
Utah State University Utah State University

DigitalCommons@USU DigitalCommons@USU

All Graduate Plan B and other Reports Graduate Studies

5-2016

An Original Computer Game Incorporating Optical Illusions An Original Computer Game Incorporating Optical Illusions

Jacob Butterfield
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/gradreports

Recommended Citation Recommended Citation
Butterfield, Jacob, "An Original Computer Game Incorporating Optical Illusions" (2016). All Graduate Plan
B and other Reports. 805.
https://digitalcommons.usu.edu/gradreports/805

This Thesis is brought to you for free and open access by
the Graduate Studies at DigitalCommons@USU. It has
been accepted for inclusion in All Graduate Plan B and
other Reports by an authorized administrator of
DigitalCommons@USU. For more information, please
contact digitalcommons@usu.edu.

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/gradreports
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/gradreports?utm_source=digitalcommons.usu.edu%2Fgradreports%2F805&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/gradreports/805?utm_source=digitalcommons.usu.edu%2Fgradreports%2F805&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

AN ORIGINAL COMPUTER GAME INCORPORATING OPTICAL ILLUSIONS

by

Jacob Butterfield

A report submitted in partial fulfillment
of the requirements for the degree

of

MASTER OF SCIENCE

in

Computer Science

Approved:

Dr. Minghui Jiang Dr. Vladimir Kulyukin
Major Professor Committee Member

Dr. Dean Mathias
Committee Member

UTAH STATE UNIVERSITY
Logan, Utah

May, 2016

ii

Copyright c© Jacob Butterfield May, 2016

All Rights Reserved

iii

ABSTRACT

An Original Computer Game Incorporating Optical Illusions

by

Jacob Butterfield, Master of Science

Utah State University, May, 2016

Major Professor: Dr. Minghui Jiang
Department: Computer Science

Computer games have a diverse range of genres and implementations. Many of the

most popular computer games consist of time-killing puzzles targeted at mobile devices.

Each game has a well-defined challenge that a user must solve in order to progress.

The goal of this project is to investigate and implement a new obstacle for use in

computer games, namely optical illusions. One illusion in particular, the Fraser spiral, was

especially considered. Before this project, no other computer game integrating this optical

illusion has been attempted.

Included in this report is an overview of the design, implementation and testing involved

in creating this game. A gameplay method is introduced that effectively makes use of the

Fraser spiral illusion. Tests were conducted in order to investigate the impact of the illusion

on user performance. The results of these tests demonstrate the plausibility of using optical

illusions to increase gameplay difficulty.

(41 pages)

iv

CONTENTS

Page

ABSTRACT . iii

LIST OF FIGURES . v

CHAPTER

1 Introduction . 1
1.1 Computer Games . 1
1.2 Optical Illusions . 1
1.3 Development Overview . 2

2 Tools Utilized . 4
2.1 Overview . 4
2.2 JavaScript . 4
2.3 Chrome Browser V8 Engine . 5
2.4 Git . 5

3 Turbulenz Game Engine . 7
3.1 Overview . 7
3.2 Workflow and Tools . 8
3.3 Modules Utilized . 10

4 Project Architecture and Implementation . 12
4.1 Overview . 12
4.2 Modules . 12
4.3 Levels . 19

5 Gameplay Evolution . 23
5.1 Overview . 23
5.2 Original Concept . 23
5.3 Alternative Gameplay Concepts . 24
5.4 Finalized Gameplay . 26

6 Testing and Results . 28
6.1 Overview and Framework . 28
6.2 Results . 29

7 Future Work . 32

8 Conclusion . 33

REFERENCES . 33

v

LIST OF FIGURES

Figure Page

1.1 A few versions of the Fraser spiral illusion [4] [5] [6] 2

3.1 The Turbulenz local server landing page . 9

4.1 The Menu screen . 16

4.2 The first level screen . 17

4.3 The game over screen . 18

4.4 The high scores screen . 19

5.1 The first iteration of the game. 24

5.2 Another version of the game with an added effect 26

6.1 The test version of the game, lacking the illusion 29

6.2 The average time required to pass each static version of the game 30

6.3 A comparison of each effect in relation to average time to pass a level . . . 31

1

CHAPTER 1

Introduction

1.1 Computer Games

A computer game is a virtual representation of a physical task for challenge and amuse-

ment. One may participate in a computer game in order to improve his skills, compete in

professional contests or to simply pass the time.

Popular computer games combine computer graphics with distinct challenges in order

to create a difficult, yet enjoyable, experience. Game genres range from complex, life-like

simulators of sports, physical combat or role-playing to fun puzzles with bright themes and

cartoonish animation. Each year, several games are developed that target these structured

categories. The intent of this project is to design, develop, and test a brand new class of

computer game, one that integrates optical illusions.

1.2 Optical Illusions

An optical illusion is an image whose true composition is different from its perception

[1]. When one views an optical illusion, he may perceive objects or properties that do not

exist because of the the brain’s attempt to accommodate diverse imagery [2]. Some well-

known optical illusions may cause the viewer to discern non-existent images, interpret a

three-dimensional image as a two-dimensional image or vice versa, and even fail to recognize

the same color in different environments. The optical illusion that provides the basis of this

project is known as the Fraser spiral or false spiral illusion [3]. There are several versions of

this illusion, as seen in Figure 1.1, and this project relied exclusively on the version labeled

(c). This version of the Fraser spiral illusion can be described as a series of concentric circles

comprised of square outlines with alternating colors. Each square has an angle relative to its

position in the circle with an additional offset. This offset value alternates across each circle,

2

causing no adjacent circles to be composed of squares with the same rotational correction.

When viewed in its entirety, the concentric circles appear to be overlapping. This project

attempts to use the false entanglement property as the basis for a challenge in a computer

game.

Figure 1.1: A few versions of the Fraser spiral illusion [4] [5] [6]

1.3 Development Overview

The process of creating a computer game that incorporates the Fraser spiral was com-

prised of several steps. Among these, were design considerations, prototypes, software

development and tests. Each of these steps will be discussed in further detail in this report.

The initial design and idea were given by Dr. Dean Mathias. From there, a prototype was

created using the Unity game engine. After the prototype was approved, a richer version

was designed and developed using the web-based Turbulenz game engine [7]. The primary

focus of this report will be on the implementation using this tool and the results in testing

against a version that lacks the illusion properties.

