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ABSTRACT 

 
 

Soil Organic Carbon and Site Characteristics in Aspen and Evaluation of the Potential 

Effects of Conifer Encroachment on Soil Properties in Northern Utah 

 
by 

Mical Woldeselassie, Master of Science 

Utah State University, 2009 

 
Major Professor: Dr. Helga Van Miegroet 
Department: Wildland Resources 

In the Intermountain West, aspen (Populus tremuloides) has declined mainly due 

to a combination of successional processes, fire suppression and long-term use of 

ungulates which has led to replacement by conifers, sagebrush or other shrub 

communities. Conifer encroachment is believed to cause critical changes in the ecosystem 

properties. In order to understand the impacts of conifer encroachment on soil properties 

such as soil organic carbon (SOC) storage, soil morphology, and soil chemical properties, 

and the implications of such changes, it is very important to assess the soil properties 

under the two vegetation types. The objectives of this study were to i) quantify SOC 

stocks and their variability in pure aspen forests; ii) evaluate the role of various biotic and 

abiotic site parameters as drivers of this SOC;  iii) evaluate the effect of conifer 

encroachment on SOC storage, soil morphology, soil microclimate and soil chemical 

properties. The study was conducted in three catchments in Northern Utah in two phases: 

i) a transect study with 33 sampling points in a pure aspen community; ii) a paired plot 
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study based on comparing six plots in to aspen and nearby conifer plots as 

representatives of end-member communities. Soils under aspen were mainly Mollisols, 

whereas the soils associated with conifers were classified as Alfisols, Inceptisols and 

Entisols.  Even under pure aspen there was a significant SOC variability among sampling 

points and aspects, and SOC was negatively correlated with soil moisture index and 

average tree diameter and positively correlated with vegetation density. The paired plot 

comparison showed that SOC in the mineral soil (0-60 cm) was significantly higher under 

aspen, while O horizon thickness and C content was higher under conifers. The total SOC 

(O layer + mineral soil) was not significantly different among the vegetation types, 

suggesting an upward redistribution of SOC in conifer soils. The soil moisture in summer 

was also higher under aspen compared to conifers. Other chemical properties were not 

affected by vegetation types.  Our study indicates that i) no differences in SOC can be 

detected in surface soil horizons (<20 cm); ii) SOC is highly variable and greatly 

influenced by soil moisture and forest characteristics; iii) conifer encroachment is likely to 

alter soil microclimatic and SOC amount and distribution.   

         (163 pages)
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CHAPTER 1 

INTRODUCTION 

Aspen and Conifer Encroachment  

 Quaking aspen (Populus tremuloides Michx) is the most widely distributed tree 

species in North America (Baker 1925; Little 1979), exists within a great diversity of 

ecological settings, and exhibits a similar diversity of ecological roles (DeByle 1985; 

Romme et al. 2001). In the west, 75 % of the aspen occurs in Colorado (50%) and Utah 

(25%) (Bartos 2001). Aspen condition in the west is categorized into three types (Bartos 

and Campbell 1998): a) stable, where aspen is considered properly functioning and self- 

replacing; b) successional to conifers, where disturbance forces such as fire are altered by 

humans giving shade tolerant species like conifers a marked advantage; and c) decadent, 

where aspen clones are generally of a single age and very open and mature trees are not 

replaced. 

Aspen-dominated forests in the west have numerous ecological and economical 

values such as forage for livestock, habitat for wildlife, landscape diversity, esthetics, and 

water yield (DeByle and Winokur 1985; Bartos 2001). However, there has been a great 

concern that aspen has been declining in the west, followed by the replacement by 

conifers. It has been argued that this recent ecosystem change is outside the range of 

historical variation and has been deemed as an ‘‘environmental catastrophe’’ (Club 20 

1998). 

According to Campbell and Bartos (2001) aspen is a keystone species, meaning 

that it influences the survival and abundance of many other species in the community in 

which it lives. Its removal or addition results in a relatively significant shift in the 
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composition of the community and sometimes even in the physical structure of the 

environment (Wilson 1992). In the case where some of the natural disturbance forces 

(primarily fire) are altered by human intervention, aspen-dominated landscapes convert to 

mixed-conifer, which is followed by loss of ecosystem functions that modify the sites 

dramatically. One of these functional alterations can be water depletion as conifers use 

more water than aspen. This loss of water means that it is not available to produce 

undergrowth vegetation, recharge soil profiles, or increase streamflow. Our 

understanding of the impacts of conifer encroachment on soil properties such as soil 

organic carbon (SOC) storage, soil morphology, and soil chemical properties; and the 

implications of these changes are still unclear because not many specific studies have 

been done. However, it is generally known that the succession of communities, which is 

defined as sequential change in the relative abundance of dominant species in a 

community following disturbances (Huston and Smith 1987), often alters the chemical, 

physical, and biological properties of the soil through their occupancy. Such alterations, 

in turn, can contribute to the relative change in abundance of the dominant species that 

characterizes succession (Fisher and Binkley 2000).  

Effect of Conifer Encroachment on Soil Properties  

Soil Organic Carbon Storage 

Aspen forests differ from associated vegetation types in amount, distribution, and 

character of organic matter and nutrients (Jones and DeByle 1985). Hoff (1957) carried 

out an aspen and conifer paired plot study and found that SOC in the upper A horizon 

was higher in aspen than in conifers. Tew (1968) also found that the organic matter in the 

upper 15 cm under aspen in Northern Utah was 4% higher than adjacent stands of shrubs 
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and herbaceous vegetation. However, some studies in Minnesota (Alban 1982) and 

Canada (Paré and Bergeron 1996), respectively, have shown that the organic matter 

content was lower in aspen compared to spruce and pine forests, even though nutrient 

accumulation was greater under aspen than under conifers. The lower SOC under 

conifers compared to aspen soils can be due to lower input of litter, higher organic matter 

turnover rates, or a combination of both. If conifer soils are indeed characterized by lower 

organic carbon, then conifer encroachment can potentially cause a change of SOC 

storage, and small changes in SOC storage are believed to have a significant effect on 

atmospheric CO2 concentrations (Kirschbaum 2000; Amundson 2001). There is a clear 

need to understand total carbon storage under the two vegetation types and the various 

controlling factors. C storage is a net result of the processes of primary production and 

decomposition. Alterations in carbon inputs, losses and their controlling factors 

influences C storage (Grigal and Ohmann 1992). 

The major factors that have been found to control SOC are climate, vegetation, 

elevation, terrain position and soil texture. The relationship between SOC and site 

characteristics can be variable depending on the spatial scale, geographic location, and 

vegetation type. The relationship between SOC and climate has been explicitly studied at 

large and small scales. SOC generally increases with increasing precipitation and 

decreasing temperature (Post et al. 1982; Burke et al. 1989; Jobbagỳ and Jackson 2000; 

Homann, Kapchinske, and Boyce 2007) at large and small scales. SOC increases 

generally with elevation and decreases linearly as terrain shape shifts from concave to 

convex (Trumbore, Chadwick, and Amundson 1996; Conant et al. 1998; Bolstad and 

Vose 2001). Soil texture has also been considered as a major factor controlling SOC 
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(Burke et al. 1989; Grigal and Ohmann 1992) through its vital role in the physical 

protection of the organo-mineral complexes (Six et al. 2002). 

The presence and distribution of specific vegetation types in a site can affect site 

micro-climatic conditions such as soil moisture, which in turn can contribute to changes 

in C storage. Studies in the Intermountain West indicate that the average shallow soil 

moisture is higher in the aspen plots relative to the adjacent conifer plots (LaMalfa and 

Ryel 2008), which might be attributed to higher winter snow accumulation in aspen than 

conifer stands. Similar studies in Montana (Moore and McCaughey 1997) and 

hydrological modeling based on hydrological process research in Russia and Canada 

(Gelfan, Pomeroy, and Kuchment 2004) have also reported that snow accumulation is 15-

40% lower in conifers relative to deciduous or open stands, which might contribute to the 

lower soil moisture status of the conifers relative to the aspen stands. The restricted 

moisture availability affects undergrowth vegetation, which is followed by a substantial 

decrease in species richness. Moreover the loss of water as a result of conifer 

encroachment means that it is not available to recharge soil profiles and causes a decrease 

in streamflow (Bartos 2001). 

Amacher et al. (2001) hypothesized that the soil temperature is also affected by 

succession. Stable aspen stands have relatively cooler soil temperature compared to 

decadent aspen, even at shallower depths, as a result of relative canopy cover in stable 

aspen compared to the decadent ones. However, the temperature is not as cool as under 

the mixed stands because of the shading effect of conifers. According to the Cryer and 

Murray (1992) ecological succession model, soil temperature is also believed to decrease 

as conifer invasion occurs. The decrease in temperature as a result of conifer 
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encroachment can affect decomposition by decreasing microbial activity, thus favoring 

the accumulation of soil organic matter, because microbial activity increases 

exponentially with increasing temperature (Edwards 1975). The increase in conifer 

dominated lands can adversely affect many site characteristics that are at the same time 

controlling factors for carbon storage. 

The amount of SOC in soil is also affected by the quality and quantity of litter 

input. Several studies have shown that aspen litter decomposes much more rapidly than 

the litter of associated western coniferous forest (Bartos and DeByle 1981; Perala and 

Alban 1982; Prescott et al. 2000). The difference in the rate of decomposition could be 

due to the difference in litter quality of the two vegetation types where aspen leaves have 

higher nutrient concentration and lower lignin and polyphenol concentrations compared 

to coniferous litter (Perry, Choquette, and Schroeder 1987) together with environmental 

factors that control the metabolic rate of organisms such as temperature, moisture, pH 

and aeration (Perala and Alban 1982). The above factors are of a special interest because 

they are the main controls for the dynamics of the pool of carbon in soils, which 

according to Schlesinger (1997) can be classified in two stages: 1) process leading to 

rapid turnover of litter at the surface and 2) process leading to slower production, 

accumulation and turnover of humus at depth.  

 
Soil Chemical and Physical Properties 

Aspen are considered to be efficient nutrient pumps (Lutz and Chandler 1946; 

Jones and DeByle 1985). Nutrient pumping is the nutrient capture by trees from subsoil, 

released by weathering of primary minerals and/or nutrients leached from the topsoil that 
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are then recycled by trees and re-deposited near the soil surface. This phenomenon is 

common in deep rooted trees (Schroth and Lehmann 2003). Aspen is believed to enrich 

the surface horizons with nutrients not only by the accumulation of humus, but also by its 

nutrient pumping capability, bringing minerals such as Ca, K and Mg from greater 

depths, where a network of fine feeder roots is found (Stoeckler 1961). This contributes 

to the relatively higher pH and base saturation of soils under aspen (Hoff 1957; Morgan 

1969; Tew 1968; Alban 1982; Paré, Bergeron, and Camire 1993), which might be related 

to high Ca requirements of this species (Alban 1982). However, when other vegetation 

types encroach aspen, soil pH drops to 6.0 or lower, accompanied by a decrease in 

nutrient level. The lower pH and nutrient levels are postulated to suppress aspen 

regeneration (Cryer and Murray 1992). 

  Moreover, conifer encroachment is believed to cause changes in soil forming 

processes and soil morphology. Cryer and Murray (1992) postulated that stable or 

permanent stands of aspen are found only on one soil order: Mollisols. In contrast, soils 

developed under conifers in the Intermountain West are primarily Alfisols characterized 

by a thick O horizon and relatively thin A horizon (Cryer and Murray 1992). When 

conifers encroach into aspen stands, the mollic epipedon thins while the albic horizon 

thickens, which is followed by decreases in soil pH, organic matter, cation exchange 

capacity (CEC) and nutrients availability.  

However, there has been insufficient research done to draw broad conclusions that 

the occurrence of aspen stand is specifically in one soil order and that conifer 

encroachment significantly alters the soil morphology. Studies specifically focusing on 

aspen soil in the Intermountain West have remained limited. To understand contemporary 
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aspen ecosystem condition changes following conifer encroachment, it is vital to 

understand and investigate the various soil properties that are believed to alter as 

vegetation type changes.  

As much as 25 % of the aspen in the west is located in Utah and many researchers 

hypothesized that the conifer encroachment can have detrimental effect on these aspen 

stands. Yet, the hypothesized loss of ecosystem functions and changes in soil properties 

resulting from conifer encroachment has not been extensively studied. So in this study we 

will investigate different soil properties associated with aspen and conifers and assess 

how the differences in soil properties between aspen and conifers can affect ecosystem 

functions as conifers progressively invade aspen sites.  

In this study, the effect of conifer encroachment on soil chemical and physical 

properties of aspen soils will be studied by focusing on soil organic carbon (SOC), 

because it influences site quality and productive capacity, and controls many physical, 

chemical and biological properties of soil, and is believed as an important factor in the 

persistence of aspen stands (Cryer and Murray 1992). Changes in SOC can also be 

important to the overall global carbon cycle (Lal et al. 1998). In order to have a better 

understanding of the effect of conifer encroachment on soil properties, it is essential to 

look at how SOC and associated chemical and physical properties of the soil vary in 

aspen forests and change in presence of conifers. 

Study Objectives and Hypotheses 

In order to understand the effect of conifer encroachment on SOC storage and 

other inherent soil properties, it is necessary to first understand the total SOC storage 

dynamics in the stable aspen stands and to investigate what causes variations in SOC. 
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Moreover, in order to draw conclusions about the effect of conifer encroachment in 

altering critical aspen ecosystem properties, it is important to compare soil properties 

between the two vegetation types.  

The objectives of this study are to  

i. Quantify the amount of SOC under aspen and assess the variability in SOC pool 

size. 

ii. Look at the various biotic and abiotic drivers of SOC variability, including 

elevation, slope, aspect, soil microclimate and as well as overstory 

characteristics. 

iii.  Evaluate the potential effects of conifer encroachment by looking at site 

characteristics such as SOC storage, soil morphology, soil microclimate and soil 

chemical properties of aspen and conifer as representatives of end-point 

communities. 

Specific study hypotheses are that:  

H1: SOC will not be constant under stable aspen; SOC is expected to change spatially as 

a function of multiple site characteristics that affect both carbon input and 

decomposition. 

Total SOC storage is specifically expected to be different among the four aspects 

where northern and eastern facing sites will have higher SOC content than southern and 

western facing sites. The higher amount of SOC in the northern and eastern facing sites 

may be due to slower turnover rates as a result of lower temperature, a condition that 

slows down decomposition. The other important site characteristic that is expected to 

influence SOC storage is the aboveground vegetation cover as it controls input through 
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litterfall and canopy openness. The latter contributes to changes in soil microclimate 

such as increase of soil temperature that can hasten decomposition.  

H2: Conifer encroachment is expected to have a significant impact on SOC, nutrients and 

soil properties.  

H2A. SOC storage is expected to be lower under conifers compared to aspen 

ecosystem. The lower amount of SOC under conifers might be due to a set of multiple 

processes such as lower litterfall input, greater decomposability of SOC under conifers, 

and higher turnover rates due to more favorable microclimate. 

H2B. Chemical soil properties such as nutrient availability and pH are expected to 

be different under conifers compared to the aspen soil. This may be due to the type and 

concentration of organic acids produced as the result of the decomposition. In addition, it 

may be due to a higher amount of Ca present in the litter of aspen compared to the 

conifers, which augments the amount of exchangeable Ca in the soil as a result of 

decomposition, thus reducing soil acidity and increasing base saturation in the aspen 

soils.  

H2C. The soil morphology is expected to be different under aspen and conifers. 

Aspen soils are expected to be in the soil order Mollisols and conifer soils are expected to 

be in the soil order Alfisols. Mollisols under aspen develop as the leaves are rapidly 

decomposed in the surface, various pedogenic processes such as humification occur at 

deeper depths where stable humus is formed, which is composed of complex organic 

compounds synthesized by the soil organisms and resistant polymers of phenolic and 

aromatic functional groups.  
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The amount of SOC will be estimated along linear transects established in the 

four aspects in a small watershed and the various drivers will be measured at the same 

locations where SOC will be quantified. It is generally expected that SOC will vary with 

aspect and most of the variability is expected to be explained mainly by changes in 

vegetation cover and soil microclimate. The results obtained through the paired plot 

analysis of adjacent aspen and conifer stands will also help to ascertain the extent to 

which conifer encroachment impacts soil properties. 

Thesis Organization  

 The study is presented as follows: 

Chapter 2. Review of Literature: this part includes a review of research reports relevant to 

the factors controlling SOC in general and at different scales, SOC storage under aspen, 

and the effect of conifer encroachment on soil properties. I look at various approaches 

and procedures used to estimate SOC storage and relationships with site characteristics, 

and also to evaluate the effect of conifer encroachment. 

Chapter 3. Study Area: this part of the study includes description of the study area and 

also the experimental design of this study. 

Chapter 4. Soil Organic Carbon Storage and Site Characteristics of Aspen Ecosystem: in 

this chapter, I present the amount of SOC stored under aspen and the relationship of SOC 

with the various site characteristics. In addition general inherent soil properties such as 

microclimate, nutrient regime, pH and CEC of aspen soils will be presented. 

Chapter 5. Site characteristics of aspen and conifer as end point communities: in this 

chapter, I present the difference of SOC and other soil properties among the two different 

vegetation types from data obtained through paired plot analysis. 
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Chapter 6. Summary and Conclusions: this part of the thesis summarizes the results 

and contributions of this study and discusses the implications for further research. 
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CHAPTER 2 

LITERATURE REVIEW 

Aspen in the West 

Aspen is the most abundant tree species in Canada’s central provinces and the 

U.S. states of Colorado and Utah (Jones 1985; Lieffers, Landhäusser, and Hogg 2001). In 

the western U.S., aspen is a shade intolerant species that is unique compared to most 

western forest trees, because it reproduces primarily by suckering from the parent root 

system, and disturbance or dieback is necessary to stimulate its regeneration (Bartos and 

Campbell 1998). Aspen is an important tree species throughout the western United 

States; it is one of few broad-leaved hardwood trees in many western forests, and it is a 

valuable ecological component of many landscapes; occurring in pure forest as well as 

growing in association with many conifer and other hardwood species (Shepperd et al. 

2006). It provides many ecological benefits to resource users, including protection of 

watersheds from erosion, some protection against rapid wildfire advance, increased 

biological diversity, aesthetic considerations, and wildlife habitat (Amacher et al. 2001). 

However, there has been substantial popular concern that aspen has been declining during 

the 20th century in the western landscape (Kulakowski, Veblen, and Drinkwater 2004) 

and that, in fact, its persistence may be ‘‘doomed’’ (Kay 1997). 

The decline of aspen has been associated primarily with a combination of 

successional processes, reduction (or elimination) of fire, and long-term overuse by 

ungulates (Bartos and Campbell 1998; Bartos 2001). The replacement of aspen by 

conifers has been of great concern, and numerous landscapes throughout the West that 

were once dominated by aspen are in late successional stages dominated by mixed 
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conifer (Bartos and Campbell 1998). It is believed that conifer replacement is gradual 

and can take from 100 to 200 or more years. However, if an aspen stand is within a mixed 

conifer forest matrix, conifers can become established within a single decade (Paré, 

Bergeron, and Longpré 2001). The successional replacement of aspen by conifers is 

deemed to be an “environmental catastrophe” (Club 20 1998). It is accompanied by 

ecosystem function losses such as decrease in water yield (Harper, Woodward, and 

Knight 1981; Gifford, Humphries, and Jaynes 1984), decline in forage production 

(Mueggler 1985), loss of biodiversity and many other benefits. The soil property changes 

associated with aspen to conifer succession have not been explicitly studied, even though 

soil is considered one of the important factors that affect the persistence of aspen stands 

(Cryer and Murray 1992).  

 Jones and DeByle (1985) suggested that aspen forests differ from associated 

vegetation types in amount, distribution, and character of organic matter and nutrients. In 

the West the soil organic matter under aspen has been postulated to be higher under aspen 

compared to conifer soil (Hoff 1957; Tew 1968). According to Bartos and DeByle (1981) 

the annual return of leaf and twig litter to the soil surface is a major contributor to the 

organic matter and nutrient content of soils under aspen and other deciduous hardwoods. 

Aspen litter decomposes much more rapidly than the litter of associated western 

coniferous forest (Bartos and DeByle 1981). As a result of this rapid decay and higher 

nutrient content in leaves (Daubenmire 1953), aspen are considered to be efficient 

nutrient pumps (Lutz and Chandler 1946; Jones and DeByle 1985) where they capture 

nutrients from subsoil and enrich the surface horizons (Stoeckler 1961). This contributes 

to the relatively higher pH and base saturation of soil under aspen (Hoff 1957; Tew 1968; 
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Morgan 1969; Alban 1982; Paré, Bergeron, and Camire 1993), which might be related 

to high Ca requirements of this species (Alban 1982). 

  Due to this nutrient pumping capability, the presence of aspen stands is believed 

to hasten nutrient cycling, which could positively affect stand productivity of nearby 

vegetation (Légaré, Bergeron, and Paré 2005a; Légaré, Paré, and Bergeron 2005b ). 

However, when other vegetation types encroach aspen, soil pH drops to 6.0 or lower, 

accompanied by a decrease in nutrient levels. Researchers in the west postulated that the 

lower pH and nutrient levels suppress aspen regeneration (Cryer and Murray 1992). In 

contrast with the above statement, Bartos and Amacher (1998) in a study at Fishlake 

National Forest, Utah, found no change in the chemical properties of the surface of the 

soil as conifer invasion proceeded, except for slightly lower pH and exchangeable K in 

mixed conifer/aspen soils compared to pure aspen. They also stated that it is unknown to 

what level soil pH can drop and how much loss of organic matter and nutrients can be 

tolerated before aspen regeneration is suppressed. 

Cryer and Murray (1992) further postulated that stable or permanent stands of 

aspen in the west  are found only on Mollisols, which are characterized by a deep, dark, 

friable, and relatively fertile A horizon known as a mollic epipedon (Buol et al. 2003). 

According to Bartos and DeByle (1981), Jones and DeByle (1985), and Cryer and 

Murray (1992), the mollic epipedon is a result of the addition and rapid turnover of aspen 

leaves to the soil each year. However, the faster turnover rates are somewhat 

counterintuitive to higher soil organic matter content in the surface horizon that is 

characteristic of a mollic epipedon. Instead it can be due to a combination of several 

processes such as humification (microbial decomposition of organic materials in the soil 
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that produces some relatively stable, dark-colored compounds; and extension of roots 

into the soil profile) (Buol et al. 2003) and bioturbation (reworking of the soil and organic 

materials by soil fauna) (Hole and Nielsen 1970). In contrast, soils developed under 

conifers in the Intermountain West are primarily Alfisols characterized by a thick O 

horizon and relatively thin A horizon (Cryer and Murray 1992). When conifers encroach 

aspen stands, the mollic epipedon thins while the albic horizon thickens. This is attributed 

to the decrease of leaf fall and organic matter of aspen stands, which in turn leads to rapid 

water infiltration through the horizon forming the albic horizon. According to Cryer and 

Murray (1992) thinning of the mollic epipedon is followed by decrease in soil pH, 

organic matter, and lowering of CEC and nutrients. Bartos and Amacher (1998) also 

found similar morphological changes. 

