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Abstract. The species abundance distribution (SAD) is one of the most intensively 

studied distributions in ecology and its hollow-curve shape is one of ecology’s most general 

patterns. We examine the SAD in the context of all possible forms having the same richness (S) 

and total abundance (N), i.e. the feasible set. We find that feasible sets are dominated by 

similarly-shaped hollow-curves, most of which are highly correlated with empirical SADs (most 

R
2 values > 75%), revealing a strong influence of N and S on the form of the SAD and an a 

priori explanation for the ubiquitous hollow-curve. Empirical SADs are often more hollow and 

less variable than the majority of the feasible set, revealing exceptional unevenness and relatively 

low natural variability among ecological communities. We discuss the importance of the feasible 

set in understanding how general constraints determine observable variation and influence the 

forms of predicted and empirical patterns. 
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INTRODUCTION 

The species abundance distribution (SAD) is one of the most widely studied patterns in 

ecology and exhibits a consistent structure with many rare and few common species; the 

canonical “hollow curve” (McGill et al. 2007). The form of the SAD has been predicted by a 

variety of models based on an array of different processes including niche differentiation (e.g. 

Sugihara 1980), stochastic population dynamics (e.g. Hubbell 2001), and the structure of 

abundance across a species range (e.g. McGill & Collins 2003). Though SADs are potentially 

influenced by some or all of these processes, the ability to distinguish between different 

structuring processes depends on the presence of sufficient variation among the possible shapes 

of the SAD (Haegeman and Loreau 2008). If most of the possible SADs have similar shapes, it 

will be difficult to determine what processes generated them. 

Haegeman and Loreau (2008) introduced the use of the set of all possible distributions 

(the feasible set) to examine ecological patterns and theory. They argue that if the feasible set is 

small then there is little information in the pattern being examined. Likewise, if theoretical 

predictions do not deviate from the center of the feasible set, then they may provide limited 

information about process. To explore the implications of these ideas for understanding the 

species abundance distribution we use McGill et al.’s (2007) definition of the SAD as the “vector 

of abundances of all species present in a community”. This distribution is necessarily influenced 

by two values: total abundance (N; i.e. the number of individuals in a community) and species 

richness (S; i.e. the number of species in a community). Though ecological theories often use N 

and S as inputs to fit or predict the shape of the SAD (McGill 2010), knowing N and S constrains 

the form of the SAD in ways that ecologists rarely address. Specifically, there are a limited 

number of ways that the abundances of S species can sum to a total abundance of N, and thus, 
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there is a limited feasible set of uniquely-shaped SADs for any combination of N and S. For 

example, there is only one possible SAD form when S = 1 and N = 1 (i.e. {1}) and only two 

possible forms if S = 2 and N = 5 (i.e. {4,1}, {3,2}). As we show, N and S not only determine 

the number of possible SADs but also the general form of the possible distributions, making it 

necessary to understand how the properties of the feasible set constrain the form of the SAD and 

how constraints such as N and S influence empirical patterns and the predictions of ecological 

models. 

We refer to each uniquely-shaped SAD within the feasible set as a macrostate (i.e. an 

unordered vector of unlabeled species abundances). This differs from a microstate, which refers 

to a unique distribution of individuals among species leading to a specific macrostate. The terms 

feasible set, macrostate, and microstate have been used in recent applications of entropy 

maximization (MaxEnt) to macroecology (Haegeman and Loreau 2008, McGill & Nekola 2010; 

Harte 2011). In short, MaxEnt infers the most likely macrostate as that with the most microstates 

based on sets of state variables (e.g. N, S) and related constraints. Though the framework of 

MaxEnt implies the existence of a feasible set, MaxEnt does not explicitly consider it. Here, we 

focus solely on the distribution of macrostates within the feasible set without considering the 

numbers of ways in which macrostates can arise. As we show, feasible sets have strong central 

tendencies, meaning that most of the possible macrostates have similar shapes. If empirical 

SADs have shapes similar to those near the center of the feasible set, then there may be little 

ecological information in the shape of the SAD beyond that contained in N and S. Since most of 

the observable forms of the abundance distribution have shapes that are very similar to this 

central tendency, many different processes will result in distributions of the same general form as 

will many different models. This observation goes beyond the issue of equivalent models (e.g., 
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Pielou 1975, McGill et al. 2007), suggesting that many different models and empirical patterns 

may be expected to take similar forms because most possible states of the pattern are similar in 

shape (White et al. 2012). However, if the shape of an SAD is exceptional to the majority of 

shapes with the same N and S, then this exceptional evenness or unevenness would require an 

explanation, especially if consistent across communities. Consequently, the feasible set provides 

a context for understanding whether predicted and empirical patterns are exceptional to or 

representative of the majority of possible forms. As such, studies of the SAD would benefit from 

considering the shape of the SAD relative to the feasible set, rather than the shape of the SAD 

per se. 

