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Abstract
RIVPACS models produce a community-level measure of biological condition known as O/E, which is derived from a

comparison of the observed (O) biota with those expected (E) to occur in the absence of anthropogenic stress. We used benthic

macroinvertebrate and environmental data collected at 925 stream monitoring stations, from 1993 to 2001, to develop, validate, and

apply a RIVPACS model to assess the biological condition of wadeable streams in Wyoming. From this dataset, 296 samples were

identified as reference, 157 of which were used to calibrate the model, 46 to validate it, and 93 to examine temporal variability in

reference site O/E-values. We used cluster analyses to group the model development reference sites into biologically similar classes

of streams and multiple discriminant function analysis to determine which environmental variables best discriminated among

reference groups. A suite of 14 categorical and continuous environmental variables best discriminated among 15 reference groups

and explained a large proportion of the natural variability in biota within the reference dataset. Eleven of the predictor variables were

derived from GIS. As expected, mean O/E-values for reference sites used in model development and validation were near unity and

statistically similar. Temporal variability in O/E-values for reference sites was low. Test site values ranged from 0 to 1.45

(mean = 0.73). The model was accurate in both space and time and precise enough (S.D. of O/E-values for calibration data = 0.17)

to detect modest alteration in biota associated with anthropogenic stressors. Our model was comparable in performance to other

RIVPACS models developed in the United States and can produce effective assessments of biological condition over a broad,

ecologically diverse region. We also provide convincing evidence that RIVPACS models can be developed primarily with GIS-

based predictor variables. This framework not only simplifies the extraction of predictor variable information while potentially

reducing expenditures of time and money in the collection of predictor variable information, but opens the door for development

and/or application of RIVPACS models in regions where there is a paucity of local-scale, abiotic information.
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1. Introduction

RIVPACS (River InVertebrate Prediction And

Classification System) is a multivariate predictive

model that allows detection and interpretation of

anthropogenic stress on invertebrate assemblages of

streams and rivers (Clarke et al., 2003; Moss et al.,

1987; Wright et al., 1993, 2000). Its derivative,

AUSRIVAS (AUStralian RIVer Assessment System),

is widely used to assess the biological condition of

streams in Australia (Smith et al., 1999). Although

these predictive models have been used in Great

Britain and Australia for more than a decade, their

potential has not been fully explored in the United

States (Hawkins, 2006; Hawkins and Carlisle, 2001;

Hawkins et al., 2000).

RIVPACS models make site-specific predictions of

the benthic macroinvertebrate fauna expected in the

absence of anthropogenic stressors. Those predictions

are based on empirical relationships between indivi-

dual taxon probabilities of capture and natural

environmental features (e.g., latitude, substrate com-

position, alkalinity, elevation, etc.) that are derived

from data collected from a reference site network. The

deviation of the observed from the expected fauna, is

usually (but not necessarily) measured by the ratio (O/

E) of the observed (O) to expected (E)-values of one or

more biotic index (Clarke et al., 1996). When the O/E

index is expressed in units of taxa richness, it can be a

measure of compositional similarity and thus a

community-level measure of biological integrity

(Hawkins, 2006).

There has been growing recognition among natural

resource managers throughout the United States that

biological indices such as O/E are useful and desirable

tools in the evaluation of biological integrity of

streams and to satisfy requirements under Sections

305(b) and 303(d) of the Clean Water Act (1972,

amended in 1977). Use of RIVPACS models in the

United States for bioassessment purposes is still a

relatively new concept, but is gaining popularity.

Several predictive models developed with datasets

from the states of California, Maine, North Carolina,

Ohio, Oregon, Washington, and the Mid-Atlantic

Highlands region (e.g., Hawkins, 2006; Hawkins

et al., 2000) show promise as effective tools in the

evaluation of stream biological condition in the

United States.
Advantages of a RIVPACS model compared to

other bioassessment tools (e.g., multimetric and biotic

indices) include intuitive output, ease of biological

interpretation and its inherent standardization to site-

specific conditions (Hawkins, 2006). One of the goals

of the Wyoming Department of Environmental

Quality-Water Quality Division (WDEQ/WQD), the

primary entity responsible for protecting and mana-

ging biological integrity of streams in Wyoming, is the

continued development of the most effective and

applicable bioassessment tools to ascertain the

condition of aquatic life in streams and rivers. The

applicability of the RIVPACS approach to freshwater

systems internationally as well as its promise as an

effective bioindex tool in the United States presents an

ideal opportunity to develop such a model for use in

bioassessments in Wyoming. To our knowledge, a

Wyoming RIVPACS model would represent the first

attempt at developing such a regional framework for

the United States intermountain west.

