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Abstract 7 

The pre-monsoon tropical cyclone (TC) activity and the monsoon evolution in the Bay of 8 

Bengal (BoB) are both influenced by the Madden Julian Oscillation (MJO), but the two 9 

do not always occur in unison. This study examines the conditions that allow the MJO to 10 

modulate the monsoon onset in Myanmar and TC activity concurrently. Using the 11 

APHRODITE gridded precipitation and the ERA-Interim reanalysis datasets, composite 12 

evolutions of monsoon rainfall and TC genesis are constructed for the period of 1979-13 

2010. It is found that the MJO exhibits a strong interannual variability in terms of phase 14 

and intensity, which in some years modulate the conditions for BoB TCs to shortly 15 

precede or form concurrently with the monsoon onset in Myanmar. Such a modulation is 16 

absent in years of weaker MJO events in the vicinity of the BoB. Further understanding 17 

of the interannual variability of MJO activity could facilitate the prediction of the 18 

monsoon onset and TC formation in the BoB.  19 

 20 

1. Introduction 21 

The earliest onset of the South Asian summer monsoon (SASM) occurs in the 22 

Bay of Bengal (BoB) during May, followed consecutively by the onset over the South 23 
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China Sea and then over India (e.g., Lau and Yang 1998, Wu and Zhang 1998, Mao and 24 

Wu 2007). Together with the seasonal warming of sea surface temperature (SST), which 25 

peaks in May, formation of the monsoon trough in the BoB (Fig. 1a) provides favorable 26 

conditions not only for rainfall but also for tropical cyclones (TCs) (Wang et al. 2013). In 27 

contrast to other TC basins, the BoB experiences two distinctive peaks in the TC 28 

occurrence. The first TC season occurs in May before the SASM onset (pre-monsoon), 29 

and the second spans from October to November, after the monsoon (post-monsoon); this 30 

is shown in Fig. 1b in comparison to the seasonal rainfall in Myanmar. After the 31 

monsoon matures, prevailing low-level southwesterly winds and upper level easterly 32 

winds together create a strong vertical wind shear, and this is prohibitive for TC 33 

development. As a result, tropical disturbances that form at the heart of the monsoon 34 

season (Jun-Aug) seldom grow to become TCs, and instead, remain largely as monsoon 35 

depressions (Yoon and Huang 2012). 36 

Within the seasonal changes, intraseasonal oscillations (ISOs) also affect 37 

monsoon development and TC formation in the BoB. The key conditions necessary for 38 

TC formation such as high SST, low vertical shear, and sufficient low-level vorticity 39 

(e.g., Gray 1979) are present in the BoB during spring. Although these features are 40 

important, it is also known that TCs do not form arise spontaneously simply because 41 

these conditions are met (Riehl 1948, Bergeron 1954, Rotunno and Emmanuel 1987). 42 

Instead, additional forcing such as ISO is needed to trigger tropical cyclogenesis 43 

(Emmanuel 2003, Krishnamohan et al. 2012). As was pointed out by Kikuchi and Wang 44 

(2010), about 60% of TCs over the Indian Ocean form in association with significant ISO 45 

events. Hereafter we refer to this process as “ISO-TC connection.”  46 
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The Madden-Julian Oscillation (MJO) is the largest intraseasonal fluctuation 47 

observed in the tropics (Madden and Julian 1971), and is responsible for a majority of 48 

weather variability (e.gs Jones et al. 2003, Molinari et al. 1997). The MJO is 49 

characterized by fluctuations of regional-scale deep convection and atmospheric 50 

divergent circulation; it exhibits a unique eastward propagation across the tropics within a 51 

period of about 30 to 60 days. An insightful review of the structure and physical 52 

mechanisms of the MJO is provided by Zhang (2005). Across the tropical oceans, the 53 

MJO can and does modify the large-scale circulation anomalies conducive for TC 54 

development, which is also the case in the BoB (e.g. Krishnamohan 2012, Kikuchi and 55 

Wang 2010). During the positive phase of the MJO (based on convergence over the 56 

Indian Ocean-western Pacific region), synoptic conditions that are favorable to TC 57 

development are considerably enhanced (Maloney and Hartmann 2000, Bessafi and 58 

Wheeler 2006, Ho et al. 2006). The MJO also influences the onset and intensity of the 59 

