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ABSTRACT 

 Aquatic training has become more prevalent as a means of training power, and 

provides unique features such as buoyancy and inflicting less stress on the body than 

traditional land based training. Purpose: The purpose of this study was to assess absolute 

and relative peak propulsive and mean power in loaded countermovement jumps (CMJ) 

performed on land and in water in Division I soccer players and gymnasts. Methods: 

Twenty-four Utah State University soccer players (N=12) and gymnasts (N=12) 

performed randomized countermovement jumps in eight conditions (Land BW, 

BW+10%, BW+20%, BW+30%; Chest-height water BW, BW+10%, BW+20%, 

BW+30%). Peak power (PP), relative peak power (rPP), mean power (MP), and relative 

mean power (rMP) were examined for all jumping conditions. A 2 (sport team) by 2 

(environment) by 2 (load) repeated measures ANOVA was used to evaluate main effects 

and interactions. Results: PP, rPP, MP, and rMP were not significantly different for 

increased loads within the same environment. When compared to jumps performed on 

land, all four variables were significantly higher for water conditions (p<0.001). Mean 

values for each environment were 3,845.9 ± 30.2 W, 60.4 ± 0.5 W/kg, 1,605.6 ± 54.1 W, 

and 25.2 ± 0.8 W/kg for PP, rPP, MP, and rMP respectively for land, and 6,829.3 ± 405.7 

W, 326.9 ± 18.8 W/kg, 2,659.8 ± 118.8 W, and 126.9 ± 5.5 for water. Sport team 

affiliation had a significant effect for rPP, MP, and rMP (p<0.03), and an interaction 

effect for environment*sport was also present for all four variables tested (p<0.01). An 

aquatic environment provides resistance that can result in higher power production than 

on land, making it ideal training environment for athletes.  
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INTRODUCTION  

 Power production is a key element in sports, but many training methods place 

great stress on the body (Donoghue, Shimojo, & Takagi, 2011). Accordingly, aquatic 

training as a means of training peak propulsive power (PP) is becoming more prevalent in 

research (Arazi & Asadi, 2011; Colado, Benavent, Alakhadar, Madera, Gonzalez, & 

Tella, 2009; Louder, Searle, & Bressel, 2015; Miller, Berry, Bullard, & Gilders, 2002, 

Miller, Cheatham, Porter, Ricard, Hennigar, & Berry, 2007; Ploeg, Miller, Holcomb, 

O’Donoghue, Berry, & Dibbet, 2010; Robinson, Devor, Merrick, & Buchworth, 2004; 

Searle, Louder, & Bressel, 2015; Stemm & Jacobson, 2007; Triplett, Colado et al., 2009; 

White & Smith, 1999). Power plays a role in many sports, including soccer and 

gymnastics. Peak Power can be measured using a countermovement jump (CMJ), and has 

been established as a valid and reliable assessment tool (Markovic, Dizdar, Jukic & 

Cardinale, 2004; Sheppard Cormack, Taylor, McGuigan, & Newton 2008). The 

measurement of PP using a CMJ generates a power curve, displaying decreasing PP as 

load increases (Haff & Nimphius, 2012; Kawamori & Haff, 2004; Sheppard et al., 2008; 

Stone et al, 2003).  

 Muscular power is a primary factor in sport performance (Cormie, McCaulley, 

Triplett, & McBride, 2007). Power, expressed in watts, is defined as the product of force 

(Newtons) and velocity (meters/second) (Haff & Nimphus, 2012; Cronin & Sleiver, 

2005). A maximum height CMJ can be utilized to measure power (Markovic et al., 2004; 

Sheppard et al., 2008). Baker et al. (2011) compared power produced during CMJs and 1 

repetition maximum (1RM) back squat, and reported that peak power was achieved at 55-
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59% 1RM. Additionally, Cormie et al. (2007) reported PP occurred at 56% 1RM back 

squat, but was not significantly different from other loads.  

