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values were also compared with the histogram for each spectral band to establish the 

minimum reflectance in the scene.  

Individual bands of Landsat 7 (1-5, 7) and several normalized difference band 

ratios were used to represent the scorpan covariates of vegetation, soil, and parent 

material in the study area: 

ratiobanddifferenceNormalized
BBandABand

BBandABand =
+

−

ρρ
ρρ

 
 
 
where ρBand A is the reflectance in Band A and ρBand B is the reflectance in Band B. The 

normalized difference ratio of bands 4 and 3 represented vegetation, known as the 

Normalized Difference Vegetation Index (NDVI). The normalized difference ratio of 

bands 5 and 2 distinguished most igneous geologic formations (andesite) from 

sedimentary formations (limestone).  In addition, normalized band ratios 4 and 5, 3 and 7, 

5 and 1, 4 and 7, and 3 and 1 exhibited unique patterns wherein distinct landforms and 

vegetation communities were visually identified and thought to be useful in the model 

(Cole, 2004; Bodily, 2005; Scull et al., 2005; Nield et al., 2007; Saunders and Boettinger, 

2007) (Figure 7, 8, and 9). 

Table 5.  The bounding coordinates of each independent variable source and the study 
area. 
 Northeast corner Southwest corner 

10 m DEM 298484.8 E, 4272046.8 N 328659.8 E, 4243332.3 N 

30 m DEM 298471 E, 4272051 N 328651 E, 4243341 N 

Landsat 7 ETM+ 298456 E, 4272022 N 328696 E, 4243312 N 

Study area 300486.4 E, 4271733.5 N 326646.4 E, 4245333.5 N 
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Figure 5.  Landsat 7 ETM+ imagery. A: False color composite of bands 5 (red), 2 (green), 
4 (blue); B: False color composite of bands 3 (red), 7 (green), 1 (blue); C: band 1; D: 
band 2. 
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Figure 6.  Landsat 7 ETM+ imagery.  A: band 3; B: band 4; C: band 5; D: band 7. 
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Figure 7.  Normalized difference ratios of Landsat 7 ETM+ data. A: False color 
composite of ratios (4-7)/(4+7) (red), (4-5)/(4+5) (green), (4-3)/(4+3) (blue); B: false 
color composite of ratios  (5-2)/(5+2) (red), (5-1)/(5+1) (green), (4-7)/(4+7) (blue); C: 
ratio (4-3)/(4+3); D: ratio (4-5)/(4+5). 
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Figure 11. DEM-derived data. A: Curvature from 30-m DEM; B: Transformed aspect 
from 10-m DEM; C: CTI form 10-m DEM; D: CTI with 5x5 low pass filter from 10-m 
DEM. 
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Figure 12. Illustration of the transformation of aspect in degrees to continuous variable of 
north-south ranging from -π to π. 

Digital Data Exploration and Transformation  

 Unsupervised and supervised classifications of the digital data using Imagine 

helped identify patterns used to develop conceptual models and guide field data 

collection, and to develop customized data layers used in the random forest classification. 

Unsupervised classification requires no a priori knowledge of the study area because it is 

completely driven by the digital data. Class means and clusters are found with the 

Iterative Self-Organizing Data Analysis Technique (ISODATA). Each pixel is initially 

assigned to a cluster based on the spectral distance in feature space to the nearest cluster 

center (mean). Once each pixel has been assigned, a census of each cluster is made. 

Based on the average pixel value from the census in each cluster, the cluster center is 

shifted to the new cluster mean to reflect the membership. Once again, all pixels are 
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assigned to the nearest cluster center. This process is recursive, being reiterated until a 

user specified convergence percentage is reached or a specified number of iterations have 

been run. The convergence percentage refers to the percentage of pixels that do not 

change membership, e.g., when 95% convergence is reached, 95 % of the pixels did not 

change membership after the cluster mean was recalculated (Leica, 2005). Spectral 

signatures that are identified can be refined using supervised classification. Supervised 

classification requires a priori knowledge. Cluster means for the concept are calculated 

from the pixel(s) in a training site, which can be a point or a polygon.   

 Cluster means for classes may also be identified in spectral feature space (2D 

histogram) (Leica, 2005). When developing classes with the seeding tool, only a few 

pixels of a given class are sampled. From these pixels, the Imagine software computes the 

cluster mean of the class from which a parallelepiped is created in n-dimensional feature 

space. All pixels are then assigned to a class based on Euclidean distance in feature 

space.  In contrast, the user can draw an area of interest (AOI) to select pixels in feature 

space. The main difference with editing in feature space is that the user is not merely 

sampling a few pixels of a class but rather the user is literally assigning pixels to a class – 

essentially this is direct supervision of pixel assignment. One limitation of the feature 

space analysis is that a multi-dimensional feature space is represented in only 2-

dimensions at a time.  