First, an overview of the technologies utilized in this project will be described in de-

tail. Next, the Turbulenz game engine itself will be examined, including its workflow and

libraries. After the technologies have been established, the overall architecture of the game

will be given. From there, several proposals for gameplay will be described along with the

project development process. Because the core gameplay was the result of experimentation,

these two areas of will be discussed together. From there, data generated from empiri-

3

cal tests will determine the effectiveness of the illusion on user performance. Finally, a

conclusion of the project will be given with a recommendations for future work.

4

CHAPTER 2

Tools Utilized

2.1 Overview

This section explains and details the base technologies used in the creation of this

project. Included are descriptions of how each component works, the manner it was used in

the project and the reasoning behind its utilization. While not an exhaustive description,

the principles explained are intended to give a clear synopsis of each technology.

2.2 JavaScript

Foremost among the tools used in this computer game is JavaScript, which is the pro-

gramming language that makes up the entirety of the project. JavaScript is a fully featured

programming language that can be executed in modern web browsers [8]. It supports sev-

eral popular programming methods, including object-oriented, imperative and functional

paradigms [8]. JavaScript was initially designed to be a scripting programming language.

This means that its commands are interpreted and executed one line at a time. Other

languages, such as C++, are first translated into machine code and then executed in their

entirety on a processor. JavaScript also distinguishes itself from other programming lan-

guages because it is dynamically-typed. This means that a single variable may change its

type as a program executes [9]. JavaScript is typically associated with web-based program-

ming because of its ability to run in a browser.

When used in conjunction with a webpage, JavaScript code is executed on the client

instead of on the server. This means that when a user requests a webpage, it is sent from

the server, or the computer hosting the page, to the requester’s browser. After it has

been loaded, any JavaScript code that may accompany the page is executed on the user’s

computer instead of on the server. This reduces the computing load on the server and may

5

enable it to respond to more requests. New technologies have been created to improve the

performance of JavaScript code inside the browser. Among these is the V8 engine that

operates in the Google Chrome browser [10].

2.3 Chrome Browser V8 Engine

This project was extensively tested and developed using tools available in Chrome, a

well-known web browser created by Google. A central feature of this browser is fast per-

formance. Therefore, one of the most important technologies available to web developers

is the aforementioned V8 JavaScript engine. The goal of the V8 engine is to improve on

performance of JavaScript by compiling its commands into machine code that executes di-

rectly on the processor [11]. Although JavaScript was initially designed to be interpreted

line by line, the V8 engine allows it to act like a compiled language, such as C++. Having

optimized and efficient JavaScript code is essential to game development because of the in-

tensive operations involved, including physics simulations, collision detection, and graphics

rendering. Accordingly, the performance provided by Chrome, especially the V8 JavaScript

engine, was important to the development and testing of this project.

2.4 Git

Another tool that was used extensively in this project is the version-control system

Git. When creating software, it is essential that a developer, or a team, has the ability to

apply incremental changes on a functional code base. This allows the developer to add new

features or make modifications without negatively affecting the software. Once all changes

have been added and successfully tested, the code base can be extended to include them.

This idea is known as source or version control and Git is a program that facilitates this

process. It works by storing a set of user-defined files in a database and then adding new

entries to the database as changes are made [12]. When a developer wishes to add a new

feature, he may download the most recent code from a computer that hosts the project,

make and test the necessary changes, and then upload his modifications to the hosting

computer [12]. Keeping track of these changes enables a developer, or a team, to maintain

6

a functional, up-to-date version of the project, to create and test new features, and to

preserve the entire history of the software. For this project, the code was hosted on Github,

a popular hosting site for Git repositories. Although the project was developed by only one

person, new features were added and committed routinely to the hosting server. As a result,

a complete record of the development of the project is accessible. Git is used extensively in

industry for code collaboration and management and was an essential tool for this project.

The final technology that was used in this project is the Turbulenz game engine. Be-

cause this tool was so tightly coupled with the game, a deeper discussion of it is given in

the next section. Overall, this project relies on several underlying technologies in its im-

plementation. Each makes up an integral part of the overall project and its development.

Together, they represent a microcosm of industry standard tools and techniques for game

development.

7

CHAPTER 3

Turbulenz Game Engine

3.1 Overview

Turbulenz is a free and open-source game engine for the HTML5 web standard [15].

Like other popular game engines, such as Unity, or Unreal, it provides a number of libraries

for essential game components, including animation, physics, audio, and resource manage-

ment [13] [14] [7]. In addition to these libraries, Turbulenz also comes with a number of

tools for hosting resources, debugging and consolidating code. Being a web technology,

games designed using this engine can easily be ported to a number of platforms, such as

desktop and mobile, while retaining the same code base. In the beginning of this project,

the decision to use Turbulenz was based on the functionality it provided and the ability to

use it across several platforms.

The Turbulenz game engine is built on several standard web technologies. Instead of

targeting a specific console or device, this game engine is designed to run entirely inside

of a web browser [7]. At its core, Turbulenz is implemented in JavaScript and provides a

simplified interface to browser libraries such as WebGL and the HTML5 canvas [7]. There-

fore, any browser that is compatible with these technologies will be able to run a Turbulenz

game. This greatly simplifies the development process because no special accommodations

need to be implemented for varying architectures, screen resolutions or operating systems.

Games that are developed using the Turbulenz engine are written entirely in JavaScript

and generally run in a single webpage.

In addition to being fully web-compliant, Turbulenz is a modular game engine [16]. This

means that each component, or module, provided by the engine is independent and provides

objects and methods to aid in game development. However, which modules are used is a

decision made by the developer [16]. This allows each game to utilize only the pieces of the

8

engine that are essential, while ignoring unnecessary components. For example, because of

the two-dimensional nature of the illusion used in this game, only two-dimensional rendering

libraries provided by Turbulenz were included, while all of the three-dimensional rendering

libraries were excluded from the project. This reduces the code base and overhead of the

entire project, allowing it to be lighter and simpler.