 Change in the Vegetation Cover and Soil Properties 

Although several researchers have investigated and hypothesized changes in soil 

properties following conifer encroachment, there is a clear need for a more detailed study 

of the ecosystem properties of two vegetation types and assess potential impacts 

associated with conifer encroachment.   

Generally, plant communities are dynamic and ever-changing and are also closely 

linked with soil change (Fisher and Binkley 2000). The succession of communities, 

which is defined as sequential change in the relative abundance of dominant species in a 

community following disturbances (Huston and Smith 1987) alters the chemical, 

physical, and biological properties of the soil through their occupancy, and such 

alterations contribute to the relative change in abundance of the dominant species that 

characterizes succession (Fisher and Binkley 2000). Moreover the genesis of soils is 
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governed by five environmental factors known as state factors (Buol et al. 2003): 

climate, organisms, relief, parent material and time (Jenny 1941). Consequently, changes 

in vegetation affect the evolution of soils.  

Several studies have addressed the changes induced by planting coniferous trees 

replacing deciduous trees (Paré and Bergeron 1996). Such changes include the change in 

soil chemical properties such pH, nutrient availability, CEC, base cations (Binkley and 

Valentine 1991; Paré and Bergeron 1996). Some studies focusing specifically on aspen 

and conifer soil properties have also pointed out similar differences in soil properties.  

In a study carried out in Minnesota, Alban (1982) found that organic matter in the forest 

floor and mineral soil were lower under aspen than spruce and pines, and indicated that 

this was due to lower organic matter return via litterfall of aspen compared to conifer 

species. Furthermore, the nutrient accumulation in the forest floor was greatest under 

aspen or spruce and lowest under pine compared to patterns in the mineral soil. Paré and 

Bergeron (1996) also found greater accumulation of organic matter and nutrients in the 

forest floor of spruce than aspen and pointed out that the accumulation of forest floor 

material under spruce many be due to slower litter decomposition (Pastor et al. 1987). 

Such trends are different from what the researchers in the west have been hypothesizing 

and this can be due to different climatic conditions. 

In a study conducted out in British Columbia results showed that aspen litter 

decomposed more rapidly than in spruce (Prescott et al. 2000). The faster rate of 

decomposition could be due to the higher nutrient concentration and lower lignin and 

polyphenol concentrations in broadleaves litter than needle litter (Perry, Choquette, and 
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Schroeder 1987) and/or environmental factors that control the metabolic rate of 

organisms such as temperature, moisture, pH and aeration (Perala and Alban 1982).  

According to Alban (1982) differences in nutrient content under aspen, spruce and 

pine cover occurred in the surface horizon mineral soil and forest floor. In the forest floor 

Ca content under aspen and spruce was greater in aspen and spruce compared to the pine 

trees, and less N and P was accumulated under red pine than under the other two species. 

In the mineral horizons Ca was highest under pines compared to aspen and spruce, while 

N, organic matter, and Mg were lowest under aspen and P and K showed no significant 

differences. However, he pointed out the total amount of Ca of the entire ecosystem was 

not different, which he further explained as a result of different nutrient distribution 

pattern among the different species types. Additionally, Alban (1982) pointed out that the 

pH of the mineral soil surface was lower under aspen compared to pine and this can be 

due to the lower level of Ca in the mineral horizons of the two species. He found no 

morphological differences in the mineral soils when compared aspen, spruce and pine. 

Soil Organic Carbon Storage 

The soil organic carbon (SOC) is a vital constituent of the soil. The nature and 

quantity affects many physical, chemical and biological properties of forest soils such as 

soil pH, nutrient supply, water holding capacity, and gas exchange (Fisher and Binkley 

2000).  

SOC constitutes approximately 2/3 of the terrestrial carbon storage; the relatively 

large size and long residence time of this pool (of the order of 1,200 yr) makes it a 

potentially important sink for C released to the atmosphere by fossil fuel combustion 

(Post et al. 1982). The amount of C in soil represents the balance between inputs of 
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organic material from the biota, which ultimately depend on the type of vegetation and 

its productivity at a particular site; and losses primarily through decomposition and 

heterotrophic respiration. Small changes in these processes may have large impact on 

SOC storage and the global C Cycle.  

There has been a lot of work done to estimate the SOC storage in soils on 

different spatial scales and using different approaches. On a global scale Post et al. (1982) 

estimated the SOC pool to be about 1,395 Pg based on analysis of 2700 soil profiles 

categorized by climate using Holdridge life zone classification system. Global surveys 

based on taxonomic units estimated that the total mass of organic C stored in the upper 

100 cm of the soils of the world is 1462-1548 Pg of C (Batjes 1996), which is also similar 

to the estimate by Eswaran, Vandenberg, and Reich (1993) of about 1576 Pg. The SOC 

content is generally high in virgin soils under grass or forest vegetation (Bruce et al. 

1999). According to Dixon et al. (1994) forest vegetation and forest soils contain 359 Pg 

and 787 Pg, respectively, for an ecosystem total of 1146 Pg. 

The C pool in soil of the 48 contiguous states of the US is estimated to be 80.7 ± 

18.6 Pg (Kern 1994). Based on the SOC estimates of the different ecosystem complexes 

and soil taxonomical units, forest soil carbon content generally ranges from 109-159 Mg 

C ha-1, which is greater than the SOC in the grasslands with 84-124 Mg C ha-1. Estimates 

by taxonomical units showed that the lowest SOC is found in Aridisols with a 56 Mg C 

ha-1 and the greatest in Histosols with 843 Mg C ha-1. All the suborders of Mollisols had 

SOC content greater than 100 Mg C ha-1 where the suborders of Alfisols had SOC content 

ranging from 79-63 Mg C ha-1
. These two soil types are of a special interest because 
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aspen has been repeatedly said to occur on the soil order Mollisol, while conifers are 

associated with Alfisols (Kern 1994). 

Grigal and Ohmann (1992) estimated the SOC storage under five vegetation types 

including balsam fir, jack pine, red pine, aspen and northern hardwoods (maple) and 

found that the total C storage ranged from 139 Mg C ha-1 in the jack pine type to 234 Mg 

C ha-1 in the northern hardwood type, while balsam fir and aspen had 200 Mg C ha-1 and 

203 Mg C ha-1, respectively. Alban and Perala (1992) in a study conducted to estimate C 

storage in aspen as succession proceeds concluded that there was no evidence in change 

of SOC during succession from an aspen-dominated community to a northern hardwood 

community. In a study conducted to evaluate the carbon budget of a boreal aspen forest, 

Chen et al. (1999) found that the aspen forest was a strong carbon sink sequestering 200 

± 30 g C m-2 y-1 and 130 C m-2 y-1 in 1994 and 1996, respectively. He suggested that if the 

rates were representative of the Canadian boreal deciduous forests, aspen could sequester 

up to 0.04 - 0.06 Pg C y-1
.  

Besides estimating SOC under different ecosystem complexes and soil 

taxonomical units it is crucial to establish the relationships between the geographical 

distributions of soil carbon and climate, vegetation and other factors as a basis for 

assessing the influence of changes in any of these factors on the global cycle (Post et al. 

1982). 

Factors Controlling SOC Accumulation 

The major factors that have been found to control SOC are climate, vegetation, 

elevation, terrain position and soil texture. The relationship between SOC and site 
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characteristics can be variable depending on the spatial scale, location and vegetation 

type.  

The relationships of SOC and climate have been studied at a large and small 

scales and outcomes appear to be scale-dependent. At a global scale, Post et al. (1982) 

and Jobbagỳ and Jackson (2000) concluded that SOC generally increases with increasing 

precipitation and with decreasing temperature for any specific level of precipitation. The 

same conclusions were drawn from a relatively smaller scale study carried in the 

grasslands of the US Central Plains (Burke et al. 1989).  

Recently, Homann, Kapchinske, and Boyce (2007) conducted a study that 

encompassed the entire USA and looked at the relationship of mineral soil C and N to 

climate. They found that the SOC between 0-20 cm soil depth was positively related to 

mean annual precipitation (MAP) in all the regions, even though the quantitative relation 

differed among some regions; and negatively correlated with mean annual temperature 

(MAT). These results were similar to findings by other authors such as Burke et al. 

(1989), and Jobbagỳ and Jackson (2000). However, Homann, Kapchinske, and Boyce 

(2007) pointed out that the positive relationship between SOC and MAP was not 

applicable globally because in some parts of the world, such in the Australian rain forest, 

SOC was negatively correlated with MAP. They further found that there were also some 

inconsistency in the trends of the relationships of SOC and MAT.  

In a study carried in mountainous forested regions of the western part of Oregon, 

SOC increased with annual temperature, annual precipitation and actual evapo-

transpiration (Homann et al. 1995). Sims and Nielsen (1986) suggested that in cold soils 

(cryic and frigid) of Montana and Wyoming, SOC increased with precipitation and 
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elevation; and that SOC was higher in colder soils than in warmer soils (McDaniel and 

Munn 1985). However, in the temperate forests of Minnesota, Wisconsin, and Michigan 

the patterns of SOC storage were not as strongly influenced by climatic variables as in 

the west (Grigal and Ohmann 1992). Other researches suggested that the effects of 

climate on SOC could be explained through the vegetation (Franzmeier, Lemme, and 

Miles 1985) because SOC storage is controlled by the balance of C inputs from plant 

production and outputs through decomposition (Schlesinger 1977), which in turn vary as 

a function of temperature, moisture, and the chemical composition of the litter material 

(Schlesinger 1997).  

Some studies have suggested that SOC was related to both elevation and terrain 

shape, with SOC increasing with elevation and decreasing linearly as terrain shape shifts 

from concave to convex in the southern Appalachians (Bolstad and Vose 2001). This 

pattern might be attributed to lower decomposition rates relative to production at higher 

elevations or might be due to lower temperature that might slow down the decomposition 

that could lead to SOC accumulation at higher elevations (Bolstad and Vose 2001). Other 

studies also indicated that soil C concentrations or stocks increased with altitude in 

mountainous terrain (Trumbore, Chadwick, and Amundson 1996; Conant et al. 1998; 

Garten et al. 1999). The differences along elevation gradients reflected a changing 

balance of soil C inputs and soil C losses that were potentially related to changes in both 

abiotic factors (e.g., temperature) and biotic factors such as litter quality (Garten and 

Hanson 2006). More recent studies in the southern Appalachians showed that there was 

no consistent relationship between total SOC storage in spruce-fir forests and elevation, 
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even though cooler upper-elevation plots were consistently characterized by slower C 

turnover rates (Tewksbury and Van Miegroet 2007).  

Hontoria, Rodriguez-Murillo, and Saa (1999), in a study carried out in Spain, also 

showed that SOC accumulation was positively correlated with the slope gradient, which 

contrasts the findings from other studies. However, they explained that the correlation 

with the slope reflected the influence of land use, where steeper slopes were devoted to 

land uses such forest and grassland that were characterized by higher SOC, whereas 

flatter areas were associated with agricultural fields and grazing. They further stated that 

the correlation with altitude was low although significant. 

One of the many factors that affect SOC is soil texture and many researchers have 

studied the role of soil texture especially the role of clay and silt in SOC storage (Feller 

and Beare 1997; Hassink 1997; Six et al. 2002). Texture plays a vital role in controlling 

SOC by chemically and physically protecting the soil organic matter from decomposition.  

Chemical stabilization of SOC occurs when SOC chemically or physico-chemically 

bound to the soil minerals such as clay and silt (Six et al. 2002). Physical protection is 

when the aggregates physically protect soil organic matter (SOM) (Tisdall and Oades 

1982; Six et al. 2002) by creating barriers between microbes and enzymes and their 

substrates and in turn controlling microbial turnover (Elliott and Coleman 1988). 

Nichols (1984); Burke et al. (1989); and Grigal and Ohmann (1992) suggested 

that the percentage of clay is the dominant predictive characteristic for SOC where SOC 

increased with increasing clay content. Some researchers suggested that SOC is 

significantly correlated with sand/clay ratio in mesic grassland soils, but that in cold arid 

and semiarid grasslands, texture had limited value as a predictor of organic carbon levels 
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(McDaniel and Munn 1985) because in these areas temperature was a limiting factor 

for organic levels rather than soil moisture and texture. Homann, Kapchinske, and Boyce 

(2007) also reported a positive relationship with clay content within each region of the 

US; however clay and silt had small contributions as predictors of SOC across the entire 

US compared to MAP and MAT. 

  In addition to the biotic and abiotic factors controlling SOC storage and stability, 

the role of SOC quality is an important aspect that needs to be considered. SOM is a 

major terrestrial pool of C. It is a dynamic soil property that is responsive to ecosystem 

performance (Carter 1996). Soils vary in the amount of organic matter content 

(Stevenson 1994) but generally the total organic C comprises 48-58% of SOM. SOM 

consists of a number of pools that are different from each other and can be broadly 

classified into three: 1) “active/labile” pool which takes several years to turn over, 2) 

“slow intermediate” pool, which takes years to decades and  

3) “passive/refractory” pool which takes years to thousands of years (Parton et al. 1987). 

Various methods have been used to determine SOC quality including: 

i) Chemical fractionation that yields three major fractions: humic acids (HA),  

fulvic acids (FA) and humin. The method involves extraction with an alkaline 

reagent following acidification (Stevenson 1994; Collins et al. 1997). 

ii)  Physical fractionation based on density where SOM can be divided into two 

broad categories a) light fraction (LF) composed of incompletely decomposed 

plant and animal debris; b) heavy fraction (HF) consisting of organic matter 

contained within organomineral microaggregates (Collins et al. 1997). 

iii)  Radiocarbon dating using naturally occurring 14C (Collins et al. 1997).  
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iv) Nuclear magnetic resonance that characterizes the molecular structure and 

functional groups of SOC (Collins et al. 1997). 

Even though researchers have postulated the effects of conifer encroachment on 

ecosystem function, few studies have been carried out to understand changes in key 

properties that are essential to ecosystem functions such as SOC and other soil properties. 

In this study carried out in Northern Utah, we will focus on changes in SOC and other 

soil properties, and investigate the possible associated ecosystem function losses. 
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CHAPTER 3 

STUDY AREA 

 To address the objectives of this study, the research was conducted at two 

locations in Northern Utah, one at the Deseret Land and Livestock (DLL), a private 

holding in Weber County near Randolph; the other at Utah State University’s facility, 

T.W. Daniel Experimental Forest (TWDEF) in Rich County near Bear Lake. The study 

was divided into two phases. The first phase of the research was to estimate SOC in pure 

aspen and assess the drivers of its variability at locations where there were stable aspen 

stands. Upper Frost watershed, a small sub-catchment about 215 ha at DLL in Northern 

Utah was chosen for this part of the study. The second phase was to compare and contrast 

the site characteristics such as SOC, nutrient availability and soil chemical and physical 

properties of aspen and conifer at locations where both ecosystems co-existed in close 

proximity under similar site conditions. Sites at Upper Frost and Bear Canyon watersheds 

at DLL and at Sunset Ridge in TWDEF were chosen for that part of the study. These 

study sites were chosen because they contained sufficiently large aspen stands; they were 

ideal sites for aspen-conifer paired plot comparisons as the aspen and conifer stands were 

adjacent to each other; provided broader spatial applicability to the results; and also 

capitalized on extensive forest soil, snow and climate data already collected by other 

researchers (e.g.,Van Miegroet, Hysell, and Johnson 2000; Van Miegroet et al. 2005; 

Shakespeare 2006; LaMalfa and Ryel 2008). 
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Site Description 

              Deseret Land and Livestock is a privately owned ranch in Rich County, Utah, 

located at 41.10o N, 111.25o W (Figure 3.1). It occupies 88,800 ha, including 6,800 ha of 

Department of Interior Bureau of Land Management (BLM) and Utah state lands. 

Elevation ranges between 1889 and 2700 m. At around 1920 m elevation on the eastern 

half of the ranch the vegetation is dominated by sagebrush (Artemisia tridentata Nutt.); 

steppe with an understory of western wheagrass (Pascopyrum smithii (Rydb.) A. Löve), 

needle and thread grass (Stipa comata Trin. & Rupr.) and Indian ricegrass (Oryzopsis 

hymenoides Roem. & Schult.). The western half of the ranch, at an elevation of 2652 m, 

is dominated by mountainous, semi-open brush and grasslands with scattered stands of 

aspen and conifer mainly Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco). Mean 

annual precipitation is 890 mm with 74% as snow accumulation; the wettest months are 

April, May, June and September. Mean annual air temperature is about 4.5 oC, mean 

winter temperature is about -4.9 oC and mean summer temperature is about 15.1 oC [as 

measured by a nearby SNOTEL site (Horseridge) with 10 years of data]. The most 

common soil orders present are Mollisols, Entisols, Aridisols and Inceptisols 

(Washington-Allen et al. 2004). The Upper Frost and Bear Canyon catchments are 

surrounded by the Wasatch formation with loamy texture and by Cambrian age 

outcroppings of sedimentary rocks (Coogan and King 2001). The parent material of the 

Upper Frost canyon and the lower portion of Bear Canyon where the plots are established 

is mainly Wasatch conglomerate (Figure 3.2) 

              The T.W. Daniel Experimental Forest is Utah State University’s facility where 

many forest soil, snow and climate process studies have been carried out (e.g.,Van 
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Miegroet, Hysell, and Johnson 2000; Van Miegroet et al. 2005). It is located at 41.86o 

N and 111.50o W, about 30 km North-East from Logan, Utah at an elevation of 2900 m 

(Figure 3.3). The annual precipitation is 950 mm with an 80% snow accumulation (Van 

Miegroet, Hysell, and Johnson 2000). Average low temperature is -10oC while highest 

monthly temperature is 14oC (Schimpf, Henderson, and MacMahon 1980; Skujins and 

Klubek 1982). The vegetation in the study area ranges from forb meadows and sagebrush 

to conifer forest, predominantly Engelmann spruce (Picea engelmannii Parry ex 

Engelm.), subalpine fir (Abies lasiocarpa (Hook.) Nutt) and lodgepole pine (Pinus 

contorta ex Louden), and aspen forest. The soil orders present are Mollisols and Alfisols 

(Skujins and Klubek 1982; Van Miegroet et al. 2005). The parent material of this 

catchment is Wasatch conglomerate, which is the same as the catchments at DLL. These 

study sites were chosen because they are suitable for paired plot vegetation study as both 

aspen and conifer vegetation are present. 

Experimental Design 

Phase One-Transect Study 

 To assess the inherent properties of soils under pure aspen, which were used as a 

reference ecosystem, 33 sampling points that were 32 m apart from each other  were 

located along north (n=11), south (n=8), east (n=7) and west (n=7) facing linear transects 

in the Upper Frost Canyon drainage at DLL. Transects ran from the top of ridgeline to the 

bottom, covering an elevation gradient between 2522 m and 2605 m. Such sites could not 

be established at TWDEF as sufficiently large contiguous areas of pure aspen forests 

could not be found to allow long linear transects. 
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Soil Organic Carbon. Along these linear transects we measured total SOC pool 

to a depth of 40 cm. To estimate the amount of carbon in the soil, mineral soil samples 

were taken in 10-cm increments to a depth of 40 cm at each of the 33 sampling points. 

Bulk density of the soil (0-40 cm) was determined at each sampling point using the soil 

excavation method (Blake and Hartage 1986). Samples were oven-dried at 105oC, sieved 

(2-mm mesh), and the weight of fine (< 2mm) and coarse fractions (≥ 2mm) were 

recorded. Sub-samples of <2 mm were analyzed for C concentration using a Leco CHN 

analyzer (CHN 1000, LecoCorp., St Joseph, MI). Total SOC to a depth of 10 cm and 40 

cm was calculated. 

Soil Microclimate. To characterize soil moisture, ECH2O probes (Decagon, 

Pullman, Washington) were installed at each location at a depth of 20 cm. Soil moisture 

readings (millivolt) were taken in early July, mid July, August, September and October of 

the 2005 and 2006 using a handheld Decagon reader. Soil temperature was assessed at a 

depth of about 10-15 cm  using Stowaway Tidbits dataloggers  (Onset Computer 

Corporation, Bourne, MA) that were installed along the transects (N, n=4; S, n=4; E, n=3; 

W, n=3). Tidbits were programmed to record soil temperatures (oC) at 2-hour intervals 

and were downloaded twice per year, in July and October of 2005 and 2006. 

Physical Soil Properties. To characterize the soil morphology, one representative 

pedon from each aspect was described following standard methods. Horizon description 

included soil depth, color, structure, texture (hand feel method), consistence and 

effervescence (Soil Survey Division Staff Soil 1993). In addition, samples from each 

genetic horizon were collected from the pedons and analyzed in the laboratory for texture 

by standard hydrometer techniques (Gee and Bauder 1986). 
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Soil Nutrient Status and Chemical Properties. Soil nutrient availability was 

assessed using plant root simulator probes (PRS-probes) (Western Ag Innovations Inc., 

Saskatoon, Canada). We deployed four cation and four anion exchange strips during the 

summer and winter time of 2005-06 in selected points along the transect (N, n=4; S, n=4; 

E, n=3; W, n=3). The probes were sent to Western Ag Innovations, Inc. for analysis. In 

this study total N, K, Ca, Mg and Mn were used. The cation exchange capacity (CEC) 

and base saturation (BS) were also determined on the < 2mm fraction by extracting 

exchangeable base cations with 1 M NH4Cl at pH 7.0 using vacuum extractor (Soil 

Survey Staff 1996) and analyzing extractant for cations using an inductively coupled 

plasma spectrometer (ICP) (Iris Advantage, Thermo Electron, Madison, WI); followed by 

extraction with 2 M KCl and analysis of extractant for NH4 using flow injection analyzer 

(Lachat Quickchem 8000, Flow Injection Analyzer). Soil pH was determined by 1:1 

deionized water to soil slurry using pH meter. 

Stand Characteristics. Overstory vegetation cover was assessed in the reference 

ecosystem along every point on the transect using a fixed area plot, where the diameter at 

breast height (DBH) of each individual tree greater than 5 cm was measured within the 

circular plot of a radius of 10 m. 

Statistical Analysis 

 One-way ANOVA with a Tukey-Kramer adjustment for multiple comparisons 

was used to test for differences in SOC and other soil properties between the northern, 

southern, eastern and western facing transects (SAS Insitute 2003). Regressions were 

performed to asssess the relationship between SOC content and site characteristics. 
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Phase Two- Paired Plot Study 

To compare and contrast the site characteristics of the two vegetation types as 

representation of end-member communities, six paired plots were established at DLL and 

TWDEF; two in Upper Frost Canyon and one in Bear Canyon at DLL, and two at 

TWDEF. Areas were selected based on proximity of the aspen and conifer stands and 

similarity in elevation and slope. Plots (20 m by 20 m) plots were delineated in adjacent 

aspen and conifer forests in three locations. 

Soil Morphology. In order to compare the morphology and genesis of the soil 

under aspen and conifer, representative pedons (1 m wide and ≤ 1m depth) were 

manually excavated in each of the twelve plots, and the soil morphology was described 

following standard methods (Soil Survey Division Staff 1993). Soil texture was done by 

hand feel method on site. Soils were classified according to Soil Survey Staff (2003). 