Customized Data Layers 

Two customized data layers, the Lake Bonneville shoreline and the Xeric-Aridic 

soil moisture regime (SMR) raster layers, were created to help stratify the study area into 
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distinct pedo-geomorphic regions. The 10-m DEM was incorporated into both Lake 

Bonneville and Xeric-Aridic SMR models.  Landsat 7 data was also used in the Xeric-

Aridic SMR model.   

There were vector representations available of Lake Bonneville (AGRC, 2008), 

but they were inaccurate, off by several kilometers from the true shoreline (Figure 13B). 

While many prominent shoreline features (spits, deltas, shoreline scarps) can be clearly 

seen in aerial photography there were larger surfaces where shoreline features were not 

evident, making it difficult to heads-up digitize the shoreline.  

The Lake Bonneville layer is a simple binary (true or false) raster layer, where 

surfaces below ancient Lake Bonneville are “true,” and surfaces that remained above the 

highest lake level, the Bonneville high stand, are “false.” As explained in the Quaternary 

History and Geomorphology section, the elevation of this shoreline feature ranged 

from1558.2 m in the south to 1561.9 m in the north. This northward trend was estimated 

with simple linear regression. Several prominent shoreline features of the Bonneville high 

stand were identified in the field and with the aerial photography. These points were 

attributed with the UTM northing and the elevation value from the 10-m DEM. Using 

Interactive Data Language (IDL) the elevation trend of the shoreline was estimated to be 

1.99x10-4 m rise in elevation per meter in distance northward. A 10-m raster representing 

the hypothetical surface elevation of Lake Bonneville’s shoreline was created where the 

elevation was calculated as a function of the northing of each cell center (Figure 13A). 

All raster cells in the 10-m DEM found to be lower than the Lake Bonneville shoreline 

trend were assigned “true” as they were below ancient Lake Bonneville. The final output  
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Figure 13. The Lake Bonneville shoreline prediction. A: Hypothetical surface elevation 
raster of the Lake Bonneville shoreline (gray shading) and the predicted extent of Lake 
Bonneville (blue). B: Previously available vector layer of the shoreline (red) (AGRC, 
2008). Final shoreline output used as a predictive variable in random forests (blue). D: 
Predicted shoreline feature with linear regression (purple); final edited shoreline (blue). 
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was vectorized for further editing where minor adjustments (never more than 200 m) 

were made to match prominent shoreline features (Figure 13C). 

The break between xeric and aridic SMR is characterized by single leaf pinyon 

trees becoming the dominant tree over Utah juniper trees. Spectrally, these two plant 

communities can be distinguished. Areas of interest (AOI) were delineated over known 

juniper stands and dominantly pinyon stands in the original Landsat image (non-

standardized). These pixels were then identified in a feature space plot (a two 

dimensional histogram) of Landsat bands 3 and 4 produced in Imagine. Dominantly 

pinyon and dominantly juniper stand pixels were found to be in two distinct but 

contiguous clusters in feature space (Figure 14).  

Each cluster was then delineated in feature space (Figure 14) to perform a supervised 

classification with three general classes: 1) vegetation typical of the xeric SMR, including 

singleleaf pinyon, fir and others (see vegetation section in Area Description), 2) 

woodlands dominated by Utah juniper, which are characteristic of the xeric aridic SMR, 

and 3) vegetation typical of the xeric aridic and typic aridic SMR, which are non-

woodland or a shrub steppe (e.g. sagebrushes). This output is referred to as the pinyon-

juniper (PJ) classification as it was based on the presence of single-leaf pinyon or Utah 

juniper (Figure 15A).  