Here, we explore general properties of the feasible set and reveal the strength of the 

influence of N and S on the shape of the SAD. We use the feasible set as a contextual framework 

for understanding how richness and abundance necessarily constrain ecological patterns. We 

show that most of the possible SAD shapes are similarly-shaped hollow-curves, revealing an a 

priori reason for the ubiquitous hollow-curve. Using one of the most taxonomically diverse and 

geographically expansive data compilations in community ecology, we show that the central 

tendency of the feasible set is strongly correlated with empirical SAD patterns within and among 

sites for birds, mammals, trees, and metagenomic datasets of prokaryotes and fungi. Moving 

beyond single SADs, we use ensembles of SADs with the same values of N and S to assess 

relationships between the variance predicted by the feasible set and that observed in ecological 

systems. We discuss the importance of using the feasible set as a context for understanding 

variation in the forms of empirical patterns and the inference that can be drawn from models that 

successfully predict them. 
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METHODS 

Finding macrostates of feasible sets 

Finding all possible macrostates for a community of a particular total abundance (N) and 

species richness (S) is equivalent to finding all unordered ways of summing S positive integers to 

obtain the positive integer N, a combinatorial approach known as integer partitioning (Andrews 

& Eriksson 2004). For example, the feasible set for N = 10 and S = 3 is 

{8+1+1, 7+2+1, 6+3+1, 6+2+2, 5+4+1, 5+3+2, 4+4+2, 4+3+3}. Different unordered sets of S 

integers that sum to N are partitions (i.e. macrostates) of N and S. Hence, sets of the same 

integers in different order, e.g. {8+1+1, 1+8+1, 1+1+8}, constitute the same partition. Likewise, 

each would produce the same frequency distribution (i.e. two 1’s, one 8) and the same rank 

distribution (i.e. 8+1+1). Several algorithms are available for integer partitioning problems, such 

as finding the size of the feasible set for a given N and S (Nijenhuis & Wilf 1978). We used the 

implementation of these algorithms in the free open-source Python-based Sage computer algebra 

system (http://www.sagemath.org/). 

Generating the feasible set for a community of a particular N and S can require a large 

amount of time and computational memory. This is because feasible sets become large for 

communities of realistic size; a result of combinatorial explosion (i.e. large changes in the 

number of possible outcomes for small changes in the values of inputs). For example, there are 

nearly 8.8x1014 macrostates for N = 1,000 and S = 10 and nearly 6.28x1026 macrostates for N = 

1,000 and S = 50. While complete enumeration of the feasible set can be untenable for many 

values of N and S, the form of the feasible set space can be determined by randomly sampling 

macrostates from the feasible set. We used the random partition algorithm described by 
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Nijenhuis and Wilf (1978) and implemented in Sage to generate uniform random samples of 

feasible sets.  

The partitioning algorithm we used, and all currently implemented integer partitioning 

algorithms, generates random partitions (i.e. macrostates) based on N but not S. We randomly 

drew partitions of N and rejected partitions that did not have S parts; an approach that can be 

computationally expensive. For example, randomly drawing one macrostate for N = 1,000 and S 

= 10 requires drawing from a feasible set of nearly 2.4x1031 macrostates, one of the roughly 

8.9x1014 for which S = 10; a probability of nearly 3.7x10-17. Consequently, we used substantial 

computational resources (one in-house cluster of three dual Quad Core Intel Xeon 3 GHz 

processors with 16 GB of RAM each, plus 20 High-CPU Extra Large Amazon Web Service 

instances with 7GB of RAM each and a total of 160 AWS cores) and computational time (> 

10,000 compute hours) to generate random macrostates for combinations of N and S. Code for 

replicating our analyses are available at https://github.com/weecology/feasiblesets. All software 

required to run our scripts (e.g. Sage, Numpy, Python) is free and open source. 