3.2 Workflow and Tools

Due to the expansive nature of the Turbulenz game engine, a workflow has been created

to improve developer efficiency. This process includes using Turbulenz specific tools to

build, test and release new features and versions of the game throughout the course of

development. In order to build a game using Turbulenz, an SDK must be downloaded

from the official game engine website. Included in this SDK are all game engine modules,

build scripts for consolidating code, a simple server to host resources and several examples

of game implementations. With the SDK downloaded, the first step is to run the default

server using the executable provided. The end goal of Turbulenz games is to reside on a

publicly accessible server and to be played by many. Therefore, the default server provided

in the SDK not only hosts local versions of the game, but also acts as a prototype for the

deployed final product [17]. By default, the local server is designed to run on port 8070.

Once the server has been started, the developer can navigate to the URL localhost:8070

in a browser on the same computer to view a landing page with all Turbulenz applications,

or games, that have been configured to work with the engine. An image of this landing page

is included in Figure 3.1. Each application has various options for management, including

links to play the game locally, metrics on loading performance and deployment options.

9

Figure 3.1: The Turbulenz local server landing page

With the Turbulenz server running, local games can be added and modified as their

development progresses. The first step in building a Turbulenz game is to import the

necessary modules to the main application file. As previously stated, there are several

modules provided by the Turbulenz game engine that provide a great deal of functionality.

At the time of this project, there are eighty-three modules available for use, all of which

have been implemented in JavaScript. Once the specific modules have been selected for

the project, they marked for inclusion using JavaScript template syntax, along with any

other JavaScript files written by the developer. These dependencies are then compiled into

a standalone project using tools provided by the Turbulenz SDK.

All of the tools available in the SDK are included in the Turbulenz development envi-

ronment. The development environment is an executable that is not to be confused with

the Turbulenz local server. This environment provides tools for building and packaging the

game, while the local server allows for testing it in the browser. During the game devel-

opment process, it makes sense to have both the server and the development environment

running simultaneously. This allows the developer to modify the game code, rebuild it and

then test it in the browser. The tools provided by Turbulenz are manifest as a series of shell

commands for performing different actions. Among the most important of these operations

are the maketzjs and makehtml commands. These tools are used once the developer has

reached a point where it is necessary to test the latest changes in the browser. The maketzjs

10

command accepts the main application file as an argument, finds all of the dependencies

listed in its template markup, and then combines these into a single JavaScript file [18]. The

makehtml command then creates an HTML webpage to reference this monolithic JavaScript

file [18]. Together, these two files compose a game that can be executed in nearly all mod-

ern browsers. The completed game can then be tested and marked for improvement, thus

reinitializing the development cycle. Therefore, the process of selecting modules, importing

them, building the project, testing it and receiving feedback becomes the central workflow

of the Turbulenz game engine.

3.3 Modules Utilized

The specific modules used for this project dealt with resource management, physics

simulations and rendering. Of the many libraries provided by Turbulenz, only six were

necessary to use in the development of this game. Foremost among these modules is the

MappingTable library. The mapping table is a standalone JSON file that maps all of the

necessary resources to accessible objects. Sprites, two-dimensional images used for render-

ing, are an example of these types of resources. Normally, code would have to be written

to load each sprite individually. However, the mapping table module abstracts all of this

functionality inside an easy-to-use interface. In addition to this library, the project uses

two other modules for loading called Turbulenz Game Services and RequestHandler. To be

brief, the Turbulenz Game Services library enables the mapping table to request resources,

and the RequestHandler simplifies these requests [19].

Two other modules included in the project introduce objects for two-dimensional

physics simulations. These two libraries are called BoxTree and Physics2DDevice. Tur-

bulenz also provides three-dimensional physics objects, but these were not necessary in this

game. Computer games often emulate elements of the physical world, including gravity,

friction and collisions. Fortunately, the Physics2DDevice library provides the functionality

to simulate each of these. At its core, this module provides a base physics object called a

RigidBody. Each of these objects has several properties that can be either manually set or

automatically updated, such as rotation, velocity, position, force and mass [20]. A collec-

11

tion of RigidBody objects are contained by a World object. Much like the physical world,

this item may have characteristics that act upon its RigidBody objects, such as gravity. In

addition to these properties, each World also has several methods for managing its asso-

ciated RigidBody objects. These include automatically updating their positions, velocities

and rotations, as well as detecting collisions with other objects [21]. Each of these abilities

were useful in the development of this game.

The final Turbulenz library used in this project was for sprite rendering and is called

Draw2D. This module provides a number of objects and methods for scaling, displaying

and, of course, drawing. The Draw2D base object can be configured to scale all images to

the current screen size while retaining the same aspect ratio, allowing the game to work

on a variety of platforms. Additionally, the viewport of the entire screen can be manually

set. This means that only objects with positions inside of said viewport will be rendered.

Furthermore, the Draw2D library provides a simple interface, called Draw2DSprite for two-

dimensional sprites that can be associated with a RigidBody. This allows each sprite to

adopt some of the properties of its corresponding RigidBody, such as rotation and position.

Automatically updating a sprite based on its underlying physics object greatly simplifies

otherwise complex rendering code.

Turbulenz provides a number of useful modules for use in game development. For-

tunately, each of its libraries is loaded on a need-only basis, reducing overhead. In total,

only a small amount of the total functionality provided by this game engine was utilized.

However, even this minute adaptation simplified development and testing.

12

CHAPTER 4

Project Architecture and Implementation

4.1 Overview

This project was built using a number of common software design principles. Each con-

cept employed was chosen because it fit the project specification. Therefore, the overarching

architecture differs from each individual component therein. This section first explains the

high level structure of the game and then describes the specifics of each component. A

synopsis of each software engineering technique enlisted is given, along with the details of

its implementation.

4.2 Modules

4.2.1 Modular Design Pattern

At the highest level, this project follows the modular programming pattern. This

design method encourages the creation of several independent software components that

act as building blocks for an application [22]. A single component may build on other

modules, but no two items should depend upon each other. Generally, each component

provides a static interface that can be referenced by other modules [22]. An application

may be an overarching central module that acts as a container for any supporting items and

dictates when they are used [22]. Additionally, an application may house resources needed

by other modules, allowing these resources to be reused throughout the entire program.

