
  
1997, 63(11):4621. Appl. Environ. Microbiol. 

D R Smart, K Ritchie, J M Stark and B Bugbee
 
activity.
indirectly increase rhizosphere denitrifier 
Evidence that elevated CO2 levels can

http://aem.asm.org/content/63/11/4621
Updated information and services can be found at: 

These include:

CONTENT ALERTS
 more»cite this article), 

Receive: RSS Feeds, eTOCs, free email alerts (when new articles

http://journals.asm.org/site/misc/reprints.xhtmlInformation about commercial reprint orders: 
http://journals.asm.org/site/subscriptions/To subscribe to to another ASM Journal go to: 

 on M
arch 27, 2014 by U

T
A

H
 S

T
A

T
E

 U
N

IV
http://aem

.asm
.org/

D
ow

nloaded from
 

 on M
arch 27, 2014 by U

T
A

H
 S

T
A

T
E

 U
N

IV
http://aem

.asm
.org/

D
ow

nloaded from
 

http://http://aem.asm.org/content/63/11/4621
http://aem.asm.org/cgi/alerts
http://aem.asm.org/cgi/alerts
http://journals.asm.org/site/misc/reprints.xhtml
http://journals.asm.org/site/subscriptions/
http://aem.asm.org/
http://aem.asm.org/
http://aem.asm.org/
http://aem.asm.org/


APPLIED AND ENVIRONMENTAL MICROBIOLOGY,
0099-2240/97/$04.0010

Nov. 1997, p. 4621–4624 Vol. 63, No. 11

Copyright © 1997, American Society for Microbiology

Evidence that Elevated CO2 Levels Can Indirectly Increase
Rhizosphere Denitrifier Activity†

DAVID R. SMART,1* KARL RITCHIE,2 JOHN M. STARK,3 AND BRUCE BUGBEE4

Department of Vegetable Crops, University of California, Davis, California 956161; Department of Agronomy,
University of Illinois, Champaign, Illinois 618212; and Department of Biology3 and Department

of Plants, Soils and Biometeorology,4 Utah State University, Logan, Utah 84322

Received 1 November 1996/Accepted 8 September 1997

We examined the influence of elevated CO2 concentration on denitrifier enzyme activity in wheat rhizoplanes
by using controlled environments and solution culture techniques. Potential denitrification activity was from
3 to 24 times higher on roots that were grown under an elevated CO2 concentration of 1,000 mmol of CO2 mol21

than on roots grown under ambient levels of CO2. Nitrogen loss, as determined by a nitrogen mass balance,
increased with elevated CO2 levels in the shoot environment and with a high NO3

2 concentration in the rooting
zone. These results indicated that aerial CO2 concentration can play a role in rhizosphere denitrifier activity.

The fate of nearly all nitrogen that cycles through terrestrial
ecosystems (estimated at more than 1,200 3 109 kg annually;
23) depends on the activities of soil heterotrophic microorgan-
isms (22). The metabolic activities of many heterotrophic mi-
crobes may be partially regulated by the flow of recently fixed
photosynthate to the root zone (16). Photosynthate lost from
roots to the rhizosphere, rhizodeposition, generally consists of
high-energy-containing organic compounds that are easily se-
questered and metabolized by microbial communities. Elevat-
ing atmospheric CO2 concentration could increase rhizodepo-
sition rates (13) and thus accelerate microbial nitrogen
transformations that are dependent on carbon supply. Such
nitrogen cycle processes might include mineralization (36),
microbial mineral nitrogen assimilation, nitrogen fixation, and
denitrification.

Denitrification depends on the availability of reduced or-
ganic compounds (4, 5, 8). As a consequence, denitrification
activity is generally higher in the rhizosphere, where reduced
organic carbon is readily available (10, 20, 28, 33). When re-
sources other than carbon limit denitrification (e.g., NO3

2 or
NO2

2 availability), rhizosphere carbon availability may have a
smaller effect (11). Nonetheless, when conditions are favorable
for denitrification, rhizodeposition should enhance it by sup-
plying a source of reductant. Since elevated atmospheric CO2
concentration appears to increase carbon rhizodeposition, el-
evated CO2 could have a significant effect on denitrification
activity. We examined this hypothesis by assessing potential
denitrification enzyme activity on root surfaces and quantifying
nitrogen loss from wheat canopies growing under ambient and
elevated CO2 concentrations.