SOC Pools and Chemical Properties (Pedon Samples). Soil samples were taken 

from each genetic horizon using cores (5 cm diameter by 3 cm length). Samples were 

dried at 105oC, sieved (2-mm sieve) weighed and ground with mortar and pestle prior to 

analyses. Bulk density and percent gravel was determined using core method (Blake and 

Hartge 1986). The total C and N concentration of the fine fraction (<2mm) was 

determined using dry combustion using a CHN analyzer (Leco CHN 1000, Leco Corp., 

St. Joseph, MI). The total C pool for each pedon was normalized to 60 cm in order to 

have a consistent depth across all the plots. Chemical properties such as CEC and BS 

were determined on the fine fraction as described for phase one.  

SOC (Split Core Samples). To test for consistency and representativeness of the 

pedon SOC estimates, additional mineral soil cores were taken in each plot at four 
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random locations using a split core sampler to a depth of 0-15 cm. Samples were 

composited into two samples per plot and carbon content was estimated from composite 

soil samples following the same procedure described above. Bulk density determined 

from pedon samples was used, because samples could not be dried at 105 oC as they were 

needed for other soil analysis purposes (incubation). 

SOC Pools (Forest Floor). Carbon content of the forest floor in the plots was 

determined in both aspen and conifer plots in fall 2007 by excavating the O horizon 

material at one location per plot using a sampling frame that was 12.7 cm by 12.7 cm. 

Samples were dried at 65oC, weighed and ground and samples were analyzed for C 

concentration using a CHN analyzer (Leco CHN 1000, Leco Corp., St. Joseph, MI).  

Nutrient Availability. To assess the difference in the nutrient availability under the 

two vegetation types plant root simulators (PRS-probes) (Western Ag Innovations Inc., 

Saskatoon, Canada),  which consisted of ion exchange membranes were installed at 10 

cm depth in each plot during summer and winter of 2007. The PRS-probes were shipped 

to Western Ag Innovations Inc., Canada, for analysis. For the purpose of this study total 

N, K, Ca, Mg and Mn were used. 

Soil Microclimate. Soil moisture regime of aspen and conifer stands was 

determined by installing twelve ECH2O moisture probes (Decagon, Pullman, 

Washington) at a depth of 20 cm at the center of each plot. Soil moisture readings 

(millivolt) were taken using a hand-held device in early June, mid July, August, and 

October of 2007. The soil temperature of the sites was also assessed using Stowaway 

Tidbits dataloggers (Onset Computer Corporation, Bourne, MA) installed below the soil 

surface at a depth of 10-15 cm in each plot. Tidbits were programmed to record soil 
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temperatures (oC) at 2-hour intervals from August 2006-June 2007 and they were 

downloaded in June 2007.  

Stand Characteristics. Overstory vegetation cover of the two vegetation types was 

measured using a fixed area plot, where the diameter at breast height (DBH) of each 

individual tree greater than 5 cm (DBH) was measured within the circular plot of a radius 

of 10 m.  

Statistical Analysis  

All the data were analyzed using an analysis of variance (ANOVA) of a one way 

factorial in randomized complete block design with random block effect using PROC 

Mixed. In addition a paired t-test using PROCTTEST checked the consistency of the test 

(SAS Institute 2003). Prior to ANOVA, normality tests were done and accordingly data 

were transformed. 
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 Fig. 3.1 Relative location of the study sites at DLL. 

Frost Canyon 
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Fig. 3.2 Geological map of the watersheds at DLL. 
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Fig. 3.3 Relative location of the study sites at TWDEF. 
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CHAPTER 4 

SOIL ORGANIC CARBON STORAGE UNDER PURE ASPEN STANDS AND ITS 

RELATIONSHIP WITH SITE CHARACTERISTICS IN NORTHERN UTAH 

 

Introduction 

Aspen is the most abundant tree species in North America mostly in Canada’s 

Central Provinces and the U.S. States of Colorado and Utah (Jones 1985; Lieffers, 

Landhäusser, and Hogg 2001). In the western U.S., aspen has numerous ecological and 

economical values such as forage for livestock, habitat for wildlife, landscape diversity, 

esthetics, and water yield (DeByle and Winokur 1985; Bartos 2001). It occurs in pure 

forest as well as in association with many conifer and other hardwood species (Shepperd 

et al. 2006). Aspen has a special value in the west and is considered a keystone species 

(Campbell and Bartos 2001), meaning that it affects the survival and abundance of many 

other species in its community. Its removal or addition causes shifts in community 

composition and sometimes even in the physical environment (Wilson 1992). There is a 

great concern that aspen has been declining in the west followed by the replacement with 

conifers. 

In addition, aspen forest is believed to be a strong carbon (C) sink (Chen et al. 

1999). Soil organic carbon (SOC) is a vital constituent of the soil, considered an 

important factor in the regeneration of aspen (Cryer and Murray 1992). The nature and 

quantity of SOC affects many physical, chemical and biological properties of forest soils 

such as soil pH, nutrient supply, water holding capacity, and gas exchange (Fisher and 

Binkley 2000).  
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Concerns related to the increase of atmospheric CO2 has motivated researchers 

to estimate the amount, dynamics and controls of SOC at different spatial scales. The 

major factors controlling SOC are climate, vegetation, elevation, terrain position and soil 

texture. The factors controlling SOC are often scale-dependent, but on a global (Post et 

al. 1982), continental (Homann, Kapchinske and Boyce 2007) and regional scale (Burke 

et al. 1989) climate is considered a major controlling factor. However, Franzmeier, 

Lemme, and Miles (1985) concluded that the effects of climate on SOC could be 

explained by vegetation at a regional scale. Generally, on a coarser scale (global and 

continental scale) SOC is believed to increase with precipitation and decrease with 

increasing temperatures (Post et al. 1982; Jobbagỳ and Jackson 2000; Homann, 

Kapchinske and Boyce 2007). Similar conclusions were drawn at a relatively finer scale 

(regional scale) study in the grasslands of the US Central Plains (Burke et al. 1989). 

Another important factor controlling SOC is soil texture, which promotes SOC 

storage through the role of clay in the protection of soil organic matter (Anderson et al. 

1981). Several studies have found that the percentage of clay is the dominant predictive 

characteristic for SOC with SOC increasing with increasing clay content (Nichols 1984; 

Burke et al.1989; Grigal and Ohmann 1992). Clays tend to stabilize organic matter, and 

other environmental factors being equal, a high correlation exists between organic matter 

and clay contents of soils (Stevenson 1994). However, in cold arid and semiarid 

grasslands, texture has limited value as a predictor for SOC levels, and this may be 

because organic matter persists without the influence of clay stabilization. In these areas 

temperature may be the main controlling factor over other factors (McDaniel and Munn 

1985).  
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SOC is also related to both elevation and terrain shape. The soil C 

concentrations or stocks increase with altitude in mountainous terrain (Trumbore, 

Chadwick, and Amundson 1996; Conant et al. 1998; Garten et al. 1999; Bolstad and 

Vose 2001). The differences along elevation gradients reflect a changing balance of soil 

C inputs and soil C losses that are potentially related to changes in both abiotic 

(microclimate) and biotic factors such as litter quality (Garten and Hanson 2006). Slower 

decomposition rates compared to production at higher elevations characterized by lower 

temperature, result in greater SOC accumulation (Bolstad and Vose 2001). Recent studies 

in the southern Appalachians showed that there was no consistent relationship between 

total SOC storage and elevation, even though cooler upper-elevation spruce-fir forests 

were consistently characterized by slower C turnover rates (Tewksbury and Van 

Miegroet 2007). SOC was negatively correlated with terrain shape, where SOC decreases 

as terrain shape shifts from concave to convex in the southern Appalachians (Bolstad and 

Vose 2001). Hontoria, Rodriguez-Murillo, and Saa (1999) in a study carried out in Spain, 

showed that SOC accumulation was positively correlated with the slope gradient, which 

reflected the influence of land use, where steeper slopes devoted to land uses such forest 

and grassland were characterized by higher SOC than the flatter terrain dedicated to 

agriculture. Most regression analyses indicated that only about 50% of the variability in 

SOC levels could be explained by site characteristics such as climate, elevation, and soil 

texture (Burke et al. 1989; Grigal and Ohmann 1992; Homann et al. 1995). 

Several researchers suggested that SOC under aspen in the Intermountain West 

was higher than associated vegetation types (Hoff 1957; Tew 1968). However not many 

studies quantified the amount of SOC stored under aspen or investigated the relationship 
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between SOC and soil characteristics. For this study we focused on Utah, as it contains 

vast aspen stands that account for 25% of aspen in the west, and chose a small catchment 

as an example of aspen stand conditions in Northern Utah.  

The major objectives of this study are to estimate the amount of SOC stored in 

pure aspen stands, assess the variability in the SOC pool size, and investigate the various 

biotic and abiotic factors driving SOC variability. Potential abiotic drivers considered are 

elevation, slope gradient, aspect and soil microclimate, and biotic drivers include aspen 

stand characteristics. We hypothesize that SOC will not be constant and it is expected to 

change spatially as a function of site characteristics, mainly soil microclimate, vegetation 

and aspect. We expect that stand characteristics such as tree size and density and average 

tree diameter to influence SOC by affecting litter input and canopy openness. Differences 

in aspect and soil microclimate are also expected to affect SOC storage by affecting 

decomposition rates, with greater SOC accumulation expected on drier sites. 

Methods and Materials 

Study Site 

The research was conducted at the Deseret Land and Livestock (DLL), a privately 

owned ranch located in Northern Utah at 41.10o N, 111.25o W. Vegetation at an average 

elevation of 1920 m on the eastern half of the ranch is dominated by sagebrush 

(Artemesia tridentata Nutt.) steppe with an understory of western wheatgrass 

(Pascopyrum simithi (Rydb.) A. Löve), needle and thread grass (Stipa comata Trin. & 

Rupr) and Indian rice grass (Oryzopsis hymenoides Roem. & Schult). The western half of 

the ranch, at an elevation of 2652 m, is dominated by mountainous, semi-open brush and 

grasslands with scattered stands of aspen and conifer mainly Douglas-fir (Pseudotsuga 
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menziesii (Mirb.) Franco). Mean annual precipitation is 890 mm with 74% as snow 

accumulation; the wettest months are April, May, June and September. Mean annual air 

temperature is about 4.5 oC, mean winter temperature is about - 4.9 oC and mean summer 

temperature is about 15.1 oC [as measured by a nearby SNOTEL site (Horseridge) with 

10 years of data]. The most common soil orders present are Mollisols, Entisols, Aridisols 

and Inceptisols (Washington-Allen et al. 2004). Soil parent material is derived from 

Wasatch conglomerate. The study site in Upper Frost watershed, a small catchment that 

is approximately 215 ha, was located between 1889 and 2700 m elevation in the western 

part of DLL (Figure 4.1).  

 
Experimental Design 

         Thirty three sampling points that were 32 m apart from each other were located 

along north (N, n=11), south (S, n=8), east (E, n=7) and west (W, n=7) facing linear 

transects in the Upper Frost Canyon drainage. Throughout the text the transects will be 

designated as N, S, E and W. Transects ran from the top of ridgeline to the bottom, 

covering an elevation gradient between 2522 m and 2605 m (Table 4.1). Sites were 

chosen because they had a sufficiently large contiguous area of pure aspen forests that 

allowed long linear transects. 

Soil Sampling and Properties. To estimate the amount of SOC in the soil, mineral 

soil samples were taken in 10-cm increments to a depth of 40 cm at each of the 33 

sampling points using sampling pits. Bulk density of the soil was determined at each 

sampling point by depth using the soil excavation method (Blake and Hartage 1986). 

Samples were oven-dried at 105oC, sieved (2-mm mesh), and weight of fine and coarse 
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fractions was recorded. Sub-samples of < 2 mm were analyzed for C concentration 

using a Leco CHN analyzer (CHN 1000, LecoCorp., St Joseph, MI). Total SOC to a 

depth of 10 cm and 40 cm was calculated as follows: 

Mass SOC (Mg ha-1) = OC x BD x D x CF x [(1-(R/100)] 

 Where OC = Organic Carbon Concentration (g C kg -1) 

  BD = Bulk Density (g cm-3) 

   D =   Depth (cm) 

  CF = Unit Conversion Factor (10-1) 

   R =   Percent Rock Fragment  

Soil pH was determined on a 1:1 deionized water to soil slurry using pH meter. 

Texture was determined by standard hydrometer techniques on a subset of sampling 

points (N, n=4; S, n=4; W, n=4; E, n=3) (Gee and Bauder 1986). 

Four soil pedons  (1m by 1m), each representative of one transect (N, S, E and 

W), were exposed and the soil morphology was described following standard methods 

including soil depth, color, structure, texture (by feel method), consistence, effervescence 

and field pH (colorometrically) (Soil Survey Division Staff  2003). The soil moisture 

regime of the area was assumed to be xeric while the soil temperature regime was 

estimated by calculating mean annual temperature and soil temperature using data 

obtained from SNOTEL site (Horseridge) located at DLL. Interpretations of the soil 

properties were made using the field book (Schoeneberger et al. 2002). Soil samples were 

taken from each genetic horizons in each pedon, dried at 105oC and sieved (<2 mm). 

Cation exchange capacity (CEC) and base saturation (BS) were determined on the < 2mm 

fraction by extracting exchangeable base cations with 1 M NH4Cl at pH 7.0 using 
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vacuum extractor (Soil Survey Staff 1996) and analyzing extractant for cation 

concentraions using an inductively coupled plasma spectrometer (ICP) (Iris Advantage, 

Thermo Electron, Madison, WI), followed by extraction with 2 M KCl and analysis of 

extractant for NH4 using flow injection analyzer (Lachat Quickchem 8000, Flow 

Injection Analyzer). 

To assess the seasonal nutrient regime of the area, plant simulator probes (PRS-

probes) (Western Ag Innovations Inc., Saskatoon, Canada), which are exchange resin 

membranes, were installed to a depth of 10 cm on selected points along the transects, (N, 

n=4; S, n=4;  E, n=3; W, n=3). Each sample unit consisted of four cation and anion 

probes. Prior to installation a few probes were also designated as blanks and placed in 

platic bags during the entire burial time. The first set (winter 2005-06) was installed on 

October 25, 2005 and removed on June 20, 2006; the second set (summer 2006) was 

installed on June 20 and removed on July 28, 2006. Once removed from the field, the 

PRS-probes were cleaned and shipped to Western Ag Innovations Inc. for chemical 

analysis of a suite of cations including Ca+2, K+, Na+, Mg+2, NH4
+-N; a suite of anions 

including NO3
-, H2PO4

- -P, B(OH)-4-B, SO4
-2-S, Cl-; and a suite of metals including Cu+2, 

Zn+2, Mn , Fe+3 and Al+3 -Al. For the purpose of this study we focused on available Ca+2, 

Mg+2, K+ and total N (NO-3 -N + NH4
+-N). 

Soil Organic Carbon Drivers. The elevation, aspect and slope of every point 

along each transect were recorded. To characterize the soil microclimate, soil moisture 

index (SMI) and temperature were measured along the transects. SMI was determined by 

installing an ECH2O moisture  probes (Decagon, Pullman, WA) to a depth of 20 at all 33 

sampling points along the transects. Using handheld Decagon readers, a total of six 
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readings (millivolts) were taken during summer 2005 (SMI 05), and nine readings 

during summer 2006 (SMI 06) between the end of June and early October. For the 

purpose of the study we chose three time periods  from each year, where major changes 

in soil moisture  were observed and the dates represented snow melt (June), summer 

(July, Aug, September) and fall (October).  

The field moisture readings (mV) were calibrated for gravimetric (Өm) and 

volumetric water content (Өv) in the lab using reconstructed soil cores with ECH2O 

probes that were subject to several wetting and drying cycles. In order to come up with a 

relative index of available water for each site, a volumetric moisture threshold (MT) of 

10% (Өv) was set, and the available water content (AWC) was calculated by subtracting 

MT from the calibrated field readings (Өv), which is the residual above permanent 

wilting point (PWP). The MT threshold  corresponded to a soil matric potential of 

approximately 1500 KPa (PWP) based on the water soil water characteristics equations 

(Saxton et al. 1986) applied to a  tension range >- 1500 to -10 KPa, with volumetric water 

content (Өv) derived from the following equations: 

           Ψ = AӨ B     

           A = exp[a + b (%C) + c (%S)2 + d (%S)2(%C)] 100.0 

          B = e + f(%C)2+ g (%S)2 + g (%S)2(%C) 

         Coefficients 

         a = -4.396, b=-0.0715, c= -4.880x10-4, d= - 4.285 x 10-5,   e= -3.140,   f= -2.22 x 10-3    

             g= -3.484 x 10-5  
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       Where: 

        Ψ = Matric Potential  

        Ө = Volumeric water content (m3/m3) 

        C = % Clay 

        S = %  Sand 

We calculated the cumulative moisture index (CMI) for the two contrasting 

summers where summer 2005 was a dry summer and summer 2006 was a relatively wet 

summer. CMI was estimated for each transect point by the summation of AWC values 

across the three representative dates of summer 2005 and 2006. 

Along selected sites on the four transects (N, n=4; S, n=4; E, n=3; W, n=3) soil 

temperature regime was measured with Stowaway Tidbits dataloggers (Onset Computer 

Corporation, Bourne, MA) installed at 10-15 cm below the soil surface and  programmed 

to record soil temperatures at 2-hour intervals. Tidbits were downloaded in July and 

October of 2005 and 2006. However, we were only able to record the soil temperatures 

regime of late summer and early fall of 2005 as several tidbits failed. From the available 

data, which represented each transect over a period of 65 days (Aug 8-Sept 30 of 2005), a 

soil heat index was expressed as degree days above 5oC.  

Overstory vegetation cover was assessed at every transect point using a fixed area 

plot, where the diameter at breast height (DBH) of individual tree > 5 cm was measured 

within the circular plot of a radius of 10 m. Using this information live basal area (LBA), 

average tree diameter (ATD) and tree density (TD) were calculated as follows: 

LBA (cm2) = (DBH/2)2 * π 

ATD (cm) = (Sum of live basal area/ # of trees) / π 
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TD (# trees/ ha) = # of trees/ sampling area *10,000 

Where: π = 3.14, sampling area= 314 m2 

Statistical Analysis 

 One way ANOVA was used to test differences in SOC, nutrient availability, 

moisture index, temperature and stand characteristics using PROC Mixed followed by 

pairwise comparisons with a Tukey-Kramer adjustment (SAS Institute 2003). Differences 

were considered significant at p ≤0.1. The relationship between SOC storage 0-10 cm and 

0-40 cm depth (response variable) and the various biotic (stand characteristics) and 

abiotic factors (elevation, slope, soil-microclimate) (explanatory variables) was tested 

using linear and multiple regressions. Significance of parameters was examined, model 

fit was tested; residuals and influence of diagnostics were also examined. To meet 

normality, some raw data were transformed prior to analysis using log transformations 

(SMI 2006, CMI and ATD) and square root transformations (tree density). 

Results and Discussion 

General Site Characteristics 

Selected site characteristics are summarized in Table 4.1. The soil texture was 

mainly loam except for a few sites that had silt loam and sandy loam textures. The 

southern and eastern facing transects generally had higher rock fragment content 

compared to the northern and western facing transects (Table 4.1). Based on the pedon 

descriptions (Table A.1-A.4 in the Appendix), the soils on all but the eastern facing 

transects were classified as Pachic Argixerolls, which are Mollisols with an argillic 

subsurface horizon and a thick mollic epipedon (Soil Survey Staff 2003). However, the 
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pedon on the eastern facing transect was classified as Pachic Haploxeroll, with mollic 

epipedon that is ≥ 50 cm similar to the pedons on the other transects but no subsurface 

accumulation of clay (Soil Survey Staff 2003). The sites on the eastern facing slopes 

were steeper than the other sites, which could explain the difference in soil classification. 

All soils were characterized by a typical mollic epipedon with very dark brown to dark 

brown and yellowish brown dry colors (Table 4.2). These results are consistent with 

findings by other researchers (Bartos and DeByle 1981; Jones and DeByle 1985; Cryer 

and Murray 1992). Cryer and Murray (1992) postulated that stable or permanent stands of 

aspen are found on Mollisols, and according to Bartos and DeByle (1981), Jones and 

DeByle (1985) and Cryer and Murray (1992), it was attributed to the addition and rapid 

turnover of aspen leaves to the soil each year. However, faster turnover rates are 

somewhat counterintuitive to higher SOC content in the surface horizon. Stabilization 

due to a series of processes such as humification (microbial decomposition of organic 

materials in the soil that produces some relatively stable, dark compounds), extension of 

roots into the soil profile (Buol et al. 2003) and bioturbation (reworking of the soil and 

organic materials by soil fauna) (Hole and Nielsen 1970) could instead be the reason for 

higher SOC accumulation leading to the formation of mollic epipedon. 

The pH of the soils on the transects (averaged from 0-40 cm) ranged from 5.6-6.8 

with most of the sites being above 6.0 (Table 4.1). Results obtained from the analysis of 

the samples collected from the pedons showed that the CEC of the soils ranged from 

10.8-19.0 cmolc kg-1 in the upper 20 cm and the base saturation in all the sites was greater 

than 90% (Table 4.2). Generally researchers reported aspen soils characterized by high 

pH and high base saturation (Hoff 1957; Morgan 1969; Alban 1982; Paré, Bergeron, and 
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Camire 1993). This might be due to the higher amount of Ca present in aspen soils, 

which was confirmed by the PRS probe results (Table 4.3). Our results showed that the 

nutrient availability in winter and summer was not significantly different among aspects 

(Table 4.3), but in both seasons the amount of Ca captured by the exchange membranes 

was very high. This might be due to high Ca requirements (Alban 1982), which 

frequently builds up the Ca concentration in the surface soil as a result of the high annual 

Ca input via the leaf fall (Chandler 1937; Schroth and Lehmann 2003).  

 
Soil Organic Carbon Storage  

The average SOC content of the upper 10 cm in Upper Frost Canyon was 30.9 ± 

7.1 Mg C ha-1 and to a depth of 40 cm was 111.9 ± 29.1 Mg C ha-1, with a coefficient of 

variation of 23% (0-10 cm) and 26% (0-40 cm). When the sampling points were 

categorized by aspect, SOC to a depth of 40 cm ranged from a low of 69 Mg ha-1 at one 

site on the W facing transect to a high of 206 Mg ha-1 at a site in the S facing transect. 

The average SOC content  was 94.8 ± 18.8  Mg C ha-1 , 140.7 ± 33.9  Mg C ha-1 , 125.5 ± 

21.7 Mg C ha-1, 102.6 ± 16.1 Mg C ha-1  for the N, S, E and W facing transects,  

respectively. One-way ANOVA indicated that SOC to a depth of 40 cm was significantly 

different (p< 0.05) among aspects with W and N facing transects similar at the lower end 

and S and E facing transects having the highest values. The SOC content in the upper 10 

cm was not significantly different among transects (p = 0.15) (Figure 4.2). Our calculated 

average SOC content of about 111.9 Mg C ha-1 is lower than the one reported by O’Neill, 

Kasischke, and Richter (2002) (151.5 Mg C ha-1) in an aspen study carried on in Interior 

Alaska to approximately the same soil depth (0-40 cm). The difference in climatic 
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conditions (dry and warm vs. wet and very cold) between the two study sites might 

have attributed to differences in SOC, with the cold soil temperature possibly slowing 

down decomposition in Alaska. In contrast, our SOC estimate is considerably higher 

compared to the values reported by Van Miegroet et al. (2005) in the same climatic 

region. Moreover, our calculated SOC value is relatively high compared to the SOC 

estimates for Mollisols reported by Kern (1994) to a depth of 100 cm, which is about 100 

Mg C ha-1. Studies have reported that most of the SOC occurs in the upper horizons (30-

40 cm) (O’Neill, Kasischke, and Richter 2002; Van Miegroet et al. 2005). So the estimate 

of the 100 Mg C ha-1 reported by Kern (1994) may be concentrated in the upper horizons, 

making it closer to our SOC estimate.  

