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ABSTRACT

It has been known for some time that the slope of the species–area relationship increases
asymptotically at broad spatial scales when richness is plotted against area on logarithmic axes.
At continental to global scales, species–area relationships are determined to a large extent by
the abundance and size distribution of species ranges. Here we present an analytical model that
explicitly quantifies the effects of range size on species–area relationships. The model shows
how range size and plot area interact to control the form of species–area relationships at broad
spatial scales. It also demonstrates how changes in spatial scale affect biodiversity patterns by
changing the relative influence of range size and range abundance on species richness. Our
model provides an explanation for the broad-scale upturn of the species–area relationship, but
more work is needed to incorporate the effects of range size, habitat heterogeneity, individual
sampling and other variables into a unified framework that can account for species–area
relationships at all scales.
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INTRODUCTION

The increase in the number of species, S, with plot area, AP, is one of the oldest documented
patterns in ecology (Rosenzweig, 1995). Continental species–area relationships consist of
three major sub-patterns (Fig. 1) (Williams, 1943; Preston, 1960; Rosenzweig, 1995). At
very small spatial scales, richness increases with area primarily as a consequence of
sampling greater numbers of individuals. This phase typically appears concave down on a
log–log plot, but its exact form depends on the frequency distribution of species abundance
(Arrhenius, 1921; Coleman, 1981; Hubbell, 2001). At intermediate scales, the increase in
richness often takes the form of a power law (S ∝ AZ

P), with the exponent z usually falling
between 0.1 and 0.25 (Arrhenius, 1921; Preston, 1962; Rosenzweig, 1995; Kunin, 1998;
Harte et al., 1999; Hubbell, 2001). This power function may hold over a broad range
of scales. Explanations invoked to explain this pattern include habitat heterogeneity
(Rosenzweig, 1995), self-similar species distributions (Harte et al., 1999) and dispersal
limitation (Hubbell, 2001). Finally, as the plot area expands to encompass entire continents
and the globe, the power-law exponent is no longer constant, but instead increases
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asymptotically towards z = 1 (Williams, 1943; Preston, 1960; Brown, 1995; Rosenzweig,
1995; Hubbell, 2001). It has been proposed that this increase is caused by the inclusion
of multiple biological provinces with distinct evolutionary histories (Williams, 1943;
Rosenzweig, 1995).

Here we present a simple mathematical model to account for the increasing slope of the
species–area relationship at broad spatial scales that is based entirely on the interaction
between the geometry of species ranges and sampling plots. Similar ideas have already been
presented conceptually and via simulation (e.g. Leitner and Rosenzweig, 1997; Maurer,
1999; Hubbell, 2001). Most recently, McGill and Collins (2003) have shown that simulations
of randomly distributed species ranges can fit the upper scales of the species–area relation-
ship for birds of North America. This paper will derive such a model analytically using two
simplifying assumptions: (1) ranges are randomly distributed in space irrespective of size
and geographic location and (2) ranges are circular in shape.

MODEL ASSUMPTIONS AND PARAMETERS

Assumption 1: Ranges are randomly distributed in space

Biologically, this assumption implies that species are independently distributed with respect
to environmental gradients (Gleason, 1926), that there are no geographic gradients in

Fig. 1. Three phases of the species–area relationship on a log–log plot. Two lines are presented, an
idealized empirical species–area relationship (solid line) and an upper bound on richness computed
based on the abundance and size distribution of species ranges (dotted line). Empirical species–area
relationships always have fewer species than the upper bound because no species is present at all points
within its range. In Phase 1 of the empirical species–area relationship, there is a rapid increase in
species with area as a consequence of individual sampling. In Phase 2, processes generating fractal-
like distributions of species operate to produce power laws with slopes (z exponents) that are relatively
constant on a log–log scale and < 1. At some point during Phase 3, plot area exceeds average range
size for the first time (AP > AR), the slope increases asymptotically to z = 1, and the empirical species–
area relationship and the upper bound approach equality.
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species richness or range size and that there are no ‘mid-domain effects’ sensu Colwell
and Hurtt (1994), constraining the placement of ranges of different size within a region.
Mathematically, this assumption implies that range centroids follow a spatial Poisson
process (Diggle, 1983). We characterize the ‘intensity’ of this process in the model using the
parameter SD, which is the average number of range centroids per unit area.

