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Steady-state evaporation from a water table has been extensively studied for both homogeneous and
layered porous media. For layered media it is of interest to find an equivalent homogeneous medium
and define ‘‘effective’’ hydraulic properties. In this paper a new solution for steady-state evaporation from
coarse-textured porous media is presented. Based on this solution, the evaporation rate represents a
macroscopic (column-scale) measure of unsaturated hydraulic conductivity at the pressure head equal
to the maximum extent of the hydraulically connected region above the water table. The presented
approach offers an alternative method for determination of unsaturated hydraulic conductivity of homo-
geneous coarse-textured soils and a new solution for prediction of the effective unsaturated hydraulic
conductivity of layered coarse-textured soils. The solution was evaluated with both experimental data
and numerical simulations. Comparison with experimental data and numerical results for hypothetically
layered soil profiles demonstrate the applicability of the proposed approach for coarse-textured soils.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

One-dimensional steady-state evaporation from a fixed shallow
water table (WT) is dependent on the WT depth and on the soil
hydraulic properties (Lehmann et al., 2008; Shokri and Salvucci,
2011; Assouline et al., 2013; Or et al., 2013). Two distinct scenarios
are often considered; the first when the WT is shallow enough for
the soil to sustain hydraulic continuity between the WT and the
surface due to capillary forces, and the second when the WT
reaches a critical depth (denoted as Dmax) below which the hydrau-
lic continuity between the WT and soil surface is no longer
maintained.

In the first scenario liquid water continuously flows from the
WT to the surface where it transitions to the vapor phase. The
maximum WT depth (Dmax) for which hydraulic continuity can
be sustained depends on the porous medium properties and on
the evaporation rate, which in this case is mainly controlled by
the atmospheric evaporative demand. In the second scenario liquid
water flows from the WT to the so-called drying front (DF), where
it transitions to the vapor phase and moves to the surface by means
of vapor diffusion.

Steady-state water flow from the WT to the soil surface was
extensively studied theoretically and experimentally for homoge-
neous soils (Moore, 1939; Gardner, 1958; Anat, 1965; Warrick,
1988; Gowing et al., 2006; Salvucci, 1993; Shokri and Salvucci,
2011; Sadeghi et al., 2012a) as well as for stratified soil profiles
(Willis, 1960; Ripple et al., 1970; Warrick and Yeh, 1990; Lu and
Zhang, 2004) and other heterogeneous media (Hopmans et al.,
1998; Zhu and Mohanty, 2002; Bechtold et al., 2012). The majority
of developed models are based on the Buckingham–Darcy law
(Buckingham, 1907) and its analytical or numerical solutions
within the liquid flow domain. The analytical solutions are com-
monly restricted to simple forms of hydraulic conductivity models
such as proposed by Gardner (1958) or Brooks and Corey (1964).

When dealing with complex heterogeneous media it is of inter-
est to define ‘‘effective’’ or ‘‘upscaled’’ hydraulic properties for an
equivalent homogeneous medium. A vast body of literature exists
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Fig. 1. Sketch depicting the pressure head distribution above the water table during
steady-state evaporation with (solid line) and without (dashed line) vapor flow
contribution (film flow contribution as shown by Peters and Durner (2010) is not
considered here). In this figure, hb denotes the air-entry pressure head, hmax is
pressure head at the drying front where liquid continuity is disrupted, hsur is
pressure head at the surface, D is the water table depth, and Dmax is the maximum
extent of the hydraulically connected region above the water table. Pressure head is
plotted on a logarithmic scale.
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on upscaling issues for various soil water processes including
steady-state flow (Yeh and Harvey, 1990; Zhu and Mohanty, 2002;
Warrick, 2005; Neuweiler and Eichel, 2006). There are different
approaches with regard to scaling of soil hydraulic properties and
soil water processes in heterogeneous porous media such as averag-
ing methods (Kitanidis, 1990; Zhu et al., 2004; Zhu and Mohanty,
2006), inverse solutions (van Dam et al., 1994; Hopmans and
Simunek, 1999; Zhang et al., 2004; Javaux and Vanclooster, 2006;
Vrugt et al., 2008; Erdal et al., 2012), percolation theory (Hunt,
1998; Samouelian et al., 2007; Hunt and Idriss, 2009), homogeniza-
tion theory (Neuweiler and Cirpka, 2005; Neuweiler and Eichel,
2006; Neuweiler and Vogel, 2007), hybrid mixture theory
(Hassanizadeh and Gray, 1979, 1979, 1980), similar media scaling
theory (Miller and Miller, 1956; Warrick and Amoozegar-Fard,
1979; Kosugi and Hopmans, 1998; Sadeghi and Jones, 2012; Ojha
et al., 2014), dissimilar media scaling methods (Sadeghi et al.,
2012b,c), stochastic methods (Yeh et al., 1985; Zhang and Lu,
2002), and renormalization methods (King, 1989; Saucier, 1992;
King and Neuweiler, 2002). Many of these methods and their
strengths and limitations have been previously reviewed and dis-
cussed (e.g., Wen and Gomez-Hernandez, 1996; Pachepsky et al.,
2003; Cushman et al., 2002; Chen, 2006; Vereecken et al., 2007).