There are several reasons to design software using this pattern. First, each individual

component may be developed apart from the other units, allowing a developer, or team, to

create and maintain modules separately [22]. Additionally, any components that may refer-

ence another module are not affected when that module changes its inner functionality [22].

13

In the worst-case scenario, a module’s interface changes. However, it is much easier to ad-

just a few method calls, than to refactor an entire program. Finally, modular programming

allows components to be reused across different applications [22]. A well-designed module

may be incorporated into a number of different programs because of its independent nature.

4.2.2 Project Modules

This project has several modules that are contained within a main application. Each

of these components provides a consistent and easy-to-use interface and is designed to run

independently of other items.

4.2.3 Application

The central component of the game is the Application module. It is the main entry point

for the entire game. The Application object provides an interface consisting of two methods,

create and shutdown, which serve to abstract its entire functionality. This module also

encompasses and manages all other the auxiliary components and game resources.

The create method of this module first instantiates all of the Turbulenz objects used

throughout the game. This allows game engine components, such as input handlers and

renderers, to be shared by the various modules. Once these objects have been created, the

resources from the mapping table are loaded into the application. In this project, the only

resources that need to be loaded are sprites. They may be requested and sent from the

server, or they may come directly from the browser cache. After all of the resources have

been loaded, the auxiliary game modules are initialized by calling each of their init meth-

ods. As mentioned earlier, the Application object is a container for supporting modules,

one of which is the Menu component. Therefore, after all of the resources have been loaded

and the modules initialized, the show method of the Menu is called, causing a menu to be

displayed to the user.

In contrast to the create method, the shutdown function clears all resources and ob-

jects used in the game. This subroutine is automatically called when the webpage is closed.

When shutting down, the Application component iterates through each game module and

14

calls their respective shutdown methods. This ensures that the application exits properly,

regardless of what the user is doing when the page is being closed. Once each module has

been stopped, the Turbulenz engine is flushed. This causes the browser to release unused

memory that may have been allocated for the game [23]. Any remaining Turbulenz objects

are then set to the special JavaScript value null, allowing all memory they occupied to be

freed as well. In summary, the shutdown method provides an easy way for the browser to

quickly clean up after the game has been exited.

4.2.4 Auxiliary Modules

Now that the main Application has been explained, each supporting component is ex-

amined. The four auxiliary modules are Menu, GameOver, HighScores, and Game. As a

general rule, each module represents a different screen that is shown to the player. For ex-

ample, the HighScores component displays the best user performance, while the GameOver

module informs the user that the game has been terminated. Each of these items has its own

interface, and is designed to work independently of the other components. However, there

are several direct references between modules that allow the user to navigate the applica-

tion. As previously stated, each of these ancillary modules has its own init and shutdown

methods, which bring consistency to the program. A show method, which displays a com-

ponent’s associated screen, is also common among these items. While these supporting

components share a few methods, they also have numerous important distinctions, and will

thus be analyzed individually.

4.2.5 Menu

The first auxiliary module to describe is the Menu. As expected, the Menu is the

landing screen of the game. It gives the title of the game as well as navigation options. The

init method of this component sets private data members and creates menu items. A menu

item is a combination of positional information, a sprite, and a function callback. All of the

menu items are stored in a dictionary by the name of their sprite. This allows them to be

accessed using static keys. The associated positional data takes into account the location

15

of the sprite on the screen as well as its size. This allows the Menu to detect whether a user

has clicked on a particular item, which will cause the associated function to be executed.

For example, when the New Game menu item has been clicked, the Menu is canceled and

the Game screen is displayed. After all of the menu items have been initialized, the main

screen can be shown.

The show method of the Menu module is associated with rendering an updated version

of each menu item. Before rendering, this subroutine adds click and touch event listeners to

the screen. An event listener is a function that is automatically executed when a particular

event occurs, such as a mouse click in this case. Once the listeners have been registered,

a continuous loop is started. This loop has two important functions called getInput and

render. When the getInput method is called, it updates the input queue object to check

for any mouse clicks from the user. If there are any, the callbacks registered with the

mouse clicks are executed. This pattern allows input to be processed synchronously with

rendering. The render method on the other hand is responsible for drawing each menu

item. It uses Turbulenz graphics objects to clear the previous screen and then render the

sprite associated with each menu item in its correct position. Running the render method

in a loop allows the menu to be responsive and scale sprites when the browser is resized.

The screen shown by the menu is included in Figure 4.1.

When a user selects a menu item the menu is canceled and the item’s associated module

is shown. Canceling the module involves stopping the continuous loop and then removing

the mouse click event listeners. The loop is stopped because it is assumed that the newly

loading module will render its own components. Likewise, the event listeners are removed in

order to avoid conflicts with other modules. The Menu object has references to the Game

and HighScores modules, allowing the user to start a new game or view the high scores

directly from the menu.

16

Figure 4.1: The Menu screen

4.2.6 Game

The next supporting component to examine is the Game. This module is best described

as a container and controller of levels. The Level objects have a different architecture

from the other modules, and will be described later in this report. On initialization of the

Game module (by calling its init) method, this component prepares its member Turbulenz

objects and then populates a private list of Level object references. This construct allows the

program to create and load each Level object dynamically, which reduces the overall amount

of memory required by the game. Once the list of Level references has been populated, it is

never modified throughout the duration of the program. A private _level variable stores

a reference to the currently operating Level object, and is updated as the game progresses.

There is an additional private variable called _levelIndex that stores points to the current

level in the private list of levels. This counter is incremented as the user passes each level.

The play method is the main entry point to the Game. Much like the show subroutine

of the Menu component, this function first adds mouse click listeners to the screen. After

that, it also initializes the first Level object. Each of these objects is instantiated using the

private method loadLevel. When a level is created, the game first checks to see if there

are any more levels in the list by comparing the _levelIndex counter to the total number

of Level objects. If the user has completed all levels, then the Game module is canceled

and the GameOver screen is shown. Otherwise, the next Level object is instantiated and

17

the _level private variable is updated. Once the first level has been loaded, the game

loop is started. Using Turbulenz tools, the game loop is set to run at 60 frames per second

(FPS) which is common for video games. A game loop is a construct for ensuring that a

game is continually receiving input, updating physics objects and logic, and rendering the

most recent game world [24]. In this project, the methods for updating game objects and

rendering are abstracted by the Level items. These methods and others are common to all

levels due to their code structure. An screenshot of the first level being rendered is included

in Figure 4.2. Each Level object has the ability to report its score and completion time.