Assumption 2: Ranges are circular

This assumption is always violated in nature, but can be justified if species ranges are
relatively compact in shape and show no tendency to be elongated in a particular direction.
The effective radius of the range, Ri, for species i can be approximated by the radius of
a circle whose area is equal to that of the range AR (Ri = √AR/π ). This approximation
is reasonable provided that the range is close to circular and has no holes inside of it.
Otherwise, Ri should be calculated as the square root of the mean squared-distance between
the range edge and range centroid.

Together, Assumptions 1 and 2 imply that the frequency distribution of range sizes can
be characterized entirely by a geographically invariant probability density function f(R),
where f(R)dr is the proportion of species ranges in the size interval centred on radius R
of width dr. The function f(R) can be a theoretical distribution or it can be generated
empirically based on the observed values of Ri for the species assemblage. The only
restrictions on f(R) are that its mean, R, and variance, σ2, exist, and that it be defined only
for R ≥ 0. These restrictions imply that the integral of f(R) from 0 to infinity is ∫

∞

0
f(R)dr = 1,

that the average range radius is R = ∫
∞

0
f(R)Rdr, and that the average range area is AR =

π ∫
∞

0
f(R)R2dr.

Assuming that the range radii for all species are equal to the same constant value of Ri,
the average number of species ranges that will overlap a point is

S = SDπRi
2 = SDAR (1)

Equation (1) holds because all ranges whose centroids lie within radius Ri and area AR

(= πRi
2) of a point will overlap that point (Fig. 2a), and because the expected number of

centroids in an area of size AR is SDAR. This expectation is a well-known property of spatial
Poisson processes (Diggle, 1983). Using similar reasoning, equation (1) can be extended
to the case where richness is estimated not at a point, but in a circular plot of radius P
(Fig. 2b):

S = SDπ(Ri + P)2 (2)

As expressed in equation (2), richness is a function of the density of range centroids, the
radius of the plot and the constant range radius Ri.

We can introduce variation in range size among species by calculating S as

S = SDπ∫
∞

0
f(R)(R + P)2 dr = SDAR + SDAP + 2SDR√πAP (3)

Note that two measures of range size enter into the richness calculation, average range area
and average range radius. Note also that σ2 = R2 − R2, which implies that AR = π(σ2 + R2).
Substituting this alternative expression for average range area into the right-hand side of
equation (3) demonstrates that explicit integration of the function is unnecessary if the
mean and variance of f(R) are already known.
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Taking the derivative of S with respect to plot area in equation (3) yields

dS/dAP = SD(1 + R√π/AP) (4)

Equation (4) reveals that, for large AP, the slope of the relationship between richness and
plot area approaches SD; this is the slope of the upper ‘limiting tangent’ of Preston (1960).
On a log–log scale, the slope of the relationship between S and AP is dlogS/dlogAP = (AP/S)
× (dS/dAP), which is also the exponent z of the species–area relationship. Substituting
equations (3) and (4) into this equation yields

z = (AP/S)(dS/dAP) = (AP + R√πAP)/(AR + AP + 2R√πAP) (5)

Equation (5) reveals that z is always < 1, but approaches 1 asymptotically as the plot area
expands to encompass an area much greater than that of species ranges. In the special case
where plot area and average range area are equal in magnitude (AR = AP), equation (5)
predicts that z = ½ for all f(R).

We performed a series of computer simulation trials to demonstrate the analytical
derivation of the model. Each simulation trial involved four steps: (i) randomly placing
10,000 range centroids on a 100 × 100 unit lattice to simulate a Poisson spatial process
of intensity SD = 1 species ·unit − 2 [10,000 species/(100)2 units2 = 1 species ·unit − 2]; (ii)
randomly assigning a range size to each centroid by sampling from f(R); (iii) placing con-
centric circular plots of increasing size, AP, in the centre of the lattice; and (iv) counting the
number of species ranges overlapping the plots to calculate richness.