We chose the integer partitioning approach to the feasible set over the random walk 

method used by Haegeman and Loreau (2008) because it is conceptually simpler and, by 

definition, yields uniform random samples of the feasible set without requiring decisions 

regarding burn-in periods and the number of steps between samples. However, this approach can 

be very slow for some combinations of N and S, and further research comparing the speed and 

accuracy of these two approaches would be valuable. 

 

Data 
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We used a subset of previously compiled datasets of site-specific species abundance data 

(see White et al. 2012). Our subset represents 9,562 different sites of bird, tree, and mammal 

communities. The data set includes four continental-to-global scale surveys, including the 

Christmas Bird Count (129 sites) (CBC; National Audubon Society 2002),  North American 

Breeding Bird Survey (1,586 sites) (BBS; Sauer et al. 2011), Gentry’s Forest Transect Data Set 

(182 sites) (GENTRY; Phillips and Miller 2002), Forest Inventory Analysis (7,359 sites) (FIA; 

U.S. Department of Agriculture 2010), and one global-scale data compilation, the Mammal 

Community Database (42 sites) (MCDB; Thibault et al. 2011). White et al. (2012) used one year 

of sampling for each site and only used data for communities with a minimum of 10 species 

(Ulrich et al. 2010). We included only sites with combinations of N and S for which random 

macrostates could be generated based on reasonable computational effort. This includes large 

fractions of all of the datasets except for CBC, which only includes ~6% of the original sites. 

Additionally, we restricted our analysis of FIA to natural forest stands (e.g. absence of human 

disturbance, plots without artificial regeneration, plots without silvicuture treatment). More 

details regarding the data can be found in Appendix S1 of the supporting information for this 

manuscript and in Appendix A of White et al. (2012). 

We also compiled relative abundance data at the species level from five microbial 

metagenome projects for a total of 264 surveys of geographically distinct bacterial, archaeal, and 

indoor fungal communities. Metagenomes are produced from genetic material recovered from 

environmental samples and are the primary means of studying microbial diversity in situ. Despite 

the lack of a universally accepted microbial species definition, there is a well-established 

convention for demarcating species-level units. Taxonomic levels representing species are 

commonly delineated at 97% 16S rRNA sequence similarity for prokaryotes and 97% rRNA 
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sequence and rRNA related ITS (internal transcribed spacer) sequence similarity for fungi 

(Roselló-Mora and Amann 2001, Schloss and Handelsman 2006, Marshal et al. 2008, Amend et 

al 2010, Chu et al. 2010, Flores et al. 2011, Fierer et al 2012). This convention was used by 

studies that generated the metagenomic data used in our study. 

We used SAD data from region-to-global scale PCR-targeted projects from the 

metagenomics server MG-RAST (Meyer et al. 2008). PCR-targeted (i.e. amplicon sequenced) 

approaches provide better overall coverage of a specific gene (e.g. 16S rRNA) than a random 

shotgun approach by sequencing an amplified target gene. We used the rRNA library provided 

by MG-RAST (i.e. M5RNA) to obtain SAD data for each metagenome used in our study. We 

used common thresholds for sequence comparison and species-level determination (Lazarevic et 

al. 2009; Lamendella et al. 2011) including a maximum e-value (probability of observing an 

equal or better match in a database of a given size) cutoff of 1e-5, a minimum alignment length of 

50 base pairs, and a minimum percent identity of 97% to the M5RNA reference sequence. 

However, because microbial species are sometimes defined below or above 97% (e.g. Webster et 

al. 2010, Martiny et al. 2011) we also analyzed microbial communities at 95% and 99% species-

level cutoffs. 

We compiled metagenomic data into datasets representing aquatic prokaryotic 

communities (48 metagenomes), terrestrial prokaryotic communities (92 metagenomes), and 

terrestrial fungal communities (124 metagenomes). The aquatic datasets (AQUA) included the 

Archaeal and Bacterial Diversity of Geographically and Geologically Distinct Deep-Sea 

Hydrothermal Vent Mineral Deposits project (Flores et al. 2011) and the Catlin Arctic Survey of 

bacterial and archaeal diversity (www.catlin.com/en/Responsibility/CatlinArcticSurvey). The 

terrestrial prokaryotic datasets (TERA) included the archaeal and bacterial diversity of the 
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Lauber 88 Soils project (Fierer et al. 2012), and the Chu Arctic Soils project (Chu et al. 2010). 