Once a level has been flagged as passed, the Game module increments the _levelIndex

variable and loads the next level by calling the loadLevel method. In addition to checking

for level completion, the Level objects also cause the GameOver module to be shown when

the user has run out of time and the game is over.

Figure 4.2: The first level screen

When the user has completed the game or has run out of time, the Game module

transitions to the GameOver screen. First, the game loop is canceled using Turbulenz APIs

and the mouse click listeners are removed. Any references to a currently loaded level are

also disposed of. This saves memory and allows the game to be loaded from the beginning

when a new game is started. Finally, the cached score is passed to the GameOver module,

which then takes effect.

18

4.2.7 Game Over

The GameOver module is the final screen of the game. It serves several purposes.

First, it informs the user of his final score. Additionally, this component is responsible for

saving the highest scores. As new scores come into this module, they are compared with

any cached high scores from the browser. A JavaScript API called localStorage allows

values to be saved directly directly to the browser and retrieved using a key. Any values

already saved to localStorage are brought out and compared with the latest new score.

The top three scores are then placed back in browser cache as the definitive high scores.

Also, this module provides a link back to the Menu module. After playing, the user can

either start a new game or view the high scores.

Much like the Menu module, this component creates several items before it is shown.

These include a sprite with the text Game Over as well an option to return to the menu. Ad-

ditionally, a sprite to display the final score is generated in the show method. A screenshot

of the GameOver screen is included in Figure 4.3.

Figure 4.3: The game over screen

4.2.8 High Scores

The final auxiliary component to analyze is the HighScores module. The main function

of this module is to display the top local performances in the game. The structure of this

component is very similar to that of Menu. When initialized with the init method, this

module sets private variables and creates items to be rendered on the screen. However,

19

because the init method is only called once in the duration of the application, the high

scores are not retrieved from localStorage during its execution. Instead, they are loaded

during the show method to ensure that they are current.

The show method of the HighScores module is responsible for loading top scores and

displaying them to the user. When called, the subroutine adds mouse click event listeners

to the screen and then retrieves the high scores. Once the scores have been loaded, they are

given associated sprites. A continuous loop is then started. Much like the Menu module,

the continuous loop allows the HighScores module to scale sprites on window resize events

and also accepts user input. Unlike the Menu module, however, this module only has one

navigation item (a link back to the menu screen). An example of the HighScores screen can

be seen in Figure 4.4.

Figure 4.4: The high scores screen

4.3 Levels

4.3.1 Object Oriented Programming

The architecture of the Level objects greatly differs from that of the game modules.

Instead of following a modular design pattern, the Level objects employ an inheritance

hierarchy. Inheritance is an ability of object-oriented programming that allows objects to

20

build on existing components [25]. In classical inheritance, each object template is called a

class. Classes that provide common functionality are referred to as base classes, while classes

that build on these are called derived classes [25]. Generally, a derived class is able to use

the methods of its corresponding base class. Distinct classes that extend the same base class

can be treated as the same type of object. JavaScript employs a special type of this concept

called prototypical inheritance. While the central idea of inheritance, that objects build on

other objects, is still in play, there are important distinctions between classical inheritance

and inheritance using prototypes. The first thing to consider in prototypical inheritance

is that all objects are built on prototypes. A prototype is another object that exposes its

properties and methods for extension [26]. Because each prototype is also an object, it may

have its own prototype as well, and so on [26]. Additionally, prototypical inheritance allows

a new object to build on an instance of another object instead of its class, or template [27].

This allows each object of a certain type to adopt properties from other types without

affecting its object template. In contrast, objects created using classical inheritance must

share a template if they are of the same type. While prototypical inheritance differs from

classical inheritance in some respects, both techniques share some of the same concepts.

Object-oriented programming allows for code reuse and abstraction. Although the im-

plementation may differ, classical and prototypical inheritance allow for these advantages.

Therefore, in this section, the terms class and object are used interchangeably. A funda-

mental concept of object-oriented programming is encapsulation. When the abilities of an

object are exposed without its underlying intricacies, it is said to be encapsulated [28].

Similar to the modular design pattern, this allows an object to be modified internally with-

out affecting its use [28]. Another essential idea of object-oriented software development

is polymorphism, which is a by-product of inheritance. This concept allows a program to

treat different objects in a similar manner if they extend the same base class [29]. This is

because objects that inherit from the same base class intrinsically share its methods. In

addition to having subroutines from the base class, each derived class can override these

to better match its functionality. Virtual methods, base class functions which have no de-

21

fault implementation, are an extension of this idea. All of the aforementioned concepts are

available in both classical and prototypical inheritance and were used extensively in this

project.

4.3.2 LevelBase

The LevelBase module is the prototype of all other Level objects. It is designed to

fully encapsulate the gameboard layout and rendering, as well as all game logic and scoring.

An overview of the LevelBase API will be given in this section. It should be noted that its

interface is extended by each Level object in order to differentiate itself from other levels.

On instantiation via its constructor, LevelBase sets constants, sprites and Turbulenz

objects as private data members. These are accessible to any of its methods, as well as

to the methods of any derived classes (other level objects). In addition to the constructor,

LevelBase exposes an init method that is executed before the the object may be used. This

function sets up the gameboard and starts its timer. The composition of the gameboard

is a series of Turbulenz RigidBody objects contained by a private World data member.

Each RigidBody represents an individual square that makes up one of the circles in the

illusion. Geometric logic determines the position and rotation of each RigidBody, which is

also assigned a black or white sprite, thus recreating the illusion.

Two other important methods exposed by the LevelBase object are called update

and render. Update is responsible for decrementing the timer, updating physics objects,

applying effects and determining if the timer has expired. To add any effects on a recurring

basis, a virtual method named _updateBlink is called from update. Some of the levels

implement this virtual method, however its implementation is not required. Similar to the

update function, render is responsible for drawing all physics objects as well as informative

sprites, such as level number, score and time remaining. Because the gameboard is contained

in Turbulenz World data member, the render method simply iterates through its RigidBody

objects and draws each individually. In addition to these methods, the LevelBase object

has an input handling function called onTap. Clicks (and taps) on the screen are central to

gameplay. Therefore, whenever a click is registered, the private World object is queried to

22

determine if the click struck any of its RigidBody objects. If so, additional logic determines

the validity of the input in conjunction with game rules. Finally, the LevelBase module has

several “getter” and “setter” methods. These functions expose the level state, score and

time remaining. The Game module relies on these methods in order to control the levels.