In this paper a new general solution to the maximum height of
hydraulic continuity above the water table (Dmax) in coarse-
textured porous media is presented. Here, ‘‘general’’ means that
the solution is not restricted to a specific form of the unsaturated
hydraulic conductivity function, but applicable to many existing
mathematical relationships. The solution provides an alternative
method for determination of unsaturated hydraulic conductivity
of homogeneous coarse-textured soils and a new solution for
effective or upscaled unsaturated hydraulic conductivity of layered
coarse-textured media. Various aspects of applicability of the
proposed solution to coarse-textured soils are presented and
discussed in the following.

2. Theoretical considerations

2.1. Background

We begin by considering an isothermal steady-state evapora-
tion process during stage II (vapor diffusion limiting stage). This
process can be modeled with the Buckingham–Darcy law consider-
ing both liquid and vapor flow contributions to the unsaturated
hydraulic conductivity (Peters, 2013):

e ¼ K
dh
dz
� 1

� �
¼ ðKl þ KvÞ

dh
dz
� 1

� �
ð1Þ

where h is the pressure head (absolute value), z is the vertical dis-
tance from the WT to the soil surface (positive upward), e is the
steady-state evaporation rate, and Kl, Kv, and K are the liquid, vapor,
and total hydraulic conductivities, respectively.

Assuming a steady condition, the pressure head distribution
above the water table, h(z), can be determined by solving a rear-
ranged form of Eq. (1):

z ¼
Z h

0

KðhÞ
KðhÞ þ e

dh ð2Þ

Fig. 1 depicts a sketch of the pressure head profile above the water
table obtained by numerically solving Eq. (2) considering both
liquid and vapor flow contributions (i.e., K = Kl + Kv) and liquid flow
only (i.e., K = Kl). Three different zones are distinguished along the
profile: (i) a saturated zone known as the capillary fringe
(0 < h < hb, where hb is the air-entry pressure head); (ii) an interme-
diate, partially-saturated zone between the capillary fringe and the
drying front (DF) (hb < h < hmax, where hmax is the pressure head at
which hydraulic liquid continuity is disrupted); and (iii) a dry zone
(gas region) between the DF and the soil surface (hmax < h < hsur,
where hsur is the pressure head at the soil surface). It is evident that
the pressure head distribution within the dry zone cannot be mod-
eled without accounting for the vapor flow contribution. However,
the solution along the liquid flow domain (i.e., 0 < z < Dmax) is the
same for both cases.

The pressure head at the surface (hsur) depends on the atmo-
spheric boundary conditions and can be estimated as (Edelfsen
and Anderson, 1943):

hsur ¼
RTj ln Hr j

Mg
ð3Þ

where R (=8.314 J mol�1 kg�1) is the ideal gas constant, T is temper-
ature (in Kelvin), M (=0.018015 kg mol�1) is the molecular weight of
water, g (=9.81 m s�2) is gravitational acceleration, and Hr is relative
humidity.

Based on the numerically simulated pressure head profile
shown in Fig. 1 as well as results of Peters and Durner (2010)
and Peters (2013), the pressure head at DF (hmax) is realized as a
critical value at which liquid and vapor conductivity curves meet
each other (i.e., Kl (hmax) = Kv (hmax)). Below hmax, liquid water flow
dominates transport and above hmax vapor flow is dominant. This
definition is similar to that of Assouline et al. (2014) (their Eq.
(25)) who described hmax as the pressure head corresponding to
the water content marking the onset of stage II (vapor diffusion
limiting stage) evaporation.

Dependence of liquid conductivity on pressure head may be
described by an empirical relationship (e.g., Brooks and Corey,
1964; van Genuchten, 1980) or a physically-based model (e.g.,
Tuller and Or, 2001). The vapor conductivity function can be deter-
mined from (Philip and De Vries, 1957; Fayer, 2000):

KvðhÞ ¼
qsv
qw

Dv
Mg
RT

Hr ¼
qsv
qw

Dv
Mg
RT

exp �Mg
RT

h
� �

ð4Þ

where qw is liquid water density (=1000 kg m�3), qvs is the satu-
rated vapor density (=0.017 kg m�3 at 20 �C), and Dv is the soil vapor
diffusivity given as:
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Dv ¼ shaDa ¼
h7=3

a

h2
s

haDa ð5Þ

where s is the tortuosity factor described by Millington and Quirk
(1961), ha is the volumetric air content, Da is the diffusivity of water
vapor in air (=2.44E � 5 m2 s�1), and hs is the saturated soil water
content.

Once water table depth, D, the pressure head at the soil surface,
hsur, and the soil liquid and vapor hydraulic conductivity functions,
K(h), are known, we can implicitly calculate the steady-state evap-
oration rate during stage II based on Eq. (2), rewritten as:

D ¼
Z hsur

0

KðhÞ
KðhÞ þ e

dh ð6Þ

Then, Dmax can be determined as:

Dmax ¼
Z hmax

0

KðhÞ
KðhÞ þ e

dh ð7Þ
2.2. New solution for Dmax

Eq. (7) may be rearranged to read:

Dmax ¼
Z hmax

0

KðhÞ þ e� e
KðhÞ þ e

dh ¼ hmax � e
Z hmax

0

dh
KðhÞ þ e

ð8Þ

The function 1/[K(h) + e] in Eq. (8) typically exhibits an ‘‘S’’
shape as shown in Fig. 2. For most coarse-textured soils where
the K(h) function exhibits a steep slope and the saturated hydraulic
conductivity (Ks) is much larger than common values of e, the areas
A1 and A2 in Fig. 2 tend to be identical. Hence, Eq. (8) for such con-
ditions can be approximated as:

Dmax ¼ hmax � e
Z he

0

dh
Ks
þ
Z hmax

he

dh
e

" #
¼ he 1� e

Ks

� �
ð9Þ

where he is the pressure head at which K = e. Because Eq. (9) holds
for coarse-textured soils with e/Ks being negligible, the solution can
be further simplified to:

Dmax ¼ he ð10Þ

Eq. (10) states that for coarse-textured porous media, pairs of
e � Dmax values coincide with the unsaturated hydraulic conductiv-
ity curve, K(h), which means that the steady-state evaporation rate
exhibits a measure for unsaturated hydraulic conductivity at the
pressure head equal to Dmax. In summary, when h = Dmax, K = e.