Not all areas in the xeric SMR are covered by woodland, and areas of irrigated 

cropland and tamarisk at low elevations in the aridic SMR are spectrally similar to true 

woodlands at higher elevations. To account for these areas the PJ classification was 

combined with transformed aspect and elevation in a model (Figure 16). At all aspects, 

juniper was not observed in the field to occur below 1700 m; also, all farmland and  
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Figure 14. Feature space plot of Landsat 7 ETM+ (non-standardized) bands 3 and 4. The 
two areas of interest (AOI) delineate two distinct clusters of pixels, one where the 
dominant vegetation is pinyon and the other is juniper. 
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Figure 15. Climogeomorphic breaks A: The PJ classification. B: PJ classification with 
elevation constraints applied. C: Final SMR classification. D: The four climogeomorphic 
breaks incorporated as a predictive variable in random forests. 
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Figure 16. The elevation range relative to aspect for each SMR. 

 
tamarisk occurred on the valley floor below 1600 m. Therefore, a conservative threshold 

of 1700 m was set, where all points below this elevation were classified as non-woodland 

and aridic SMR. As mentioned above, woodland that is dominantly pinyon is indicative 

of a xeric SMR though some pinyon does grow in areas with an aridic SMR. 

Based on field observations, areas between 1700 m and 1860 m that were 

classified as pinyon or juniper in the original PJ classification were classified as 

woodlands with an aridic SMR. The PJ classification did not account for many areas in 

the xeric SMR which were not wooded, such as talus slopes, rock outcrops, and other 

non-wooded areas in the xeric SMR. The transition from aridic SMR to xeric SMR was 

observed at elevations between 1860 m and about 2325 m relative to aspect. All areas 
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above 2325 m in elevation regardless of aspect and areas above 2025 m on north aspects 

are thought to be in the xeric SMR. A conservative estimate of 1860 m was set as the 

lowest extent of the xeric SMR. Both the transformed aspect (-π to π) and elevation 

rasters were incorporated into a model to refine the xeric-aridic break between the 

elevations of 2025 to 2325 m. I empirically fit an inverse tangent function to estimate 

maximum threshold elevation (m):  ( )Aspect1tan1192175 −×+  

where 2175 is the midpoint elevation between 2025 m and 2325 m, transformed aspect 

ranges from –π (North) to π (South), and 119 is a coefficient that converts tan-1(± π) to 

the elevation range of ±150m. With the calculation of the maximum threshold elevation 

relative to aspect and the minimum elevation of 1860 m, an envelope of transition was 

created. All pixels within this envelope are determined to be xeric or aridic SMR based 

on the original PJ classification, where a pinyon classification is xeric SMR and juniper 

as aridic SMR. The conditions of this classification are defined in the simplified 

argument below, where the elevation zone of each SMR class is shown. 


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A clump and eliminate procedure was run in ERDAS Imagine on the final SMR 

classification where all clumps less than 500 pixels (5 ha) were eliminated (Figure 15C). 

The clump procedure groups individual pixels with neighboring pixels that have the same 
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identity into groupings called clumps, similar to creating polygons but the individual 

pixels still remain but are also labeled with a clump ID. The eliminate procedure 

identifies clumps smaller than a user-specified size (area or number of pixels) and then 

eliminates them. This is done by an iterative process, where individual pixels within these 

identified clumps are reassigned to another class with a majority filter. 

The four final climogeomorphic units derived from the customized data layers are 

shown in Figure 15D.  These are the Xeric SMR, Xeric Aridic SMR with juniper, Xeric 

Aridic SMR non-wooded, and the area below the Lake Bonneville shoreline which has 

xeric aridic and typic aridic SMRs. 

Field Work 

 Field observations of soils, vegetation, and landscapes were gathered over two 

field seasons, the summers of 2005 and 2006. Soils were described from profiles exposed 

in small holes (<1-m diameter x 1-m deep) excavated by hand and, in a few cases, larger 

exposures excavated with a backhoe.  Field observations included full pedon descriptions 

(description of soil morphology) and abbreviated soil descriptions. Full pedon 

descriptions included the depth, color, texture, rock fragment content, roots/pores, 

structure, boundary, presence of secondary carbonates/silica, clay films, pH/reaction and 

other unique features for each soil horizon. Also, slope (%), and aspect (compass 

direction in degrees) of the site, presence or absence of biological soil crust, percent of 

surface covered by rock fragments and the rock fragment lithology, and type of 

vegetation present in order of dominance. An abbreviated soil description ranged from 

having almost all the elements of a full pedon description to stating only the soil 
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classification. In most cases, slope, vegetation, depths to major horizons, rock content, 

presence of secondary carbonates/silica, and some textures are recorded for each 

abbreviated description. At each observation, the soil was classified to the family level, 

according to the ninth edition of the Keys to Soil Taxonomy (Soil Survey Staff, 2003) and 

the UTM coordinates were recorded with a global positioning system (GPS Garmin 76). 