Because all of the levels inherit from the LevelBase object, these can act polymorphically.

This allows the Game module to execute the same functions on each Level object, regardless

of its specific type. Overall, the LevelBase component provides a simple and extensible

interface for all Level objects.

4.3.3 Derived Levels

Each derived Level follows the same pattern of extending a base object. These objects

are denoted by the name Level and then a number, such as Level1 or Level8. The first five

levels extend the LevelBase object directly, while the next ten build on these. Each Level

extends the init method in order to create a list of circles that need to be drawn and then

calls the base init function to initialize any other level variables. Because each level is

associated with a particular challenge, they may override how the level is updated or how

input is handled. After every five levels, the challenge is repeated, only this time with an

additional circle to enhance the illusion. This makes the implementation of the later levels

especially simple.

Altogether, this project employed a number of common software design principles. As

a whole, the software consists of distinct modules that can work independently of each

other. The central Application component is a container for all of the auxiliary modules. In

addition to the modular design pattern, common object-oriented concepts are applied in the

structure of the levels. These include inheritance, polymorphism and method overriding.

The overall design of this project improves maintainability and encourages extensibility.

23

CHAPTER 5

Gameplay Evolution

5.1 Overview

The finalized gameplay was a created through a process of concept and experimen-

tation. While the idea of using the Fraser spiral was consistent throughout development,

the core gameplay varied considerably throughout the course of this project. As the game

framework was created, new adaptations and improvements were hypothesized and tested.

All gameplay concepts stemmed from an understanding of how the illusion is perceived.

Additionally, each version was designed especially for mobile devices because of the massive

market for smartphone and tablet games. Several gameplay ideas never made it to a demo

due to their difficult implementation and high risk of failure. Another major issue in the

development of this project was due to the lack of metrics to quantify the prevalence of

the illusion in gameplay. That is, while some gameplay methods may be more challenging

than others, there is not a solid mechanism to determine how much the illusion causes the

increased difficulty. Accordingly, game development relied on user feedback regarding the

effectiveness of the illusion. In summary, the development of this project was an attempt

to find a balance between an optical illusion and simple, enjoyable gameplay.

5.2 Original Concept

The original design for this game differed greatly from the finished product. Initially,

the idea was to have a dynamic, user-controlled object attempting to navigate in between

any of the two circles that comprise the illusion. Much like other computer games, this

user object was designed to collect coins and other items without touching the boundary

of either the inner or outer circles. Striking any of the circles would cause the user to lose

life points until all had expired and the game was over. Control of the main object was

24

supposed to be a function of device orientation, also known as tilt. A screenshot of this

game on a mobile device can be seen in Figure 5.1. It was supposed that the entanglement

effect of the circles caused by the Fraser spiral would confuse the users as they attempt to

guide the object around the level. Unfortunately, the illusion effect was essentially nullified

by the gameplay. It was quickly discovered that as the user tracks his/her object throughout

the map, the interweaving effect disappears around it. In other words, the spiral illusion is

most effective when the image is being view as a whole, instead of just one area. Although

disappointing, the failure of this initial idea paved the way for the remainder of this project.

Instead of simply implementing a preconceived game concept, this project would require

experimentation in order to find suitable gameplay.

Figure 5.1: The first iteration of the game.

5.3 Alternative Gameplay Concepts

After the initial idea was rejected, several new designs were generated in an attempt

to find gameplay that successfully utilized the illusion. One early approach was to allow

one of the circles involved in the illusion to be adjusted according to device orientation.

25

The user would tilt the device in an attempt get the circle to be concentric with all others.

The idea behind this concept was that the user would take in more of the image (and

therefore the illusion) while trying to position the stray circle. The main issue with this

idea was geometry. Because the circles are concentric, positioning one part of the user-

controlled circle would correctly arrange the entire circle. As a result, this gameplay model

was rejected because it could not consistently force the user to perceive the illusion.

Another, more successful version of gameplay that was implemented and tested involved

hiding a rogue white square at a random location between any two of the circles. The user

simply had to locate and tap on this square in the allotted time. Once the correct position

was determined, the square was respawned in a different region. Unfortunately, the change

in this square’s position could be detected if it was relocated immediately. This situation

was remedied by blurring the entire image before relocating the square, which was sufficient

for perception to reset. The strength of this version is that it required the user to view the

entire image in searching for the rogue square, and thus perceive the illusion. To improve

the difficulty of this version, additional effects were added to the illusion in order to distract

and disorient the user. Much like the overall gameplay, these effects were the result of

experimentation. One attempt to confuse the user was filling in a few random squares in

each circle about every second. It was thought that the added motion would disturb the

scanning process and this was met with moderate success. A screenshot of this version of the

game with the filled in circles in included in Figure 5.2. Another enhancement was rotating

adjacent circles in opposite directions. This effect was highly successful at disorienting the

user, which could have caused him/her to taken more time to find the square. One variation

of this enhancement was causing the errant square to rotate along with one of the circles.

While the square was no longer stationary, it sometimes would stand out because it was

traveling opposite another circle. Another variation of this effect was reversing the direction

of rotation after each click. Finally, a combination of rotation and blinking squares was also

attempted. Overall, this version of the game was the most successful up to this point, and

it opened the door to the final gameplay concept.