Aquatic training environments offer unique features, including buoyancy, fluid 

drag, and hydrostatic pressure. It has been reported that compared to land, plyometric 

exercise performed in water results in less muscle soreness (Robinson et al., 2004), 

reduced impact forces (Triplett et al., 2009; Colado et al., 2010; Ebben et al., 2010; 

Donoghue et al., 2011; Alberton et al., 2013), and increased rate of force development 

(Triplett et al., 2009). When performing a CMJ in water, research has shown increased 

ground reaction forces (GRF) and decreased impact forces when compared to on land 

(Colado et al, 2009; Donoghue et al., 2011; Louder et al., 2015; Triplett et al. 2009). 

Increased GRF can be attributed to the jumper requiring additional force to overcome the 

resistance created by fluid drag (Arazi & Asadi, 2011; Colado et al., 2009; Louder et al., 

2015; Miller et al. 2002; Ploeg et al., 2010). Apparent mass is reduced in water due to 

buoyancy, resulting in lower impact forces (Arazi & Asadi, 2011; Miller et al., 2007; 

Robinson et al., 2004). When performing jumping tasks in water, more force is required 

to overcome the drag forces on the takeoff, yet impact forces are decreased on the 

landing, creating an optimal environment for training.  

Previous research has shown increased training effects for aquatic exercise 

interventions when compared with land, including increases in strength, agility, and 

power development (Arazi & Asadi, 2011; Ploeg et al., 2010; Colado et al., 2010; White 

& Smith, 1999; Whitehill et al., 2010). After an 8-week aquatic exercise intervention, 

Arazi and Asadi (2011) reported significant improvements in vertical jump height, broad 

jump, and agility in semi-pro basketball players, while players assigned to an identical 
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land based intervention only had significant improvements in vertical jump. Ploeg et al. 

(2010) documented superior improvements in jump height, knee flexion power, and knee 

extension power following a 6-week aquatic intervention when compared with a land-

based intervention in young adults. Following 8 weeks of an aquatic exercise training 

program, Colado et al. (2010) reported greater improvement in squat jump mechanical 

power and reduced body fat percentage in young adults when compared to a land based 

program. White and Smith (1999) reported increased muscle strength in the lower 

extremity in young adults after an 8-week aquatic training program. When comparing six 

different measures of agility and balance in competitive athletes after a 9-week aquatic 

problem with an identical land based program, Whitehill et al. (2010) reported a 27 

percent average improvement in the aquatic group, compared to just a 4 percent average 

improvement in the land based group. This evidence suggests that training in aquatic 

environments may have increased training effect on many aspects of athletic 

performance.  

Deepening the understanding of how to best train female athletes requires 

attention to two specific gaps. First, there is limited knowledge of how to train peak 

power in both soccer players and gymnasts. Because peak propulsive power is a 

determinant of athletic performance (Cronin & Sleivert, 2005; Haff & Nimphius, 2012; 

Kawamori & Haff, 2004), it is vital to examine the best training method to develop power 

in these female athletes. Second, there is no research comparing PP or relative PP (rPP) 

and mean power (MP) or relative MP (rMP) in female soccer players and gymnasts. In 

order to understand differences between the two groups and how to implement training 

programs, it is essential that the groups be compared. The purpose of this study was to 



 6 

compare peak propulsive power and mean power in female division I soccer players and 

gymnasts, both on land and in water.  

This study will test for three hypotheses; 1) PP, rPP, MP, and rMP will 

significantly decrease as load increases; 2) PP, rPP, MP, and rMP in the water will be 

greater than PP, rPP, MP, and rMP on land; and 3) There will be a significant difference 

between the sport teams- soccer players and gymnasts.  

METHODS 

 Twenty-four apparently healthy Division I female soccer players and gymnasts 

aged 18-22 years were recruited from Utah State University through personal contact by 

the investigator. In order to participate, subjects reported they were free from any lower 

extremity orthopedic injury, and have not had recent (within 3 months) surgeries 

preventing them from safely completing countermovement jumps with loads. Subjects 

were informed of the obligations of the study, and were required to read and sign an 

informed consent form. All procedures were submitted to and approved by the 

Institutional Review Board (IRB# 4967 Amendment #2). There was no participant 

attrition for the duration of the study.  