The terrestrial fungi dataset was a global-scale survey of fungal community data sampled from 

indoor habitats of human cities (Amend et al. 2010). Detailed information about each 

metagenome project is available on the MG-RAST website (http://metagenomics.anl.gov/) and 

additional details on our use of microbial metagenomes is available in Appendix S1. 

Our compilation of data is taxonomically diverse. As such, there are differences among 

our datasets that should be recognized. First, despite our use of accepted species level 

delineations for microbes, these species and communities  do not represent the same ecological 

and evolutionarily meaningful units as our other datasets, i.e., genetically distinct populations of 

biological species. Whereas our macrobial data represent a few well-known members of one 

domain (i.e. Eukaryota), our microbial datasets include many poorly understood members from 

all three. Second, whereas abundances in macrobial datasets were reported as counts of 

individuals, taxonomic abundance and identification of microbes in natural environments is 

commonly derived from DNA harvested from environmental samples; individual counts are not 

practical. Third, among macrobial datasets there are large differences in how communities were 

sampled (e.g. plot counts of trees, transects for breeding birds, multiple trapping/sampling 

methods for mammals) (see Appendix S1). 

 

Form of SADs in the Feasible Set 

The canonical, hollow-curve, form of the species abundance distribution includes large 

numbers of rare species and small numbers of abundant species, leading to frequency 

distributions with the mode at small values of N and long, right-skewed, tails. To determine if 

this form is common in the set of possible SADs we analyzed the distribution of modal 
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abundance class, species evenness, and skewness within the feasible set for a variety of N and S 

combinations and N/S ratios. We avoided extremely large values of S because values of S close 

to N are uncommon in nature and constrain the SAD to a nearly even vector of singletons. We 

used uniform random samples of 500 macrostates for each N-S combination in this analysis. 

These numbers are large enough to characterize the general form of the feasible set and small 

enough to permit doing so in reasonable time (Fig. 1 of Appendix S2).  

Comparing Observed Data to Central Tendencies of Feasible Sets 

We determined which SAD represented the center of each feasible set by generating 300 

to 500 random macrostates from the feasible set (generating 500 random macrostates for some 

combinations of N and S was untenable). Random samples of 300, 500, and 700 macrostates 

produce equivalent results (Fig 1. of Appendix S2). We chose the macrostate that overlapped the 

most on average with other random macrostates across the S ranked abundances. In the case of a 

tie, we favored the macrostate having the more evenly distributed overlap across ranked 

abundances (i.e. the macrostate with the smaller variance in overlap with other macrostates). 

This yielded SADs that were centered within the densest regions of random samples (Fig. 2 of 

Appendix S2), and hence, within the central tendency of the feasible set. We compared this 

central SAD for each community to the observed SAD using rank-abundance distributions 

(RADs). Specifically we compared the observed value of abundance at each rank (most abundant 

to least abundant) at each site to the abundance at that same rank from the SAD representing the 

central tendency of the feasible set. We used log-transformed values of abundance at each rank 

(not log-transformed bins; see Nekola et al. 2008) to make visual comparisons and calculate R2 

values following Marks & Muller-Landau (2007) to avoid overweighting rare species, to address 
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heteroscedasticity, and because we are generally more interested in proportional differences in 

abundance within a rank rather than absolute differences. 

 

RESULTS 

The majority of possible SAD shapes exhibit the classic hollow-curve form with modes 

at low abundance classes and positive skewness, revealing an overall hollow-curve shape for 

most of the macrostates in the feasible set (Fig. 1, see also Fig 3 of Appendix S2). The specific 

form of the distribution is influenced by the values of N, S, and average species abundance (i.e. 

N/S), which are associated with modal abundance, species evenness, and skewness of the SAD 

(Fig 2). This means that differences in community structure among sites (or directional changes 

along gradients) could result from the constraining influence of N and S. For realistic values of 

average abundance, the portion of highly uneven macrostates in the feasible set will increase as 

N is partitioned across a greater number of species. However, as average abundance approaches 

1.0, the SAD must necessarily become highly even. 

Observed ranked abundances were often similar to those near the central tendency of the 

feasible set, both within and across sites for trees, animals, and microorganisms (Fig 3). The 

SAD at the central tendency of the feasible set consistently explained the majority of variation in 

observed abundance distributions both within sites and among entire datasets (R2: BBS = 0.93; 

CBC = 0.77; FIA = 0.84; GENTRY = 0.81; MCDB = 0.78; TERA = 0.83; AQUA = 0.58; 

FUNGI = 0.76; R2 values are with respect to the central tendency, not a fitted relationship). 