 
Site Characteristics and SOC 

 The variability in SOC among aspects could be explained by site characteristics 

such as soil microclimate and stand characteristics. Because there were only small 

differences in elevation and slope among the sites, these site characteristics did not 

explain SOC variability. 

Cumulative moisture index over both summers (2005-2006) was significantly 

different among the transects (p <0.05).  Although only differences between E, N and W 

facing transects were statistically significant, generally the N and W facing transects were 

wetter and the S and E facing transects were drier (Figure 4.3). The summer in 2005 was 

relatively dry compared to the summer in 2006 and aspect differences were most 

pronounced when the soils were moist (summer 2006) (Figure 4.4). These results suggest 

that highest SOC accumulation is generally associated with drier site conditions. 
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Mean degree days over a period of 65 days from August 8th – September 30th 

2005 for the N, S, E and W facing transects were 232, 350, 380 and 293, respectively. 

One-way ANOVA showed that the temperature regime was significantly different with  

aspect (p< 0.05) and the S and E facing transects had higher soil temperatures than the N 

and W facing transects (Figure 4.5). 

The S and E facing transects were more densely vegetated with relatively smaller 

trees. Tree density differences among aspects were not statistically significant but 

average tree diameter (13.2 cm and 16.5 cm for S and E vs. 17.2 cm and 20 cm for W and 

N) was significantly different among the aspects (p <0.05) (Figure 4.6 and 4.7), with the 

N facing transect supporting the largest trees, and S facing transect the smallest  

 The combinations of the soil microclimate and stand characteristics could explain 

the variability in SOC content among aspects. The higher amount of SOC in the S and E 

facing transects was probably due to lower turnover rates associated with restricted 

moisture availability. Even though temperature is considered an important controlling 

factor of decomposition rates (Schlesinger 1997); in arid and semi-arid regions soil 

moisture often limits the rate of decomposition (Santos et al.1984, Amundson et al. 

1989). So in this case, even though the temperature was higher in the S and E facing 

transects decomposition rates were governed more by moisture limitations than 

temperature during summer. Moreover, the difference in forest structure might also have 

influenced SOC content as a result of canopy openness/closeness, which possibly 

influenced the amount of C input through litterfall and microclimatic conditions affecting 

decomposition. Even though a general pattern was observed relating SOC to site 

characteristics from the four aspects, there was a tremendous variability among individual 
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sampling points on the same transects. Therefore, we further analyzed the data at the 

level of individual sampling points to look for potential relationships between SOC and 

individual site characteristics, through the use of correlation and regression analysis.  

There was not significant correlation between SOC in the upper 10 cm and any of 

the abiotic and biotic drivers considered (Table 4.4). This was contrary to findings 

reported by researchers such as Hontoria, Rodriguez-Murillo, and Saa (1999), who found 

a significant correlation between the surface horizons SOC (0-18 cm) and different soil 

moisture parameters, temperature, altitude and slope gradient. However, SOC content 

between 0-40 cm showed a significant negative relationship with soil moisture index 

expressed as SMI 2005 (r= -0.39 p=0.03), SMI 2006 (r=-0.58, p=0.001) and CMI (r=-

0.59, p=0.001). SOC was not influenced by LBA, but generally showed a positive 

correlation with the tree density and a negative correlation with average tree diameter, 

meaning that SOC levels were generally higher in sites occupied by a dense forest of 

smaller trees compared to sites with fewer but larger trees. Other parameters such as 

elevation and slope did not show any significant correlation and this might be due the 

ranges small elevation and slope gradient (Table 4.4).  

Generally SOC is believed to be positively correlated to mean annual 

precipitation (MAP) (Post et al. 1982; Jobbagỳ and Jackson 2000; Homann, Kapchinske, 

and Boyce 2007) so it would be reasonable to expect similar relationship between soil 

moisture regime and SOC. However, in this study the SOC was negatively correlated 

with cumulative moisture index. Similar results were reported by Hontoria, Rodriguez-

Murillo, and Saa (1999) in a study carried out in Spain where the soil moisture regime is 

dry in all parts of summer and they attributed SOC pattern to the lack of precipitation 
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accompanied by high temperatures during summer season in the Mediterranean 

climate. In our case a similar pattern might be occurring where microbial decomposition 

is slowed down by limited summer soil moisture allowing for greater SOC accumulation. 

Even though the SOC content in the semiarid and arid regions was not studied 

extensively, researchers reported that in these ecosystems soil moisture was an important 

factor controlling many processes including decomposition, soil respiration and nutrient 

fluxes (Wildung et al. 1975; Parton et al. 1994; Klopatek et al. 1995). Conant, Klopatek, 

and Klopatek (2000) found that soil respiration rates in semi-arid ecosystems decreased 

during warm summer months because respiration was water limited during this period. 

McCulley, Boutton, and Archer (2007) concluded the soil respiration in semi-arid 

ecosystems was water limited. These findings are relevant to our study as the lower 

respiration rates are indicative of lower C turnover and could lead to the higher amount of 

SOC stored in these moisture restricted areas. 

Regression analysis showed that the CMI explained only 16% of the variability in 

SOC (0-40 cm) (R2=0.16 p=0.03) (Figure 4.8), whereas square root-transformed tree 

density (R2=0.33 p=0.02) (Figure 4.9) and the log-transformed average tree diameter 

(R2=0.16 p=0.04) (Figure 4.10) accounted for 33 % and 16 % of the variability, 

respectively. In this study, the influence of stand characteristics, especially tree density, 

was more important than other factors considered. As was suggested by the transect 

comparison high SOC occurred in sites characterized many small trees, which could be a 

surrogate for a more closed canopy, whereas sites that had a more open structure 

contained less SOC. Even though LBA in this study did not suggest significant 

differences in litterfall, stand characteristics, especially canopy openness/closeness might 
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have direct effects on the SOC accumulation through differences in the litter fall inputs 

and differences in canopy shading, causing differences in microclimate that affect 

microbial activity and decomposition. Moreover, studies have shown that canopy 

structure of overstory trees can significantly influence understory vegetation (Moeur 

1997), which in turn, can significantly contribute to the C input and microclimatic 

variability. However, in this study we did not assess the understory vegetation, litterfall 

or litter decomposition rates so further study is required to ascertain exactly how forest 

structure affects SOC storage. 

Multiple regression showed that 46% (R2=0.46 and p=0.002) of SOC variability 

could be explained by a combination of tree density, average tree diameter, and 

cumulative moisture index with most of the variability (33%) explained by tree density. 

Many researchers have found that site variables were usually able to explain only about 

50% of the variability in SOC (e.g. Burke et al. 1989; Grigal and Ohmann 1992). A large 

proportion of unexplained variations might be due to the effect of uncertainties or the 

exclusion of important site characteristics, or may be due to the combined effects of 

errors in variable measurements and natural within-site variability (Hontoria, Rodriguez-

Murillo, and Saa 1999). 

The regression and ANOVA analyses were consistent; as they showed similar 

patterns in SOC amount in relation to moisture conditions (higher SOC in sites with drier 

summer moisture conditions) and stand characteristics (high SOC in sites with high 

density of small trees). 
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Conclusion 

 In this study we estimated the amount of SOC stored under stable aspen and we 

found that SOC was highly variable even in the small watershed. The SOC content 

differed significantly with aspect, but differences among aspect were observed to a depth 

of 40 cm only, and not between 0-10 cm. This indicates the importance of sampling depth 

as surface sampling (0-10 cm) might not be able to detect important site differences. 

Among the various drivers that we investigated SOC variability (0-40 cm) was best 

explained by CMI in summer (2005 and 2006) and selected stand characteristics. No 

significant correlation was observed between site characteristics and SOC content 

between 0-10 cm. The relative uniformity of soil texture and small elevation gradient 

excluded them as important drivers in SOC variability in our study area. 

One of the important findings of this study was that SOC variability was 

influenced by climatic conditions. However, in our study we observed the opposite trend 

to the general observations by other researchers that SOC increased with precipitation 

and soil moisture. This is an indication that factors controlling SOC can be dependent on 

regional climatic conditions. In semiarid and arid ecosystems moisture is considered the 

main controlling factor for many biogeochemical processes including SOC storage. So in 

this study the higher SOC could be associated with decreased decomposition, lower soil 

respiration rates, and decreased microbial activity as a result of restricted soil moisture. 

Soil temperature might have explained some of the variability in combination with soil 

moisture, however due to some technical problems we were not able to include soil 

temperature as a driver variable in our regression analyses. The other important factors, 

which explained the majority of the variability, were associated with overstory structure 
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expressed by tree density and average tree diameter. These two factors can influence 

SOC accumulation by causing differences in litterfall input from overstory and 

understory, or indirectly by causing differences in soil microclimatic conditions that 

regulate SOC losses through decomposition. We did not measure litterfall input, 

understory vegetation, or decomposition rates among the aspects and sampling points so 

we cannot yet clearly indentify the relationship between SOC and stand structure. 

However, this study is important as a first step in quantifying spatial variability in SOC, 

more detailed studies of C input and loss rates and the role of understory vegetation in 

these processes is necessary to better understand SOC storage and dynamics in aspen 

ecosystems. 
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Table 4.1 General characteristics of the sampling sites along the four transects (0- 
40 cm).  
 

† Values are averaged across 4 depths (0-40 cm). 
Abbreviations: nd: not determined, v: very, gr: gravelly, L: loam, SL: Sandy loam LBA: Live 
basal area, BD: bulk density, RF: rock fraction 

 

 

ID Aspect Elevation 
m 

Slope 
% 

Texture † BD † 
g cm-3  

RF † 
% 

pH † LBA 
m2 ha-1 
 

Density 
# trees  
ha  -1 

1 North 2594 16 grL 1.02 15 6.3 19.6 955 
2 North 2605 9 nd 1.23 18 5.9 30.1 987 
3 North 2598 7 nd 1.26 22 6.5 32.6 510 
4 North 2595 18 L 1.19 9 6.1 21.6 446 
5 North 2594 15 nd 1.09 11 6.2 22.5 605 
6 North 2584 11 nd 1.00 14 6.2 23.6 637 
7 North 2583 38 grL 1.29 16 6.2 2.8 382 
8 North 2557 19 nd 1.33 10 5.8 nd nd 
9 North 2552 13 nd 1.21 8 6.2 2.7 96 
10 North 2534 12 nd 1.13 14 6.4 25.6 987 
11 North 2531 12 L 1.05 6 6.1 19.6 701 
12 South 2571 14 grL 1.35 31 6.2 23.2 1847 
13 South 2571 23 nd 1.05 32 6.8 16.7 1624 
14 South 2565 24 grL 0.97 30 6.6 13.5 892 
15 South 2568 18 nd 1.25 25 6.3 7.9 478 
16 South 2583 16 grL 1.56 30 6.3 18.7 1114 
17 South 2589 18 nd 1.51 35 5.9 3.8 573 
18 South 2597 14 grvSL 1.34 46 6.3 11.2 860 
19 South 2575 4 na na na 6.1 10.4 510 
20 East 2590 9 grvL 1.34 39 6.1 48.9 1847 
21 East 2563 34 nd 1.17 26 nd 9.7 860 
22 East 2565 46 grL 0.94 18 6.3 5.7 318 
23 East 2573 32 nd 1.23 22 nd 17.9 860 
24 East 2573 19 grL 1.03 20 5.6 17.9 637 
25 East 2526 18 nd 1.25 25 nd 17.4 605 
26 West 2583 16 L 0.86 <1 6.3 17.1 669 
27 West 2522 14 nd 1.14 <1 nd 11.8 733 
28 West 2546 15 L 0.99 <1 nd nd nd 
29 West 2550 13 nd 0.93 <1 5.9 17.9 733 
30 West 2550 10 nd 1.06 2 nd 17.2 669 
31 West 2554 11 L 1.10 2 nd 24.3 828 
32 West 2552 20 L 1.20 1 5.8 nd nd 
33 West 2544 26 nd 0.92 <1 nd 23.7 1114 
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Table 4.2 Selected properties of the soil pedons sampled in 2005 in each of the four 
transects. 
 
Horizon Depth 

(cm) 
Color 
(Dry) 

Field 
texture 

Clay 
(%) 

Rock  
fraction 

(%) 

Field 
pH 

CEC 
cmolc kg-1 

BS 
% 

North: Pachic Argixeroll 
A1 0-20 7.5YR 3/2 SL 12 5 5.8 15.4 100 
A2 20-40 7.5YR 3/4 L 14 6 6.0 7.2 100 
A3 40-53 7.5YR 4/4 L 18 6 6.2 9.6 100 
Bt1 53-80 5YR    4/6 L 21 5 6.6 8.2 100 
CBt 80-86 5YR    4/4 SL 11 6 6.8 8.3 100 

         
South: Pachic Argixeroll 

A1 0-19 10YR 5/4 GRL 13 16 5.8 15.3 100 
A2 19-43 10YR 5/4 GRL 13 16 5.8 11.5 98 
Bt1 43-57 10YR 6/4 CBSL 16 30 5.6 4.7 95 
Bt2 57-80 10YR 6/4 CBSL 17 22 5.5 2.6 91 
C 80-86 nd nd nd 65 6.0 2.8 95 
         

East: Typic Haploxeroll 
A1 0-14.5 10YR 3/2 GRSL 9 18 6.2 19.0 100 
A2 14.5-33 10YR 3/3 GRSL 8 22 5.9 nav nav 
AC 33-56 10YR 4/3  CBVSL 8 36 5.6 nav nav 
C 56-72 10YR 6/4 CBVSL 3 39 5.4 2.8 95 
         

West: Pachic Argixeroll 
A1 0-40 10YR 5/4 SL 7 5 5.9 10.8 100 
A2 40-65 7.5YR 5/4 SL 8 2 6.0 8.8 100 
Bt1 65-88 5YR 5/8 SIL 20 3 6.2 2.3 100 
Bt2 88-100 5YR 5/8 SIL 21 5 6.0 3.1 100 

Abbreviations: nd: not determined, nav: not available V: very, GR: gravelly, CB:cobbly L: loam, 
SL: sandy loam, SIL: silt loam . 
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Table 4.3 Winter and summer nutrient availability regime determined from the PRS-
probes installed along the four transects (N, n=4; S, n=4; W, n=3; E, n=3). 
 

Aspect North South East West P value † 

-------------µg/10 cm2/burial period----- 

Winter 2005-06 

Total N 138 366 434 319 p = 0.15 

Ca+2 2839 2970 2747 2761 p = 0.12 

Mg+2 169 181 133 172 p = 0.27 

K + 46 87 66 51 p = 0.45 

P 41 51 54 23 p = 0.67 

      

Summer 2006 

Total N 38 30 47 32 p = 0.77 

Ca+2 1357 1362 1960 1321 p = 0.25 

Mg+2 135 115 140 122 p = 0.65 

K + 306 235 249 206 p = 0.68 

P 13 14 13 7 p = 0.69 

 
    † P value indicates significant difference in nutrient regime among the four aspects 
    at p ≤ 0.10
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Table 4.4 Correlation coefficients between SOC at 10 cm and at 40 cm and site 
characteristics. 
 
Site Characteristics SOC 0-10 cm SOC 0-40 cm 

 r p n r p n 

SMI 05  -0.10 0.6 31 -0.39  0.03 † 30 

SMI 06  -0.13 0.5 31 -0.58 0.001 † 30 

CMI -0.16 0.4 31 -0.59 0.001 † 30 

Elevation (m) 0.11 0.5 31 0.19 0.5 30 

Slope (%) -0.05 0.8 31 -0.00 0.8 30 

LBA  (cm2) -0.02 0.9 28 0.00 0.9 27 

Density ( # of trees ha-1) 0.24 0.2 28 0.43 0.02 † 27 

ATD (cm) -0.21 0.3 28 -0.46 0.02 † 27 

 
Abbreviations: r: correlation coefficient, n: number of observations. † Values in bold are 
significant values at p≤ 0.10. 
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Fig 4.1 Map of the study location in Upper Frost Canyon at DLL. Upper image is an 
aerial photo where the Upper Frost Canyon watershed is delineated in red and the lower 
image represents the land cover of the area. 
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Fig. 4.2 Soil organic carbon storage in the top 0-10 cm and 0-40 cm mineral soil. Means 
with different letters are significantly different (p= 0.005).     
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   Fig. 4.3 Cumulative moisture index by aspect. Means with different letters are 

   significantly different (p=0.03).        

            

Fig. 4.3 Cumulative moisture index for 2005 and 2006 by aspect. Means with different 
letters are significantly different (p= 0.03).       
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      Fig. 4.4 Soil moisture index for the transect points during summer 2005 and  
     summer 2006. S: south, E: east, W: west, N: north.     
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      Fig. 4.5 Soil temperature along the four transects expressed in degree days. Means  
     with different letters are significantly different (p=0.04).    
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        Fig. 4.6 Tree density by aspect. Means with the same letter are not significantly 
       (p=0.3). 
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     Fig. 4.7 Average tree diameter by aspect. Means with different letters are significantly 

     different (p=0.01). 

 
 
 
 
 

0

5

10

15

20

25

30

South East West North

Aspect

A
ve

ra
g

e 
T

re
e 

D
ia

m
et

er
 (c

m
)

B

AB AB

A



 66
 
 
 
 
                      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
      Fig. 4.8 Regression analysis of SOC (0-40 cm) and cumulative moisture index (log 
      transformed).

y = -15.373x + 157.34

R2 = 0.16

0

50

100

150

200

250

0 1 2 3 4 5
Log_Cumulative Volumetric Moisture Index 

S
o

il 
O

rg
an

ic
 C

ar
b

o
n

 S
to

ra
g

e 

(M
g

 C
 h

a-1
)

p   =0.03



 67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.9 Regression analysis of SOC (0-40 cm) and tree density (square root 
transformed). 
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      Fig. 4.10 Regression analysis of SOC (0-40 cm) and average tree diameter (log 
      transformed). 
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CHAPTER 5 

   EVALUATION OF THE POTENTIAL EFFECTS OF CONIFER 

ENCROACHMENT: A PAIRED PLOT STUDY 

Introduction 

Aspen is the most widely distributed tree species in North America (Baker 1925; 

Little 1979). It is found in the upper Midwest and Lake States, across sub-boreal Canada 

and Alaska, in the Rocky Mountains from Canada through the US (Preston 1976). It is 

most abundant in the central provinces of Canada and in the western states of U.S. where 

75 % of the aspen occurs in Colorado (50%) and Utah (25%) (Jones 1985; Bartos 2001).  

Aspen-dominated forests in the western U.S. provide numerous ecosystem values 

such as forage for livestock, habitat for wildlife, landscape diversity, esthetics, and high 

water yield (DeByle and Winokur 1985; Bartos 2001). However, based on historical data, 

land area covered by aspen in the West has decreased 50% since European settlement 

(Bartos and Campbell 1998). The decline of aspen is mainly due to a combination of 

successional processes, fire suppression and long-term use of ungulates (Bartos and 

Campbell 1998, Bartos 2001). Currently aspen stands are categorized into three condition 

types (Bartos and Campbell 1998): a) stable, where aspen is considered properly 

functioning and self-replacing; b) successional to conifers, where disturbance forces such 

as fire are altered by humans giving shade tolerant species like conifers a marked 

advantage; c) decadent, where aspen clones are generally of a single age and very open, 

and mature trees are not replaced. 

The decline of aspen in the West is of great concern because it has been argued 

that the replacement of aspen by conifers is outside of the range of historical variation 
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and has been considered as an ‘‘environmental catastrophe’’(Club 20 1998). This 

forest transition is followed by loss of ecosystem functions that modify the sites 

dramatically. Such losses include changes in organic matter, moisture and temperature 

regime, water storage, etc. Various studies in the West have shown that aspen forests 

have higher organic matter content compared to adjacent stands containing other 

vegetation types such as conifers, shrubs and herbaceous vegetation (Hoff 1957; Tew 

1968; Jones and DeByle 1985). The implication is that vegetation shifts may potentially 

change SOC storage, and small changes in SOC are believed to have a significant impact 

on atmospheric CO2 concentrations (Kirschbaum 2000; Amundson 2001).  

The presence and distribution of specific vegetation types in a site can affect site 

characteristics such as soil moisture, which in turn can contribute to changes in C storage 

by affecting SOC dynamics. Studies in the West have suggested that conifer 

encroachment causes a decrease in water yield and streamflow (Gifford, Humphries, and 

Jaynes 1984; Bartos and Campbell 1998). A decrease in soil water storage can negatively 

affect understory vegetation (Bartos and Campbell 1998). LaMalfa and Ryel (2008) also 

indicated that the average shallow soil moisture is higher in aspen plots relative to 

adjacent conifer plots, especially in winter and spring, due to higher winter snow 

accumulation in aspen stand. Similar studies in Montana (Moore and McCaughey 1997) 

and hydrological modeling based on hydrological process research in Russia and Canada 

(Gelfan, Pomeroy, and Kuchment 2004) have also reported that snow accumulation is 15-

40% lower in conifers relative to deciduous or open stands, contributing to a lower soil 

moisture status of conifer stands.  
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Some have also postulated that conifer encroachment in aspen stands lowers 

soil temperature as a result of the shading effect by the conifers (Cryer and Murray 1992; 

Amacher et al. 2001). As microbial activity increases exponentially with increasing 

temperature (Edwards 1975), the decrease in temperature as a result of conifer 

encroachment can decrease microbial activity and decomposition, which would favor the 

accumulation rather than loss of soil organic matter. So the increase in conifer dominated 

lands can affect many important site characteristics that control C storage.  

As a result of high nutrient content and rapid decay of aspen leaves (Daubenmire 

1953), aspen are considered to be efficient nutrient pumps (Lutz and Chandler 1946; 

Jones and DeByle 1985) that enrich the surface horizons (Stoeckeler 1961). This 

contributes to the relatively high pH and higher base saturation of surface soils under 

aspen (Hoff 1957; Tew 1968; Morgan 1969; Alban 1982; Paré, Bergeron, and Camire 

1993), which might be related to high Ca requirements of this species (Alban 1982). It is 

hypothesized that when other vegetation types encroach aspen, a decrease of soil pH to 

6.0 or lower takes place accompanied by a decrease in nutrient levels, which are believed 

to suppress aspen regeneration (Cryer and Murray 1992). 