PROCEDURES 

 Subjects performed countermovement jumps in eight different conditions, with 

three trials at each in a randomized order. The two environments examined, land and 

water, were each utilized with four conditions: unloaded, 10%, 20%, and 30% 

bodyweight (BW). For trials in the aquatic environment, subjects were submerged to their 

xiphoid process.  Bodyweight was measured on land, and loads were added to the land 

and water trials accordingly. Each participant was given the option of an unrestricted 
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number of practice jumps in each condition, until they reported that they felt comfortable 

and were able to give their best effort.  

 Countermovement jumps were performed on a waterproof force plate (AMTI, 

Model OR6-WP; Columbus, OH) placed on an adjustable-height underwater treadmill 

(Hydroworx 2000; Middletown, PA). Subjects’ apparent mass was measured with the 

force plate prior to completing any of the trials. Depth of the countermovement was self-

selected, and subjects were instructed to “jump as high as possible using your natural 

jumping method.”  

 In the loaded conditions, loading was achieved using a weighted vest (MIR Vest 

Inc.; San Jose, CA). Due to the limitation of the vest model, weight of the load was 

rounded to the 1.4 kg (3 lb) increment nearest the weight required to achieve the 

percentage-loaded weight for each subject. Between conditions, a rest period of 2-3 

minutes occurred as the load of the vest was adjusted.  

 Trials were accepted when the subject performed a CMJ while keeping their 

hands on their hips throughout the entirety of the jump, and both feet landed 

simultaneously on the force plate. Jumps that failed to meet the criteria were repeated.  

DATA COLLECTION  

 Data was collected and recorded using Netforce software (AMTI; Columbus, OH) 

for 10s (1000 Hz sampling rate with 25 N threshold). Collection and recording was 

triggered manually, and began approximately three seconds before initiation of the CMJ. 

Vertical GRF (N) values were saved as raw data. GRF of the propulsive phase of each 

CMJ, along with apparent mass of each subject was uploaded into Microsoft Excel 

(Microsoft Corp.; Redmond, WA). The propulsive phase was defined as all GRF values 
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above apparent mass between the initiation of the jump and when the subject became 

airborne (Hori et al. 2009; Louder et al., 2015). Peak propulsive power was the highest 

value achieved during the propulsive phase, while mean power was the average of all 

obtained values during this phase. The following equations were used to calculate power 

at each time point (Louder et. al, 2015; Nardoni 2015): 

 Equation 1. (Force)(time)/apparent mass = (acceleration)(time) 

 Equation 2. ∫(acceleration)(time)=∆velocity 

 Equation 3. Powert= (forcet)(∆velocityt)= (forcet) ∫t0[(acceleration)(time)] 

DATA ANALYSIS  

 For each condition, the average of the three trials of CMJs was used for analysis. 

Independent variables included environment (land or water), load (unloaded, 10%, 20%, 

and 30% BW), and athlete type (gymnast or soccer player). Dependent variables were 

absolute peak propulsive power (PP) and absolute mean power (MP). To account for each 

subjects’ mass, relative peak propulsive power (rPP) and relative mean power (rMP) 

were also calculated, and expressed in W/kg. Land weight was recorded on the force 

plate during quiet standing. In water, apparent weight was recorded while each subject 

was submerged to the xiphoid level. A General Linear Model repeated measures (2 

(Sport) x 2 (Environment) x 4 (Load)) ANOVA (SPSS 23, Chicago IL) was used to 

determine if any significant main effects and interactions were present. Sphericity for all 

four dependent variables were tested and failed, so the Greenhouse-Geisser adjustment 

was employed. When necessary, post-hoc comparisons were performed using Duncan’s 

Least Significant Difference (LSD) test, employing the Greenhouse-Geisser method for 
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calculated Mean Square error and degrees of freedom. The level of confidence was set at 

p<0.05.  

RESULTS 

Load Main Effect  

The main effect for load did not significantly change any indices of propulsive 

power, thus rejecting Hypothesis 1.  

Environment Main Effect 

The main effect for environment was significant for PP (p< 0.001 F=267.196 

df=1), rPP (p<0.001 F=728.724 df=1), MP (p<0.001 F=161.98 df=1), and rMP (p<0.001 

F=494.79 df=1). At comparable loads, all water conditions were significantly greater than 

all land conditions, supporting Hypothesis 2.  