We conducted our experiments in a 28-m3 controlled envi-
ronment chamber with wheat canopies (Triticum aestivum cv.
Veery 10) planted at 1,500 plants per m2 (25). The chamber is
used for fundamental research into bioregenerative life sup-
port systems (9). We examined two CO2 concentrations and
two root zone NO3

2 concentrations. The two CO2 concentra-
tions were 360 mmol of CO2 per mol of air (360 mmol of CO2
mol21), close to that in the current Earth atmosphere (6), and
1,000 mmol of CO2 mol21, a concentration that saturates net

CO2 assimilation rates for wheat canopies growing in such
contained environments (14, 34). We used a flowing hydro-
ponic culture for the root environments, with four 0.2-m2 sub-
canopies for each NO3

2 treatment (3). Each of the four sub-
canopies was supplied from a 270-liter reservoir, with a
constant circulation of 36 liters min21. The oxygen concentra-
tions in the nutrient solutions were examined with a polaro-
graphic O2 electrode placed directly into the solution at three
depths. Oxygen concentrations averaged 76% of the saturation
concentration at our elevation (220 mM) and did not differ
significantly between the nutrient solutions used for the two
aerial CO2 treatments or between those used for the two NO3

2

treatments (21). The dissolved CO2 concentration in the root
zones was examined by headspace gas analyses. Briefly, 150 ml
of nutrient solution was placed in a 250-ml Erlenmeyer flask
that had been equilibrated with the CO2 environment in the
chamber, and the flask was covered with a latex stopper. The
flask was placed on a shaker for 15 min to attain solution-gas
phase equilibrium. Then two 3-ml gas samples were injected
into an infrared gas analyzer calibrated against standards of
300, 560, 880, and 1,820 ppm of CO2. The CO2 concentration
in the nutrient solution was calculated based on CO2 solubility,
temperature, and pressure (35). For elevated-CO2 level tests,
the solution CO2 concentration was 36.8 6 5.9 mM (n 5 4; two
from each NO3

2 treatment), less than 1.5 times higher than
the expected concentration of approximately 29.7 mM at our
elevation. For the ambient-CO2 level treatment, it was 18.6 6
7.3 mM (n 5 4; two from each NO3

2 treatment), less than 2
times higher than the equilibrium value of about 10.7 mM.
These values of O2 and CO2 concentrations indicated that,
with the high velocity of nutrient solution flowing through the
system (40 liters min21 m22 of canopy), and considering that
root respiration consumes and produces large quantities of O2
and CO2, respectively, the nutrient solution was well aerated
and mixed (27). So if anaerobic or microaerophilic sites that
would favor denitrification were present, they probably existed
mainly at the root surfaces, where oxygen consumption by
roots and rhizoplane microorganisms can greatly reduce oxy-
gen partial pressure (12).

The NO3
2 concentrations we used were 100 mM, a concen-

tration slightly higher than the apparent Km for net NO3
2

absorption by many cultivated temperate annuals (63.6 6 19.5
mM [grand mean 6 standard error {SE}; n 5 8]) (2, 24), and
1,000 mM, a NO3

2 concentration that saturates growth de-

* Corresponding author. Phone: (916) 752-7482. Fax: (916) 752-
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mands for our wheat canopies. Nitrate concentrations were
held constant by two simultaneously operating control systems,
in accordance with principles outlined by Bloom (1). The first
system used the output signal from a NO3

2-selective electrode
to control metered additions (Razel Corp.; model A-99) of
equal amounts of 1 to 2 M KNO3 and 1 to 2 M Ca(NO3)2. The
1 M concentration was used during the first 10 days of the
experiment when plant nitrogen demand was low. The higher
concentration of 2 M was used during the final 13 days of the
experiment, when plant nitrogen demand was high. The NO3

2

electrode was automatically calibrated every 24 h against stan-
dard solutions consisting of 100 or 1,000 mM NO3

2 by using an
array of isolatching solenoid valves (General Valve; series 2
Iso-latch). The second system (Omega Engineering; model
PHCN-36) used the output signal from a pH electrode sus-
pended directly in the nutrient solution to control direct addi-
tions of a mixture of 50 mM HNO3 plus 50 mM H2(SO4). This
system maintained H1 concentration in the nutrient solution
at pH 5.8 6 0.1. Having NO3

2 in the pH control system made
the control response faster and more accurate than that used in
earlier experiments that were conducted with only Ca(NO3)2
and KNO3 as the NO3

2 sources. In those experiments, the
nitrogen loss quantities we observed were not significantly dif-
ferent from those reported in Table 1 below. Using this dual-
control array, we were able to sustain the low-NO3

