

t h i s . s ideOutput . s i d e [0] = t h i s . nodeInput . port ;

t h i s . s ideOutput . s i d eCo lo r [0] = t h i s . nodeInput . c o l o r ;

t h i s . s ideOutput . count [0] . setCounter

(t h i s . nodeInput . count . getCounter () , t h i s . name) ;

} e l s e {

t h i s . nodeOutput . port = th i s . nodeInput . port ;

t h i s . nodeOutput . c o l o r = th i s . nodeInput . c o l o r ;

t h i s . nodeOutput . count . setCounter

(t h i s . nodeInput . count . getCounter () , t h i s . name) ;

79

}

} e l s e {

t h i s . s ideOutput . s i d e [0] = t h i s . nodeInput . port ;

t h i s . s ideOutput . s i d eCo lo r [0] = t h i s . nodeInput . c o l o r ;

t h i s . s ideOutput . count [0] . setCounter

(t h i s . nodeInput . count . getCounter () , t h i s . name) ;

s t a r t++;

}

f o r (i n t k = 0 ; k < s t a r t ; k++) {

t h i s . s ideOutput . s i d e [k + 1] = th i s . s ide Input . s i d e [k] ;

t h i s . s ideOutput . s i d eCo lo r [k + 1] = th i s . s ide Input . s i d eCo lo r [k] ;

t h i s . s ideOutput . count [k + 1] . setCounter

(t h i s . s ide Input . count [k] . getCounter () , t h i s . name) ;

}

}

pub l i c void setOutPortStatus (Port in) {

t h i s . nodeOutput . s t a tu s = in . s t a tu s ;

t h i s . nodeOutput . c o l o r = in . c o l o r ;

80

i f (in . s t a tu s != Node . por tStatus .CLOSE) {

t h i s . nodeOutput . port = −1;

t h i s . nodeOutput . c o l o r = Color .RED;

}

}

pub l i c void s e t InPor tSta tus (Port in) {

t h i s . nodeInput . s t a tu s = in . s t a tu s ;

t h i s . nodeInput . c o l o r = in . c o l o r ;

i f (in . s t a tu s != Node . por tStatus .CLOSE) {

t h i s . nodeInput . port = −1;

t h i s . nodeInput . c o l o r = Color .RED;

}

}

pub l i c Node . por tStatus getMyInPortS ()

{

re turn t h i s . nodeInput . s t a tu s ;

}

pub l i c Node . por tStatus getMyOutPortS ()

{

re turn t h i s . nodeOutput . s t a tu s ;

}

pub l i c synchron ized void setUpperNodeIn (Port portValue)

81

{

i f (t h i s . upperNode!= nu l l)

synchron ized (t h i s . upperNode)

{

t h i s . upperNode . setMyinput (portValue) ;

}

}

pub l i c synchron ized void setRightNodeSide (SidePort portValue)

{

i f (t h i s . r ightNode != nu l l)

{

synchron ized (t h i s . r ightNode)

{

t h i s . r ightNode . setMySidesIn (portValue) ;

}

}

}

pub l i c synchron ized void setLe f tNodeS ide (SidePort portValue)

{

i f (t h i s . l e f tNode != nu l l)

synchron ized (t h i s . l e f tNode)

82

{

t h i s . l e f tNode . setMySidesIn (portValue) ;

}

}

pub l i c synchron ized void setMySidesIn (SidePort va lue s)

{

f o r (i n t i =0; i<MAXINPUTS; i++)

{

t h i s . s ide Input . s i d e [i]= va lues . s i d e [i] ;

t h i s . s ide Input . s i d eCo lo r [i]= va lue s . s i d eCo lo r [i] ;

t h i s . s ide Input . count [i] . setCounter (va lue s . count [i] . getCounter ()) ;

}

}

pub l i c i n t [] getMysidesIn ()

{

re turn t h i s . s ide Input . s i d e ;

}

pub l i c synchron ized void setMyinput (Port va lue)

{

synchron ized (t h i s)

{

t h i s . nodeInput . port= value . port ;

t h i s . nodeInput . c o l o r=value . c o l o r ;

83

t h i s . nodeInput . count . setCounter (va lue . count . getCounter ()) ;

}

}

pub l i c void setName (St r ing name) {

t h i s . name=name ;