The universal formulation of Dmax presented above may provide
an additional opportunity for modeling evaporation by offering
new solutions to the drying front depth, d, which has been applied
1/
(K

+
 e

)

Pressure head

1/e

1/Ks

1/(2e)

he

A1

A2

hmax

Fig. 2. Mathematical behavior of the 1/[K(h) + e] function in Eq. (8).
as a key part of the stage II evaporation modeling (Or et al., 2013).
Some connections between Dmax, d, and e are thus presented.

Combining Eqs. (6) and (7) yields:

d ¼ D� Dmax ¼
Z hsur

hmax

KðhÞ
KðhÞ þ e

dh ð11Þ

Within the dry zone, K = Kv, which is nearly invariant with
respect to pressure head from hmax to hsur (�1E6 cm at 20 �C and
50% relative humidity) (see Fig. 4). Thus Eq. (11) can be solved
and rewritten as:

d ¼ 0:5½KvðhmaxÞ þ KvðhsurÞ�
0:5½KvðhmaxÞ þ KvðhsurÞ� þ e

ðhsur � hmaxÞ ð12Þ

Assuming hsur� hmax and e� Kv, Eq. (12) yields:

d ¼ 0:5½KvðhmaxÞ þ KvðhsurÞ�hsur

e
¼ C

e
ð13Þ

where C is a constant under steady-state conditions. Since the Buck-
ingham–Darcy law can be converted to a diffusion-type equation by
assuming Dv = Kv dh/dq, where q is vapor density (Bittelli et al.,
2008), Eq. (13) is similar to the previously developed d � e relation-
ships based on Fick’s law (Gardner, 1958; Shokri et al., 2008, 2009).

Finally, the following analytical solution to Eq. (6) is obtained by
combining Eqs. (10) and (13), which can be implicitly solved for
evaporation rate as a function of water table depth:

D ¼ he þ
C
e

ð14Þ

Eq. (14) describes how deepening of the water table decreases
the evaporation rate necessary for extension of both liquid (first
term) and vapor (second term) regions.

3. Validation and application

3.1. Comparison with an analytical solution

A commonly applied relationship for liquid unsaturated
hydraulic conductivity is that of Brooks and Corey (BC) (1964):

Kl ¼
Ks ðh 6 hbÞ
Ksðh=hbÞ�P ðh > hbÞ

(
ð15Þ

where hb and P are BC model parameters. Applying the BC Kl(h)
function, Sadeghi et al. (2012a) solved Eq. (7) analytically to obtain
a relationship between Dmax, e, and soil properties:

Dmax ¼ hb
lnð1þ e=KsÞ

1þ P
� e

Ks þ e

�

�ðe=KsÞ�1=P 2 ln 2
1� P2 þ

p2=12� ln 2
Pð1� PÞ � 1

� ��
ð16Þ

Assuming a steep slope of the Kl(h) function (i.e. P is large) and
that e/Ks is negligibly small, Eq. (16) may be approximated as:

Dmax ¼ hbðe=KsÞ�1=P ¼ he ð17Þ

This corresponds to Eq. (10) which has been obtained univer-
sally for any mathematical relationship of Kl(h) which satisfies
the two abovementioned assumptions (Kl(h) is steep and e/Ks is
negligible). Within this context, this analytical solution was
applied to preliminarily define a ‘‘coarse-textured’’ soil.

As an illustrative example, Fig. 3 presents a comparison
between the analytical solution (Eq. (16)) and the BC model for a
coarse-, a medium-, and a fine-textured soil. Fig. 3 indicates that
Eq. (10) is an accurate approximation of Eq. (16) for a coarse-
textured soil except near saturation, but underestimates the solu-
tion for a fine-textured porous medium. Errors near saturation for



K (or e), cm/day 

10-6 10-5 10-4 10-3 10-2 10-1 100 101 102 103

h 
(o

r 
D

m
ax

),
 c

m

1

10

100

1000

10000

coarse-textured:
P = 10
hb = 5 cm 

Ks = 1000 cm/day

fine-textured:
P = 2
hb = 40 cm 

Ks = 2 cm/day

P = 4
hb = 10 cm 

Ks = 50 cm/day
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analytical solution based on the Buckingham–Darcy law (Eq. (16)) (dashed line) for
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the coarse-textured soil are because both assumptions for obtain-
ing Eq. (10) are not fulfilled; i.e. e/Ks is not negligible and the slope
of the K(h) function is not steep. Based on these results, we may
roughly say that the ‘‘steep slope’’ (i.e., log-log) can be defined as
P greater than 3 or 4. Also as Fig. 3 and results shown in the follow-
ing indicate, e/Ks can be assumed ‘‘negligible’’ when e is at least one
order of magnitude smaller than Ks in finer soils or two orders of
magnitude smaller in coarser soils.
3.2. Comparison with numerical solutions

As discussed above, the solution to Eq. (7) for Dmax, can be ana-
lytically derived only for simple algebraic Kl(h) relationships such
as the BC power model (Warrick, 1988; Sadeghi et al., 2012a).
Lehmann et al. (2008) and Shokri and Salvucci (2011) incorporated
the van Genuchten (1980) retention model and derived an approx-
imate analytical solution for Dmax of coarse-textured soils by bal-
ancing capillary and gravitational forces. But in general, there are
numerous mathematically more complex expressions for Kl(h) for
which an analytical solution for Eq. (2) cannot be easily derived
(e.g., Kosugi, 1996; Tuller and Or, 2001).