SASM, modulating the distinctive monsoon lifecycle that features alternating wet and dry 60 

spells known as break and revival periods (e.gs Goswami et al. 2003, Carvalho et al. 61 

2004, Annamalai and Sperber 2005, Wheeler and Hendon 2004). While the positive 62 

phase of the MJO (enhanced convection) affects both the onset timing and intensity of the 63 

monsoon, the negative phase (suppressed convection) initiates breaks during the 64 

monsoon or can even prematurely end the monsoon (Lau and Waliser 2012, Wang 2006), 65 

including that in the BoB. Hereafter we refer to this as the “ISO-onset connection.”  66 

Even though SASM variability and TC development in the BoB have both been 67 

studied, the mechanism by which the MJO modulates the monsoon onset and TC activity 68 

collectively has not been explored. In other words, the relationship between the 69 
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aforementioned ISO-onset and ISO-TC connections remains unclear – we refer to this as 70 

the “ISO-onset-TC connection,” which is the goal of this study. In the following analyses, 71 

we show that certain (stronger) MJO events can provide unique conditions for pre-72 

monsoon TCs in the BoB to shortly precede, or form concurrently with the monsoon 73 

onset, further enhancing rainfall in Myanmar.  74 

Myanmar is highly vulnerable to the destructiveness of tropical cyclones, as is 75 

exemplified by tropical cyclone Nargis in May 2008, that caused catastrophic destruction 76 

with at least 130,000 reported fatalities (Webster 2008, McPhaden et al. 2009). Having 77 

only recently opened to the western world after years of civil unrest and political 78 

instability, Myanmar employs 65 percent of its active labor force in agriculture, an 79 

industry that is heavily reliant on monsoon and even TC rainfall. Wang et al. (2013) have 80 

reported an increase in the pre-monsoon TC activity in the BoB consisting of stronger 81 

TCs with eastward-tending tracks, and that such a change is due to increased 82 

anthropogenic aerosol loading in the atmosphere. Thus, additional understanding of the 83 

ISO-onset-TC connection will provide further insight into predicting the Myanmar 84 

monsoon onset and aid in disaster planning for TC impact. 85 

This paper is organized as follows: section 2 briefly outlines the data used. In 86 

section 3, we introduce terminologies used throughout, and describe the analytical 87 

procedures utilized in the study. Results portraying the MJOs influence on the Myanmar 88 

monsoon onset and on BoB tropical cyclogeneses concurrently are discussed in section 4. 89 

Finally, a summary and conclusion are provided in section 5. 90 

 91 

 92 
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2. Data Sources 93 

Four datasets are used in this study. The European Centre for Medium Range 94 

Forecasts reanalysis (Dee et al. 2011), available on a 1.5° by 1.5° latitude and longitude 95 

grid is used to derive streamfunction (), velocity potential (), and vertical wind shear 96 

(VWS), calculated from the difference in mean zonal (u) and meridional (v) 97 

winds between the 850 and 200-hPa pressure levels. For precipitation, the Asian 98 

Precipitation Highly-Resolved Observational Data Integration Towards Evaluation 99 

(APHRODITE) of Water Resources gridded precipitation dataset available on a 0.5° grid 100 

(Yatagai et al. 2012) is analyzed for the period of 1979 to 2010. Next, the National 101 

Center for Environmental Prediction (NCEP) sea surface temperature (SST) with a 102 

spatial resolution of about 1.875° by 1.875° (Kistler et al. 2001) is utilized, along with the 103 

NOAA outgoing longwave radiation (OLR) dataset. TC best track records are obtained 104 

from the Joint Typhoon Warning Center (JTWC) at their webpage 105 

(http://www.usno.navy.mil/NOOC/nmfc-ph/RSS/jtwc/best_tracks/ioindex.html). 106 

 107 

3. Analysis procedures  108 

Here we provide a description of analytical methods used. Interpretation and 109 

discussion of the results are presented in Section 4. 110 

 111 

3.1 Onset definition 112 

For the identification of yearly monsoon onset dates, we use western and central 113 

Myanmar ( - N and - E) for precipitation analysis, specified by the orange 114 

box in Fig. 1a. To define the monsoon onset, various meteorological parameters have 115 

http://www.usno.navy.mil/NOOC/nmfc-ph/RSS/jtwc/best_tracks/ioindex.html
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been used with mixed results; these include wind speed and direction (Matsumoto 1992), 116 

precipitation (Matsumoto 1997, Wang and LinHo 2002), outgoing longwave radiation 117 