Conifer encroachment may also cause changes in soil forming processes and soil 

morphology. Cryer and Murray (1992) postulated that stable or permanent stands of 

aspen are uniquely found on one soil order, Mollisols. In contrast, soils developed under 

conifers in the Intermountain West are primarily Alfisols. However, there has been 

insufficient research done to draw broad conclusions that the occurrence of aspen stand is 

limited to one soil order and that the soil morphology and associated chemical and 

physical soil properties are always changed by conifer encroachment. 
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Twenty five percent of the aspen in the West is located in Utah and many 

researchers hypothesized that the conifer encroachment can have detrimental effect on 

these aspen stands. Our understanding of the impacts of conifer encroachment on soil 

properties such soil organic carbon (SOC) storage, soil morphology, and soil chemical 

properties and the implications of such changes are still unclear because not many 

specific studies have been done in the Western U.S. However, it is generally known that 

community shifts alter the chemical, physical, and biological properties of the soil 

through their occupancy, and that such alterations in turn contribute a change in the 

abundance of the dominant species that characterizes the succession (Fisher and Binkley 

2000).  

The main objective of this study is to evaluate the potential effects of conifer 

encroachment by characterizing the soil properties such as soil morphology, soil 

microclimate, SOC storage and soil chemical properties of aspen and conifer as 

representatives of end-point communities in northern Utah using a paired plot design. 

Materials and Methods 

Study Site 

            The study was conducted in three small catchments in Northern Utah, namely 

Upper Frost Canyon and Bear Canyon in Deseret Land and Livestock (DLL) (Figure 5.1) 

and at Sunset Ridge in T.W. Daniel Experimental Forest (TWDEF) (Figure 5.2). These 

study sites were chosen because they are suitable for paired plot vegetation study as both 

aspen and conifer vegetation are present in close proximity to each other. Geology was 

also similar among all sites. 
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           Deseret Land and Livestock is a privately owned ranch in Rich County, Utah, 

located at 41.10o N, 111.25o W. It occupies 88,800 ha, including 6,800 ha of Department 

of Interior Bureau of Land Management (BLM) and Utah State Lands (McMurrin 1991). 

Vegetation on the eastern half of the ranch, at an elevation of 1920 m, is dominated by 

sagebrush (Artemisia tridentata Nutt.) steppe with an understory of Western wheagrass 

(Pascopyrum smithii (Rydb.) A. Löve), needle and thread grass (Stipa comata Trin. & 

Rupr.), and Indian ricegrass (Oryzopsis hymenoides Roem. & Schult.). The western half 

of the ranch, at an elevation of 2652 m, is dominated by mountainous, semi-open brush 

and grasslands with scattered stands of aspen (Populus tremuloides Michx) and conifer 

mainly Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco). Mean annual precipitation is 

890 mm with 74% as snow accumulation; the wettest months are April, May, June and 

September. Mean annual air temperature is about 4.5 oC, mean winter temperature is 

about -4.9 oC and mean summer temperature is about 15.1 oC [as measured by a nearby 

SNOTEL site (Horseridge) with 10 years of data]. Even though Frost Canyon and Bear 

Canyon have contrasting geologies (Shakespeare 2006), the study plots were established 

on the same geological substate, namely the Wasatch conglomerate. The most common 

soil orders present are Mollisols, Entisols, Aridisols and Inceptisols (Washington-Allen et 

al. 2004). 

              The T.W. Daniel Experimental Forest is Utah State University’s facility, located 

at about 30 km North-East from Logan, Utah at an elevation of 2900 m (41.86o N and 

111.50o W). The annual precipitation is 950 mm with an 80% snow accumulation (Van 

Miegroet, Hysell, and Johnson 2000). Average low temperature is -10oC while highest 

monthly temperature is 14oC (Schimpf, Henderson, MacMahon 1980; Skujins and 
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Klubek 1982). The vegetation in the study area ranges from forb meadows and 

sagebrush to conifer forest, predominantly Engelmann spruce (Picea engelmannii Parry 

ex Engelm.), subalpine fir (Abies lasiocarpa (Hook.) Nutt) and lodgepole pine (Pinus 

contorta ex Louden), and aspen forest. The soil orders present are Mollisols and Alfisols 

(Skujins and Klubek 1982; Van Miegroet et al. 2005). They were formed in eolian 

deposits overlying residuum and colluvium from the Wasatch formation (Van Miegroet 

et al. 2005).  

 
Experimental Design 

Six plot pairs were established at DLL and TWDEF, two in Upper Frost Canyon 

(F1, F2) and two in Bear Canyon (B1 and B2) at DLL, and two at TWDEF (T1, T2) 

(Figure 5.1 and Figure 5.2). Areas were selected based on the proximity of aspen and 

conifer stands and similarity in elevation and slope. The plots were 20 m by 20 m (Figure 

5.3). To address whether soil properties under the two vegetation types were significantly 

different, we compared the soil physical and chemical properties, soil microclimate, and 

also stand characteristics such as tree density and live basal area. 

Soil Sampling and Analysis. In order to compare the morphology and genesis of 

soils under aspen and conifer, representative pedons (1 m wide and ≤ 1m depth) were 

manually excavated in each vegetation plot. The soil morphology of each pedon was 

described following standard methods including soil depth, color, structure, consistence 

and effervescence, pH and texture using the hand feel method (Soil Survey Division Staff 

1993). Interpretation of the soil properties was made using the field book (Schoeneberger 

et al. 2002). Master horizons with appropriate suffixes, diagnostic epipedons and 
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subsurface diagnostic horizons were assigned and the soil taxonomical sub-group was 

identified using the Keys to Soil Taxonomy (Soil Survey Staff 2003). Soil moisture 

regime was designated as xeric in all sites, whereas the soil temperature regime was 

estimated to be cryic in TWDEF and frigid in DLL. A full pedon description can be 

found in the Appendix (Tables A.5-A.16). 

Soil Organic Carbon Pools and Chemical Properties. Soil samples were taken 

from each genetic horizon using cores (5 cm diameter, 3 cm length). Samples were dried 

at 105oC, sieved (2-mm mesh), weighed and ground with mortar and pestle prior to 

analyses. Bulk density and percent gravel was determined using core method (Blake and 

Hartge 1986). The total C and N concentration of the fine fraction (<2mm) was 

determined using dry combustion using a CHN analyzer (Leco CHN 1000, Leco Corp., 

St. Joseph, MI). Because the soil pits were of variable depth, the total C content was 

normalized to the shallowest depth of 60 cm in order to have a consistent depth for 

comparison across all the plots. The total C content in the pedon was calculated as 

follows:  

Mass SOC (Mg/ha) = OC x BD x CF x D x [(1-(R/100)] 

Where  

OC = Organic Carbon Concentration (g C kg -1) 

  BD = Bulk Density (g cm-3);   

CF = unit conversion factor, 10-1;  

D =   Depth (cm);  

R = Rock Fragment Ratio by Mass (%) 
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Cation exchange capacity (CEC) and base saturation (BS) were also determined 

on the < 2mm fraction by extracting exchangeable base cations with 1 M NH4Cl at pH 

7.0 using vacuum extractor (Soil Survey Staff 1996) and analyzing extractant for cations 

using an inductively coupled plasma spectrometer (ICP) (Iris Advantage, Thermo 

Electron, Madison, WI); followed by extraction with 2 M KCl and analysis of extractant 

for NH4 using flow injection analyzer (Lachat Quickchem 8000, Flow Injection 

Analyzer). 

To evaluate the representativeness of C concentrations in the upper horizons of 

the pedon compared to the entire plot, additional mineral soil cores to a depth of 0-15 cm 

were taken from each plot at four random locations using a split core sampler. Sub-

samples were dried at 105oC, sieved (<2 mm) and C concentrations were determined by 

dry combustion using a CHN analyzer (Leco CHN 1000, Leco Corp., St. Joseph, MI) as 

described above. No separate bulk density was determined on these core samples, as they 

were used for other analysis such as SOC quality, which required fresh soils. In our 

calculation of SOC pools, we applied estimated bulk density obtained from the pedons. 

Soil Organic Pools (Forest Floor). Carbon content of the forest floor in the aspen 

and conifer plots was determined in fall 2007 by excavating one O horizon sample per 

plot using a 12.7-cm by 12.7-cm sampling frame. Samples were dried at 65oC, weighed, 

ground and samples and analyzed for C concentration using a CHN analyzer (Leco CHN 

1000, Leco Corp., St. Joseph, MI). 

Nutrient Availability. To assess the difference in the nutrient availability under the 

two vegetation types plant root simulators (PRS-probes; Western Ag Innovations, Inc., 

Saskatoon, Canada),  which consist of ion exchange membranes, were installed at 10 cm 
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depth at the four corners of each sub-plot (Figure 5.3). The nutrient regime of each plot 

was assessed by deploying four cation and four anion exchange strips during the summer 

(25 August 2006 - 27 October 2006) and winter time (27 October 2006 – 8 July 2007). 

The PRS-probes were removed from the field, cleaned and shipped to Western Ag 

Innovations for analysis of a suite of cations including Ca+2, K+, Na+, Mg+2, NH4
+-N; a 

suite of anions including NO-3-N, H2PO4
--P, B(OH)4

-, SO4
-2-S, Cl-, and a suite of metals 

including Cu+2,  Zn+2, Mn+, Fe+3 and Al+3-Al. For our purpose we focused on available 

Ca+2, K+, Mg +2 and inorganic N (NH4
+-N and NO-

3-N). 

Soil Microclimate. Soil moisture index of aspen and conifer stands was 

determined by installing twelve ECH2O moisture probes (Decagon, Pullman, 

Washington) at a depth of 20 cm at the center of each plot (Figure 5.3). Readings 

(millivolt) were taken using a hand-held device (ECH2O5 Check, Decagon Devices, Inc., 

Pullman, WA) in early June, mid July, August, and October of 2007. Field moisture 

readings (millivolt) were calibrated for gravimetric (Өm) and volumetric soil moisture 

(Өv) content in the lab using reconstructed soil cores where a known quantity of soil 

representative for each plot was subjected to drying and wetting cycles. The gravimetric 

soil moisture content based on core weight and the ECH2O readings were taken 

periodically. From this data, calibration curves relating ECH2O probe readings (mV) to 

Өv were constructed for each vegetation type and location in DLL (e.g., Figure 5.4 and 

Figure 5.5). For TWDEF, previously obtained calibration curves for aspen and conifers in 

the research areas were used (Van Miegroet unpublished data). In order to come up with 

a relative index of available water content (AWC) for the two vegetation types, a 

moisture threshold (MT) of 10% was set, which roughly corresponded to wilting point, 
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based on soil texture and tension-moisture relationships applied to a tension range of 

>1500 -10 KPa (Saxton et al. 1986) using the following equations: 

     Ψ = AθB      

     A = exp [a + b (%C) + c (%S)2 + d (%S)2(%C)] 100.0 

     B = e + f(%C)2+ g (%S)2 + g (%S)2(%C) 

    Coefficients 

    a = -4.396, b = -0.0715, c = -4.880x10-4, d = - 4.285 x 10-5,   e = -3.140,   

    f = -2.22 x 10-3    g = -3.484 x 10-5  

    Where: 

    Ψ = Matric Potential 

    θ = Volumetric water content (m3/m3) 

   %C = Percent Clay 

   %S = Percent Sand 

For each measurement date, available water content (AWC) was calculated by 

subtracting MT from the calibrated field readings. The cumulative soil moisture index 

(CMI) for the entire summer and early fall of 2007 (June - October) was calculated as the 

area under the curve representing periodic AWC values using the trapezoidal rule. 

The soil temperature of the sites was also measured using Stowaway Tidbits 

dataloggers (Onset Computer Corporation, Bourne, MA) installed in the center of the plot 

(Figure 5.3) below the soil surface at a depth of 10-15 cm. Tidbits were programmed to 

record soil temperatures at 2-hour intervals. Due to the malfunction of several tidbits, we 

were able to record temperature data only in FA1, BA1, BA2, TA2 and TC2 for the 

period 8 August 2006 through 13 June 2007, limiting our ability to compare soil 
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temperature regime between forest types (except for one plot pair at TWDEF). We 

divided the temperature data into four periods: late summer (8 August – 21 September 

2006), fall (21 September – 16 October 2006), winter (17 October 2006 – 3 May 2007) 

and spring-early summer (14 May – 13 June 2007), and we calculated the daily average 

temperature and standard deviation for the specified period. 

Stand Characteristics. Overstory vegetation cover of the two vegetation types was 

measured using a fixed area plot, where the diameter at breast height (DBH) of each 

individual tree > 5 cm was measured within the circular plot of a radius of 10 m. This 

information was used to calculate live basal area and tree density. The live basal area was 

divided by the number of trees in the fixed plot to derive average tree diameter, which we 

thought to be a better vegetation parameter in predicting the SOC patterns based on the 

findings on Chapter 4. 

Statistical Analysis 

All the data were analyzed using a one way analysis of variance (ANOVA) with a 

randomized complete block design using PROC MIXED, followed by pair-wise 

comparisons using Tukey-Kramer adjustment; and paired t-tests using PROC TTEST in 

SAS Release 9.1 (SAS Institute 2003). Differences were considered significant at p ≤0.1. 

Since both the ANOVA and paired t-tests yielded similar p-values, only one p-value is 

reported here. 

Prior to the ANOVA, normality tests were done and where needed, data were log 

and square root transformed to meet the normality criteria. In addition, regression 

analysis was used to determine the role of biotic and abiotic site characteristics on SOC 

(0-60 cm) under the two vegetation types.  
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Results and Discussion 

Soil Morphology  

 All soils under aspen were classified as Mollisols except one soil at TWDEF 

(TA1) that was classified as an Alfisols, whereas the soils under the conifers were 

classified as Alfisols (BC1, TC1, TC2), Entisols (BC2), and Inceptisols (FC1, FC3) 

(Figure 5. 6) (Table A.5 through Table A.16 in the Appendix). The soil classifications at 

DLL and TWDEF were consistent with the previously published results for the sites 

(Skujins and Klubek 1982; Washington-Allen et al. 2004; Van Miegroet et al. 2005). The 

one soil under aspen classified as an Alfisol at TWDEF had many similar characteristics 

to Mollisols, such as a thick A horizon, a mollic epipedon, and color values. However, 

the soil was characterized by a low pH (4.9) and a base saturation decreasing from 100% 

in the A horizon to about 39% in the deeper horizons and could therefore not be classified 

as a Mollisols. Basically in this case a few changes in the soil characteristics caused a 

shift in classification from Mollisols to Alfisols even though most of the characteristics 

were similar to Mollisols. The particular site also was not densely vegetated by aspen 

trees, which could attribute in small changes in the soil characteristics. 

 The O horizon thickness under conifers ranged from 0.5-10 cm, with O horizons 

under conifers generally thinner in DLL than in the TWDEF sites. This might be due to 

the difference in soil temperature regime between the two sites where soils at DLL are 

characterized by frigid soil temperature regime (warmer soil temperatures) while soils at 

TWDEF have cryic soil temperature regime. The differences in soil temperature can 

cause differential decomposition rates (Schlesinger 1997). The O horizon in aspen soils 
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was almost non-existent, likely reflecting the fact that aspen litter decomposes much 

more rapidly than the litter of western coniferous forest (Bartos and DeByle 1981). 

Similar results were also obtained in a study carried out in British Columbia where aspen 

litter decomposed more rapidly than in spruce (Prescott et al. 2000). Alban and Pastor 

(1993) also concluded that the soil organic matter decomposition rates were higher in 

aspen stands than in coniferous stands because of a relatively easily decomposable litter 

(Flanagan and Van Cleve 1983). However, in North Central Minnesota, Perala and Alban 

(1982) found that the half lives of organic matter and C under aspen were generally 

longer compared to jack pine and red pine and about the same when compared to spruce.  

The A horizon varied greatly in thickness among the two vegetation types; aspen 

soils had a pronounced A horizon which ranged from 38-53 cm in thickness while the A 

horizon under the conifers ranged from 5.5-34 cm (Figure 5.6). Across all sites thickness 

of the A horizon in aspen soils (43.3 ± 6.6 cm) was significantly greater than in conifer 

soils (16.2 ± 12.4 cm) (p=0.01). The deep A horizon under aspen soils together with other 

soil characteristics, such as color and high base saturation, qualifies the soils to be 

classified as Mollisols, which are characterized by a deep, dark, friable and relatively 

fertile surface horizon known as mollic epipedon (Buol et al. 2003). The conifer soils at 

TWDEF were further characterized by an accumulation of clay in subsoil with a 

characteristic Bt horizon, consistent with the observations by Van Miegroet et al. (2005). 

The soils in both sites were generally characterized by high base saturation (Table 5.1) an 

indication of limited moisture and restricted cation leaching (Van Miegroet et al. 2005). 

Cryer and Murray (1992) had earlier postulated that stable or permanent stands of 

aspen were found only on Mollisols, while soil developed under conifers in the 
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Intermountain West were primarily Alfisols characterized by a thick O horizon and 

relatively thin A horizon. Results from this study are largely in agreement with this 

conclusion in that almost all aspen soils were classified as Mollisols. However, only half 

of the pedons under conifers in our study were classified as Alfisols, with the others 

classified as Inceptisols and Entisols, which are basically less developed soils. The 

Inceptisols under conifer had an ochric epipedon and cambic subsurface diagnostic 

horizons while the Entisol had an ochric epipedon with no subsurface diagnostic horizon. 

Inceptisols and Entisol might in time develop into other soil orders depending on the 

factors controlling pedogenic processes (Buol et al. 2003).  

 
Soil Organic Carbon Pool and Distribution  

The soil organic C concentration decreased with depth in all aspen and conifer 

plots (Figure 5.7 and Figure 5.8), which was also consistent with findings from other 

studies at TWDEF, such as Schimpf, Henderson, and MacMahon(1980); and Van 

Miegroet et al. (2005). The C concentration in the upper mineral soil obtained from 

pedon (0-20 cm) and soil core (0-15 cm) samples from the plot was not significantly 

different in aspen (p=0.93) and in conifers (p=0.55 p=0.57); with an overall average of 

2.89 % ± 0.82% (CV=28.4 %) in aspen and 2.96% ± 1.13 (CV=38 %) in conifer. It can 

thus be concluded that C data obtained from the upper horizon in the pedons were indeed 

representative plot values. The soil C concentration under aspen was higher compared to 

the results obtained by Schimpf, Henderson, and MacMahon (1980), but it was within the 

range of values [3.46 % (1-4 cm) and 1.38 % (4-6 cm)] reported by Van Miegroet et al. 

(2005). Our aspen SOC concentrations were low compared to the values reported by 
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O’Neill, Kasischke, and Richter (2002) in Interior Alaska which were about 5.85 % in 

the upper soil surface. It might be associated with the colder temperature regime and thus 

slower decomposition leading to higher C concentration. Generally, the SOC 

concentration in conifers was higher than those reported in other studies (e.g., O’Neill, 

Kasischke, and Richter 2002; Van Miegroet et al. 2005). 

Results from the 0-15 cm cores show that SOC content in the upper soil was not 

significantly different among vegetation types (p=0.52) with an average of 49.5 ± 7.9 Mg 

C ha-1 (CV=16%) in aspen vs. 54.8 ± 20.3  Mg C ha-1 (CV=37 %) in conifers . Our results 

were within the range of published values for the upper 20 cm of many forest soils in the 

U.S (Franzmeier, Lemme, and Miles 1985, Grigal and Ohmann 1992). However, as 

hypothesized, the SOC content in the mineral soil to a depth of 60 cm was significantly 

higher (p=0.001) under aspen with an average of 96.2 ± 26.7 Mg C ha-1 (CV=27.7 %) for 

aspen vs. 66.9 ± 18.6 Mg C ha-1 (CV=27.8%) for conifers (Figure 5.9 and Figure 5.10). 

Differences in SOC content between aspen and conifer soils ranged from a high of 54.4 

Mg ha-1 in B1 to a low of 7.5 Mg ha-1 in T2 (Figure 5.9) This high variability in SOC 

content could reflect differences in potential SOC drivers such as soil microclimate and 

stand characteristics, as suggested by results from Chapter 4 that showed that much of the 

SOC variability was explained by stand characteristics and soil microclimate. The fact 

that these sites had similar parent material excluded this factor as a source of potential 

difference in SOC storage. The lack of significant differences in SOC content of the 

upper surface (0-15 cm) among the two vegetation types emphasized the importance of 

soil sampling depth, as was also observed in Chapter 4. The consistency of the results 

indicates that the surface sampling may not always yield very informative results. Most 
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of the time researchers consider the A horizon and the forest floor “dynamic” 

constituents of the soil and they routinely sample only at shallow depth (Hammer et al. 

1995); and many studies estimate forest soil C stocks from shallow samples (e.g., Brady 

and Weil 2002). However, several researchers (e.g., Fernandez, Rustad, and Lawrence 

1993; Hammer et al. 1995; Cromack et al. 1999; Harrison et al. 2003) found that most of 

the variability in SOC in their study occurred at deeper depths and recommended 

sampling at greater depth for unbiased results.  

The C estimates for aspen stands in the paired plots were lower compared to SOC 

estimates to a depth of 40 cm obtained from the stable aspen stands at Upper Frost in 

DLL (111.9 ± 29.1 Mg C ha-1) (Chapter 4). This may reflect the incipient effect of 

conifer encroachment, leading to a slight decrease in SOC, as many of aspen stands were 

not pure and already had some conifer saplings in them. Our total SOC under aspen (0-60 

cm) was higher compared to published values of 53 Mg C ha-1 at 0-130 cm (Van 

Miegroet  et al. 2005) in Northern Utah, which they described as “somewhat” of an  

outlier, as the site had lower aspen and conifer tree density compared to our study areas. 

SOC in our study area was lower than values reported by Grigal and Ohmann (1992) in 

the Lake States (123 Mg C ha-1) and O’Neill, Kasischke, and Richter (2002) in Interior 

Alaska (163 Mg C ha-1), which might be attributed to the very cold temperatures that 

slow down decomposition causing greater SOC accumulation. However, Alban and 

Perala (1992) in a study conducted in the Lake States reported SOC values that range 

from 52.1- 68.1 Mg C ha-1 to a depth of 50 cm, which was low compared to our values. 

Van Miegroet et al. (2005) reported a value for conifer (90 Mg C ha-1 at 0-150 cm) which 

was lower compared to our SOC estimates. 
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The SOC in the forest floor was significantly different (p=0.01) between the 

two vegetation types with an average of 7.7 ± 3.8 Mg C ha-1 (CV=50%) under aspen 

(Figure 5.11) and 58.6 ± 31.7 Mg C ha-1   (CV= 50%) under conifers (Figure 5.12). As a 

consequence, the total SOC (O layer + mineral soil) under the two vegetation types was 

not significantly different (p=0.19). The average total SOC (mineral + O-layer) under 

aspen was estimated to be 103.9 ± 24.5 Mg C ha-1 (CV= 23.6 %) vs. 125.5 ± 24.8 Mg C 

ha-1 (CV= 19.78%) under conifers. About 92.5 % of the SOC under aspen was stored in 

the mineral soil, consistent with a study in the Interior Alaska where 93 % of the total 

SOC under aspen was stored in the mineral soil (O’Neill, Kasischke, and Richter 2002). 

In contrast only 53 % of the total SOC was located in the mineral soil under the conifers. 