26

Figure 5.2: Another version of the game with an added effect

5.4 Finalized Gameplay

The game that is presented with this project was the result of experimentation and

modification of other concepts. The idea for the final version was a result of the aforemen-

tioned observation that the entire image must be viewed as a whole in order to perceive

the illusion. Although the previous gameplay iteration forced the user to scan the whole

figure, the illusion did not cause much of a challenge. As a result, a modification was made

to the geometry of the image by adding a positional offset to one of the circles. Because the

illusion feigns a spiral, it already appears that the circles are not concentric. Therefore, an

additional offset applied to one circle may go unnoticed. Once it was determined that this

alteration was legitimate, the gameplay was borrowed from the previous version. However,

instead of tapping one square, any part of the offset circle could be selected. The effects

from the previous version were also maintained in order to provide distraction and avoid

monotony. The game was extended by adding an additional circle to the illusion every five

levels and then repeating the effects in order. Only fifteen levels were considered for the

27

sake of avoiding redundancy. Finally, in order to prevent the user from detecting changes

in the game board, a solid square was added to appear after each click or tap. This was

intended to be a more effective form of the blurriness applied after each tap in the earlier

gameplay version. Finally, a time-based scoring method was implemented. With the core

gameplay in place, the project was essentially completed. However, to be thorough, a web

application was developed for testing and will be explained in the next section.

28

CHAPTER 6

Testing and Results

6.1 Overview and Framework

This project was primarily concerned with building a game using the Fraser spiral

illusion. To validate, a test was developed to gather statistics concerning the effectiveness

of the illusion on user performance. In order to conduct this test, a version of the game was

developed that removed the illusion while maintaining the core gameplay. In this form, all

of the square outlines that composed each circle were replaced with solid black squares and

they were rotated inward. An image of one of the levels of this game version is shown in

Figure 6.1. With both versions complete, the next matter was to gather data from users.

A number of modifications were made to the underlying game in order to collect statistics.

The LevelBase object was modified to record the number of incorrect guesses in each

level as well as the time required by a user to find the errant circle. Also, the countdown

timer was prevented from canceling the game, meaning that a user was not restricted by

time. Additionally, an HTTP request was added to the Game module to send statistics to

the hosting server after each level. In addition to recording user performance, metadata

concerning each level was sent to the server. This included the number of circles in the level

as well as any effects that were added. The completed testing framework was uploaded

to a public hosting site, accessible to anyone with an Internet connection. Finally, in

order to compare user performance, a unique identifier was loaded into the browser as the

game is loaded. This identifier remains in the local storage of the browser, staying the same

regardless of how many times the player visits the site. The uploaded statistics were written

to a CSV file for further processing.

29

Figure 6.1: The test version of the game, lacking the illusion

With the test framework fully functioning, volunteers were required. Both versions of

the game were presented to students and faculty in a number of computer science courses

who were invited to participate. In addition to these students, the game was shared on

social media in order to bump up the number of testers. All statistics presented in this

report were gathered over a one-week period.

6.2 Results

The test results in this section establish the effectiveness of the illusion on user perfor-

mance. Data gathered comparing player efficiency between the games with the illusion and

without it is examined on two metrics. In both cases, the game version that incorporated

the illusion was associated with poorer performance, meaning that the illusion made the

game more difficult. To compare the two game types, the dataset was reduced to include

only users who played each version all of the way through to the end. In addition to this

restriction, performance is only compared on levels without any effects. The justification

for this condition is that the various effects differed between the two forms of the game.

The first comparison was made on the average time required to complete each level. It

was expected that the presence of the illusion would increase the amount of time required to

pass a level. Without the illusion, the mean time to complete a level was 20.18 seconds. In

30

contrast, the same users needed 40.32 seconds to pass a level where the illusion was present.

A bar chart highlighting these differences is shown in Figure 6.2. Although not enough

data was generated to label these results as statistically significant, a striking difference is

apparent. The gameplay was identical between both versions, but each level took about

twice of long to complete when the illusion was present.

Figure 6.2: The average time required to pass each static version of the game

The other metric used to compare the two game versions was the average number

of incorrect guesses on each level. An incorrect guess is defined as any time the player

clicks on an incorrect circle in the game. It is expected that because the illusion confuses

the user, there would be more incorrect guesses when it is present. The data agree with

this conjecture. On average, each player made only about two incorrect guesses on levels

without the illusion. In comparison, an average of seven incorrect guesses were made on

levels where the illusion was present. This statistic is especially interesting because each

level only requires the user to select five correct circles. To summarize, on average the

illusion causes each player to make more incorrect guesses than correct ones. In conclusion,

although the data was insufficient to find statistically significant correlations, it illustrates

that the presence of the illusion in the game board increases difficulty.

31

With the success of the illusion demonstrated, the next part is to analyze the impact of

the various effects on user performance. To review, there were four different enhancements

added to the core gameplay, in addition to a version without any effects. These are referred

to in the data as blink, rotate, blink-rotate, reverse-rotate and static. Blinking enhance-

ments involved randomly filling in the outlines of the squares that composed each circle.

Rotational effects comprised of revolving each circle in an opposite direction. In particu-

lar, the reverse-rotate effect would change the rotational direction of each circle after every

mouse click. When no enhancements were used in a level, it was referred to as static. The

only data considered for this analysis came from users who completed the entire illusion

version of the game. A comparison of the effectiveness of each enhancement on average time

to complete each level can be seen in Figure 6.3. Interestingly, the levels with no effects

(static) were among the most difficult to pass, while levels with any rotational effects were

actually easier. Although revolving the circles was disorienting, it perhaps made the errant

circle stand out more and, therefore, easier to identify. Additionally, levels featuring the

blinking effect took slightly longer than their non-blinking counterparts. In fact, the levels

that took the longest to complete on average were static but with the blinking enhancement.

This shows that although the illusion was potent at making the game more difficult, adding

effects can alter user performance.

Figure 6.3: A comparison of each effect in relation to average time to pass a level

32

CHAPTER 7

Future Work

This project involved building a new classification of computer game using standard

tools and programming practices. Although this version of the game is complete, there are

several related areas to explore for further research.

One application of this project is to convert it to a native mobile application. While a

number of tools exist for facilitating this transition, it may be useful to explore alternative

technologies in order to improve performance. For example, more robust game engines,

such as Unity, may be able to create a stronger experience. The game will certainly have

to be tested on a number of mobile devices before it can be released as well.

Additionally, there are other gameplay concepts incorporating the illusion that can be

experimented with. In this project, the final form of gameplay was the result of hypothesis

and testing. Such a process promotes continuation. It may even be worthwhile to combine

several gameplay methods together.