However, clear deviations from the form of the central tendency did occur and were strongest 

among microbial metagenomes where the central tendency of the feasible set contained lower 

abundances for dominant species and higher abundances for rare species than the observed 
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communities. We observed the same pattern for microbes regardless of whether species were 

defined at 95, 97, or 99% (Fig. 4 of Appendix S2). 

Because many of the possible SADs are similar, the similarity between the center of the 

feasible set and the observed data means that the shapes of observed SADs tend to look very 

similar to the majority of possible shapes, suggesting a strong influence of the limits of 

observable variation on natural variation. Evaluating the correlation between the observed SAD 

and all random macrostates shows that randomly choosing a macrostate will often produce a 

distribution that is well correlated with observed data (Fig 4). This was most obvious for BBS, 

where the majority of randomly sampled macrostates explained more than 80% of observed 

variation in abundance for nearly all sites. 

 

DISCUSSION 

The hollow-curve SAD has been referred to as an ecological law and is thought to be 

universal across taxa (McGill et al. 2007). This pattern is also observed in non-biological 

systems (Gaston et al. 1993; Nekola & Brown 2007; Warren et al. 2011) suggesting that the 

unevenness and ubiquity of the hollow-curve SAD might be explained by emergent statistical 

phenomena rather than specific biological processes (Šizling et al. 2009b; McGill 2010; White et 

al. 2012, Yen et al. 2012). Here, we have described the first attempt to understand the shape of 

the SAD in terms of the set of all possible shapes given two general constraints that are 

commonly used as inputs in ecological theory. The majority of feasible SADs share similar 

forms that, like observed SADs, resemble a hollow curve frequency distribution. As such, the 

feasible set provides an a priori reason for the ubiquity of the hollow-curve and a reason why 

many different models tend to produce the same general SAD form. Examination of over 9,000 
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communities shows that observed SADs are often similar to the central tendency of the feasible 

set and, because most macrostates are clustered near the central tendency, the majority of 

possible distributions often explain substantial portions of variation in observed abundances. 

While much of the variation in empirical SADs is characterized by the center of the 

feasible set, SADs are often more uneven than the central tendency. SADs for microbial 

communities were almost always exceptionally uneven, regardless of whether species were 

delineated at 95, 97, or 99% sequence similarity. Though hollow-curve SADs have been widely 

documented for microbes and macrobes, our examination reveals that the structure of microbial 

communities, with respect to the influence of N and S, may differ from that of macrobes. Indeed, 

microbial communities are known for their large rare portions (i.e. rare biosphere). However, it 

has also been suggested that the exceptional unevenness of microbial SADs may result from 

detection issues related to metagenomic methods that can exaggerate dominance and rarity 

(Woodcock et al. 2006). Observational/sampling biases are also a potential issue for the 

macrobial datasets (e.g., MacKenzie & Kendall 2002) and therefore have the potential to play a 

role in deviations from the feasible set in those analyses as well. 

Empirical data can also be compared to the feasible set by comparing distributions of a 

statistical property (e.g. species evenness) across the feasible set. This allows the values for 

individual communities to be placed within context. For example, a community with a value of 

species evenness in the 50th percentile of the feasible set, i.e. near the central tendency and the 

majority of possible macrostates, would not have an exceptionally even or uneven distribution of 

abundance, regardless of whether the value of evenness itself is large or small.(Fig 5 Appendix 

S2). This is particularly important when comparing sites that differ in N and S, since differences 

in evenness can be expected based purely on differences in the feasible set (Figure 2, Fig 5 
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Appendix S2). Consequently, comparisons of species evenness that do not account for the 

feasible set are primarily comparisons of N and S. 

In addition to contextualizing single communities, ensembles of sites with shared values 

of N and S can be used to compare distributions of a property across communities to the 

distribution of that property in the feasible set. Conducting this analysis using FIA data and 

species evenness (Evar; Smith and Wilson 1996) reveals that, while the modal values of Evar for 

feasible sets and FIA sites were often similar, the distribution of Evar across the feasible set was 

broader than that of empirical distributions (Fig. 5).This relatively low natural variability could 

indicate that interactions between ecological processes and statistical phenomena prevent the 

extreme values of evenness that are otherwise possible. Additionally, the tendency for the 

distribution of empirical Evar values to be concentrated at lower or higher values of Evar was 

related to average abundance (i.e. N/S), with higher N/S leading to lower Evar (i.e. lower 

evenness) for both empirical SADs and the feasible set. While the general decrease in species 

evenness with average abundance can be explained by the feasible set (Fig. 2), the actual change 

in empirical Evar outpaced that of the feasible set (Fig 5), suggesting that mechanisms leading to 

unevenness may strengthen as N/S increases (e.g. via positive frequency dependence), but not so 

much that the lowest possible range of species evenness is attained. 