Total SOC under conifers was within the range of reported values under white spruce in 

the Interior Alaska (129.2 Mg C ha-1) (O’Neill, Kasischke, and Richter 2002), low 

compared to published values in the Lake States (181 Mg C ha-1) under balsam fir (Grigal 

and Ohmann 1982) and somewhat, higher compared to an earlier study at TWDEF (Van 

Miegroet et al. 2005). The lack of significant difference in the total SOC content (mineral 

+ O-layer) among aspen and conifer soils could be an indication of the possible 

redistribution of SOC throughout the profile rather than a true difference in SOC content, 

in aspen soils most of the SOC is stored in the mineral horizon, while in conifers most of 

the SOC is stored in the O-layer. However, it should be noted that O horizon estimates 

were deduced from a few small samples, and more extensive sampling of the O horizon is 

needed to verify these findings.   

As microclimate and stand characteristics proved important in determining SOC 

content in pure aspen stands (see Chapter 4), these biotic and abiotic site factors were 
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also compared among the vegetation types and as potential drivers for differences in 

SOC accumulation. 

 
Soil Microclimate 

Statistical analysis of the CMI showed that aspen soils had greater moisture 

content than adjacent conifer soils in summer 2007 (p=0.09) (Figure 5.13- 5.15). In 

another study at DLL, LaMalfa and Ryel (2008) similarly observed that the average 

shallow soil moisture content was higher in the aspen plots relative to the adjacent conifer 

plots. This was attributed to the soil column characteristics such as porosity and depth 

where aspen soils had higher porosity and higher water holding capacity relative to 

conifers (LaMalfa and Ryel 2008). Similar studies in Montana (Moore and McCaughey 

1997) and hydrological modeling based on hydrological process research in Russia and 

Canada (Gelfan, Pomeroy, and Kuchment 2004) also reported that snow accumulation 

was 15-40% lower in conifers relative to deciduous or open stands, contributing to the 

lower soil moisture status of the conifers relative to the aspen stands, especially following 

snowmelt in late spring. In contrast, Olsen and Van Miegroet (unpublished data) 

observed that conifers were less dry in summer compared to the other vegetation types 

including aspen; this indicates that moisture can be site specific, and as result can be hard 

to use it as a good explanatory metric.  

We tried to assess the soil temperature regime of the area but unfortunately due to 

failure of the equipment a complete temperature data set for all the plots could not be 

obtained. However, salvaged data from four aspen and one conifer stand showed that the 

average daily soil temperature under aspen was 11.8oC in late summer, 3.9o C in fall,  
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-0.46 oC in winter, and 8.1 oC in spring-early summer (Figure 5.16 and Figure 5.17) 

while corresponding average soil temperatures in the conifer stand were  9.7o C, 3.7o C, 

0.1oC and 5.720 C in late summer, fall, winter and spring-early summer, respectively. 

This limited soil temperature data suggest that aspen soils might be slightly warmer, 

especially in spring and summer. This is consistent with the Olsen and Van Miegroet 

(unpublished data), where conifers had lower and less variable temperature. 

 
Soil Nutrient Regime 

Results obtained from the PRS-probes represented the dynamic nutrient 

availability index during summer and winter and are summarized in Table 5.2. There was 

no significant difference in nutrient availability between the two vegetations during either 

season, except for manganese (p=0.01) and sulfur (p=0.09), which were somewhat higher 

in conifer soils in summer. Total N availability was marginally significantly higher in 

aspen soils in winter (p=0.14) (Table 5.2). The average C/N ratio of soils in aspen and 

conifer plots was 13 and 11 respectively. Across all soil depths and vegetation types the 

average BS in DLL was  94% ± 13.5 % (CV=14.1%), while in TWDEF the average BS 

was 72 % ± 18.5 % (CV=25.7%). All the plots in DLL and TWDEF had fairly low CEC 

values that decreased with depth, but showed no significant difference among the two 

vegetation types (Table 5.1). Our BS and CEC results fell within the range of published 

values by Schimpf, Henderson, and MacMahon (1980). None of these soil characteristics 

showed significant differences among vegetation type. 

 Alban (1982) in a research carried out in Minnesota found large nutrient 

differences in the surface horizons of aspen and conifers. Especially Ca was higher in the 



 88
forest floor and upper horizons of aspen than under conifers, but total ecosystem Ca 

did not differ among species. This might reflect the redistribution of Ca (cation pumping) 

associated with the higher Ca requirements of hardwoods. Our data also showed cation 

redistribution where most of the cations were in the upper surface and decreased with 

depth (Table 5.3) However, Bartos and Amacher (1998) in a Utah study did not report 

any significant differences in nutrient regime between aspen and mixed aspen/conifer 

stands (except for a slight difference in exchangeable K), and they explained the pattern 

as due to moisture restrictions which lead to decreased rates of eluvation (Bartos and 

Amacher 1998). Our results were consistent with these findings. 

 
Stand Characteristics 

 The stand characteristics of the two vegetation types are summarized in Table 5.4. 

The LBA of the aspen and conifer was not significantly different (p=0.48). In contrast 

number of trees per hectare (density) was significantly higher (p=0.05), and the average 

tree diameter significantly lower (p=0.02) in the aspen plots. These indicated an 

important difference in forest structure between aspen and conifers, with the latter 

composed of fewer larger trees, while the aspen stands were densely vegetated with 

smaller trees. We found that stand structure, rather than LBA was an important driver of 

SOC content under pure aspen (see Chapter 4). 

Site characteristics and SOC in the Paired Plots 

 To see whether the same biotic and abiotic factors that controlled SOC in pure 

aspen (see Chapter 4) were the drivers for SOC variability in the paired plots, we 

performed several regression analyses. SOC content across locations and vegetation types 
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increased with CMI, explaining 25% of the variability in SOC content (R2=0.25 

p=0.09) (Figure 5.18).  This was the opposite trend from the one observed in the transect 

study (Figure 4.8). The SOC content increased with tree density (R2=0.18, p=0.16) and 

decreased with average tree diameter (R2=14, p=0.23), but these correlations were not 

statistically significant (Figure 5.19 and Figure 5.20). Both the transect (Chapter 4) and 

the paired plots study suggested similar abioitic and biotic drivers for SOC with SOC 

changing mainly as a function of stand characteristics and soil moisture. The relationship 

between SOC and stand characteristics was consistent in both studies; however, in the 

paired plot study, the relationship between SOC and CMI followed an opposite trend, 

where higher SOC in the mineral soil was associated with higher soil moisture conditions 

in aspen, opposite to findings in the transect study. However, in the paired plot we had 

different vegetation types that influenced soil microclimate in a different ways. Another 

reason for the apparent inconsistency could lie in the data set. Moreover, in an 

unpublished study (Olsen and Van Miegroet) observed that conifers had higher soil 

moisture content and suggested that soil moisture content under conifer is not a limiting 

factor for soil respiration rates (could be used as for the inverse of SOC storage) 

compared to other characteristics. The apparently contradictory relationship between 

SOC and CMI in transect and paired plots studies could be an alternative indication of the 

strong effect of the different vegetation types. In the first study we dealt only with one 

vegetation type and CMI had more power explaining the variability, while in the paired 

plots CMI was not the only factor changing as the study involved different vegetation 

types. CMI vary with vegetation type, location, and other site characteristics, and in this 

study CMI could function more as a proxy for vegetation type 
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 Generally, the differences in SOC under aspen and conifer in the mineral soil 

could be explained by three different case scenarios: 

i) Higher input (litterfall) of aspen ecosystems compared to conifers. We did not assess 

the annual litterfall input under the two vegetation types directly, but probably the 

deciduous nature of aspen might have contributed to larger annual C inputs. 

ii) There might be a difference in SOC quality. Even though researchers reported that 

conifer forest produce litter that decomposes slowly compared to aspen (Prescott et al. 

2000), other studies such as those by Hongve, Van Hees, and Lundström (2000) showed 

that conifers tend to produce more soluble organic acids, which could lead to greater 

mobility and loss of soluble OC while aspen litterfall generated more stable humus and 

recalcitrant SOC. This is confirmed by the occurrence of mollic epipedon under aspen, 

which was as a result of the formation of stable humus during the melanization process, 

characteristic for Mollisols. In addition, Olsen and Van Miegroet (unpublished data) 

found in a laboratory study that conifer soil respired more CO2 per unit soil C relative to 

aspen soils, indicative of lower decomposability of SOC under aspen relative to conifers, 

possibly associated with the stabilization of SOC in the mollic epipedon under aspen. 

iii) Differences in vegetation cover can also affect soil microclimate (soil moisture and 

soil temperature), which in turn affects decomposition rates (Schlesinger 1997).  

iv) The different vegetation types result in a change of understory vegetation that can also 

potentially also contribute to differences in C inputs in and soil microclimate.  

Conclusion 

The results from this comparison of end-member communities indicate that there 

are differences in the morphology, microclimate, and some chemical properties of soils 
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under aspen vs. conifer cover. This can be used as an indication that as conifer 

encroaches aspen stands changes in pedogenesis can occur, possibly associated with the 

changes in microclimate and amount and nature of C inputs. However, it is not clear how 

thinning of the A horizon and loss of mollic epipedon take place. Results indicate there is 

no significant difference in the nutrient regime under the two vegetation types except for 

Mg and S. Based on this and other studies (e.g., Bartos and Amacher 1998) it is likely 

that the nutrient regime will not directly be affected by conifer encroachment in areas that 

are moisture-restricted; however this trajectory may be greatly different under prevailing 

climatic conditions. 

 The amount of SOC in the mineral soil  is different among the two vegetation 

types, however differences are not observed in the top soils, which is consistent with the 

transect study (Chapter 4). Differences between vegetation types become statistically 

significant only if deeper soil columns are considered, which shows the importance of 

sampling depth as many researchers focus on the surface layers and sample accordingly. 

With conifer encroachment there will be a buildup of the O horizon as a result of the less 

decomposable litter and a possible upward redistribution of SOC in the soil. The total 

SOC including O-layer is not significantly different. Changes in vegetation from aspen to 

conifers may thus influence mineral soil SOC and/or the distribution of SOC in the 

profile, changing the morphology from Mollisols to Alfisols. However, in this study we 

had one representative sample of forest floor for each plot, so more extensive sampling of 

O layer will substantiate that redistribution of SOC is indeed occurring.  

Most of the SOC under conifer is in the forest floor, which is considered as 

“unprotected” (Garten et al. 1999) and has the greatest potential to respond to changes in 
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land use, affect the global C cycle (Harrison, Broecker, and Bonani 1993), and can also 

be susceptible to loss by fire (Van Miegroet et al. 2005). However, the SOC under aspen 

is allocated mainly in the mineral soil where it is considered “protected” through the 

organo-mineral complexes. In this case conifer encroachment can cause SOC to become 

more vulnerable by accumulating most of the SOC in the forest floor and producing more 

easily decomposable C in the mineral soil. 

The soil moisture index is another important ecosystem property that can be 

greatly influenced by conifer encroachment, as indicated by greater CMI under aspen 

relative to conifers. So it is likely that following conifer encroachment change in soil 

moisture may occur, which could adversely affect many biogeochemical processes. In 

addition, researchers have reported that the decrease in water following conifer 

encroachment can affect understory vegetation, stream flow, many terrestrial ecosystem 

processes, fire disturbances, forage, and wildlife habitat. Based on the data that we have 

available it is hard to draw concrete conclusions about drivers of differences in SOC 

among the two vegetation types. This study suggests that stand characteristics, soil 

moisture and possibly soil temperature may play a role in changing SOC content in 

mineral soil with conifer encroachment. The strong influence of forest characteristics 

(composition and structure) on SOC is evident from both studies. It is important to note 

that vegetation may have a direct or indirect influence on SOC, as it influences both the 

amount and quality of C inputs and greatly affects soil microclimate, which in turn 

controls SOC dynamics. To fully understand and explain the reasons behind the lower 

amount of SOC under conifers it is important to closely look at the amount of annual 

litterfall input, decomposition rates and mechanisms of SOC stabilization. In addition 
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more complete temperature data for both stands together with the available moisture is 

needed to more fully explore the role of microclimate in SOC variability. There is no 

doubt that SOC changes as a function of multiple factors; consequently, a detailed 

characterization of each ecosystem type is important to gain insight in the various 

relationships between SOC and the so called drivers. 

Moreover, there are many unknowns that need further study to increase our 

understanding of how and in what characteristics the two vegetation types (end-point 

communities) differ and how ecosystem functions will change as the conifer encroaches 

aspen and occupies the site. Despite these challenges, this study fills some of the gaps in 

aspen/conifer encroachment studies and offers insights into the potential impacts of 

conifer encroachment, such as the changes in distribution of SOC, change in soil 

moisture content and other properties.
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Table 5.1 Soil morphology, chemical and physical properties of the pedons 
 

Horizon Depth 
(cm) 

Color 
(Dry) 

Field 
texture 

RF 
VL 
(%) 

Clay 
(%) 

Mass 
>2 mm 
( %) 

Bulk Density 
(g/cm3) 

Field 
pH 

C/N CEC 
cmolc/kg 

BS 
% 

FA1 (Aspen in Upper Frost Canyon) Typic Haploxeroll 
A1 0-14 10YR 5/4 L 6 12 0.4 1.14 6.0 14 6.8 92 
A2 14-38.5 10YR 5/4 L 11 13 2.8 1.23 5.8 12 4.8 100 
Bw1 38.5-58.5 10YR 5/4 SIL 13 15 1.1 1.47 5.8 13 3.6 98 
Bw2 58.5-83 10YR 6/4 SIL 8 16 0.9 1.26 5.6 7 2.2 96 
BC 83-100 10YR 6/4 SIL 12 11 2.0 NA 5.5 NA NA NA 
 
FC1 (Conifer in Upper Frost Canyon) Humic Haploxerepts 
Oi 0-1 NA NA NA NA NA NA NA  NA NA 
A 1-12.5 7.5YR 2/2 SIL 9 12 2.0 0.80 5.9 9 14.8 100 
Bw1 12.5-46.5 10YR 6/4 SIL 8 9 1.7 1.32 5.8 12  5.7   83 
Bw2 46.5-67 10YR 6/4 SIL 7 13 0.6 1.16 5.6 10  1.6 100 
Bw3 67-95 10YR 6/4 SIL 7 14 0.4 1.23 5.3 9  1.2   63 
 
FA2 (Aspen in Upper Frost Canyon) Pachic Haploxerolls 
A1 0-16.5 10YR 2/2 LS 15 5 3.7 0.84 5.3 16 15.9 92 
A2 16.5-38 10YR 5/3 SL 13 7 2.9 1.16 4.9 13 10.1 100 
A3 38-60 10YR 5/3 GRSL 18 8 5.5 1.10 4.6 11 6.2 100 
C 60-90 7.5YR 6/4 GRSL 30 7 18.9 1.47 5.7 8 1.8 100 
 
FC2 (Conifer in Upper Frost Canyon) Humic Haploxerepts 
Oi 0-2 NA NA NA NA NA NA NA NA NA NA 
A 2-7.5 7.5YR 5/4 L 25 14 15.4 1.26 5.8 17 6.8 100 
Bw1 7.5-36 7.5YR 5/6 GRL 20 15 4.3 1.10 5.5 15 4.5 98 
Bw2 36-66 7.5YR 5/4 SIL 15 10 7.9 1.28 5.6 15 2.8 100 
C 66-100 5YR 6/6 L 20 12 ND ND 5.8 ND 1.6 100 
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Table 5.1. Cont'd 
 
Horizon Depth 

(cm) 
Color 
(Dry) 

Field 
texture 

RF 
VL 
(%) 

Clay 
(%) 

Mass 
>2 mm 
( %) 

Bulk Density 
(g/cm3) 

Field 
pH 

C/N CEC 
cmolc/kg 

BS 
 % 

 
BA1 (Aspen in Bear Canyon) Pachic Haploxerolls 
A1 0-25.5 10YR  5/4 L 4 8 0.8 0.91 6.2 17 12.4 100 
A2 25.5-50.5 10YR  5/4 L 3 10 0.7 1.00 6.1 13  6.2 100 
Bw1 50.5-70 7.5YR 4/6 L 2 16 0.6 1.13 5.7 12  4.4 100 
BC 70-100 7.5YR 4/6 L 1 14 0.3 1.30 5.8 10  3.1 100 
 
BC1 (Conifer in Bear Canyon) Typic Haploxeralfs 
Oi 0-0.5 NA NA NA NA NA NA NA NA NA NA 
A 0.5-7.5 10YR  4/3 L 7 12 0.6 0.84 6.3 18 18.2 100 
AB 7.5-32 7.5YR 4/4 L 6 14 0.3 1.08 5.9 15  7.2 100 
Bw1 35-52 7.5YR 5/6 SL 4 19 1.9 1.16 6.2 11  3.2 100 
Bt 52-81  5YR   6/6 SCL 3 25 1.3 1.33 6.0 8  3.2 100 
 
BA2 (Aspen in Bear Canyon) Typic Haploxerolls 
A 0-40 10YR 5/3 SL 13 10 1.0 1.05 5.2 13 6.5 100 
Bw1 40-50 10YR 7/3 SL 9 8 0.1 1.40 5.5 9 1.7 100 
Bw2 50-80 10YR 7/3 LS 15 13 4.2 1.46 5.8 12 1.5 100 
C 80-100 10YR 6/3 GRLS 14 14 0.3 1.42 5.4 9 1.7   94 
 
BC2 (Conifers in Bear Canyon) Typic Xerorthents 
Oi 0-1 NA NA NA NA NA NA NA NA NA NA 
A1 1-7.5 10YR 6/4 SIL 7 10 3.3 1.16 5.5 14 7.7 94 
A2 7.5-35 7.5YR 6/4 SIL 8 8 0.3 1.18 5.4 10 4.4 76 
C1 35-42.5 7.5YR 6/4 SIL 9 13 0.2 0.87 5.3 10 1.8 82 
C2 42.5-60 2.5YR 7/8 GRSIL 3 14 25.8 1.73 5.4 10 4.8 41 
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Table 5.1. Cont'd 
 

Horizon Depth 
(cm) 

Color 
(Dry) 

Field 
texture 

RF 
VL 
(%) 

Clay 
(%) 

Mass 
>2 mm 
( %) 

Bulk Density 
(g/cm3) 

Field 
pH 

C/N CEC 
cmolc/kg 

BS 
% 

 
TA1 (Aspen in T.W. Daniel Experimental Forest) Mollic Haplocryalf 
A 0-40 10YR  4/4 GRSCL 18 21 22.6 1.05 4.9 8 11.3 100 
Bt1 40-68 7.5YR 4/6 GRSICL 15 30 6.6 1.11 4.9 9 19.0 39 
Bt2 68-80 5YR    4/6 GRVSICL 35 27 4.2 1.19 4.7 8 18.4 40 
 
TC1 (Conifer in T.W.Daniel  Experimental Forest) Typic Haplocryalfs 
Oi 0-10 NA NA NA NA NA NA NA NA NA NA 
A 10-40 10YR 5/4 GRSL 20 17 19.5 0.86 5.2 16 8.7 84 
Bt1 40-73 10YR 4/4 GRSCL 18 25 14.4 1.01 5.6 7 8.3 82 
Bt2 73-100 5YR 5/6 GRSCL 38 21 44.2 1.21 5.4 9 9.3 83 
 
TA2 (Aspen in T.W.Daniel Experimental Forest) Pachic Haplocryolls 
A1 0-8 10YR 5/3 GRSL 18 10 34.8 0.76 5.3 19 13.8 88 
A2 8-53 10YR 5/3 GRSL 20 9 12.2 1.14 5.4 10 6.8 70 
C 53-95 7.5 YR 6/4 CBXLS 65 7 29.0 1.17 5.5 9 4.2 67 
 
TC2 (Aspen in T.W. Daniel Experimental Forest) Typic Haplocryalfs 
Oi 0-4 NA NA NA NA NA NA NA NA NA NA 
A 4-13.5 10YR 5/4 GRSIL 19 18 19.5 0.86 5.4 18 21.4 73 
Bt1 13.5-35 10YR 6/3 GRSIL 15 22 14.4 1.01 6 15 19.2 77 
Bt2 35-90 7.5YR 4/6 VGRCL 37 57 44.2 1.21 5.5 9 5.23 52 

Abbreviations: NA= not applicable, ND= not determined L= loam, SIL= silt loam, SL= sandy loam, LS= loamy sandy, SCL= sandy clay loam, 
SICL= silty clay loam, C= Clay, GR= gravelly, GRV= very gravelly, CB= cobbly, CBX= extremely cobbly , VL= volume CEC= cation exchange 
capacity, BS= base saturation 
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Table 5.2 Estimated winter and summer dynamic nutrient regime of the paired plots. 
 

Nutrient Aspen Conifer P value 
---------------- µg/10cm2/burial ---------------- 

Winter 07 
Total N 205.77 62 0.14 

Ca+2 2279.47 2364.97 0.69 
Mg+2 173.75 195.12 0.36 

Log(K+) 3.88 3.72 0.70 
P 21.06 17.92 0.48 

Log(Mn) 1.34 1.70 0.19 
Log(S) 3.12 2.90 0.77 

Summer 07 
Total N 154.6 123.75 0.54 

Ca+2 1796.0 1634.97 0.58 
Mg+2 166.87 154.60 0.43 
K+ 141.43 187.77 0.41 
P 8.1 12.5 0.28 

Log(Mn) 0.04 1.13 0.01† 
S 9.08 31.67 0.09† 

Total N corresponds to the summation of ammonium- and nitrate-N. † Values in bold are 
significant values at p≤ 0.10. 
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Table 5.3 Exchangeable cation pools with depth under the two vegetation types. 
Abbreviations: NA= Not available, VL= Very low. 
 
Horizon Depth 

 
Ca+2 K+ Mg+2 

 ----cm----- -------------Kg/ha------------- 
 

FA1 
A1 0-14 1,668 202 130 
A2 14-38.5 2,347 270 172 
Bw1 38.5-58.5 1,698 279 132 
Bw2 58.5-83 1,049 133 94 
BC 83-100 NA NA NA 
Normalized Sum (0-60 cm) 5,778 759 440 

 
FC1 

Oi 0-1 NA NA NA 
A 1-12.5 2,494 238 106 
Bw1 12.5-46.5 3,593 340 300 
Bw2 46.5-67 740 VL 52 
Bw3 67-95 419 VL 31 
Normalized Sum (0-60 cm) 6,575 638 441 

 
FA2 

A1 0-16.5 3,570 388 148 
A2 16.5-38 4,359 441 158 
A3 38-60 3,007 175 116 
C 60-90 1,537 29 85 
Normalized Sum (0-60 cm) 10,937 1,004 422 

 
FC2 

Oi 0-2 NA NA NA 
A 2-7.5 1,060 123 69 
Bw1 7.5-36 2,267 147 147 
Bw2 36-66 624 14 43 
C 66-100 NA NA NA 
Normalized Sum (0-60 cm) 3,951  284  259  

 
BA1 

A1 0-25.5 5,041 533 288 
A2 25.5-50.5 3,232 200 164 
Bw1 50.5-70 1,997 100 126 
BC 70-100 2,636 175 178 
Normalized Sum (0-60 cm) 9,246  782            513  
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Table 5.3 Cont’d. 
 