}

pub l i c S t r ing getName (){

re turn t h i s . name ;

}

pub l i c i n t getMaxInputs (){

re turn MAXINPUTS;

}

pub l i c void se t InputCo lor (Color c)

{

t h i s . nodeInput . c o l o r=c ;

// t h i s . pa in t e r . drawInput (c) ;

84

}

pub l i c Node . Port getPort ()

{

re turn t h i s . nodeInput ;

}

pub l i c i n t getMyOutput ()

{

re turn t h i s . nodeOutput . port ;

}

pub l i c S t r ing [] getMyOutputCounter ()

{

re turn t h i s . nodeOutput . count . getCounter () ;

}

//Used to c a l c u l a t e the ” de lay ”

pub l i c i n t getMyOutputCounterLength ()

{

re turn t h i s . nodeOutput . count . getCounter () . l ength ;

}

pub l i c i n t getMyInput ()

{

re turn t h i s . nodeInput . port ;

}

85

pub l i c i n t [] getMysidesOut ()

{

re turn t h i s . s ideOutput . s i d e ;

}

pub l i c void setInputV (i n t v [] [] , i n t w, i n t h)

{

t h i s . nodeInput . ver tex [0] [0]= v [0] [0] ;

t h i s . nodeInput . ver tex [0] [1]= v [0] [1] ;

t h i s . nodeInput . he ig th=h ;

t h i s . nodeInput . width=w;

}

pub l i c void setSideOutputV (i n t v [] [] , i n t w, i n t h) {

t h i s . s ideOutput . he ig th=h ;

t h i s . s ideOutput . width=w;

f o r (i n t i = 0 ; i < s ideOutput . ver tex . l ength ; i++) {

s ideOutput . ver tex [i] [0] = v [i] [0] ;

s ideOutput . ver tex [i] [1] = v [i] [1] ;

}

}

pub l i c SidePort getS idePort ()

{

86

re turn t h i s . s ideOutput ;

}

// Set the po s i t i o n on the frame . This he lp to change the c o l o r

pub l i c void s e tPo s i t i o n (i n t x , i n t y)

{

coordinateX = x ;

coordinateY = y ;

}

pub l i c void se tCanIproce s s (boolean f)

{

t h i s . canIProces s=f ;

}

pub l i c boolean getCanIprocess ()

{

re turn t h i s . canIProces s ;

}

pub l i c i n t [] g e tPo s i t i on ()

{

i n t c []={ coordinateX , coordinateY } ;

r e turn c ;

}

pub l i c void setNodeColor (Color c){

87

t h i s . nodeColor=c ;

}

pub l i c Color getNodeColor () {

re turn t h i s . nodeColor ;

}

pub l i c void setNodeWidth (i n t w){

t h i s . nodeWidth=w;

}

pub l i c i n t getNodeWidth ()

{

re turn t h i s . nodeWidth ;

}

pub l i c void setNodeHeight (i n t l)

{

t h i s . nodeLenght=l ;

}

pub l i c i n t getNodeHeight ()

{

re turn t h i s . nodeLenght ;

}

pub l i c void resetMyPorts (i n t in)

{

88

t h i s . nodeInput . r e s e tPo r t (in) ;

t h i s . nodeOutput . r e s e tPor t (in) ;

t h i s . s ide Input . r e s e tS i d ePo r t s () ;

t h i s . s ideOutput . r e s e tS i d ePo r t s () ;

}

// Set the node c on f i g u r a t i on to Redundant

void toRedundant ()

{

i f (t h i s . getType()==Node . nodeType .NRLOWER)

t h i s . setType (Node . nodeType .RLOWER) ;

e l s e i f (t h i s . getType()==Node . nodeType .NRUPPER)

t h i s . setType (Node . nodeType .RUPPER) ;

setNodeColor (Color .BLACK) ;

resetMyPorts (−1);

}

// Set the node c on f i g u r a t i on to Non−Redundant

void toNonRedundant ()

{

i f (t h i s . getType()==Node . nodeType .RLOWER)

t h i s . setType (Node . nodeType .NRLOWER) ;

e l s e i f (t h i s . getType()==Node . nodeType .RUPPER)

t h i s . setType (Node . nodeType .NRUPPER) ;

89

setNodeColor (Color .BLUE) ;

resetMyPorts (0) ;

}

} //end o f c l a s s