While the feasible set reveals that a small number of community-related constraints may 

explain the general shape of the SAD by limiting observable variation, it also demonstrates that 

in some cases empirical patterns deviate directionally from the majority of possible states (Figure 

3) and are more tightly clustered than expected (Figure 5). Consequently, the ecological 

interactions of individuals, populations, and species may be needed to explain the specific form 

of ecological patterns as well as the frequent occurrence of exceptionally uneven SADs and the 
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rare occurrence of exceptionally even ones. High degrees of competition and dispersal limitation, 

and low degrees of invasiveness may all lead to the degrees of excessive dominance or 

unevenness that are commonly observed among microorganisms and macroorganisms and which 

cannot be attributed to the constraining influences of N and S. However, without the feasible set 

it would not possible to recognize that this degree of unevenness and its relatively low natural 

variability are exceptional. 

The feasible set approach focuses on the observable variation among the possible forms 

of a pattern of interest (i.e. macrostates). In a way, it assumes that all possible forms of the SAD 

are equally likely because it assumes nothing about the ways in which each macrostate may 

arise. However, by accounting for the ways in which macrostates can arise through microstate 

configurations, approaches like MaxEnt (Pueyo et al. 2007; Harte et al. 2008; Frank 2011) 

produce a most likely form that may better explain the general shape of the SAD. Indeed, 4 out 

of the 5 datasets shared with White et al. (2012) are at least somewhat better fit by the 

predictions of the MaxEnt model of Harte (2011); the exception being BBS. This comparison is 

approximate because we worked with subsets of the datasets in White et al. (2012) and because 

the model of Harte (2011) requires additional assumptions to be made beyond fixing N and S. 

The idea that empirical SADs may be more similar to the form with the greatest number 

of microstates than to the form closest to the center of the feasible set is complicated by the fact 

that MaxEnt yields different predictions depending on the specific approach to the problem 

(Haegeman & Etienne 2010). In cases where the number of constraints is small, it is unlikely that 

the most likely macrostate from one of the several MaxEnt approaches will occur at the center of 

the feasible set. In fact, Haegeman and Loreau (2008) consider differences between MaxEnt 

predictions and the center of the feasible set to be a necessary condition for applications of 
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MaxEnt to be considered non-trivial. This presents an interesting philosophical question: should 

we try to understand patterns in the context of their distribution of macrostates alone, in the 

context of these macrostates weighted by the number of microstates, or some combination of the 

two. Current microstate-based approaches do not explicitly consider the properties of either the 

feasible set or the full set of microstates, only a single most likely macrostate. This prevents 

existing MaxEnt approaches from providing a general context for how extreme an abundance 

distribution is relative to the most likely macrostate, though this can probably be addressed 

through sampling approaches to randomly select microstates. Further research is needed to 

compare and understand the relationships between these microstate and macrostate based-

approaches, to form a more comprehensive understanding of how to contextualize empirical 

patterns and theoretical predictions. 

Another area for additional research is understanding what functional forms (e.g. log-

series, log-normal, etc.; McGill et al. 2007) are most common in the feasible set and whether the 

most common forms change as a function of S and N. This would provide information useful for 

comparing the quality of distributional fits to empirical data. It would also provide context for 

one of the current challenges for theoretical models of macroecological patterns - making 

predictions that are valid at multiple taxonomic and spatial scales (e.g, Šizling et al. 2009a). In 

contrast to most theoretical models, it is possible that the form of the central tendency changes 

with N, S, and N/S, becoming more or less similar to different standard distributions (e.g. log-

series, log-normal). Knowing how the feasible set responds to changes in N (e.g. with sample 

size and area) and S (e.g. different taxonomic levels) could enlighten the discussion of whether 

universal forms of macroecological patterns exist (Šizling et al. 2009a). It has been suggested 

that, as N approaches infinity and as S changes as a function of N (i.e. S = cN1/2), there is a limit 
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shape to random integer partitions (Vershik and Yakubovich 2001). Further studies are needed to 

explore whether this is the case for combinations of N and S observed in natural systems, and 

whether this limit shape is similar to known distributions. 