Sport Team Main Effect 

The main effect for sport team was significant for rPP (p<0.022 F=5.429 df=1), 

MP (p<0.01 F=9.128 df=1), and rMP (p<0.001 F=15.310 df=1). At comparable loads in 

the water environment, the soccer players had significantly higher power production for 

three of the four variables, accepting Hypothesis 3.  

Environment*Sport Interaction 

The interaction effect of environment and sport team was significant for PP 

(p<0.005 F=8.360 df=1), rPP (p<0.01 F=8.467 df=1), MP (p<0.001 F=16.069 df=1), and 

rMP (rMP: p<0.001 F=18.373 df=1). The LSD post-test revealed that the significant 

interactions for all four variables were due to significant differences between sports for 

the conditions in water at the bodyweight and bodyweight+10% loads. Additionally, the 

water BW+20% load was significantly different for MP, and all four conditions in water 
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were significantly different for rMP. All significant differences are reported in Tables 3-

6.  

DISCUSSION 

 This study demonstrated that regardless of added load, greater mechanical power 

is created when performing a CMJ in water when compared to land. This held for all 

variables: PP, rPP, MP, and rMP. This result supports previous research in our laboratory 

demonstrating greater absolute and relative PP and MP in water than on land in active 

male subjects of similar age to the present study (Louder et al., 2015, Nardoni, 2015). In 

the recent study, across all incremental loads, PP and MP produced on land were only 

56.5 and 60.4% of that produced in water, respectively. Nardoni (2015) reported a similar 

effect, with both absolute and relative PP and MP for land conditions producing an 

average of 51.5 and 52.8% of that produced in water, respectively. Louder et al. (2015) 

reported that when comparing 12 male adults in an unloaded CMJ on land and in water 

submerged to the xiphoid process, PP on land was an average of 52.7% of that in water. 

The slighter greater ratios between land vs water in the present study may reflect a 

difference due to gender, as this was the first study using females. Although the females 

were well trained and conditioned athletes, a small difference in body composition may 

influence the buoyancy of the female subjects in water. A post hoc review of apparent 

mass in water compared to land for this and earlier studies may provide insights as to 

whether this may have been a factor. The present study found that subjects’ apparent 

mass in water was 33.2% of that on land. Nardoni (2015) reported a similar ratio, with 

apparent mass in water being 32.3% of that on land in male subjects. Regardless, CMJs in 
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water have consistently produced power outputs that are approximately 80-100% greater 

than land.  

 Increasing loads on land did not significantly impact the indices of power during 

CMJs for either sport team. One explanation for this lack of significance is with well-

trained and conditioned subjects, even adding up to 30% of BW through the use of a 

weighted vest, a greater GRF may be generated during the propulsive phase of the CMJ, 

yet take a longer period of time. The resultant propulsive peak and mean power 

calculations would therefore be comparable due to the increase in time. An examination 

of the GRFs and time during the propulsive takeoff phase would provide further insights 

into these apparent comparable mechanical power observations. Cormie et. al (2007) 

reported that in Division I male athletes, maximum peak power occurred at 0% 1RM of a 

squat jump, and significant differences in peak power were not found until loads of 27% 

1RM. These findings support that reasonable loads can be overcome on land to keep 

indices of power consistent.  

When the CMJs were performed in water, all four variables demonstrated a 

significant decline in power (Figures 1-4). These findings suggest that despite the 

observation that with loads of up to bodyweight+30%, subjects were able to maintain 

power output on land, but in water subjects were unable to overcome the added resistance 

compared to bodyweight conditions.  Although buoyancy may act to aid participants in 

the CMJ propulsion, the drag forces created in the water were substantial, thus causing 

decreases in power as load increased.  

 Sport team affiliation demonstrated a significant difference for rPP, MP, and rMP.  

We hypothesized there may be a difference due to the demands of each sport, which the 
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current study supports. Gymnasts may concentrate training more on explosive, jumping, 

and bounding-type movements, or incorporate them into sport specific routines. 

Alternatively, the CMJ is considered a general movement task, and may not be a specific 

movement that can accurately discriminate between these sport teams. This is supported 

on land, where the two teams appeared virtually identical on power indices. Finally, the 

generally high level of conditioning and sport training between these groups may require 

a greater range of test characteristics for discrimination purposes.  