 The locations of the field observations were not generated randomly. I determined 

which landforms to investigate based on tacit knowledge. The sampling paradigm of 

summer 2005 focused on investigating soil-landscape relationships and developing 

conceptual models to predict those relationships. Observations along linear 10-point 

transects and at individual points were gathered. Once conceptual soil-landscape models 

were developed, sampling in summer 2006 was oriented toward discovering the 

geographic extent of the major soil types and refining the conceptual models. Color aerial 

photography and an image showing the first three principle components of Landsat data 

were used to help develop conceptual models and guide field sampling. Approximately 

650 sampling points (~250 during 2005 and ~400 in 2006) were logged using a Garmin 

76S GPS unit. Waypoints were downloaded using DNR Garmin software. 

Predicting Soil Classes Using Random Forests 

Soil Classes  

 All observations made in the field were compiled into an Excel spreadsheet where 

fields for the particle size family classification, diagnostic horizons and features, depths 

to top of calcic and bottom of argillic horizons, dominant vegetation, slope, and 

taxonomic classification were populated. Based on this information each observation was 



55 
 

 

assigned to one of 23 soil classes.  A 24th class was added to include mine dumps and 

other severely disturbed areas. The following is a summary of each class: 

Class 1: Dixie soils were the most commonly observed soil found on stable fan remnants 

throughout the survey area. They formed from mixed alluvium and were 

vegetated with Wyoming big sage. 

Class 2: Garbo soils are similar to Dixie soil except they have durinodic properties 

(partially cemented Bkkq horizons) and were more limited in extent. Dixie and 

Garbo were often found together on the landscape. 

Class 3: Crestline soils were found on younger fan remnants, fan skirts and lake terraces. 

They formed in mostly mixed alluvium and were vegetated with Wyoming big 

sage. Most often they had a cambic horizon and were non-effervescent to the 

surface. 

Class 4: Heist soils were found on inset fans and fan skirts. They formed from mixed 

alluvium and were vegetated with winterfat, Basin big sage, and Douglas 

rabbitbrush. They were often less developed than Crestline soils and often 

calcareous to the surface. 

Class 5: Sugarloaf soils were found on stream terraces. They formed from mixed 

alluvium and were vegetated with rabbitbrushes and ephedra. They had weak 

calcic horizons and were calcareous to the surface. They included some soils that 

were coarse-loamy but had less than 10% clay in all horizons. 

Class 6: Taylorsflat soils were found on lake shore remnants and terraces. They were 

lacustrine or reworked lacustrine deposits and were vegetated with Basin big sage 

or Wyoming big sage. They were minor in extent. 
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Class 7: Biblesprings soils were found on fan skirts and lake terraces. They were 

vegetated with Wyoming big sage and were very minor in extent. 

Class 8: Hiko Peak soils were found on fan remnants and alluvial fans. They formed from 

mixed alluvium. Hiko Peak-like soils were found under three different vegetation 

types (see Classes 21 and 22). Class 8 includes Hiko Peak with Wyoming big 

sage and was closely associated with Crestline soils on lower fan remnants. 

Class 9: Moderately deep Petrocalcids were found on fan remnants with Crestline and 

Hiko Peak. They were vegetated with Wyoming big sage and were rarely 

observed. 

Class 10: Thermo Springs soils were found on valley floors below Lake Bonneville 

shoreline. They were vegetated with shadscale, winterfat, greasewood and 

budsage. 

Class 11: Typic Calciargids were found on lake terraces and valley floors below Lake 

Bonneville shoreline. They were vegetated with shadscale, winterfat, Douglas 

rabbitbrush and budsage. These soils may have been sodic and or saline. They 

were associated with Thermo Springs. 

Class 12: Uvada soils were found on valley floors below Lake Bonneville shoreline. They 

were vegetated with greasewood, similar to Thermo Springs, Class 10. 

Class 13: Loamy-skeletal Xeric Calciargids were found on fan remnants and were 

vegetated with Utah juniper and Wyoming big sage. They were minor in extent. 

Class 14: Pyrat soils formed on fan remnants. Some soils appeared to be residuum from 

weakly consolidated fanglomerate. They were vegetated with black sage and 

shadscale. 
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Class 15: Fluvents were found on inset fans and drainages. They were dominated by 

sandy-skeletal textures and were subject to occasional flash flooding. They were 

vegetated with rubber rabbitbrush, Wyoming big sage, and spiny hopsage. 

Class 16: Olac soils were found on hills and foothills composed of andesite. They were 

vegetated by Utah juniper and black sage. 