Horizon Depth 

 
Ca+2 K+ Mg+2 

 ----cm----- -------------Kg/ha ------------ 
BC1 

Oi 0-0.5 NA NA NA 
A 0.5-7.5 1,977 188 7 
AB 7.5-32 3,471 476 165 
Bw 32-52 1,783 173 120 
Bt 52-81 3,160 163 254 
Normalized Sum (0-60 cm) 6,316  878 358 
 

BA2 
A 0-40 4,727 648 287 
Bw1 40-50 421 26 32 
Bw2 50-80 1,213 155 92 
C 80-100 828 7 57 
Normalized Sum (0-60 cm) 5,552   725  349  

 
BC2 

Oi 0-1 NA NA NA 
A1 1-7.5 912 120 67 
A2 7.5-35 1,850 144 154 
C1 35-42.5 165 VL 17 
C2 42.5-60 798 2 90 
Normalized Sum (0-60 cm) 3,724  267  328 
 

TA1 
A 0-40 6,918 987 1,017 
Bt1 40-68 3,273 499 563 
Bt2 68-80 1,675 201 281 
Normalized Sum (0-60 cm) 8,512 1,344 1,419 
 

TC1 
Oi 0-10 NA NA NA 
A 10-40 2,792 2,792 2,792 
Bt1 40-73 3,453 3,453 3,453 
Bt2 73-100 2,921 2,921 2,921 
Normalized Sum (0-60 cm) 5,931 1,083 514 

 
TA2 

A1  1,087 152      68 
A2  3,749 603 331 
C  1,770 381 204 
Normalized Sum (0-60 cm) 5,131 818 434 
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Table 5.3 Cont’d. 
 
Horizon Depth 

 
Ca+2 K+ Mg+2 

 ----cm----- -------------Kg/ha ------------ 
TC2 

     
Oi 0-4 NA NA NA 
A 4-13.5 1,993 74 207 
Bt1 13.5-35 4,701 774 547 
Bt2 35-90 19,936 1,283 3,088 
 
Normalized Sum (0-60 cm)    17,206      1,525     2,382  
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Table 5.4 Stand characteristics in the paired plots. † Values in bold are significant values 
at p≤ 0.10. 
 

Site ID Vegetation 
type 

LBA 
(m2/ha) 

Density 
(# of tress ha-1) 

Average tree diameter 
(cm) 

F1 Aspen 21.9 478 24.2 
Conifer 46.1 573 32.0 

F2 Aspen 18.3 892 16.7 
Conifer 36.4 350 36.4 

B1 Aspen 41.5 1561 18.4 
Conifer 37.3 1274 19.3 

B2 Aspen  25.8 1242 16.3 
Conifer 34.2 860 22.5 

T1 Aspen 53.0 2197 17.5 
Conifer 34.8 637 26.4 

T2 Aspen  25.4 1227 17.5 
Conifer 25.2 541 24.3 

  p = 0.48 p = 0.05 † p = 0.02 † 
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Fig. 5.1 Location of the paired plots in the watersheds at Deseret Land and Livestock. 
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Fig. 5.2 Aerial photo with the delineated watershed and the paired plots at TWDEF. 
 
 
 
 



 104
 

 
 
 
Fig. 5.3 Schematic presentation of how the plots are setup with corresponding 
instruments.  
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      Fig. 5.4 Soil moisture calibration curves for the aspen (a) and conifer (b) soils in 
      Upper Frost at DLL, relating mV reading to Өv (%). 
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           Fig. 5.5 Soil moisture calibration curves for the aspen (a) and conifer (b) soils in 
           Bear Canyon at DLL relating mV to Өv (%). 
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Fig. 5.6 Typical pedon under aspen (A) and conifer (B). 
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       Fig. 5.7 Carbon concentration along soil depth in aspen soils. Solid symbols 
       represent pedon samples; open symbols represent soil cores (0-15 cm). Error bars 
       represent standard deviation among the soil core samples and pedon samples. 
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       Fig. 5.8 Carbon concentration along soil depth in conifer soils. Solid symbols     
       represent pedon samples; open symbols represent soil cores (0-15 cm). Error bars  
       represent standard deviation among soil core samples and pedon samples.
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 Fig. 5.9 Soil organic carbon storage in mineral soil in aspen and conifer pedons 
            (0- 60 cm). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
  Fig. 5.10 Average SOC content in the mineral soil (0-60 cm) aspen and conifer. The 
  five lines in the box plot represent lowest observation, lower quartile, median, upper 
  quartile and the largest observation.   
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Fig. 5.11 Total soil organic carbon storage (forest floor + mineral soil) in aspen. 
 
 
 
 

 
  Fig. 5.12 Total soil organic carbon storage (forest floor + mineral soil) in conifer. 
  
 
           
 

20

40

60

80

100

120

140

160

F1 F2 B1 B2 T1 T2

Sites

S
O

C
 (M

g
 C

 h
a-

1)

O layer

Mineral Soil



 112
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     Fig. 5.13 Cumulative moisture index (summer 07) presented by area under the curve 
     in aspen and conifer in Upper Frost Canyon. 
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Fig. 5.14 Cumulative moisture index (summer 07) presented by area under the 
curve in aspen and conifer in Bear Canyon.  
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Fig. 5.15 Cumulative moisture index (summer 07) presented by area under the 
curve in aspen and conifer in TWDEF.      
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    Fig. 5.16 Average daily temperature in aspen (FA1, BA1 and BA2) at DLL. Error bars 
    represent standard deviations about the average daily temperature variability within the 
    seasons LS: Late summer, F: Fall, W: Winter, S-ES: Spring-Early Summer.  
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Fig. 5.17 Average daily temperature in aspen (TA2) and conifer (TC2) at TWDEF. Error 
bars represent standard deviations about the average daily temperature variability within 
the seasons LS: Late summer, F: Fall, W: Winter, S-ES:Spring-Early Summer.  
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     Fig. 5.18 Regression analysis of SOC (0-60 cm) and cumulative moisture index. 
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    Fig. 5.19 Regression analysis of SOC (0-60 cm) and tree density. 
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Fig. 5.20 Regression analysis of SOC (0-60 cm) and average tree diameter.
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CHAPTER 6 

 
SUMMARY AND CONCLUSIONS 

 
 Vegetation has a strong influence on soil biogeochemical processes including 

SOC. A change of vegetation can cause subsequent changes in SOC storage and 

dynamics, which is considered as a vital component of soil affecting many other physical, 

chemical and biological processes in the soil.  

In the Intermountain West, aspen has declined due to a combination of 

successional processes, fire suppression and long-term use of ungulates. However, the 

decline of aspen related with conifer succession is of great concern in Utah. The potential 

impacts following conifer encroachment have not been explicitly studied, so it is essential 

to look at the ecosystem properties of the two vegetation types as representative of end-

point communities. 

 To address this issue we conducted a two-tier study; in phase one we estimated 

SOC storage under pure aspen stands and its variability, in phase two we compared SOC 

among aspen and conifer stands as representatives of end-member communities. In both 

study phases we evaluated the relationship between SOC and site characteristics. To 

estimate the SOC under pure aspen we established 33 sampling points on linear transects 

along four aspect in the north, south, east and west facing transects, and various biotic 

and abiotic characteristics were assessed including stand characteristics, soil moisture, 

soil temperature, elevation, slope and aspect. In addition, we described the soil 

morphology of representative pedon at each transect. In the second phase of the study, we 

established six paired plots composed of aspen and conifer stands in three different 
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watershed characterized various soil properties including SOC, soil morphology, soil 

microclimate and nutrient regime.     

 Soils in the pure aspen stands were classified as Mollisols with a characteristic 

thick A-horizon. As hypothesized aspen stored large amount of SOC (112 ± 29 Mg ha-1, 

0-40 cm depth) and it was variable among the transects. Highest values were observed on 

the south and east-facing sites, and lowest on the north and west-facing transects. 

However, the average SOC content of upper 10 cm did not vary significantly among 

aspects.   

The difference in SOC could be largely explained by different soil moisture 

conditions and stand characteristics along the transects. The south and east facing 

transects were drier and contained more SOC compared to the north and west facing 

transects. Across the entire Upper Frost Canyon watershed, SOC accumulation was 

negatively correlated with soil moisture, which was able to explain 16% of the variability 

of SOC to depth of 40 cm. Even though we did not have enough soil temperature data to 

perform regression, the temperature regime of the area, expressed as degree days over a 

period of 65 days in summer, was also significantly different among aspects with higher 

summer temperatures on the south and east facing slopes compared to the north and west 

facing slopes. Our results are consistent with other studies that have suggested that the 

SOC content in arid and semi-arid region is more related to moisture than temperature.  

The aspen forest structure was different among transects even though differences 

were not statistically significant, except for the average tree diameter. South and east 

facing transects were more densely vegetated and dominated by smaller trees relative to 

the north and west facing transects. SOC was positively related with vegetation density 
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and explained 33 % of the variability, and negatively related with average tree 

diameter. These stand characteristics could be a surrogate for higher litterfall input, or 

differences in understory vegetation and soil microclimate, where the sites characterized 

by closed canopy could exhibit different soil moisture and temperature. Even though it is 

hard to make inferences about the various factors and mechanisms controlling SOC the 

majority of the variability of SOC was explained by soil moisture and stand 

characteristics. 

Results from the paired plots showed a difference in soil morphology where aspen 

occurred mainly in Mollisols, except for one site at TWDEF that was classified as 

Alfisols but had a 40 cm thick mollic epipedon. The sites under conifers were classified 

as Alfisols, Inceptisols and Entisols. In general, morphological differences were 

expressed in the thickness of the O horizon (conifer > aspen) and of the A horizon conifer 

[conifer (16.2 cm) < aspen (43.3 cm)]. This partially supports earlier statements of a 

strong association between aspen and Mollisols, but it may be more meaningful to 

evaluate the nature of soil profile differences rather than simply focus on classification 

into soil order. 

As hypothesized the SOC content in the mineral soil under aspen (0-60 cm) was 

higher (96 Mg C ha-1) compared to conifers (66 Mg C ha-1). However the surficial SOC 

content in the mineral soil (0-15 cm) was not significantly different, which was consistent 

with the findings from phase one. The SOC content (0-60 cm) under aspen in the paired 

plot was somewhat lower compared to the SOC content (0-40 cm) under pure aspen 

stands and this is might be due to the incipient effect of conifer encroachment and/or the 

wider geographic scope of the study area. The SOC in the forest floor was significantly 
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different under the two vegetation types with an average of 7.7 Mg C ha-1 under aspen 

vs. 58.6 Mg C ha-1 under conifers. However, total SOC (O layer + mineral soil) under the 

two vegetation types was not significantly different, which could be an indication of 

redistribution of SOC rather than a true difference in SOC content.  

Moreover, our paired plot results showed that the moisture content under the two 

vegetation types was different where aspen had higher moisture content relative to 

conifers. This finding is consistent with other studies and supports the ideas postulated by 

other researchers that conifer encroachment can decrease water yield and stream flow.  

We did not observe any changes in chemical soil properties and nutrient regime. 

The regression analysis showed the relationship between SOC and stand characteristics 

was consistent with the transect study, however CMI and SOC showed an opposite trend 

from the one observed in the transect study. The apparent contradictory relationship 

could be indicative of the effect of vegetation type, as soil moisture co-vary with 

vegetation type. 

 The higher SOC content in the mineral aspen soil may be the result of:  

i) the production of more recalcitrant SOC or stabilization 

 mechanisms that are absent or less pronounced in conifer soils. 

ii)  relatively higher litterfall input, possibly linked to the understory 

vegetation, where aspen is believed to support more understory vegetation, 

iii)  different microclimatic conditions. 

The apparent upward redistribution of SOC under conifers could be a concern as 

the SOC located in the upper surface is considered “sensitive” to changes in climatic 
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conditions and “vulnerable” to disturbances such as fire. So conifer encroachment 

could possibly influence the distribution of SOC so as to render it more susceptible to 

losses.  

 To draw concrete conclusions about the mechanisms responsible for the 

differences in SOC among aspen and conifer and the potential impacts of conifer 

encroachment, it would be useful to carry out a detailed study of decomposition rates, 

litter fall input, understory vegetation and soil microclimate, including temperature and 

moisture. Even though it is a challenge to characterize exactly how the site characteristics 

will change following conifer encroachment, this study gives some insights of the general 

site characteristics’ of the two vegetation types and fills some of the gaps in aspen and 

conifer encroachment studies.  

Overall, the important points from this study are that stand characteristics are 

important in determining SOC storage and affect multiple site characteristics that affect 

SOC inputs and dynamics. These are complex systems where many factors play crucial 

roles in defining the relationship between SOC and other site characteristics. Finally, one 

important finding from both phases one and phase two studies is the role of sampling 

depth in detecting change. Most of the significant differences were observed when we 

considered a greater soil column depth. In assessing forest soil stocks and to evaluate 

changes due to land use, vegetation type, or disturbance, it is important for researchers to 

consider sampling at greater depth rather than at the surface only, as the latter could 

potentially lead to biased results. 
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Table A.1 Field soil description of the pedon in the north facing transect. 
 
USU Soil Description Sheet Soil ID:     North Aspen Date: 7/12/2006 Described by:
Soil Series (if applicable):

Parent material:    Elevation: Aspect: Drainage Class:
Wasatch Conglomerate N Well drained

Landform, hillslope position: Climate: MAP MAT MAST       MSST MWST

Backslope SMR: Xeric  STR: Frigid 890 mm 4.25oC 5.25oC 14 oC  -2.7 oC

Vegetation:   Forest Surface Stone and Rock:  
Current vs. presumed native None

HORIZON DEPTH COLOR
(cm) Dis Top Dry/Moist Class %C Gr Size Sh Dry Moist Effer pH Qty Size Qty SizeConcentrations, RMFs, etc.

A1 0-20 C W D7.5YR3/2 5 GR SL 12 1 VF SBK S VFR SO PO NE 5.8 M F M F
M7.5YR2.5/2

A2 20-40 C W D7.5YR3/4 6 GR L 14 1 CO SBK S VFR SO PO NE 6 M F C F
M7.5YR3/3

A3 40-53 A S D7.5YR 4/4 6 GR L 18 2 CO ABK SH VFR SO Po NE 6.2 C VF M F
M7.5YR2.5/3 Some Mn concentrations

Bt1 53-80 A W D5YR4/6 5 GR L 21 3 VC ABK SH FR SO Po NE 6.6 F C C F Clay films
M5YR3/4 Mn concentrations

CBt 80-86 D5YR4/4 6 GR SL 0 MA MH FR SS SP NE 6.8 VF F C VF Clay films and bridges
5YR4/6

Current landuse:
Weather conditions, soil moisture status at time of description:
Other comments: Mollic epipedon  argillic horizon
Diagnostic epipedon, horizons, and other characteristics:

Classification: Order:  Mollisol   Suborders: Xeroll   Great Groups: Argixerolls    Subgroups: Pachic Argixerolls   

Mical K, David Eaton

20%8324 ft

Depth to water table:

% RF
REACTION PORES

Wet
CONSISTENCE ROOTS Ped&Void Surface Features

Location (UTM; Latitiude & Longitude; Section, Township,  Range; USGS Quad; other as needed):

BDY TEXTURE STRUCTURE
Grassland/Woody

Slope:
12 T 0461066 UTM 4580929
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Table A.2 Field soil description of the pedon in the south facing transect. 
 
USU Soil Description Sheet Soil ID:     South Aspen Date: 7/13/2006 Described by:
Soil Series (if applicable):

Parent material:    Elevation: Aspect: Drainage Class:
Wasatch Conglomerate S Well drained

Landform, hillslope position: Climate: MAP MAT MAST       MSST MWST

Backslope SMR: Xeric  STR: Frigid 890 mm 4.25oC 5.25oC 14 oC  -2.7 oC

Vegetation:   Forest Surface Stone and Rock:  
Current vs. presumed native None

HORIZON DEPTH COLOR
(cm) Dis Top Dry/Moist Class %C Gr Size Sh Dry Moist Effer pH Qty Size Qty SizeConcentrations, RMFs, etc.

A1 0-19 C W D10YR5/4 16 GR GRL 13 1 CO SBK S VFR SO PO NE 5.8 M F M F
M7.5YR3/2     

A2 19-43 C S D10YR5/4 16 GR GRL 13 1 M SBK S VFR SO PO NE 5.8 M F M F
M7.5YR3/2

Bt1 43-57 A W D10YR 6/4 30 CB CBSL 16 1 M ABK S FR SO Po NE 5.6 C VF M F Clay films
M7.5YR2.5/3     

Bt2 57-80 C W D10YR6/4 22 CB CBSL 17 1 M ABK SH FR SO Po NE 5.5 C F M F Clay films
M10YR5/6 M

C 80-86 65 CB 0 NE 6 C VF M VF

Current landuse:
Weather conditions, soil moisture status at time of description:
Other comments:
Diagnostic epipedon, horizons, and other characteristics: Mollic epipedon

Argillic sub surface diagnostic horizons
Classification: Order:  Mollisol   Suborders: Xeroll   Great Groups: Argixerolls    Subgroups: Pachic Argixerolls   

Wet
CONSISTENCE ROOTSBDY TEXTURE STRUCTURE

% RF
Ped&Void Surface Features

Location (UTM; Latitiude & Longitude; Section, Township,  Range; USGS Quad; other as needed):

Depth to water table:

REACTION PORES

12 T 0461066 UTM 4580929

Mical K, David Eaton

20%8324 ft

Grassland/Woody

Slope:
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Table A.3 Field soil description of the pedon in the west facing transect. 
 
USU Soil Description Sheet Soil ID:     West Aspen Date: 7/15/2006 Described by:
Soil Series (if applicable):

Parent material:    Elevation: Aspect: Drainage Class:
Wasatch Conglomerate ft w Well drained

Landform, hillslope position: Climate: MAP MAT MAST       MSST MWST

Backslope SMR: Xeric STR: Frigid 890 mm 4.25oC 5.25oC 14 oC  -2.7 oC

Vegetation:  Surface Stone and Rock:  
Current vs. presumed native None

HORIZON DEPTH COLOR
(cm) Dis Top Dry/Moist Class %C Gr Size Sh Dry Moist Effer pH Qty Size Qty SizeConcentrations, RMFs, etc.

A1 0-40 G W D10YR5/4 5 GR SL 7 1 VC SBK Soft VFR SO PO NE 5.9 M VF M VF
M7.5YR2.5/3 f

A2 40-65 C S D7.5YR5/4 3 GR SL 8 2 VC SBK S VFR SO PO NE 6 M VF M VF
M7.5YR3/4 m f

Bt1 65-88 C S D5YR 5/8 2 GR SIL 20 3 VC SBK MH FR SO PO NE 6.2 M VF M VF Clay fims common
M7.5YR5/6 f

Bt2 88-100 D5YR5/8 5 Gr SIL 21 2 VC ABK HA HA SS SP NE 6 M VF M VF Clay films common
M2.5YR4/8 f

Current landuse:agricultural field
Weather conditions, soil moisture status at time of description:
Other comments:
Diagnostic epipedon, horizons, and other characteristics: Mollic epipedon

argillic sub-surface diagnostic horizon
Classification: Order:  Mollisol   Suborders: Xeroll   Great Groups: Xerolls    Subgroups: Pachic Argixerolls   

Mical K, David Eaton

26%8371

Grassland/Woody

Slope:

Ped&Void Surface Features

Location (UTM; Latitiude & Longitude; Section, Township,  Range; USGS Quad; other as needed):

Depth to water table:

REACTION PORES

12 T 0460153 UTM 4580543

Wet
CONSISTENCE ROOTSBDY TEXTURE STRUCTURE

% RF
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Table A.4 Field soil description of the pedon in the east facing transect. 
 
USU Soil Description Sheet Soil ID:     East Aspen Date: 7/20/2006 Described by:
Soil Series (if applicable):

Parent material:    Elevation: Aspect: Drainage Class:
Wasatch Conglomerate E SE or Well drained
Landform, hillslope position: Climate: MAP MAT MAST       MSST MWST

Summit SMR: Xeric  STR: Frigid 890 mm 4.25oC 5.25oC 14 oC  -2.7 oC

Vegetation:  Surface Stone and Rock:  
Current vs. presumed native None

HORIZON DEPTH COLOR
(cm) Dis Top Dry/Moist Class %C Gr Size Sh Dry Moist Effer pH Qty Size Qty SizeConcentrations, RMFs, etc.

A1 0-14.5 C S D10YR3/2 18 GR GRSL 9 1 VF GR Soft VFR SO PO NE 6.2 M VF M VF
M10YR2/2

A2 14.5-33 C W D10YR3/3 22 GR GRSL 8 2 CO SBK S VFR SO PO NE 5.9 M VF M VF
M10YR2/2 m

AC 33-56 A W D10YR 4/3 36 CB CBVSL 8 0 SG NE 5.6 C F C F
M7.5YR2.5/3

C 56-72 D10YR6/4 39 CB CBVSL 3 0 SG NE 5.4 C M C F
M7.5YR5/6

Current landuse:agricultural field
Weather conditions, soil moisture status at time of description:
Other comments:
Diagnostic epipedon, horizons, and other characteristics: Mollic epipedon

NO sub-surface diagnostic horizons
Classification: Order:  Mollisol   Suborders: Xeroll   Great Groups: Haploxerolls    Subgroups: Typic Haplocryolls   Family: Mixed, Isofrigid Pachic Haploryolls

Mical K, David Eaton

38%8371 ft

Grassland/Woody

Slope:

Ped&Void Surface Features

Location (UTM; Latitiude & Longitude; Section, Township,  Range; USGS Quad; other as needed):

Depth to water table:

REACTION PORES

12 T 0459855 UTM 4581366

Wet
CONSISTENCE ROOTSBDY TEXTURE STRUCTURE

% RF
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Table A.5 Field soil description of the pedon in FA1 in Upper Frost Canyon under aspen 
 
USU Soil Description Sheet Soil ID:     FA1 Aspen Date: 7/19/2006 Described by:
Soil Series (if applicable):

Parent material:    Elevation: Aspect: Drainage Class:
Wasatch Conglomerate NW Well drained

Landform, hillslope position: Climate: MAP MAT MAST       MSST MWST

Backslope SMR: Xeric  STR: Frigid 890 mm 4.25oC 5.25oC 14 oC  -2.7 oC

Vegetation:  Forest Surface Stone and Rock:  
Current vs. presumed native

HORIZON DEPTH COLOR
(cm) Dis Top Dry/Moist Class %C Gr Size Sh Dry Moist Effer pH Qty Size Qty SizeConcentrations, RMFs, etc.

A1 0-14 C S D10YR 5/4 6 GR L 12 1 M SBk S VFR SO PO NE 6 M VF M VF
M10YR 3/3 GR

A2 14-38.5 G S D10YR 5/4 11 GR L 13 2 CO SBK S VFR SO PO NE 5.8 M VF M VF
M7.5YR3/3

Bw1 38.5-58.5 G W D10YR 5/4 13 GR SIL 15 2 CO SBK S FR SO PO NE 5.8 M VF M VF
M7.5 YR 3/4

Bw2 58.5-83 C W D10YR 6/4 8 GR SIL 16 2 CO SBK S VFR SO PO NE 5.6 C VF M F
M7.5 YR 3/4

BC 83-100 D10YR 6/4 12 GR SIL 11 1 M SBK S VFR SO PO NE 5.5 M VF
M7.5 YR 4/4

Current landuse:d
Weather conditions, soil moisture status at time of description:
Other comments:
Diagnostic epipedon, horizons, and other characteristics: Mollic Mollic epipedon

Cambic subsurface horizon
Classification: Order:  Mollisol   Suborders: Xeroll   Great Groups: Haploxeroll   Subgroups: Typic Haploxeroll  

Mical K, David Eaton

17%8659 ft

Grassland/Woody

Slope:

Ped&Void Surface Features

Location (UTM; Latitiude & Longitude; Section, Township,  Range; USGS Quad; other as needed):

Depth to water table:

REACTION PORES

12 T 0461754  UTM 4579488

Wet
CONSISTENCE ROOTSBDY TEXTURE STRUCTURE

% RF
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 Table A.6 Field soil description of the pedon in FC1 Upper Frost Canyon under conifer. 
 