  Perhaps the most surprising result of this study was the ability of the soccer team 

to produce significantly greater power outputs at the WaterBW, and Water+10% 

compared to the gymnasts for all four variables (see Figures 1-4). The significant 

difference was extended for rMP to Water+20%, and for MP to both Water+20% and 

Water+30%. The Water+30% condition nearly reached significance for rMP. This 

difference may be due to the type of training and conditioning each sport receives. Soccer 

players may be more buoyant than gymnasts, helping them to overcome the increased 

drag forces in the water. Differences in buoyancy may be due to differences in body 

composition and distribution of muscle mass. However, when apparent mass in chest-

height water was compared with on land, the soccer and gymnastics groups have 

comparable values of 33.7 and 32.6%, respectively. This variable likely had very little 

influence on the difference seen between sport teams.  

There are several limitations to this study. The subjects used were solely female 

Division I gymnasts and soccer players, therefore results from this study cannot be 

assumed for other populations. Although the subjects were familiar with the execution of 

a CMJ, they were unfamiliar with jumping in an aquatic environment. The weight vest 
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used for the loaded conditions presented several limitations itself. The vest was limited to 

1.4 kg increments, so the loads could not be exact to the percentage of bodyweight. 

However, the load was always within 1.3% of the desired weight. Additionally, because 

of the fit of the vest, the load was distributed around the upper torso, which is not a 

natural distribution of weight throughout the body. The additional surface area of the vest 

may have increased drag forces for jumps performed in the water. Other studies 

measuring power of countermovement and squat jumps used a weighted barbell across 

the shoulders (Baker et al., 2001; Cormie et al. 2007, Cronin & Hansen, 2005; Hansen et 

al., 2011; Taylor & Taylor, 2014; Sheppard et al., 2008; Stone et al., 2003). This study 

only reported absolute and relative mean and peak power. There may be other dependent 

variables (peak take off force, impulse), which could provide additional insights relative 

to CMJ kinetics. Finally, the subjects self-selected the depth of the preliminary squat 

portion of their CMJ. They were instructed to “jump as high as possible using your 

natural jumping method” which allowed for variance in countermovement depth between 

subjects, and possibly between each condition or trial. This technique was selected as it 

likely represents a more natural technique for the subjects, rather than imposing a specific 

depth. Although the present study was limited to kinetic variables related to CMJ 

performance, ongoing research is evaluating the kinematic comparisons of CMJ in water 

vs. land to determine if movement patterns differ in these environments.  

Future research should focus on evaluating the kinetics of different types of 

jumps, other populations of athletes, and other variables related to CMJs. Kinetic 

variables that could be explored in different land and water environments include 

impulse, peak take off force, rate of force development, and rate of peak power 
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development. Examining these variables could add to the understanding of aquatic 

training effects on performance. Aquatic training may result in greater performance gains 

due to the increase in power production. Therefore, a study that randomizes subjects into 

a land versus an aquatic training program is recommended.  

CONCLUSION  

 CMJs produced higher absolute and relative PP and MP when performed in water 

when compared to on land. Soccer players were able to produce greater power than the 

gymnasts, particularly in water conditions. Increased loads had a greater effect on power 

indices when the CMJ was performed in the water, and subjects were not able to 

overcome the resistance as well as on land. The properties of water such as buoyancy and 

drag can be used as a training tool to train propulsive power in athletes, with the added 

benefit of aquatic exercise producing less potentially harmful impact forces on the body.  
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Table 1: Descriptive Statistics for Subjects (mean ± SD) 

 

 

Sport N 
Age (yrs) Height (cm) Weight (kg) 

Years of College 
Experience 

Gymnastics 12 19.9 ± 1.1 160.7 ± 7.9 62.2 ± 5.7 1.4 ± 1.2 

Soccer 12 19.8 ± 1.0 166.2 ± 4.8 64.6 ± 6.9 1.3 ± 0.7 
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Table 2. Peak Power (PP, Mean ± SD), Realtive Peak Power (rPP), Mean Power (MP), and 

Relative Mean Power (rMP) for all conditions (mean ± SD) 

 

 

 

 