(Murakami and Matsumoto 1994) and cloud amount (Tanaka 1992). Among these 118 

parameters, rainfall is used operationally since its variation reflects the variability of the 119 

monsoon circulation system in general. According to Htway and Matsumoto (2011), the 120 

present definition of monsoon onset used by the Myanmar Department of Meteorology 121 

and Hydrology is the first day of three consecutive rainy days with daily rainfall amount 122 

of 2.54 mm or more. Yet, it is not uncommon to have three days of significant rainfall 123 

resulting from propagating tropical disturbances that may be unrelated to the 124 

development of monsoonal winds. It is therefore imperative to isolate such “bogus” 125 

onsets.  126 

Against this backdrop, and knowing the monsoon exhibits a strong seasonal 127 

variability, we define a new onset selection scheme that can pick the yearly onset dates as 128 

representative as possible. The detailed procedure is as follows: first, we use the mean 129 

May precipitation to normalize the daily data, after which a 5-days running mean is 130 

applied. Beginning April 1, the onset criteria is satisfied on any day from which the 131 

accumulated rainfall of the preceding 14 days is less than the accumulated rainfall of the 132 

following 14 days. To ensure the difference between the two totals is substantial, as is 133 

expected for monsoon onsets, the difference must also be greater than a third of the total 134 

May precipitation. This procedure is illustrated in Fig. 2. 135 

 136 

 137 

 138 
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3.2 Composite evolutions for monsoon and TC  139 

Using the selected onset dates, a composite evolution of monsoon rainfall is 140 

constructed based on the onset relative to each year. The evolution starts with the 141 

addition of precipitation 60 days prior to each onset and continues 40 additional days 142 

after, resulting in a 101-days composite evolution. This is demonstrated in Fig. 3a. Day 0 143 

is the composite onset, or May 20 on average. Similar composites for circulation factors 144 

such as streamfunction () at the 850-hPa level are displayed in Fig. 3b by averaging 145 

over longitude 80-100°E for 1) unfiltered fields (shaded), and 2) 30-60 days band passed 146 

fields (contours) to isolate the MJO signal. Tropical cyclogenesis days are then 147 

superimposed relative to the composite onset, at the specific latitude of their occurrence. 148 

Here, the day of TC genesis is defined by the first appearance as a tropical depression in 149 

the JTWC records.  These results will be discussed along with Figs. 3 and 4. 150 

Several studies have described  and  as more suitable for analyzing flow 151 

patterns when spatial scales are smaller than the Rossby radius of deformation (e.gs 152 

Palmer 1952, Li et al. 2006). Next, composites of  and velocity potential () are 153 

constructed based on the dates of tropical cyclogenesis. That way, we are able to depict 154 

the circulation features that promote TC genesis (Ventrice et al. 2013). In addition, onset 155 

based composites of , OLR and SST are also computed. To explicitly depict the MJO 156 

influences, we apply a 30-60 day bandpass filter on these fields. This bandpass window 157 

captures most Northern Hemisphere summer MJO variability. The results will be shown 158 

and discussed in Figs. 6 and 7. The year-to-year computation of  is overlaid in Fig. 2 in 159 

comparison with each onset and TC occurrence. 160 

 161 
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3.3 EOF and regression analyses  162 

Phase-space diagrams derived from Empirical Orthogonal Functions (EOFs) as 163 

described in Wheeler and Hendon (2004) can characterize the MJO’s propagation and 164 

intensity with merely two parameters – phase and amplitude. A similar approach is used 165 

in this study. Several studies have used EOFs of single tropically confined fields that 166 

have been bandpass filtered to intraseasonal periods to identify the MJO (e.gs. Maloney 167 

and Hartmann 1998, Slingo et al. 1999, Matthews 2000, Kessler 2001). The first measure 168 

of the MJO we use here is based on bandpass filtered global velocity potential anomalies 169 

at 850-hPa. EOFs of bandpassed daily fields are computed from Apr 1 through June 30, 170 

and the corresponding principal components (PCs) of the first two modes are used to 171 

construct phase-space diagrams. The combination of the first two EOF’s represents a half 172 

life cycle of the MJO, so when taken as a pair, the two PCs describe the global eastward-173 

propagating signal attributed to the MJO. In order to gauge the strength of the MJO at 174 

any time, the PCs are normalized with their variances during the warm season. The EOFs 175 

would then exhibit two distinctive circulations signatures - the positive (wet) and 176 

negative (dry) phase. The positive phase of the MJO enhances rising motion and induces 177 

lower tropospheric convergence in the Indian Ocean-Western Pacific, whiles the negative 178 

phase suppresses rising motion. This result will be shown and discussed in Fig. 5. 179 