As shown and discussed above, Eq. (10) may be considered as a
general analytical solution for Dmax for coarse-textured soils,
regardless of the Kl(h) mathematical relationship. In the following,
we evaluate the validity of Eq. (10) for the van Genuchten (1980),
Tuller and Or (2001), and a bimodal Kl(h) model.

Eq. (7) was solved numerically assuming various values of e
within the liquid flow domain. As Fig. 1 indicates, since liquid flow
is dominant along the Dmax domain (i.e., 0 < z < Dmax), there is no
difference in the Dmax solution with or without consideration of
the vapor flow contribution. Hence, K in Eq. (7) was considered
solely as liquid conductivity. In this case, Dmax approaches a con-
stant value when the upper limit of the integral in Eq. (7) becomes
larger than a threshold and the solution will remain unchanged for
pressure head values larger than hmax (see the dashed line in
Fig. 1). That is why hmax is not incorporated in the final solution
of Dmax (e.g., in Eqs. (10) or (16)). Hence, for the numerical solution
of Eq. (7), a sufficiently large pressure head was assumed (i.e.,
yielding the final value of Dmax) as the upper limit of the integral.
Hence, this assumption introduced for simplifying calculations
only should not be confused with the incorrect assumption of
liquid continuity along the entire soil profile discussed by Shokri
and Or (2010). Note that when K in Eq. (7) is considered as the total
hydraulic conductivity, the integration should be restricted to the
true value of hmax, otherwise the calculated Dmax will be
overestimated.

3.2.1. The van Genuchten (1980) Kl(h) model
The van Genuchten (VG) (1980) closed-form expression for the

unsaturated hydraulic conductivity function based on the Mualem
(1976) model is one of the most widely applied Kl(h) relationships,
given as:

Kl ¼ Ks
f1� ðahÞn�1½1þ ðahÞn��mg

½1þ ðahÞn�m=2

2

ð18Þ

where a, n, and m are empirical model parameters with the
assumption that m = 1 � 1/n.

In order to validate the applicability of Eq. (10), we employed
data and hydraulic parameters from the Loveland sand in Anat
(1965), the sand studied by Smits et al. (2012) (Sand 1), the sand
studied by Prevedello et al. (2009) (Sand 2), and three coarse-
textured soils from van Genuchten (1980) including Hygiene sand-
stone, Touchet silt loam, and Silt loam G.E.3 with VG parameters
listed in Table 1.

Before evaluating the proposed solution for Dmax, we explored
the range of pressure head and conductivity values within which
water flows predominantly in the liquid state. As mentioned ear-
lier, hmax can be determined by comparing liquid and vapor con-
ductivity curves as shown in Fig. 4 for Sand 1 and Silt loam G.E.3.
Soil water retention functions are also presented to see how the
liquid flow domain can be defined in terms of soil water content.
It is clear that hmax is quite different for various soils (see Table 2
for all soils). However, K(hmax) for these soils lies within a narrow
range, which is roughly between 1E-7 and 1E-8 cm/day. Based on
these results and to limit our analysis to the liquid phase, we
restricted all of our evaluations to conductivity values greater than
1E-7 cm/day.

Fig. 4 also indicates that, in terms of soil water content, hydrau-
lic continuity can be assumed down to the point where the soil
dries to near-residual water content values, which is consistent
with the alternative definition of hmax introduced by Lehmann
et al. (2008). However, as Fig. 4 shows and similarly reported by
Assouline et al. (2014), the Lehmann et al. (2008) approximation
(hmax � a�1 ((n � 1)/n)(1 � 2n)/n) obtained by linearization of the
soil-water retention curve underestimates hmax especially for finer
soils.

Numerical solutions of Eq. (7) for the VG Kl(h) function (Eq.
(18)) in comparison with the VG Kl(h) function itself are presented
in Fig. 5. The reasonable agreement between the VG K(h) model
and numerical results of Eq. (7) indicate that Eq. (10) is valid for
the VG function. Some slight disagreements between the numeri-
cal and approximate solutions are apparent for Silt loam G.E.3. As
mentioned earlier, the solution is expected to work well for
coarse-textured soils with an abruptly decreasing K(h) function.
Therefore, the small errors for Silt loam G.E.3 are due to its ‘‘rela-
tively’’ low n parameter. As the finest textured soil considered,
results for Silt loam G.E.3 indicate that n (�2) may be considered
as a lower limit of the new solution’s applicability for VG soils
(i.e. the solution works well for soils with n > 2).

A slight discrepancy is also seen for Hygiene sandstone at very
high evaporation rates. This error is expected due to the ‘‘rela-
tively’’ low Ks of this soil and the fact that e/Ks � which was
assumed to be negligible for obtaining the new solution � becomes
significant when e is high.