 The feasible set approach is part of an emerging area of ecology that uses constraint or 

state-variable-based approaches to understand ecological patterns (Shipley et al. 2006; Pueyo 

2007; Haegman and Loreau 2008; McGill 2010; Harte 2011). These approaches take a top down 

perspective on understanding ecological patterns, suggesting that much of the information 

contained in a distribution can be captured by a small number of constraints. This approach to 

understanding ecological patterns has received empirical support from observational (Harte 

2011; White et al. 2012) and experimental (Supp et al. 2012) studies. However, even when these 

approaches successfully characterize empirical patterns, they do not indicate whether ecological 

processes are not operating. Instead ecological processes may influence emergent patterns 

indirectly through their influence on constraints or state variables (White et al. 2012; Supp et al. 

in 2012). These constraint-based approaches reinforce the fact that ecological processes operate 

within but also influence constraints that necessarily determine a set of possible outcomes. 

The feasible set represents a new perspective in understanding empirical patterns. This 

approach is potentially applicable to many other widely-known distributions in ecology and other 

areas of science. In particular, the SAD is a specific type of distribution of wealth and uneven 

distributions of wealth are widespread in social, economic, and physical systems (Zipf 1949, 

Gaston et al. 1993, Reed 2001, Nekola and Brown 2007). The feasible set approach should be 

applicable to distributions of wealth and abundance that are characterized by the partitioning of a 

total quantity (e.g. individuals, species, dollars, hectares) among a number of classes (e.g. 

species, islands, socioeconomic classes, countries). This includes classic ecological patterns, 
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such as the species-area relationship and species-time relationship, and emerging patterns in 

microbial ecology such as distribution of functional traits, as well as distributions of wealth, size, 

and abundance among human populations. 
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Figure 1. Left, plots of 500 randomly sampled macrostates in the feasible set for N = 1,000 and S 

= 140. Each macrostate is plotted as a light grey frequency distribution of log2 abundance 

classes. Overlap of these distributions produces the gradual shading to dark grey. Center and 

Right, plots of skewness and modal abundance across random samples of feasible set for N = 

1000 and S = 40, 140, 210 reveal that feasible sets are dominated by right-skewed macrostates 

and that the modal abundance class tends towards singletons or small abundances, indicating that 

feasible sets are dominated by similarly-shaped hollow-curves. 

Figure 2. Plots of average abundance (N/S) against modal abundance, evenness, and skewness 

averaged across 500 randomly sampled macrostates for N = 50, 100, 200 and S = {N/10, N/9, …, 

N}. The monotonic change in these features of the feasible set with increasing N/S across 

doublings of N suggests predictable changes and constraints on community structure resulting 

from changes in N and N/S. 

Figure 3. Plots of the relationship between observed rank-abundances from all sites in a dataset 

and the corresponding ranked abundances at the center of the feasible set. Each point represents a 

rank in a community with the y-coordinate showing the observed abundance at that rank and the 

x-coordinate showing the abundance at the center of the feasible set. Data are heat mapped to 

reveal the density of rank-abundance states, which is largely centered around the 1:1 line for 

some datasets (e.g. BBS, GENTRY) and deviates more greatly for others (e.g. AQUA, FUNGI). 

Insets are of kernel density curves for site specific R2 values; the x-axis ranges from 0.0 to 1.0. 

Figure 4. Kernel density curves of R2 values relating random macrostates to the observed RAD 

as in Figure 3. Each site is represented by a single kernel density curve, revealing that the 
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majority of a random sample of the feasible set often describes large portions of variation in 

ranked abundances at a site. 

Figure 5. Plots of kernel density curves for Evar across entire feasible sets (black curves) and 

kernel density curves for Evar across sites in FIA with the same N and S (grey lines). Sample size, 

i.e. number of FIA sites, is given as ‘n’. Modes of the feasible sets are shown by vertical dashed 

lines. Each column reveals 1.) a shift in the mode of the feasible set towards lower evenness as 

average abundance (i.e. N/S) increases as in Figure 2; 2.) a shift in the distribution of empirical 

Evar towards lower evenness that out-paces the changing mode of the feasible set; and 3) a more 

narrow distribution of observed Evar values than expected from sampling from the feasible set. 