Class 17: Pibler soils were found on fan remnants and were vegetated with black sage. 

Class 18: Saxby were found on hills and foothills composed igneous and some 

sedimentary rock. They were vegetated by black sage. 

Class 19: Deep Haploxeralfs were found on the foothills and structural benches in the San 

Francisco Mountains. The dominant vegetation was single-leaf pinyon. 

Class 20: Haploxeralfs and Haploxerepts were found on the steep mountain faces of the 

San Francisco Mountains. This was the broadest soil class in the legend and 

includes limber pine, white fur, curleaf mountain mahogany and other vegetation. 

Class 21: Hiko Peak soils were found on fan remnants and alluvial fans, formed from 

mixed alluvium, and vegetated with black sage (see also Classes 8 and 22. 

Class 22: Hiko Peak soils were found on fan remnants and alluvial fans, formed from 

mixed alluvium, and vegetated with Utah juniper (possibly invasive). 

Class 23: Carbonatic soils were found on fan remnants, vegetated with pygmy sage, and 

very minor in extent. 

Class 24: This class included mine dumps and other severely disturbed sites. 

Four classes were composed of more than one soil type (associations and 

complexes), classes 15, 19, 20, and 23. These soils in these classes commonly occurred 

together on the same landform. They also supported similar vegetation communities. 
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Many of the individual soil components of these class combinations did not have 

sufficient sample numbers to be predicted individually. The soil components in these 

broader classes, and were not classified to the family level of Soil Taxonomy (Soil 

Survey Staff, 2003). The best examples are classes 19 and 20 which cover the remote 

areas of the San Francisco Mountains. The taxonomic classification for the soil classes is 

listed in Table 6. 

Sampling of Digital Data 

All field observations used to train the random forests were at least 90 m apart so 

that no pixel was double-sampled, which resulted in a final set of 561 field points (Figure 

17). Classes 6, 15, 18, and 24 had low sample sizes but could be easily identified in the 

aerial photography. Polygons were digitized over these areas which were identified as 

these four classes and points were randomly generated within these polygons. Points that 

were at least 90 m apart were selected to supplement the sample of these four classes. An 

additional 111 points were added through this case-based reasoning approach (Shi et al., 

2004) (Figure 17). The total number of sample points was 672.  The numbers of 

observations by class are reported in Table 6.  

Each observation point was attributed with the values of each environmental 

covariate using a sampling tool from the ArcGIS Spatial Analyst toolbox, essentially 

piercing through the stack of covariates. Nearest neighbor assignment was used to 

attribute each point. The resulting table was exported as a .txt file and read into R, a 

language and environment for statistical computing (R, 2007), to be formatted for 

importation into the Random Forests software (all R scripts are found in Appendix A). 



59 
 

 

Table 6. The general taxonomic class and soil series name (if available) of each predicted 
class. The number of cases used to train the models and the minimum confidence 
threshold for each class is shown. 
Class 
Code General Taxonomic Class 

Soil Series & 
Notes 

Grove 
1A/B 

Grove 
2A/B 

Confidence 
Threshold 

1 fine-loamy, mixed, mesic Xeric 
Calciargids 

Dixie 77 77 0.25 

2 fine-loamy, mixed, mesic Durinodic 
Xeric Calciargids 

Garbo 38 38 0.25 

3 coarse-loamy, mixed, mesic  Xeric 
Haplocalcids 

Crestline 64 61a 0.25 

4 coarse-loamy, mixed, mesic  Xeric 
Haplocambids 

Heist 19 19 0.25 

5 sandy, mixed, mesic Xeric 
Haplocalcids 

Sugarloaf 18 18 0.15 

6 fine-loamy, mixed, mesic Xeric 
Haplocalcids 

Taylorsflat 3 16b 0.25 

7 coarse-loamy, mixed, mesic 
Durinodic Xeric Haplocalcids 

Biblesprings 14 13a 0.25 

8 loamy-skeletal, mixed, mesic Xeric 
Haplocalcids 

Hiko Peak: Big 
Sage 

68 65a 0.15 

9 mixed, mesic Calcic Petrocalcids, 
moderately deep 

none 10 10 0.15 

10 fine-loamy, mixed, mesic Typic 
Natrargids 

Thermosprings 5 5 0.15 

11 fine-loamy, mixed, mesic Typic 
Calciargids 

none 10 10 0.25 

12 fine, mixed, mesic Typic Natrargids Uvada 2 2 0.15 
13 loamy-skeletal, mixed, mesic Xeric 