3.2.2. The Tuller and Or (2001) Kl(h) model
Classical models like that of Mualem (1976) often rely on over-

simplified representation of medium pore space as a bundle of



Table 1
van Genuchten parameters for considered soils.

Soil name Ks (cm/day) a (cm�1) n hs hr

Sand 1 (Smits et al., 2012) 9158 0.0570 17.80 0.334 0.028
Sand 2 (Prevedello et al., 2009) 1368 0.0410 17.00 0.387 0.019
Loveland sand (Anat, 1965)a 945 0.0490 9.79 0.430 0.045
Hygiene sandstone (van Genuchten, 1980) 108 0.0079 10.40 0.250 0.153
Touchet silt loam (van Genuchten, 1980) 303 0.0050 7.09 0.469 0.190
Silt loam G.E.3 (van Genuchten, 1980) 5 0.0042 2.06 0.396 0.131

a Since hs and hr were not reported for this soil, common values for a typical sandy soil were assumed.
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Fig. 4. Vapor and liquid hydraulic conductivity functions and soil water retention functions for Sand 1 and Silt loam G.E.3. Horizontal lines indicate the upper limit of pressure
head for the liquid continuity assumption (hmax) and its approximate solution by Lehmann et al. (2008) (hmax � a�1 ((n � 1)/n)(1�2n)/n). Vertical lines indicate the liquid
hydraulic conductivity and soil water content at h = hmax.

Table 2
Upper limit of pressure head for the liquid continuity assumption (hmax) and its
corresponding liquid hydraulic conductivity and soil water content for the soils
considered.

Soil name hmax (cm) Kl (hmax) (cm/day) h (hmax)

Sand 1 31.63 4.49E�8 0.028
Sand 2 42.66 7.70E�8 0.019
Loveland sand 53.70 6.42E�8 0.045
Hygiene sandstone 331.13 1.98E�9 0.153
Touchet silt loam 776.25 1.60E�8 0.190
Silt loam G.E.3 11220.00 2.19E�8 0.135
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cylindrical capillaries and do not correctly account for thermody-
namic pore scale processes assuming that the matric potential is
attributed to capillary forces only (ignoring adsorptive surface
forces) and flow only occurs in completely full capillaries (Tuller
et al., 1999; Or and Tuller, 1999). Tuller and Or (2001) presented
a more realistic approach that accounts for film flow contributions
in an angular pore space model.
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Because the Tuller and Or (TO) model considers physical prop-
erties and processes, it is mathematically more complex than the
empirical VG and BC Kl(h) relationships. The validity of Eq. (10)
was evaluated using the TO model for Hygiene sandstone, Touchet
silt loam, and Silt loam G.E.3 (the other soils were not included due
to lack of availability of required information). For a detailed dis-
cussion interested readers are referred to Tuller and Or (2001).

The results presented in Fig. 6 indicate that the presented solu-
tion performs similarly well for the TO model despite the more
complex physical and mathematical relationships between K and
h considered in the TO model. These results thus may suggest that
the new solution is generally independent of the relationship
between K and h (whether simple or complex) and apparently
works for all K � h datasets for which K decreases abruptly with
increasing h (i.e., coarse-textured media).

3.2.3. The Durner (1994) bimodal Kl(h)model
Many natural soils and other porous media exhibit bimodal

pore size distributions. These heterogeneous pore systems may
be a result of specific particle size distributions or due to the for-
mation of secondary pore systems by various soil genetic processes
like aggregation, which results in two disparate populations of
matrix and structural pores (Durner, 1994; Tuller and Or, 2002).

A soil with bimodal pore size distribution can be modeled with
a linear superposition of VG curves (Durner, 1994). The unsatu-
rated hydraulic conductivity function for a bimodal pore system
composed of two van Genuchten type sub-curves is given as
(Priesack and Durner, 2006):

Kl ¼ Ks½wS1 þ ð1�wÞS2�0:5

�
wa1 1� 1� S1=m1

1

� 	m1
h i

þ ð1�wÞa2 1� 1� S1=m2
2

� 	m2
h in o

½wa1 þ ð1�wÞa2�2

2

ð19Þ

where subscripts 1 and 2 corresponds to the first and second sub-
curves, w is a weighting factor, and S1 and S2 are defined as:

S1 ¼ ½1þ ða1hÞn1 ��m1 ; S2 ¼ ½1þ ða2hÞn2 ��m2 ð20Þ

To test the validity of Eq. (10) for bimodal pore systems, the
Durner K(h) model was parameterized using a mixture of Sand 1
and Silt loam G.E.3 with varying fractions (varying w). The effective
Ks was assumed as the weighted average of Ks for the two soils.

Numerical solutions of Eq. (7) for the bimodal Kl(h) function (Eq.
(19)) compared with the bimodal Kl(h) function are depicted in
Fig. 7. Because the e � Dmax data pairs coincide with the K(h) curve
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Fig. 6. The Tuller and Or Kl(h) model for Hygiene sandstone, Touchet silt loam, and
Silt loam G.E.3 (solid lines) compared with numerical solutions of Eq. (7) (circles).
over most of the considered matric potential range, the proposed
solution is generally valid for the bimodal Kl(h) function as well.
Estimation errors can be observed at the transition from the pri-
mary to the secondary sub-curves. In general, the bimodal Kl(h)
function exhibits a sharper transition than the numerical e � Dmax

data show. As indicated above, the presented solution is valid for
coarse-textured soils with a steep Kl(h) function only. However,
in the transition zone K changes very slowly with increasing h
and thus the soil in this zone locally mimics a fine-textured soil.
Therefore, the solution does not work well near the transition zone,
especially when sharp transitions are predicted for the Kl(h)
function.