Finally, using linear regression, the ENSO signal was removed from SST 180 

anomalies by subtracting from each grid point the regression coefficient of Niño 3.4 with 181 

SST from 1979 to 2010. The results are presented and discussed for Fig. 7d. A regression 182 

model is again used to illustrate the statistical relationship between SST variations in the 183 

BoB ( - N and - E, green boxes in Figs. 8 & 9) and ENSO. We analyze the 184 
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mean response of BoB SST according to the magnitude and intervention of ENSO. These 185 

analyses will be discussed for Figs. 8 and 9.  186 

 187 

4. Results and discussion 188 

To explain the aforementioned three-way, “ISO-onset-TC connection” divulged 189 

in this study, we ought to first establish the relationship between the MJO and the 190 

Myanmar monsoon onset, i.e. the ISO-onset connection. Using methods outlined in 191 

section 3.2, the composite evolution of Myanmar monsoon rainfall is presented in Fig. 192 

3a. Precipitation is persistently weak before the onset (day -60) until day 0 (or May 20) 193 

when an abrupt increase in rainfall occurs. About 15 days after the onset, a substantial 194 

decline in rainfall is observed (monsoon break). A comparison of the rainfall evolution 195 

with the latitude-time cross section of 850-hPa streamfunction () anomalies (Fig. 3b) 196 

suggests the Myanmar monsoon onset (break) occurs during the positive (negative) phase 197 

of the MJO, represented by cyclonic (anticyclonic) circulation anomalies. This feature is 198 

consistent with the well-known northward migration of the 30-60 days mode and its 199 

modulation of the Indian summer monsoon.   200 

Next, we investigate how the MJO influences TC formation and development in 201 

the BoB, i.e. the ISO-TC connection. The relationship between cyclogenesis and MJO 202 

evolution can be observed in Fig. 3b, where a majority of TCs occur within the MJO-203 

enhanced monsoon trough. Furthermore, we plot TC genesis-based composites of the 204 

horizontal distribution of  (Fig. 4a) and  (Fig. 4b). In order to demonstrate how the 205 

MJO’s migration relates to TC activity, the positions of each TC at the time of genesis 206 

(Day 0) and after (Day + 5 and Day +10) are shown. As seen in Fig. 4a, ten days before 207 
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TC genesis (Day -10), convergence associated with the MJO (positive phase) develops 208 

over the equatorial Western Indian Ocean. After five days (Day -5), the area of 209 

convergence shifts to India and the Indochina Peninsula. By the day of TC genesis (Day 210 

0), the area of convergence exits India and moves farther east, centered over the Maritime 211 

continent. Five days after genesis, the MJO associated convergence crosses the maritime 212 

continent into the Western Pacific (Day +5), and travels farther east into the Eastern 213 

Pacific by the tenth day (Day +10). In terms of rotational flows (Fig. 4b), areas of 214 

cyclonic rotation (positive MJO phase) occur behind areas of convergence as the MJO 215 

propagates eastwards, this reflects the Gill-type dynamics. It is interesting but not 216 

surprising that TC genesis (Day 0) occurs with the strongest MJO trough in the BoB. 217 

The results so far illustrates the ISO-onset (Fig. 3) and ISO-TC (Fig. 4) 218 

connections. However, as is noted in Fig. 3b, only 11 of the 27 pre-monsoon cyclogenesis 219 

occurred during or near the time of onset. This discrepancy suggests that, for the 220 

monsoon onset and TC genesis to occur concurrently (i.e. the ISO-onset-TC connection), 221 

additional environmental factors must be at play. To proceed, we first need to define TC-222 

onset coupling: A “coupled” onset is one that occurs within 10 days (10 days before or 223 

after) of cyclogenesis in the BoB. There are 11 of such cases as outlined by the black box 224 

in Fig. 3b (ref. Fig 2), and these are referred to as “coupled TC-onset” cases. The rest of 225 

the onsets or TCs are considered “decoupled” cases. Since this paper targets the three-226 

way Onset-ISO-TC, we limit the “decoupled” cases to only onsets that occurred within 227 

the positive phase of the MJO, without a TC occurrence within 10 days (or none at all).  228 