Calciargids 
none 13 13 0.15 

14 loamy-skeletal, mixed, mesic 
Durinodic Xeric Haplocalcids 

Pyrat 18 18 0.15 

15 Fluvents none: washes 21 41b 0.15 
16 fine-loamy, mixed, mesic Lithic Xeric 

Haplargids 
Olac 26 26 0.15 

17 loamy-skeletal, mixed, mesic shallow 
Calcic Petrocalcids  

Pibler 20 20 0.1 

18 loamy-skeletal, mixed, mesic Lithic 
Xeric Torriothents & Haplocalcids 

none 29 62b 0.15 

19 deep Haploxeralfs none 12 12 0.15 
20 Lithic Haploxeralfs & Haploxerepts none 11 11 0.15 
21 loamy-skeletal, mixed, mesic Xeric 

Haplocalcids 
Hiko Peak: Black 
Sage 

54 53a 0.15 

22 loamy-skeletal, mixed, mesic Xeric 
Haplocalcids 

Hiko Peak: 
Juniper 

29 29 0.15 

23 loamy-skeletal, carbonatic, Xeric 
Haplocalcids mesic 

none: pygmy sage NA 8a 0.25 

24 Mine dumps none NA 45b 0.5 
a Eight cases were reassigned to create soil class 23 in Groves 2A and 2B.  
b Classes supplemented by CBR. 
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Figure 17. Training data set for the random forests models. The 561 points (maroon) were 
observations made in the field. The 111 observations made by case based reasoning are 
shown in pink. 
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The unknown sample, a set of unknown points (515,731 points), was generated by 

creating a 30-m raster layer of the study area, which was then converted to a grid of 

points evenly spaced 30-m apart. The method of sampling the covariates at unknown 

points was the same as that described above for sampling at known points. 

Random Forests Model 

Random Forests software by Salford Systems (2004) was used to grow the grove 

of trees to make the soil class predictions. In addition to predicting soil classes, RF was 

applied to predict the presence of diagnostic soil features, such as the presence of an 

argillic horizon (see Appendix B). Various model outputs were validated with “out of the 

bag” (OOB) testing. Each tree was trained with an independent bootstrap sample, which 

is a random selection of sample points with replacement. Within an individual bootstrap 

sample some points may be drawn one or more times while others may not be drawn. On 

average, one-third of cases are not selected for an individual bootstrap sample (Breiman, 

2001). The points not drawn into a bootstrap sample (left out) are the “out of the bag” 

(OOB) samples. As these OOB points are not used to train that tree, they are used to test 

the tree. The OOB samples are thrown down the tree, and the tree predicts their class.  

After all trees were grown, each OOB sample point was assigned a final 

classification, which is the majority class from each time that point was left out of the 

bag. The results of this are then summarized in an error matrix. The overall OOB error is 

the proportion of OOB misclassifications of all the sample cases. The class OOB error is 

the proportion of OOB misclassifications for a particular class. 
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For all iterations, the bootstrap sample size was equal to the total sample size and 

500 trees were grown for each grove. All variables were selected as potential predictors. 

Several iterations were run where the number of predictive variables that were randomly 

selected at each node was changed (1 to 21). Several iterations were run to assess the 

effect of weighting. The effect of changing of these parameters was gauged by the overall 

and class OOB error rates. The modal result of the entire grove determined the class 

membership for all sample points in the study area (515,731 points), and output maps 

were generated. 

Four groves were selected for comparison of outputs which will be referred to as 

Groves 1A, 1B, 2A and 2B (Table 7). Initially, Groves 1A and 1B were grown with the 

561 field-gathered points and only classes 1 through 22 were predicted. To improve upon 

the outputs of Groves 1A and 1B, groves 2A and 2B were 1) trained with the 561  points 

gathered in the field and the 111 supplemental points generated using case-based 

reasoning, for a total of 672 points; 2) two additional classes were added, classes 23 and 

24, and classes 1 through 24 were predicted; and 3) the normalized ratio of Landsat bands 

3 and 1 was excluded in Groves 2A and 2B as it was the least important predictive 

variable for Groves 1A and 1B. Groves 1A and 2A were weighted inversely proportional 

to sample size, whereas no weighting was applied to groves 1B and 2B. Three predictive 

variables were selected at each node for groves 1A, 2A, and 2B, whereas four variables 

were selected at each node for grove 1B (Table 7). 

  