3.3. Comparison with experimental data

Eq. (10) may be applied to determine the Kl(h) function for
coarse-textured porous media. This approach seems to be an
attractive alternative, as e and Dmax are easier to measure in a
steady-state evaporation experiment than Kl and h. The evapora-
tion rate may be accurately measured with a balance as the tempo-
ral change of mass of a constant head device (e.g., Mariotte bottle)
used to establish a constant water level within the evaporation col-
umn. As Dmax is a macroscopic length between water table and
drying front, it may be measured by means of dye tracers (Shokri
et al., 2009; Shokri and Salvucci, 2011) or image analysis (as dem-
onstrated in Lehmann et al. (2008)). Beyond these simple methods,
the drying front position can also be determined with advanced
measurement technologies such as neutron radiography (Shokri
et al., 2008) or heat pulse techniques (Sakai et al., 2011; Deol
et al., 2012).

The applicability of Eq. (10) for determination of K(h) was eval-
uated based on experimental data from Anat (1965), Willis (1960),
Kumar (1999), Gardner and Fireman (1958), and Hassan and
Ghaibeh (1977). While Anat (1965) contained all required data,
Dmax was not provided for all other considered datasets. As both
theory (Gardner, 1958) and measurements (Deol et al., 2012;
Assouline et al., 2013) suggest that the DF depth can be commonly
much smaller than the WT depth, we assumed Dmax � D (WT
depth) for the experiments of Willis (1960), Kumar (1999),
Gardner and Fireman (1958), and Hassan and Ghaibeh (1977).

To explore the validity of this assumption, the WT and DF
depths were also simulated using Eqs. (6), (11) and (13) assuming
the VG or bimodal conductivity function for describing Kl(h) and
Eq. (4) for Kv(h) functions (surface temperature and relative
humidity were assumed to be equal to 20 �C and 50%, respectively).
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The Kl(h) parameters were obtained by fitting Eq. (18) or (19) to the
experimental K(h) data and hs and hr were estimated/assumed
based on soil water retention or textural data. It is worthwhile to
note that the bimodal shape of the hydraulic conductivity data of
some soils in this analysis could be due to film flow contribution
rather than a heterogeneous pore system. Nonetheless, we found
such soils can be adequately presented by the bimodal VG model
(Eq. (19)) regardless of the physical causes for the bimodal shape.

Anat’s (1965) data were collected from a steady-state upward
liquid flow experiment holding the same governing flow equation
as the steady-state evaporation process (within the liquid region)
as implemented by Anat himself. In this experiment, the ambient
atmospheric conditions were disregarded by inducing upward flow
with an outflow siphon that was attached to a capillary barrier on
top of the soil columns. Their experimental setup allowed estab-
lishment of very high rates (close to Ks) of steady upward flow from
a water table.

The Dmax defined as the distance between a nearly dry zone at
the surface and the WT was measured and used in Anat’s calcula-
tions. The dry zone at the soil surface was established by lowering
the outflow siphon as far as possible to increase the pressure head
at the surface up to a maximum h at which liquid flow (obviously
film flow) could still occur (i.e., just before hydraulic disruption
occurs). This way Anat (1965) was able to increase surface h up
to about 1.5hb, which likely lies just below hmax for such coarse
soils (See hmax of Sand 1 in Fig. 4). We assumed that the dry zone
in Anat’s experiment has been the driest part of the partially satu-
rated zone of Fig. 1 (just below the drying front), or in other words,
we assumed Anat’s measured Dmax closely fits the theoretical def-
inition considered here.

Fig. 8 presents the experimental data of Anat (1965), which
overall indicates that K � h and e � Dmax data nearly coincide,
especially for lower values of e (steady upward flow rate in this
case), while e � Dmax data slightly underestimate K � h data near
saturation. The behavior of e � Dmax data is similar to the solution
of Eq. (7), which confirms the validity of the Buckingham–Darcy
law for the process considered.

Experimental data of Willis (1960), Kumar (1999), Gardner and
Fireman (1958), and Hassan and Ghaibeh (1977) are shown in
Fig. 9. Reasonable agreement is shown between measured and
simulated water table depths (D) at various evaporation rates for
most soils in Fig. 9 (except for the Chino clay), indicating the ade-
quacy of the presented theory based on the Buckingham–Darcy
law. Showing this law to be reasonably accurate for estimation of
Dmax (as shown in Fig. 8), we anticipate simulation results for the
DF depth (i.e., d = D � Dmax) at different evaporation rates obtained
by either numerical solution of Eq. (11) or its analytical solution,
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Fig. 8. Experimental data for unsaturated hydraulic conductiv
Eq. (13), which are in excellent agreement with each other, to be
adequate estimations for this analysis. These estimations then sug-
gest that the DF depth remains within the top few cm of most soils
for evaporation rates greater than 0.01 cm/day and D can be con-
sidered nearly equal to Dmax in this range, which further simplifies
this approach as water table depth is even easier to measure than
Dmax. Note that these predictions were obtained assuming T = 20 �C
and Hr = 50% and might not be the case for significantly different
environments especially when isothermal flow is not maintained.