RESULTS AND DISCUSSION

Numerical simulations were performed for three different range size distributions f(R):
constant, log-normal and exponential (Fig. 3, lower panels). These distributions were
chosen to have identical values for mean radius (R = 10) but different variances (σ2 = 0, 10

Fig. 2. Graphical depiction of how richness is calculated for (A) a point x and for (B) a plot of radius
P centred on x. Grey circles represent Poisson-distributed species ranges, which all have the same
radius Ri in this simple example. In (A), all ranges whose centroids (grey dots) lie within the boundary
of radius Ri and area AR (= πRi

2) of the point x (black, dashed-line circle) overlap x and are darkened.
In (B), all ranges whose centroids lie within a boundary of radius Ri + P and area π(Ri + P)2 (black,
dashed-line circle) overlap the plot (black, solid-line circle) and are darkened.
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and 100, respectively). Three observations are worth noting in Fig. 3. First, the results of the
numerical simulations (points in upper panels) are in close agreement with the predictions
of equation (3) (lines in upper panels). Second, the shape of the species–area relationship
changes systematically, moving from the constant distribution with 0 variance in range
radius (Fig. 3a) to the log-normal and exponential distributions, which have progressively
greater variances (Figs 3b and 3c). Holding R, AP and SD constant, richness increases
systematically with variance in range radius because concomitant increases in average range
area (recall that AR = π(σ2 + R2)) result in greater range overlap. This result is true in
general because all f(R) distributions that share the same mean and variance will have
identical species–area relationships regardless of their shape (e.g. distribution skewness or
kurtosis). The third observation is that when AR = AP (vertical lines in Fig. 3), the slopes of
the species–area relationships are identical on a log–log scale; according to the model, the
slope z = ½.

It is important to note that our simple model is incomplete in that it cannot account
for Phase 1 or Phase 2 of the continental species–area relationship (Fig. 1). Instead, it
predicts the upper bound on richness, which is driven entirely by the abundance and size

Fig. 3. Comparison of species–area relationships predicted analytically by equation (3) (lines in upper
panels) to those generated numerically based on 50 simulation runs (averages of log10(richness)
represented by points). Simulations were performed for three range size distributions (constant,
log-normal and exponential; histograms in lower panels). We used the simulation data to compute
and plot 95% confidence intervals for log10(richness), but they are too small to be clearly seen in the
upper panels. Analytical predictions were within the confidence intervals in all cases. For perspective,
dashed lines have been added where plot area and average range area are equal in magnitude
(AR = AP).
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distribution of species ranges. The model overestimates richness during Phases 1 and 2
of the species–area relationship simply because no species is present at all locations within
its range.

Nevertheless, the model does provide insight into the behaviour of species–area
relationships during Phase 3, as demonstrated by the recent analysis of McGill and Collins
(2003). Plot area, the abundance of ranges and the sizes of ranges all enter into the richness
calculation (equation 3). It is the interaction among variables that accounts for the
asymptotic increase of the species–area relationship to a slope of SD on a linear scale
(equation 4), and a slope of z = 1 on a log–log scale (equation 5).

An important consequence of this interaction is that changes in spatial scale (AP)
will alter the relative influence of range size and range abundance (SD) on richness. We
consider two extreme cases to emphasize this point. First, if AP � AR, then S ≈ SDAP, and
geographic gradients in richness are driven almost entirely by variation in range abundance.
At the opposite extreme, if AP = 0 (i.e. ‘point’ estimates of richness are calculated as in
Fig. 2a), S = SDAR, which implies that range abundance and range size may both contribute
equally to richness. This is biologically significant because there is evidence that, for many
taxonomic groups, range abundance decreases, and range size increases, moving away from
the equator (Stevens, 1989). Any comprehensive theory of biodiversity will need to account
for geographic variation in both of these variables.

We conclude by considering methodological implications of the model. In broad-
scale biodiversity studies, it is common to generate richness maps by first overlaying a
grid onto geographic range distributions and then calculating the number of ranges
that overlap each grid cell. Grid cell size (represented by AP in our model) is often
chosen arbitrarily. However, the selection of a particular cell size entails an implicit decision
regarding the weighting given to range size and range abundance in any analyses performed
using the data. Multi-scale biodiversity studies often use the same underlying range maps
to generate a series of richness maps that vary in grid cell size (e.g. Rahbek and Graves,
2001). These studies often find that the environmental correlates of richness change with
the size of the grid cell, perhaps reflecting differences in the environmental controls on
range size versus range abundance. This example highlights the need for further work
assessing the biological mechanisms underlying scale-dependent changes in biodiversity
patterns.
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