USU Soil Description Sheet Soil ID:     FC1 Conifers Date: 7/19/2006 Described by:
Soil Series (if applicable):

Parent material:    Elevation: Aspect: Drainage Class:
Wasatch Conglomerate NW Well drained
Landform, hillslope position: Climate: MAP MAT MAST       MSST MWST

Backslope SMR: Xeric  STR: Frigid 890 mm 4.25oC 5.25oC 14 oC  -2.7 oC

Vegetation:  Forest Surface Stone and Rock:  
Current vs. presumed native

HORIZON DEPTH COLOR
(cm) Dis Top Dry/Moist Class %C Gr Size Sh Dry Moist Effer pH Qty Size Qty SizeConcentrations, RMFs, etc.

Oi 0-1

A 1-12.5 C S D7.5YR 2/2 9 GR SIL 12 1 VF GR S VFR SO PO NE 5.9 M VF M VF
M10YR 4/3

Bw1 12.5-46.5 G W D10YR 6/4 8 GR SIL 9 2 CO SBK SH VFR SO PO NE 5.6 M VF M VF
M10YR3/4

Bw2 46.5-67 G W D10YR 6/4 7 GR SIL 13 2 CO SBK SH FR SO PO NE 5.8 M VF M VF
M10YR 6/4

Bw3 67-95 D10YR 6/4 7 GR SIL 14 1 CO SBK SH FR SO PO NE 5.3 M V
M10 YR 6/4

Current landuse:agricultural field
Weather conditions, soil moisture status at time of description:
Other comments:
Diagnostic epipedon, horizons, and other characteristics: Ochric epipedon

Cambic horizons
Classification: Order:  Inceptisols   Suborders: Xerepts   Great Groups: Haploxerepts    Subgroups: Typic Haploxerepts  

Wet
CONSISTENCE ROOTSBDY TEXTURE STRUCTURE

% RF
Ped&Void Surface Features

Location (UTM; Latitiude & Longitude; Section, Township,  Range; USGS Quad; other as needed):

Depth to water table:

REACTION PORES

12 T 0461754  UTM 4579481

Mical K, David Eaton

35%8536 ft

Grassland/Woody

Slope:
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Table A.7 Field soil description of the pedon in FA2 in Upper Frost Canyon under aspen. 

USU Soil Description Sheet Soil ID:     FA2 Aspen Date: 7/20/2006 Described by:
Soil Series (if applicable):

Parent material:    Elevation: Aspect: Drainage Class:
Wasatch Conglomerate ft NW Well drained

Landform, hillslope position: Climate: MAP MAT MAST       MSST MWST

Backslope SMR: Xeric  STR: Frigid 890 mm 4.25oC 5.25oC 14 oC  -2.7 oC

Vegetation:   Forest Surface Stone and Rock:  
Current vs. presumed native None

HORIZON DEPTH COLOR
(cm) Dis Top Dry/Moist Class %C Gr Size Sh Dry Moist Effer pH Qty Size Qty SizeConcentrations, RMFs, etc.

A1 0-16.5 G S D10YR2/2 15 GR GRSL 5 2 F GR MH S SO PO NE 5.3 M VF M VF
M7.55YR 3/3

A2 16.5-38 G S D10YR5/3 13 GR SL 7 1 CO SBK MH S SO PO NE 4.9 M VF M VF
M10YR2/2 m

A3 38-60 A W D10YR 5/3 18 GR GRSL 8 2 CO SBK MH SH SO PO NE 4.6 M VF M VF
M10YR2/2 f

C 60-90 D7.5YR6/4 30 GR GRSL 7 0 MA HA VH SO PO NE 5.7 F VF M VF
M7.5YR 5/6

Current landuse:
Weather conditions, soil moisture status at time of description:
Other comments:
Diagnostic epipedon, horizons, and other characteristics: Mollic

NO sub surface diagnostic horizon
Classification: Order:  Mollisol   Suborders: Xeroll   Great Groups: Haploxerolls    Subgroups: Pachic Haploxerolls   

Mical K, David Eaton

21%8230

Grassland/Woody

Slope:

Ped&Void Surface Features

Location (UTM; Latitiude & Longitude; Section, Township,  Range; USGS Quad; other as needed):

Depth to water table:

REACTION PORES

12 T 0463937  UTM 4576883

Wet
CONSISTENCE ROOTSBDY TEXTURE STRUCTURE

% RF
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Table A.8 Field soil description of the pedon in FC2 in Upper Frost Canyon under conifer. 

USU Soil Description Sheet Soil ID:     FC2 Conifers Date: 7/20/2006 Described by:
Soil Series (if applicable):

Parent material:    Elevation: Aspect: Drainage Class:
Wasatch Conglomerate NW Well drained

Landform, hillslope position: Climate: MAP MAT MAST       MSST MWST

Backslope SMR: Xeric  STR: Frigid 890 mm 4.25oC 5.25oC 14 oC  -2.7 oC

Vegetation:  Forest Surface Stone and Rock:  
Current vs. presumed native None

HORIZON DEPTH COLOR
(cm) Dis Top Dry/Moist Class %C Gr Size Sh Dry Moist Effer pH Qty Size Qty SizeConcentrations, RMFs, etc.

Oi 0-2

A 2-7.5 C S D7.5YR5/4 25 GR GRL 14 1 CO SBK MH FR SO PO NE 5.8 M VF M VF
M7.55YR 3/3

Bw1 7.5-36 G W D7.5YR5/6 20 GR GRL 15 2 CO SBK MH VFR SO PO NE 5.5 M VF M VF
M5YR3/4

Bw2 36-66 C S D7.5YR 5/4 15 GR GRSIL 10 2 CO SBK MH FR SO PO NE 5.6 M VF M VF
M5YR 4/4

C 66-100 D5YR6/6 20 GR GRL 12 0 MA HA FI SO PO NE 5.8 M VF
M2.5YR 4/6

Current landuse:
Weather conditions, soil moisture status at time of description:
Other comments:  Very thhin O horizon
Diagnostic epipedon, horizons, and other characteristics: Ochric

Sub-srurface diagnostic horizon: Cambic
Classification: Order:  Inceptisols   Suborders: Xerepts   Great Groups: Haploxerepts    Subgroups: Humic Haploxerepts 

Wet
CONSISTENCE ROOTSBDY TEXTURE STRUCTURE

% RF
Ped&Void Surface Features

Location (UTM; Latitiude & Longitude; Section, Township,  Range; USGS Quad; other as needed):

Depth to water table:

REACTION PORES

12 T 0460971  UTM 4576980

Mical K, David Eaton

26%8187 ft

Grassland/Woody

Slope:
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Table A.9 Field soil description of the pedon in BA1 in Bear Canyon under aspen. 

USU Soil Description Sheet Soil ID:     BA1 Aspen Date: 7/21/2006 Described by:
Soil Series (if applicable):

Parent material:    Elevation: Aspect: Drainage Class:
Wasatch Conglomerate N Well drained
Landform, hillslope position: Climate: MAP MAT MAST       MSST MWST

Backslope SMR: Xeric STR: Frigid 890 mm 4.25oC 5.25oC 14 oC  -2.7 oC

Vegetation:   Forest Surface Stone and Rock:  
Current vs. presumed native None

HORIZON DEPTH COLOR
(cm) Dis Top Dry/Moist Class %C Gr Size Sh Dry Moist Effer pH Qty Size Qty SizeConcentrations, RMFs, etc.

A1 0-25.5 C S D10YR5/4 4 GR L 8 2 M GR Soft VFR SO PO NE 6.2 M VF M VF
M10YR 3/2

A2 25.5-50.5 C S D10YR5/4 3 GR L 10 2 C SBK SH VFR SO PO NE 6.1 M VF M VF
M7.5YR3/4 m

Bw1 50.5-70 C S D7.5YR 4/6 2 GR L 16 2 C SBK SH FR SO PO NE 5.7 M VF M VF
M5YR3/4 f

BC 70-100 D7.5YR4/6 1 GR L 14 2 C SBK M HA SS SP NE 5.8 M VF M VF
M10YR4/6

Current landuse:
Weather conditions, soil moisture status at time of description:
Other comments:
Diagnostic epipedon, horizons, and other characteristics: Mollic epipedon

Cambic
Classification: Order:  Mollisol   Suborders: Xeroll   Great Groups: Haploxeroll    Subgroups: Pachic Haploxeroll  

Mical K, David Eaton

35%8238 ft

Grassland/Woody

Slope:

Ped&Void Surface Features

Location (UTM; Latitiude & Longitude; Section, Township,  Range; USGS Quad; other as needed):

Depth to water table:

REACTION PORES

12 T 0460074 UTM 4580512

Wet
CONSISTENCE ROOTSBDY TEXTURE STRUCTURE

% RF
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Table A.10 Field soil description of the pedon in BC1 in Bear Canyon under conifer. 

USU Soil Description Sheet Soil ID:     BC1 Conifers Date: 7/21/2006 Described by:
Soil Series (if applicable):

Parent material:    Elevation: Aspect: Drainage Class:
Wasatch Conglomerate N Well drained

Landform, hillslope position: Climate: MAP MAT MAST       MSST MWST

Backslope SMR: Xeric  STR: Frigid 890 mm 4.25oC 5.25oC 14 oC  -2.7 oC

Vegetation:  Surface Stone and Rock:  
Current vs. presumed native None

HORIZON DEPTH COLOR
(cm) Dis Top Dry/Moist Class %C Gr Size Sh Dry Moist Effer pH Qty Size Qty SizeConcentrations, RMFs, etc.

Oi 0-0.5

A 0.5-7.5 C W D10YR4/3 7 GR L 12 1 M SBK Soft VFR SO PO NE 6.3 M VF M VF
M10YR 3/3

AB 7.5-32 C W D7.5YR4/4 6 GR L 14 2 C SBK SH VFR SO PO NE 5.9 M VF M VF
M7.5YR3/4 m

BW1 35-52 C S D7.5YR 5/6 4 GR SL 19 2 C SBK SH FR SO PO NE 6.2 M VF M VF
M5YR5/6 f

Bt 52-81 D5YR6/6 3 GR SCL 25 1M C SBK HA HA SS SP NE 6 F VF M VF Clay films
M2.5YR4/8

Current landuse:
Weather conditions, soil moisture status at time of description:
Other comments: Thin O horizon < 1cm Solid Rock @ bottom is effervescent
Diagnostic epipedon, horizons, and other characteristics: Ochric epipedon

Argillic sub-surface diagnostic horizons
Classification: Order:  Alfisols   Suborders: Xeralfs   Great Groups: Haploxeralfs    Subgroups:Typic Haploxeralfs

Wet
CONSISTENCE ROOTSBDY TEXTURE STRUCTURE

% RF
Ped&Void Surface Features

Location (UTM; Latitiude & Longitude; Section, Township,  Range; USGS Quad; other as needed):

Depth to water table:

REACTION PORES

12 T 0460026 UTM 4580536

Mical K, David Eaton

39%8238 ft

Grassland/Woody

Slope:
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Table A.11 Field soil description of the pedon in BA2 in Bear Canyon under aspen. 

USU Soil Description Sheet Soil ID:     BA2 Aspen Date: 7/21/2006 Described by:
Soil Series (if applicable):

Parent material:    Elevation: Aspect: Drainage Class:
Wasatch Conclomerate SW Well drained

Landform, hillslope position: Climate: MAP MAT MAST       MSST MWST

Summit SMR: Xeric  STR: Frigid 890 mm 4.25oC 5.25oC 14 oC  -2.7 oC

Vegetation:  Forest Surface Stone and Rock:  
Current vs. presumed native

HORIZON DEPTH COLOR
(cm) Dis Top Dry/Moist Class %C Gr Size Sh Dry Moist Effer pH Qty Size Qty SizeConcentrations, RMFs, etc.

A 0-40 C S D10YR 5/3 13 GR SL 10 2 VF GR S VFR SO PO NE 5.2 M VF M VF
M10YR 3/2

Bw1 40-50 C W D10YR 7/3 9 GR SL 8 1 CO SBK SH VFR SO PO NE 5.5 M VF M VF
M7.5YR5/6

Bw2 50-80 C W D10YR 7/3 15 GR GRLS 13 1 CO SBK SH FR SO PO NE 5.8 F VF M VF
M10YR 6/6

C 80-100 D10YR 6/3 14 GR LS 14 1 CO SBK SH VFR SO PO NE 5.4 F F M F
M10 YR 5/4

Current landuse:
Weather conditions, soil moisture status at time of description:
Other comments:
Diagnostic epipedon, horizons, and other characteristics: Mollic

No subsurface diagnostic horizons
Classification: Order:  Mollisol   Suborders: Xeroll   Great Groups: Haploxerolls    Subgroups: Typic Haploxerolls 

Mical K, David Eaton

8%8536 ft

Grassland/Woody

Slope:

Ped&Void Surface Features

Location (UTM; Latitiude & Longitude; Section, Township,  Range; USGS Quad; other as needed):

Depth to water table:

REACTION PORES

12 T 0462646  UTM 4579653

Wet
CONSISTENCE ROOTSBDY TEXTURE STRUCTURE

% RF
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 Table A.12 Field soil description of the pedon in BC2 Bear Canyon under conifer. 

USU Soil Description Sheet Soil ID:     BC2 Conifers Date: 7/19/2006 Described by:
Soil Series (if applicable):

Parent material:    Elevation: Aspect: Drainage Class:
Wasatch Conglomerate W Well drained

Landform, hillslope position: Climate: MAP MAT MAST       MSST MWST

Foot slope SMR: Xeric STR: Frigid 890 mm 4.25oC 5.25oC 14 oC  -2.7 oC

Vegetation:  Forest Surface Stone and Rock:  
Current vs. presumed native None

HORIZON DEPTH COLOR
(cm) Dis Top Dry/Moist Class %C Gr Size Sh Dry Moist Effer pH Qty Size Qty SizeConcentrations, RMFs, etc.

Oi 0-1

A1 1-7.5 C S D10YR6/4 7 GR SIL 10 2 M Pl S FR SS SP NE 5.5 M VF M VF
M5YR 4/4

A2 7.5-35 C W D7.5YR6/4 8 GR SIL 8 1 M Pl SH VFR SS SP NE 5.4 M VF M VF
M5YR3/4

C1 35-42.5 G W D7.5YR 7/4 9 GR SIL 13 0 MA SH FR SS SP NE 5.3 C VF M VF
M10YR 5/4

C2 42.5-60 D2.5YR7/8 13 GR SIL 14 0 MA SH FR SS SP NE 5.4 M VF
M2.5YR 5/4

Current landuse:
Weather conditions, soil moisture status at time of description:
Other comments:  Very thhin O horizon
Diagnostic epipedon, horizons, and other characteristics: Ochric Epipedon

No subsurface diagnostic horizons
Classification: Order:  Entisol  Suborders: Orthents  Great Groups: Xerorthents    Subgroups: Typic Xerorthents   

Mical K, David Eaton

5%8598 ft

Grassland/Woody

Slope:

Ped&Void Surface Features

Location (UTM; Latitiude & Longitude; Section, Township,  Range; USGS Quad; other as needed):

Depth to water table:

REACTION PORES

12 T 0462646  UTM 4579653

Wet
CONSISTENCE ROOTSBDY TEXTURE STRUCTURE

% RF
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Table A.13 Field soil description of the pedon in TA1 in TWDEF under aspen. 

USU Soil Description Sheet Soil ID:      TA1 Aspen Date: 7/12/2006 Described by:
Soil Series (if applicable):

Parent material:    Elevation: Aspect: Drainage Class:
Wasatch Conglomerate Well drained

Landform, hillslope position: Climate: 
Summit SMR: Xeric  STR: Cryic

Vegetation:  Surface Stone and Rock:  
Current vs. presumed native None

HORIZON DEPTH COLOR
(cm) Dis Top Dry/Moist Class %C Gr Size Sh Dry Moist Effer pH Qty Size Qty SizeConcentrations, RMFs, etc.

A 0-40 C W D10YR4/4 18 GR GRSCL 21 2 M SBK SH VFR SS SP NE 4.9 M VF M VF
M7.5YR3/3

Bt1 40-68 C W D7.5YR4/6 15 GR GRSiCl 30 2 C SBK SH FR SS SP NE 4.9 M VF M VF Clay films common
M7.5YR4/4

Bt2 68-80 A S D5YR 4/6 35 VGR GRVSiCl 27 2 C ABK MH FR SS SP NE 4.7 M VF M VF Clay films common
M5YR 4/6

Current landuse:
Weather conditions, soil moisture status at time of description:
Other comments:
Diagnostic epipedon, horizons, and other characteristics: Arigillic horizon

Classification: Order: Alfisol   Suborders: Cryalf   Great Groups: Argicryalf   Subgroups: Mollic Haplocryalf  

Wet
CONSISTENCE ROOTSBDY TEXTURE STRUCTURE

% RF
Ped&Void Surface Features

Location (UTM; Latitiude & Longitude; Section, Township,  Range; USGS Quad; other as needed):

Depth to water table:

REACTION PORES

12 T 0461066 UTM 4580929

Mical K, David Eaton

5%8637 ft

Grassland/Woody

Slope:
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Table A.14 Field soil description of the pedon in TC1 in TWDEF under conifer 

USU Soil Description Sheet Soil ID:     TC1 conifer Date: 25/12/2006 Described by:
Soil Series (if applicable):

Parent material:    Elevation: Aspect: Drainage Class:
Wasatch Conglomerate Well drained

Landform, hillslope position: Climate: 
Shoulder SMR: Xeric STR: Cryic

Vegetation:  Surface Stone and Rock:  
Current vs. presumed native None

HORIZON DEPTH COLOR
(cm) Dis Top Dry/Moist Class %C Gr Size Sh Dry Moist Effer pH Qty Size Qty SizeConcentrations, RMFs, etc.

Oi 0-10 C I

A 10- 40 G S D10YR5/4 20 GR GRSL 17 2 C SBK HA FI SO PO NE 5.2 M VF M VF
M7.5YR4/3

Bt1 40-73 C S D10YR4/4 18 GR GRSL 25 2 C SBK HA FI SS SP NE 5.6 M VF M VF Clay films
M7.5YR3/3

Bt2 73-100 D5YR5/6 38 VGR GRVSCL 21 2 M SBK VH FR SS SP NE 5.4 M VF M VF Clay Films 
M5YR 4/6

Current landuse:
Weather conditions, soil moisture status at time of description:
Other comments:
Diagnostic epipedon, horizons, and other characteristics: Ochric epipedon Argillic sub-surface horizons

Classification: Order:  Alfisol   Suborders: Cryalf   Great Groups: Haplocryalfs    Subgroups:  Typic Haplocryalfs   

Mical K, David Eaton

9%8637 ft

Grassland/Woody

Slope:

Ped&Void Surface Features

Location (UTM; Latitiude & Longitude; Section, Township,  Range; USGS Quad; other as needed):

Depth to water table:

REACTION PORES

12 T 0461066 UTM 4580929

Wet
CONSISTENCE ROOTSBDY TEXTURE STRUCTURE

% RF
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 Table A.15. Field soil description of the pedon in TA2 in TWDEF under aspen. 

USU Soil Description Sheet Soil ID:     TA2 Aspen Date: 25/12/2006 Described by:
Soil Series (if applicable):

Parent material:    Elevation: Aspect: Drainage Class:
Wasatch Conglomerate Well drained
Landform, hillslope position: Climate: MAP MAT MAST       MSST MWST
Shoulder SMR: Xeric  STR: Cryic

Vegetation:  Surface Stone and Rock:  
Current vs. presumed native None

HORIZON DEPTH COLOR
(cm) Dis Top Dry/Moist Class %C Gr Size Sh Dry Moist Effer pH Qty Size Qty SizeConcentrations, RMFs, etc.

A1 0-8 C W D10YR5/3 18 GR GRSL 10 2 VF GR S VF SO PO NE 5.3 M VF M VF
M10YR3/2

A2 8-53 C W D10YR5/3 20 GR GRSL 9 2 M SBK S VF SO PO NE 5.4 M VF M VF
M10YR3/3

C 53-95 C S D7.5YR6/4 >65 XCB CBXLS 7 2 F SBK MH Fr SS SP NE 5.5 M VF M VF
7.5YR 4/6

Current landuse:
Weather conditions, soil moisture status at time of description:
Other comments:
Diagnostic epipedon, horizons, and other characteristics: Mollic

No subsurface diagnostic horizons
Classification: Order:  Mollisol   Suborders: Cryoll   Great Groups: Haplocryolls    Subgroups: Pachic Haplocryolls   

Wet
CONSISTENCE ROOTSBDY TEXTURE STRUCTURE

% RF
Ped&Void Surface Features

Location (UTM; Latitiude & Longitude; Section, Township,  Range; USGS Quad; other as needed):

Depth to water table:

REACTION PORES

12 T 0457649 UTM 463808

Mical K, David Eaton

20%8781 ft

Grassland/Woody

Slope:
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Table A.16 Field soil description of the pedon in TC2 in TWDEF under conifer 

USU Soil Description Sheet Soil ID:     TC2 conifer Date: 25/12/2006 Described by:
Soil Series (if applicable):

Parent material:    Elevation: Aspect: Drainage Class:
Wasatch conglomerate Well drained

Landform, hillslope position: Climate: 
Shoulder SMR: Xeric  STR: Cryic

Vegetation:  Surface Stone and Rock:  
Current vs. presumed native None

HORIZON DEPTH COLOR
(cm) Dis Top Dry/Moist Class %C Gr Size Sh Dry Moist Effer pH Qty Size Qty SizeConcentrations, RMFs, etc.

Oi 0-4

A 4-13.5 G W D10YR5/4 5 GR SIL 18 1 m SBK HA VF SO PO NE 5.4 M VF M VF
M10YR3/3

13.5-35 A W D10YR6/3 6 GR SIL 22 2 M SBK S VF SO PO NE 6 C VF M VF
M10YR3/3

Bt2 35-90 D7.5YR4/6 4 GR CL 57 3 VC ABK MH Fr SS SP NE 5.5 M VF Clay film
7.5YR 4/6

Current landuse:
Weather conditions, soil moisture status at time of description:
Other comments: Ochric epipedon argillic sub-surface horizons
Diagnostic epipedon, horizons, and other characteristics:

Classification: Order:  Alfisol   Suborders: Cryalf   Great Groups: Haplocryalfs    Subgroups:  Typic Haplocryalfs  Family: 

Mical K, David Eaton

3%8781 ft

Grassland/Woody

Slope:

Ped&Void Surface Features

Location (UTM; Latitiude & Longitude; Section, Township,  Range; USGS Quad; other as needed):

Depth to water table:

REACTION PORES

12 T 045986 UTM 4634591

Wet
CONSISTENCE ROOTSBDY TEXTURE STRUCTURE

% RF
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