The objective of this study was to develop and

evaluate a RIVPACS model that was applicable to

wadeable streams in the State of Wyoming. To do so, we

used an extensive statewide database that contained 9

years of benthic macroinvertebrate, physical, and

chemical data collected at reference and non-reference

sites by the WDEQ/WQD. We followed the latest

techniques in both the development of RIVPACS

models aswell asassessing their accuracy andprecision.

We then applied the model to our entire dataset to assess

the biological condition of individual sites.
2. Methods and materials

2.1. Study area

Wyoming is biologically diverse, with much of this

diversity attributable to variability in geology, climate,

topography, and other environmental features of the

state (Knight, 1994). The State of Wyoming straddles

the continental divide and encompasses 251,489 km2

(97,100 mi2). Wyoming is characterized by abrupt

topographic relief and numerous types of exposed

granitic, volcanic, and sedimentary bedrock. Elevation

ranges from 939 to 4207 m (3081–13,802 ft) with a

mean of 2030 m (6660 ft). Average annual precipitation

ranges from 15 to 150 cm (6–59 in.), which is mostly in



E.G. Hargett et al. / Ecological Indicators 7 (2007) 807–826 809
the form of rain in the plains regions and snow in the

mountain and intermountain basins. Temperature in

Wyoming varies widely due to the great topographic

relief of the state. For example, mean daily maximum

and minimum temperatures for July range from 32 to

<24 8C (90 to <75 8F) and 13 to 0 8C (55–32 8F),

respectively.

Omernik and Gallant (1987) divided Wyoming into

five level III ecoregions: Middle Rockies, Southern

Rockies, Northwestern Great Plains, Wyoming Basin,

and the Western High Plains. The Middle Rockies

consist of the Black Hills in northeastern Wyoming, the

Bighorn Mountains in northcentral Wyoming, and the

Teton, Absaroka, Gallatin, Wyoming, Salt River, Wind

River, Beartooth, and other ranges of northwestern/

western Wyoming. Because of differences in abiotic

and biotic characteristics between the different moun-

tain ranges, the Middle Rockies ecoregion is fairly

heterogeneous and as a result, can be divided into three

sub-regions: Middle Rockies East (Black Hills), Middle

Rockies Central (Bighorn Mountains), and Middle

Rockies West (mountain ranges of northwest and

western Wyoming). The Laramie, Medicine Bow, and

Sierra Madre ranges of south-central and southeast

Wyoming comprise the Southern Rockies. The

mountains of Wyoming are characterized by coniferous

forest, aspen groves, sub-alpine meadows, and alpine

tundra. The mixed-grass prairie of the Northwestern

Great Plains makes up most of the eastern one-third of

the state and the short-grass prairie Western High Plains

are confined to the southeast corner of Wyoming. The

remainder of the state is considered part of the

Wyoming Basin, which is a high desert elevated

plateau that consists of sagebrush, greasewood, and

saltbush shrublands. Adding to the ecological diversity

of Wyoming are escarpments of sedimentary and

granitic rock scattered throughout the plains and basin

regions of the state. Most streams in the mountains are

classified as coldwater systems by the WDEQ/WQD

based on the maximum temperature criteria of 20 8C
(68 8F) (WDEQ, 2001). Streams in the plains and basin

regions are a diverse mixture of coldwater and

warmwater systems.

2.2. Reference and test samples

The WDEQ/WQD collected a total of 925 samples

between 1993 and 2001 (Fig. 1). From this dataset,
296 samples were identified as reference based on

whether water chemistry met numeric in-stream

aquatic life criteria (WDEQ, 2001), sites possessed

stable and diverse bed, bank, and in stream habitat

conditions, and whether sites were minimally

impacted by anthropogenic stressors. A subset of

157 reference sites sampled from 1993 to 1999 was

used in model development (reference calibration).

Another subset of 46 reference sites sampled in 2000

and 2001 was used in validation to evaluate whether

the model could correctly assess sites of known

reference condition (reference validation). An addi-

tional 93 samples that were collected at 32 previously

sampled reference sites (repeat reference samples)

were used to evaluate temporal variability in reference

site O/E-values. The number of revisits to each of

these reference sites ranged from one to eight, with

most sites having at least three revisits. The remaining

629 samples were designated as test samples and

evaluated with the model.