2 treatment
within about 20 mM of its set point concentration and the
high-NO3

2 treatment within about 80 mM of its set point.
On the 15th day after germination, five intact plants were

removed from each treatment. After shoot removal, N2O evo-
lution was measured in 250-ml Erlenmeyer flasks under anaer-
obic conditions, in the presence of C2H2 (20% of headspace
gas) to block conversion of N2O to N2, 1 g of chloramphenicol
per liter to suppress microbial enzyme synthesis, 1.5 mM glu-
cose, and 1.5 mM NO3

2 (31). Five 3-cm3 gas samples were
withdrawn from the headspace at 10, 20, 40, 60, and 120 min.
N2O was detected in the samples with a Varian Inc. (model
3300) gas chromatograph equipped with a Poropak Q column
maintained at 45°C and a 63Ni detector maintained at 375°C.
Total N2O produced was determined by adding the quantity of
N2O in the headspace gas to that of N2O dissolved in solution
(31). We used the linear regression of total N2O production
over time to determine the rate of N2O production. All of the
regressions yielded significant correlation coefficients (r2) of no
less than 0.84. It has recently been found that chloramphenicol
can mildly inhibit denitrification activity in denitrifier assays
(19). Consequently, our assays may underestimate denitrifica-
tion activity, but all of the assays were conducted under iden-
tical conditions with the same reagents so that comparisons
among treatments were likely valid.

Nitrogen loss was estimated by using a nitrogen balance
technique (18). The total amount of NO3

2 consumed by roots
and root surface microbial communities was quantified by sum-
ming the NO3

2-N added to the root zone by each control
system and then adding that amount to the total amount of
NO3

2-N remaining in the nutrient solution at the end of each
experiment (N consumed in Table 1). The biomass from each
experiment was harvested, dried in a forced-air oven at 70°C,
and weighed. The total amount of nitrogen assimilated in
roots, shoots, and root surface microbial biomass plus the
amount of NO3

2 stored in plants (N assimilated in Table 1)
was determined by analyzing two finely ground root samples of
150 mg and two finely ground shoot samples of 150 mg from
each block of each experiment (n 5 8 for each treatment) in a
total carbon, hydrogen, and nitrogen analyzer (LECO, Inc.;
model CHN-1000). Nitrogen loss was estimated as the differ-
ence between N consumed and N assimilated.

We conducted three experiments under 360 mmol of CO2
mol21 and either 100 or 1,000 mM NO3

2 in the root zone and
four experiments under 1,000 mmol of CO2 mol21 and either
100 or 1,000 mM NO3

2. This allowed us to analyze data for
potential denitrification activity and nitrogen loss according to
a split-plot analysis of variance where CO2 concentration rep-
resented the main-plot treatment and NO3

2 concentration
represented the subplot treatment (GLM procedure; SAS In-
stitute, Inc.).

Our hypothesis, i.e., that elevating atmospheric CO2 would
enhance rhizosphere denitrifier activity, was supported by a
large increase in potential denitrification activity on root sur-
faces grown under elevated levels of CO2 (P 5 0.044; Figure
1). Under elevated levels of CO2, potential denitrification ac-
tivity ranged from 3 times higher on roots from the 100 mM
NO3

2 treatment to 24 times higher on roots from the 1,000
mM NO3

2 treatment, compared with the same NO3
2 treat-

ments under ambient levels of CO2. We believe that the effect
of CO2 was indirect and was due to increased root nonstruc-
tural carbohydrate accumulation and consequent exudation. In
our controlled environments, elevated levels of CO2 increase
shoot nonstructural carbohydrate content, and this translates
into more than a 30% increase in total root nonstructural
carbohydrate content (27). Under ambient levels of CO2, po-
tential denitrification activities did not significantly differ be-
tween the two root zone NO3

2 treatments of 100 and 1,000
mM. Nonetheless, it appeared there may have been some en-
hancement of potential denitrification activity in high-concen-
tration NO3

2 treatments for the elevated-CO2 level condition
(Fig. 1); however, the difference was only marginally significant
(P 5 0.087). That NO3

2 did not significantly influence deni-
trifier activity made sense in terms of the relative affinities that
denitrifying microorganisms have for NO3

2. The apparent Km
for denitrification is approximately 5 to 10 mM NO3

2 (32), 2 to
more than 20 times lower than the range measured for plant
roots (2, 24) and much lower than the concentrations we main-
tained in our hydroponics cultures. The above observations,
i.e., that carbon rather than NO3

2 limited denitrification ac-
tivity in these systems, was in general agreement with known
resource limitations to denitrification activity in agricultural

FIG. 1. Potential denitrifying enzyme activity (micromoles of N2O per kilo-
gram of root dry mass per second) on root surfaces of wheat plants grown under
either 360 or 1,000 mmol of CO2 mol21. We used two different NO3