Finally, other, more difficult, forms of the Fraser spiral illusion may be integrated to

later levels. As seen in Figure 1.1, the version used in this project is hardly exclusive to the

illusion. This goes along with investigation of additional level effects. More advanced game

building tools, such as shaders, may increase the potency of the simple effects introduced

in this game as well.

33

CHAPTER 8

Conclusion

Building a complete game using an optical illusion is entering untested waters. De-

velopment of the game relied on classic software engineering principles and techniques.

Additionally, tools and modules provided by the Turbulenz game engine greatly aided in

this process. Although the initial design for the project was ultimately rejected, an effective

version was eventually discovered. This issue illustrates the inherent difficulty of such an

undertaking. With a completed version of the game, data show the effectiveness of the

illusion on user performance. In essence, the completion of this project is a proof of concept

that optical illusions can be incorporated into a computer game. That being said, there

exists an expansive opportunity for continuing work.

34

REFERENCES

[1] [Online]. Available: http://www.merriam-webster.com/dictionary/optical%20illusion

[2] M. Bach and C. Poloschek, “Optical Illusions,” Advances in Clin-

ical Neuroscience and Rehabilitation, 2006. [Online]. Available:

http://www.acnr.co.uk/pdfs/volume6issue2/v6i2visual.pdf

[3] M. Barile, “Frasers spiral,” in WolframMathWorld, Wolfram Research, 2002. [Online].

Available: http://mathworld.wolfram.com/FrasersSpiral.html.

[4] “Fraser spiral illusion,” Wikimedia Foundation, 2015. [Online]. Available:

https://en.wikipedia.org/wiki/Fraser spiral illusion.

[5] I. Salfa, “Irregular rings optical illusion,” wordlessTech, 2014. [Online]. Available:

http://wordlesstech.com/irregular-rings-optical-illusion/.

[6] “15 optical illusions that will blow your mind,” Designer Daily: graphic and web de-

sign blog, 2015. [Online]. Available: http://www.designer-daily.com/15-optical-illusions-

that-will-blow-your-mind-51985.

[7] “Turbulenz Games Platform: Technology Introduction,” Turbulenz Labs, 2011. [On-

line]. Available: http://biz.turbulenz.com/static/presentations/Turbulenz-Whitepaper-

2011.pdf.

[8] “JavaScript,” in Mozilla Developer Network, 2016. [Online]. Available:

https://developer.mozilla.org/en-US/docs/Web/JavaScript.

[9] “JavaScript Data,” in w3schools.com. [Online]. Available:

http://www.w3schools.com/js/js datatypes.asp.

35

[10] “Chrome V8,” in Google developers. [Online]. Available:

https://developers.google.com/v8/.

[11] T. Laurens, “How the V8 engine works?,” 2013. [Online]. Available:

http://thibaultlaurens.github.io/javascript/2013/04/29/how-the-v8-engine-works/.

[12] “Git - git basics,” 2nd ed. [Online]. Available: https://git-

scm.com/book/en/v2/Getting-Started-Git-Basics.

[13] 2016, ”What is unreal engine 4,” in Unreal Engine, 2004. [Online]. Available:

https://www.unrealengine.com/what-is-unreal-engine-4.

[14] U. Technologies, ”Unity - game engine, tools and multiplatform,” 2016. [Online]. Avail-

able: https://unity3d.com/unity.

[15] “Developers,” Turbulenz Limited, 2012. [Online]. Available:

http://biz.turbulenz.com/developers.

[16] “What is the status of Turbulenz for mobile?,” in Turbulenz News, Turbulenz Lim-

ited, 2013. [Online]. Available: http://news.turbulenz.com/post/52212393956/what-is-

the-status-of-turbulenz-for-mobile.

[17] “9.1. Introduction,” in Turbulenz 0.28.0 documentation, 2014. [Online]. Available:

http://docs.turbulenz.com/local/user guide.html.

[18] “25.3. Maketzjs,” in Turbulenz 0.28.0 documentation, 2010. [Online]. Available:

http://docs.turbulenz.com/tools/game tools.html.

[19] “21.39. The RequestHandler object,” in Turbulenz 0.28.0 documentation, 2010. [On-

line]. Available: http://docs.turbulenz.com/jslibrary api/requesthandler api.html.

[20] “18.3. The RigidBody object,” in Turbulenz 0.28.0 documentation, 2010. [Online].

Available: http://docs.turbulenz.com/jslibrary api/physics2d body api.html.

[21] “18.12. The world object,” in Turbulenz 0.28.0 documentation, 2010. [Online]. Avail-

able: http://docs.turbulenz.com/jslibrary api/physics2d world api.html.

36

[22] “What is modular programming?” Techopedia.com, 2016. [Online]. Available:

https://www.techopedia.com/definition/25972/modular-programming.

[23] “17.2. The TurbulenzEngine object,” in Turbulenz 0.28.0 documentation, 2010. [On-

line]. Available: http://docs.turbulenz.com/jslibrary api/engine api.html.

[24] “Gamedev glossary: What is the ‘Game Loop’? Game Development Envato Tuts+,

2012. [Online]. Available: http://gamedevelopment.tutsplus.com/articles/gamedev-

glossary-what-is-the-game-loop-gamedev-2469.

[25] M. Yaiser, “Object-oriented programming concepts: Inheritance,” Adobe,

2012. [Online]. Available: http://www.adobe.com/devnet/actionscript/learning/oop-

concepts/inheritance.html.

[26] “Inheritance and the prototype chain,” Mozilla Developer Net-

work, 2016. [Online]. Available: https://developer.mozilla.org/en-

US/docs/Web/JavaScript/Inheritance and the prototype chain.

[27] I. Kantor, “Prototypal inheritance,” 2011. [Online]. Available:

http://javascript.info/tutorial/inheritance.

[28] M. Yaiser, “OOP concepts: Encapsulation,” Adobe, 2011. [On-

line]. Available: http://www.adobe.com/devnet/actionscript/learning/oop-

concepts/encapsulation.html.

[29] V. Beal, “What is Polymorphism?,” in Webopedia, 2016. [Online]. Available:

http://www.webopedia.com/TERM/P/polymorphism.html.

	An Original Computer Game Incorporating Optical Illusions
	Recommended Citation

	tmp.1463068308.pdf.mikO8