 

 

 

 

 

 

Environment-Load Sport PP (W) rPP (W/kg) MP (W) rMP (W/kg) 

Gym 3969.7 ± 671.3 63.6 ± 7.48 1669.9 ± 374.6 26.7 ± 4.5 Land BW 

Soccer 3826.6 ± 607.5 59.1 ± 6.0 1726.5 ± 374.4 26.5 ± 4.0 

Gym 3850.5 ± 635.9 61.8 ± 7.3 1521.3 ± 404.5 24.3 ± 5.2 Land BW+10% 

Soccer 3808.2 ± 627.6 58.8 ± 7.0 1648.1 ± 383.3 25.4 ± 4.6 

Gym 3859.2 ± 514.4 62.0 ± 5.4 1520.5 ± 370.0 24.2 ± 4.3 Land BW+20% 

Soccer 3802.2 ± 675.1 58.7 ± 7.5 1635.4 ± 392.1 25.2 ± 4.8 

Gym 3832.8 ± 551.7 61.6 ± 6.2 1510.7 ± 260.9 24.3 ± 3.7 LandBW+30% 

Soccer 3818.5 ± 659.9 58.9 ± 7.2 1612.9 ± 378.5 24.8 ± 4.5 

Gym 6706.7 ± 2556.3 315.8 ± 103.4 2351.3 ± 1103.7 109.9 ± 44.3 Water BW 

Soccer 7823.8 ± 2533.2 377.5 ± 116.1 3220.4 ± 1149.2 155.2 ± 52.8 

Gym 6288.4 ± 2038.6 297.9 ± 85.6 2194.5 ± 925.8 103.2 ± 39.1 Water BW+10% 

Soccer 7920.6 ± 2503.7 382.7 ± 114.4 3281.5 ± 1189.4 158.7 ± 55.7 

Gym 6396.6 ± 2149.8 302.9 ± 87.9 2329.6 ± 1008.5 109.4 ± 41.2 Water BW+20% 

Soccer 7079.9 ± 2075.8 342.3 ± 96.2 2950.0 ± 964.1 142.4 ± 44.5 

Gym 5942.9 ± 1754.6 282.9 ± 72.7 2235.2 ± 903.1 105.7 ± 38.1 Water BW+30% 

Soccer 6475.6 ± 1990.4 313.3 ± 93.3 2715.4 ± 975.2 131.3 ± 46.0 
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Table 3. Post-Hoc for Environment*Sport Significant Differences: PP 

Environment 
Gymnastics 

Mean 

Soccer  

Mean 

Mean 

Difference Sig 

Water BW 6706.7 7823.8 1117.1 0.005 

Water BW+10% 6288.4 7920.6 1632.2 0.005 
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Table 4. Post-Hoc for Environment*Sport Significant Differences: rPP 

Environment 
Gymnastics 

Mean 

Soccer  

Mean 

Mean 

Difference Sig 

Water BW 315.8 377.5 61.7 0.01 

Water BW+10% 297.9  382.7 84.8 0.01 
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Table 5. Post-Hoc for Environment*Sport Significant Differences: MP 

Environment 
Gymnastics 

Mean 

Soccer  

Mean 

Mean 

Difference Sig 

Water BW 2351.3 3220.4 869.1 0.001 

Water BW+10% 2194.5  3281.5 1087.0 0.001 

Water BW+20% 2329.6 2950.0 620.4 0.001 
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Table 6. Post-Hoc for Environment*Sport Significant Differences: rMP 

Environment 
Gymnastics 

Mean 

Soccer  

Mean 

Mean 

Difference Sig 

Water BW 109.9 155.2 45.3 0.001 

Water BW+10% 103.2  158.7 55.5 0.001 

Water BW+20% 109.4 142.4 33.0 0.001 

Water BW+30% 105.7 131.3 25.6 0.001 
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Figure 1. Estimated Marginal Means of Loads for Peak Power (PP) 
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Figure 2. Estimated Marginal Means of Loads for Relative Peak Power (rPP) 
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Figure 3. Estimated Marginal Means of Loads for Mean Power (MP) 
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Figure 4. Estimated Marginal Means of Loads for Relative Mean Power (rMP) 
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