2 concen-
trations under each CO2 treatment as indicated. Each bar represents the mean 6
one SE for 12 to 16 observations taken from three experiments conducted under
360 mmol of CO2 mol21 and four experiments conducted under 1,000 mmol of
CO2 mol21.
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ecosystems, where carbon rather than NO3
2 can be the pri-

mary limiting substrate (8).
The differences in denitrifier enzyme activity correlated well

with the percentages of nitrogen that were lost from these
systems (Table 1). Carbon dioxide fertilization increased bio-
mass yields by 17.22% 6 2.93% (mean 6 SE; P , 0.01), but
NO3

2 concentration in the rooting zone did not influence
yields. The increase in biomass under elevated levels of CO2
resulted in an increase in the amount of nitrogen that was
assimilated and the amount of nitrogen loss (Table 1). Nitro-
gen mass balances revealed that 15.67% 6 1.81% (mean 6
SE) of the nitrogen consumed was lost from the plants treated
with 100 mM NO3

2 when they were grown under the low-level
CO2 condition of 360 mmol of CO2 mol21 and that 17.59% 6
1.54% of the nitrogen consumed was lost from the plants
treated with 1,000 mM NO3

2 growing under low levels of CO2
(Table 1). For the elevated-CO2 level condition, 20.81% 6
5.32% and 22.21% 6 2.43% of the nitrogen consumed was lost
from the plants treated with 100 mM NO3

2 and from the plants
treated with 1,000 mM NO3

2, respectively (Table 1). These
nitrogen deficits were most likely due to denitrification losses
for several reasons. First, much smaller quantities of nitrogen
are generally emitted through other canopy nitrogen loss path-
ways such as diffusive NH3 exchange from wheat leaves (17).
Our own preliminary measurements of canopy NH3 emissions,
obtained with an acid trap similar to that described by Far-
quhar et al. (7) and analyzed on a Lachat flow injection auto-
analyzer (Lachat Chemicals, Mequon, Wis.), support this con-
tention. These measurements have indicated that during the
same 23-day growth period, only 1.2 or 1.4 mg of NH3-N m22

h21 was volatilized from canopies grown in elevated- or ambi-
ent-CO2 treatments, respectively (14a). These daily NH3 loss
rates agree with previous measurements for wheat canopies
(17) and would account for no more than 5% of the total
amount of N loss we measured, or on average less than 1% of
the total N consumed. Second, bacterial population densities
on wheat root surfaces (the rhizoplane) within these systems
are high, (e.g., 109 to 1012 organisms per gram of dry root)
(26)). Several taxa within the Pseudomonas, Alcaligenes, and
Flavobacterium genera, which are capable of denitrification,
are among many rhizoplane microbes consistently colonizing
such wheat root surfaces (29). Many of these microbial taxa on
wheat rhizoplanes in hydroponic culture are also common in
soil ecosystems (8, 32). Third, the amounts of nitrogen lost
from our canopies are similar to the amounts of 15NO3

2 di-

rectly denitrified from root zones in similar contained-environ-
ment wheat ecosystems (2a, 30). Finally, roots had high micro-
bial population densities, and when we preincubated them for
3 h in a nutrient solution containing 20 mg of ampicillin plus 20
mg of trimethoprim per liter and then conducted the potential
denitrification assays, we found that the rates of N2O emission
were reduced to levels that were not detectable under the
experimental and analytical conditions used. Hence, it also
appeared that practically all of the enzyme activity we mea-
sured was of microbial origin.

Among the many uncertainties concerning the influence of
elevated atmospheric CO2 concentration on biosphere pro-
cesses, the influence of elevated levels of CO2 on soil biota
is probably least well understood (15). We have demon-
strated under controlled laboratory conditions and by using
hydroponic culture that aerial CO2 availability can indirectly
influence activities of root surface microbial communities
responsible for denitrification, a key environmental nitrogen
transformation that can be limited by organic carbon availabil-
ity (8). Determining whether these results have important im-
plications concerning nitrogen trace gas emissions and nitro-
gen loss rates from terrestrial ecosystems will require careful
examination of the effect of elevated levels of CO2 on soil
microbial processes in agricultural ecosystems and natural eco-
systems where denitrification plays an important role.

This research was supported by the National Aeronautics and Space
Administration cooperative agreement no. NCC 2-139 that was admin-
istered through the NASA-AMES Research Center at Moffet Field,
Calif., CSRS USDA agreement no. 92-37101-7976, and The Agricul-
tural Research Station, Utah State University, Logan.
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