The e � D data are mostly in agreement with K � h data except
for the cases shown in Fig. 9e, f, and i in which pairs of e � D lie
above the K � h data points. The disagreement in these cases likely
stems from the very fine textures exhibited by these soils for which
Eq. (10) does not hold as discussed above. Based on Fig. 9 results,
which includes a broad range of soils (not only coarse-textured
ones), we conclude that even for finer-textured soils, steady-state
evaporation experiments can provide reasonable estimates leading
to K(h) relations.
3.4. Estimation of effective unsaturated hydraulic conductivity of
layered soils

Based on the evaluation presented above we suggest that the
steady-state evaporation rate can be used to infer unsaturated
hydraulic conductivity of homogeneous coarse-textured soils.
Since the steady-state evaporation rate is a macroscopic quantity,
it can be considered as an effective value of unsaturated hydraulic
conductivity for vertically stratified soil profiles. In other words,
the resultant K(h) values determined with Eq. (7) are representa-
tive for the entire Dmax domain. This provides a unique opportunity
for estimation of the effective unsaturated hydraulic conductivity
of layered (stratified) soils that are quite common in natural eco-
systems (Warrick, 2005).

To evaluate the validity of this concept the effective K(h) curves
for layered systems containing different soils with a constant water
table at the bottom of the profile were considered. For this analysis,
soil heterogeneity was described by Miller and Miller (1956) sim-
ilar-media scaling theory. The VG conductivity function was
assumed, Loveland sand was considered as a reference soil, and a
set of similar soils were generated using the following relationship
between VG parameters of each soil with those of the reference soil
(Warrick et al., 1985):

ai ¼ kaR; Ksi ¼ k2KsR; ni ¼ nR ð21Þ

where k is an arbitrary scaling factor, and subscripts R and i repre-
sent the reference soil and its similar soils, respectively.
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Fig. 10 presents results obtained for two 3-layer soil profiles,
where the first has an increasing trend of k (i.e., getting finer) with
depth and second has a decreasing trend of k (i.e., getting coarser)
with depth. In Fig. 10a, the layered profile is composed of a 20-cm
layer of k = 0.8 at the top, 15-cm of k = 1 in the middle, and 25-cm
of k = 1.2 at the bottom. The profile in Fig. 10b consisted of 5-cm of
the k = 1.2 (top), 5-cm of k = 1 (middle), and 35-cm of k = 0.8 (bot-
tom). The thick solid line represents the e � Dmax relationship
obtained via numerical solution of Eq. (7). This curve can be con-
sidered equivalent to the effective hydraulic conductivity function
of the layered profile (except near saturation). The effective K(h)
function was then applied for an equivalent homogeneous profile
and Eq. (7) was solved again to yield a second set of e � Dmax values
depicted by circles in Fig. 10.
The agreement between the numerical solutions for the layered
system and the introduced equivalent homogeneous profiles indi-
cates the applicability of proposed approach for deriving effective
(upscaled) hydraulic properties of layered soils. In Fig 10, a general
relationship between the effective and the individual curves of the
constituent soils can be observed. Each layer’s individual curve
contributes to the effective curve at h values equal to the depth
of that layer above the water table and the effective curve transi-
tions from the individual curve of a bottom layer to individual
curve of its top layer when h exceeds the depth of the layers’ inter-
face to the water table.

Note that the domain for which the effective properties are
determined is the unsaturated zone above the water table. As
the hydraulic conductivity curve is the result of the status of the



h 
(o

r 
D

m
ax

),
 c

m

0

10

20

30

40

50

60

Individual K(h) curves
Solution of Eq. (7) for the 3-layer profile
Solution of Eq. (7) for the equivalent homogeneous profile

 scaling factor λ = 0.8

λ = 1

λ = 1.2

λ = 1

λ = 1.2

λ = 0.8

(a)

K (or e), cm/day 

h 
(o

r 
D

m
ax

),
 c

m

0

10

20

30

40 λ = 1.2

λ = 1

λ = 0.8λ = 1λ = 1.2

λ = 0.8

(b)

10-7 10-6 10-5 10-4 10-3 10-2 10-1 100 101 102 103

10-7 10-6 10-5 10-4 10-3 10-2 10-1 100 101 102 103

Fig. 10. Numerical solution of Eq. (7) for two 3-layer soil profiles (thick line) and for
their equivalent homogenous soil profiles (circles). The former solution (thick line)
was considered as the effective (upscaled) conductivity function of the equivalent
homogenous profile. Horizontal lines show the layer interfaces.

100 100

1246 M. Sadeghi et al. / Journal of Hydrology 519 (2014) 1238–1248
system at different water tables, the domain for which the curve is
determined is not constant but propagating into the soil profile
depending on the extension of Dmax above the water table.

It is quite well-known that a mulch layer (e.g. sand or gravel
layer) at the soil surface can drastically reduce soil evaporation
(Willis, 1960; Yuan et al., 2009; Shokri et al., 2010; Assouline
et al., 2014). In order to study mulch effects with this new
approach, a 40-cm soil profile of k = 0.8 with a 3-cm coarse layer
(k = 1.2) at the surface and a WT at the bottom was considered in
Fig. 11. Consistent with findings in previous studies, this approach
simply describes how a mulch layer reduces soil evaporation by
adjusting the effective unsaturated hydraulic conductivity. For
example, effective K of the two-layer profile (coarse over fine) at
h = 43 cm is about 4 orders of magnitude lower when compared
to a homogeneous soil profile.