There are 13 of such ‘decoupled TC-onset’ cases. 229 
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Next, the amplitude and phasing of the MJO are examined through EOF analysis. 230 

Shown in Fig. 5a are the EOF1 patterns and their corresponding phase space diagrams for 231 

coupled TC-onset cases (in terms of years), abreast similar plots for decoupled TC-onset 232 

cases (Fig. 5b). The coupled cases generally boast stronger convergence/divergence 233 

patterns in EOF1 when compared to the decoupled cases (Fig. 5b) – this means the Indian 234 

Ocean-Western Pacific “mode” of MJO is strong. For ease of comparison, we add a black 235 

line that traces the center of convergence throughout all panels in the column. The line of 236 

track in Fig. 5a is clearly “straighter” than that in Fig. 5b, suggesting that the convergence 237 

center over the Indian Ocean-Western Pacific is more systematic and pronounced in the 238 

coupled cases, suggesting stronger MJO convergence during coupled TC-onsets, as 239 

opposed to decoupled events (Fig. 5b). 240 

The shapes of the two sets of phase space diagrams are also noticeably different, 241 

indicating a difference in the phasing and propagation of the MJO. While many of the 242 

sequential days trace anti-clockwise, in eclipsed circles in the coupled cases (meaning 243 

EOF1 is distinctively stronger than EOF2), phase space diagrams of decoupled cases 244 

generally appear as round shaped circles ensuing from random motions of sequential 245 

days. Thus the coupled cases have persistent MJO cycles, with a stronger origin phase in 246 

the Indian Ocean-Western Pacific. The red dots in the MJO cycle indicate onsets, whiles 247 

the green dots show TC lifetime. In the coupled cases, monsoon onsets consistently occur 248 

during distinct MJO phases, while in the decoupled cases onsets mostly take place in 249 

weak MJO phases.  250 

To explore further the TC-onset connection, we construct onset-based  251 

composites, which are presented in Fig. 6a for coupled cases and Fig. 6b for the 252 
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decoupled cases. It again shows that in most cases, stronger (weaker) divergent 253 

circulations of the MJO accompany coupled (decoupled) cases. To facilitate comparison, 254 

a black parallel diagonal line is drawn connecting regions of maximum convergence to 255 

illustrate the MJO propagation for the coupled cases, shown in Fig. 6a; this line is then 256 

copied over to Figs. 6b and 6c. The difference between the phase and magnitude of the 257 

two groups is shown in Fig. 6c, indicating strong low-level convergence over the BoB 15 258 

days prior to TC genesis, arguably pooling moisture and generating heat. There is 259 

seemingly a quarter-cycle phase difference between coupled and decoupled cases; this 260 

could mean that either the phase or the propagation speed is consistently different 261 

between the two cases. Such year-to-year differences in the phase and magnitude of the 262 

MJO may explain why the formation of BoB TCs is coupled with the Myanmar monsoon 263 

onset in some years but not in other years.  264 

The synoptic conditions influencing onsets and TC geneses in the BoB are 265 

examined in Fig. 7, which shows the differences (coupled - decoupled) in the composite 266 

vertical wind shear (VWS), streamfunction (), outgoing longwave radiation (OLR) and 267 

SST. Prior to the coupled onsets, vertical wind shear weakens (Fig. 7a). Likewise, the 268 

BoB monsoon trough deepens (Fig. 7b) and surface convection intensifies (Fig. 7c), 269 

forming conditions conducive for TC formation. Within the low-level convergence phase 270 

of the MJO (Day-15 through Day 0; ref. Fig. 4b), equatorial westerlies intensify and 271 

subsequently enhance cyclonic circulation over the BoB (Fig. 7b). Meanwhile, an upper-272 

level anticyclone develops (not shown) resulting in a reduction in vertical wind shear, 273 

which is favorable for TC development (e.g., Gray 1968, Zehr, 1992, DeMaria and 274 

Kaplan 1999). After the monsoon onset, VWS increases and an anticyclone anomaly 275 
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moves from the equator replacing the cyclonic anomaly, suppressing convection while 276 

creating unfavorable conditions for TC formation over the BoB. The timescale of these 277 

variations are reminiscent of the MJO as well as its modulation on TC activity.  278 

Also noteworthy is the SST variation associated with the TC-onset coupling, as is 279 

shown in Fig. 7d. Warmer waters develop prior to and during the onset (and TC genesis). 280 

This means increased energy fluxes towards the development of the monsoon trough that 281 

favors TC formation. Although the SST variation hints of an MJO modulation, SST in the 282 

BoB always maintains a critical temperature of above C that is needed for tropical 283 

cyclogenesis, so its role might be secondary. Nonetheless, further SST warming in the 284 

BoB does create feedbacks with evaporation and convection while enhancing low-level 285 

convergence (ref., Fig. 4a). This leads to destabilization of the lower troposphere 286 

resulting in a rapid intensification of the BoB monsoon trough (Fig. 7b). Yet, there is an 287 

apparent SST cooling after the onset, presumably due to the post-onset and/or TC rainfall 288 

that cool the ocean surface (note that the ENSO signal in SST has been linearly regressed 289 

out).  290 

The observed intraseasonal variation in SST is an intriguing feature. Previous 291 

studies have shown that intraseasonal SST variations do provide feedback to the MJO 292 

and vice versa (e.gs Wang and Xie 1998, Waliser et al. 1999). Thus, we examine the 293 

relationship between the BoB SST (averaged between, - N and - E, green 294 

box in Fig. 8) and global SST through a composite approach. We analyze the winter 295 

(DJF) and pre-monsoon (MAM) seasons for 1) years in which the onset and TCs were 296 

coupled (Fig. 8) and 2) years in which the onset and TCs were not coupled (Fig. 9). For 297 

coupled cases, there is a discernable but rather weak ENSO signal in both seasons, while 298 
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the BoB SST is consistently warmer (Fig. 8). However, for decoupled cases (Fig. 9) the 299 

BoB SST is cooler and yet the ENSO signal is robust. Given the removal of the ENSO 300 

signal, and our earlier analysis showing that a stronger MJO and warmer SST favors the 301 

coupled cases, the results from Figs. 8 and 9 suggest that the MJO tends to be stronger in 302 

the Indian Ocean-Western Pacific during moderate ENSO events and weaker during 303 

strong ENSO events. This finding is consistent with the observations by Hendon et al 304 

(1998) that the overall level of MJO activity is found to be uncorrelated with El Nino 305 

except during exceptionally warm ENSO events by which the MJO is suppressed. A 306 

further analysis of the BoB SST using EOF (not shown) reveals that, while EOF2 307 

produces a SST pattern resembling that in the coupled TC-onset cases, it only explained 308 

17% of the variance. Correlation of PC2 with global SST suggested that there is no 309 

significant El Nino influence. It is therefore inferred that the subseasonal variability in 310 

SST revealed from Fig. 7d is mostly a response to the MJO’s propagation; this also 311 

implies that much of the yearly MJO variability may be internally generated. 312 

Finally, we note that the composite monsoon break as shown in Fig. 3b occurs 313 

within the negative phase of the MJO. It appears unfavorable conditions associated with 314 

this phase of the MJO may be an influencing factor in suppressing rainfall. 315 

 316 

5. Concluding remarks 317 

We have examined the extent to which the MJO modulates springtime TCs in the 318 

BoB, the Myanmar monsoon onset, and eventually their coupling (or occurrence) in 319 

certain ways. The monsoon onset tends to initiate during the positive phase of the MJO 320 

(trough in the BoB) while the monsoon break occurs during the negative phase (ridge in 321 
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the BoB). TCs in the BoB also tend to form during the positive phase of the MJO. When 322 

the MJO’s positive phase coincides with the seasonal development of the monsoon 323 

trough during strong MJO activity seasons, TC genesis and monsoon onset are likely to 324 

occur concurrently. The MJO activity exhibits a marked interannual variability, which 325 

can be explained by a combination of magnitude and phasing, from which the 326 

concurrence of TC geneses and monsoon onsets are both controlled. Given the relative 327 

strengths of MJO events in both coupled and decoupled cases, and how sensitive 328 

cyclogeneses are to environmental conditions, it seems plausible to say that it is the 329 

phasing of the MJO that more predominantly modulates the coupling. As the low-level 330 

convergence of the MJO propagates through the BoB, the cyclonic anomaly develops and 331 

leads to a rapid intensification of westerlies and influx of moisture into the BoB. This 332 

leads to the intensification of the BoB monsoon trough. In the meantime, vertical wind 333 

shear is reduced, thus providing a favorable environment for TCs to form.  334 

The SST in the BoB reaches its seasonal maximum around  in spring. The 335 

warm SST amplifies the MJO modulation on TC geneses through feedbacks of 336 

evaporation and convection, and provides moisture for sustaining convection. The BoB 337 