Effective hydraulic conductivity with the inverted profile layer-
ing (i.e., 3 cm of finer sand over 40 cm of coarser sand) is also pre-
sented in Fig. 11. In contrast to the coarse-over-fine layering which
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shows very sharp transitions in the effective hydraulic conductiv-
ity curve, the transition in this case is slow and occurs in the range
of very low conductivities. This behavior may provide a new
description for the fact that the ‘‘difference in evaporation rate
from a system of fine-textured soil overlying a coarse soil com-
pared to a homogeneous profile of fine-textured soil may be rela-
tively small, while the inverted layering condition may have a
large effect on evaporation rates’’ (Willis, 1960).

This explanation is better understood considering Fig. 12.
Learning from Fig. 10 that the effective conductivity for large pres-
sure heads (larger than the profile depth, D) is the same as top lay-
ers’ conductivity, the effective conductivity of the two layered
profiles of Fig. 11 (3 cm fine sand overlaying 40 cm coarse sand
and 3 cm coarse sand overlaying 40 cm fine sand) for a broader
range of pressure heads was calculated and plotted in Fig. 12 (K
was considered as Kl + Kv with Kv calculated at 20 �C). This Figure
clearly indicates a dramatic decrease in effective hydraulic conduc-
tivity of the coarse-over-fine profile compared to the homogeneous
profile, while it shows no significant effect for the reverse layering.

In another scenario, we considered a 50-cm multilayer profile
composed of soils with k = 1 and k = 0.5 as sub-layers forming peri-
odically repeated unit cells with various thicknesses; 5 cm (10 lay-
ers), 1 cm (50 layers), and 0.1 cm (500 layers). A constant water
table was considered as the bottom boundary and numerical calcu-
lations were performed for layered and equivalent homogeneous
profiles.

As shown in Fig. 13, solutions for the layered and for the
equivalent homogeneous profiles are nearly identical. When
thicker layers (i.e., 5-cm) are considered, the effective unsaturated
conductivity curve (thick solid line) mimics that of a soil with a
heterogeneous pore system similar to results presented in Figs. 10
and 11. When the layer thicknesses are decreased, the effective
curve approaches a homogeneous soil profile. This result is
consistent with ‘‘homogenization theory’’ where a microscopically
heterogeneous soil profile is represented as homogeneous at the
macroscopic scale when the scale of heterogeneity is much smaller
than the scale considered for modeling (e.g., Neuweiler and Eichel,
2006).

Fig. 13 also shows that the effective unsaturated hydraulic con-
ductivity curve lies between the individual curves of the single lay-
ers and very closely matches the harmonic mean of the individual
curves (except near saturation), which gets a stronger weighted
contribution from smaller values. This result is similar to the
well-known averaging method for saturated hydraulic conductiv-
ity of layered profiles that states that the effective hydraulic con-
ductivity is the arithmetic or the harmonic mean of individual
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layer conductivities for flow parallel or perpendicular to the layer-
ing, respectively (Freeze and Cherry, 1979).

The presented results are consistent with findings of other rel-
evant studies of unsaturated hydraulic conductivity (e.g., Sarris
and Paleologos, 2003; Warrick, 2005). Based on homogenization
theory, Neuweiler and Eichel (2006) validated this result analyti-
cally for the same periodic heterogeneity structure with layer
thicknesses much smaller than the profile depth. An advantage of
the presented upscaling approach is that it is not restricted to bin-
ary heterogeneity structures, which is considered a limitation of
homogenization theory. The presented method, however, is lim-
ited to a steady-state evaporation process.

4. Summary and conclusions

Based on evaluation of experimental and numerical data, the
proposed new approach for steady-state evaporation (Eq. (10))
was shown to be valid for coarse-textured soils exhibiting a steep
K(h) function. Eq. (10) states that the steady-state evaporation rate
from a constant water table is a macroscopic measure of unsatu-
rated hydraulic conductivity in either homogeneous or layered
coarse-textured media. Hence, in addition to a general approxi-
mate analytical solution for the Buckingham–Darcy law for Dmax,
the presented approach offers a framework for determination of
unsaturated hydraulic conductivity of homogeneous soils and
more importantly a new solution for effective (upscaled) unsatu-
rated hydraulic conductivity of layered soil systems.

Example applications of the proposed upscaling method for lay-
ered soils (Figs. 10–13) indicate its validity for defining effective
hydraulic properties for a homogeneous soil equivalent to a given
layered system. Hence, measuring pairs of e � Dmax in a layered soil
column during a steady-state evaporation experiment could pro-
vide a benchmark for evaluating the validity of existing theoretical
approaches (e.g., inverse solutions, averaging schemes, homogeni-
zation theory) for upscaling hydraulic properties.

The domain for which the effective conductivity curve is deter-
mined by this method is not constant but propagating into the soil
profile depending on the Dmax extension above the water table.
This is a direct consequence of the approach and should be taken
into account when applying this method.

Only one-dimensional flow and thus one-dimensional hetero-
geneity (layering) was considered in this study. Application of
the upscaling method to other heterogeneous media could be a
subject of future studies. Both numerical modeling efforts and
experimental studies on various other heterogeneous structures
in two- or three-dimensional media are underway to expand the
proposed approach.
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