SST anomaly was not found to link significantly with the interannual variability of the 338 

MJO. However, we did find that the MJO tends to intensify during weak/moderate El 339 

Nino events, and weaken during strong El Nino events.  340 

Dynamical predictions of the Asian summer monsoon have advanced 341 

significantly in recent decades. Previous studies that analyzed retrospective predictions of 342 

the NCEP Climate Forecast System have indicated that the model could simulate the 343 

broad structure of the Asian monsoon (Saha et al. 2006, Yang et al. 2008, Gao et al. 344 
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2011, Drbohlav and Krishnamurthy 2010). However, some key features are missing in 345 

the hindcasts such as the shifts of the maximum precipitation from the equator to 346 

around N (Jiang et al. 2012). Looking forward, the results of this study can provide 347 

further information to augment current predictions techniques of the monsoon during the 348 

spring and early summer season, especially for the monsoon onset over Myanmar. 349 
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Fig. 1   

a Mean 850-mb streamfunction () (contour interval: 1.2             ) of 

May, overlaid with all post 1979 spring cyclogenesis locations (red 

typhoon symbols ) in the BoB. b Tropical storm count in the BoB and 

rainfall distribution averaged from the orange box in a (western and 

central Myanmar). Hurricane force storms (red TC symbols) are cyclones 

with wind speeds greater than 107 km/h.  
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Fig. 2 

850-hPa unfiltered  fields (shaded), superimposed with 30-60 days 

bandpassed  (contours, interval: 0.7            ) averaged over longitude 80-100 

E. Histograms of daily precipitation from April through July over western and 

central Myanmar for each year is overlaid in blue. Red and green lines show 

onset and tropical cyclogenesis  dates respectively. 
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Fig. 3 

a Composite evolution of daily rainfall averaged over western and central 

Myanmar. The average onset is May 20 (day 0, black line). b Composite 

evolution of 850-hPa unfiltered  fields (shaded), superimposed with 30-60 

days bandpassed  (contours, interval:1.6          ), averaged over longitude 80-

100 E with the locations of all pre-monsoon tropical cyclogenesis (red TC 

symbols) superimposed. Cyclogenesis days are plotted relative to the 

composite onset, at the same latitude they occurred. The black box indicates 

where the definition of coupled TC-onset cases is made.  
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Fig. 4 

Composites 850-hPa a  and b   based on 27 post 1979 pre-monsoon 

cyclogenesis, applied with a 30-60 day bandpass filtering (contour interval: 0.3              

). Vectors in a represent divergent winds while positive  anomalies are shaded. 

Places marked with “L” in b show the center of the trough. The position of each TC 

at the time of genesis to 10 days after are also superimposed using red multiplication 

marks. 
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(a)  (b)  

Fig. 5 

EOFs of 30-60 days bandpassed  at 850-hPa for a coupled TC-onset cases and b 

decoupled TC-onset cases, along with phase space from April through June, using PC1 

and PC2. The black lines join centers of enhanced convergence. The red dots show the 

onset whiles the green dots show TC lifetime. Circles mark NIO. 
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Fig. 6 

Mean composites of 850-hPa 30-60 bandpassed  based on a coupled TC-

onset cases, b decoupled cases, and c difference between the two groups. The 

black parallel lines runs across the same region on the maps in each case.  
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Fig. 7 

Horizontal maps showing differences in  a VWS (m/s), b 30-60 days bandpassed 

 at 850-hP (            ) , c OLR (         ) and d SST (K) ; between mean 

composites of  a coupled cases, and b decoupled cases (coupled –decoupled). 

ENSO signal is removed from SST composites. 
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Fig. 8 

Global SST regressed with BoB SST based on coupled TC-onset cases (i.e. a 

composite approach). Only coupled years are used. The green box in the BoB 

outlines the domain used (longitude             and  latitude           ). The grey 

mesh masks out insignificant areas (confidence interval = 95%). 
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Fig. 9 

Same as Fig. 8 but for decoupled TC-onset cases. Only decoupled years are 

used. 
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