2.3. Macroinvertebrates

Benthic macroinvertebrates were collected from

riffles with a Surber sampler (0.09 m2 = 1 ft2) and

500-mmesh. This habitat was selected because it is

considered to have the greatest diversity and density of

organisms and provides the best measure of overall

health of the macroinvertebrate assemblage (Barbour

et al., 1999). In the absence of riffles, samples were

collected in runs. Each sample consisted of a

composite of eight Surber samples collected randomly

along a 30.5 m (100 ft) maximum length of riffle or

run. Samples were collected from downstream to

upstream to avoid habitat disruption, placed in

polyethylene bottles and preserved in either 10%

formalin or 99% isopropanol. All samples were

collected during wadeable baseflow conditions and

in habitats that possessed sufficient depth to remain

submerged during periods of low flow. Repeat samples

for a given site were collected from the riffle or run

identified during the initial monitoring of that site and

within 1 week of the original sample date (day of

year). Samples in the montane regions were sampled

from 1 August to 31 October, whereas plains and basin

streams were sampled from 15 July to 31 October.

Repeat samples were generally collected at 1 year

intervals following initial sampling.
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Fig. 1. Location of reference (solid circles) and test (open circles) sites in relation to ecoregions and sub-regions of Wyoming.
Macroinvertebrate data were reported as raw taxa

counts and identified to the lowest taxonomic level

possible (usually genus). To ensure taxonomic

resolution was consistent among samples, we aggre-

gated data to operational taxonomic units (OTUs) as

described by Hawkins et al. (2000). A sub-sample of

300 randomly selected individuals was used in

predictive model development and testing. Ostermiller

and Hawkins (2004) concluded that the precision,

accuracy and sensitivity of RIVPACS-type models

increases with sample size and recommended sub-

sample counts of at least 300–350 individuals.

2.4. Water chemistry, physical habitat and

landscape characterization

Water quality data (pH, temperature, sulfate, total

phosphorus, nitrate-nitrogen, alkalinity, hardness,

total suspended solids, turbidity, chloride, dissolved
oxygen, and conductivity) associated with each

sample were collected at one location directly below

the base of the riffle or run sampled for macro-

invertebrates and prior to macroinvertebrate sampling

to minimize contamination from disturbance of the

upstream sample area. At each site, stream current

velocity (m/s), stream discharge (m3/s) and substrate

composition of the macroinvertebrate sample riffle/

run were gathered. Substrate composition was visually

estimated as the percentage of cobble (64–254 mm),

coarse gravel (25.4–63 mm), fine gravel (7.62–

25.3 mm), sand (<7.62 mm, gritty), silt (<7.62 mm,

soft and fine), and clay (<7.62 mm, solid and slick).

Within each of the eight Surber samples for a riffle/

run, visual estimates of substrate composition were

conducted and averaged. We grouped values for each

substrate category into two substrate composition

variables used in subsequent analyses: coarse sub-

strate (sum of cobble, coarse gravel, and fine gravel)
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and fine substrate (sum of sand, silt, and clay). Water

quality data, stream current velocity, stream discharge

and substrate composition were measured at the time

of each macroinvertebrate sample collection. A digital

planimeter or a geographic information system (GIS)

was used to calculate watershed area (m2) and

elevation (m) from 1:24,000 United States Geological

Survey (USGS) DRG-E topographic maps. We

obtained latitude and longitude coordinates with a

handheld global positioning system (GPS) (WGS

1984 datum) and converted them to decimal degrees.

Sites were assigned to one of seven ecoregion or sub-

region classifications as described previously and

classified as located in either a plains, foothills, or

mountains landscape. Each site was identified by

dominant stream origin: montane snowmelt, spring,

mixture or other. Primary contributing geology for

each site was identified from a 1:500,000 geological

bedrock map of Wyoming (USGS, 1994). Chemical

and physical weathering rates and rock nutrient

content (either phosphorous, sulfate or nitrate) of

geological formations within a site’s watershed were

developed based on the 1:500,000 geological bedrock

map (J.R. Olson, Utah State University, unpublished

data). Chemical activity of geological formations was

assigned an ordinal ranking from low activity (1:

granitics, gneiss) to high activity (5: limestone,

dolomite). Likewise, physical activity of rock forma-

tions was assigned an ordinal ranking from low

activity (1: granitics, gneiss, limestone) to high

activity (5: siltstone, shale). Rock nutrient content

was classified into one of three ranked (ordinal)

categories that ranged from low (1) activity (granitics

and gneiss with nearly no nutrient content) to high (3)

activity (phosphate, gypsum). Mean, majority, and

maximum index values for chemical, physical, and

nutrient activity were calculated with GIS analysis of

the distribution of geology classes in the watershed.

2.5. Predictive model construction

2.5.1. Data analysis

Chemical and physical variables were evaluated for

normality and either square-root, log, or log(X + 1)

transformed as necessary. PC-ORD (Version 4.0)

(McCune and Medford, 1999) or STATISTICA

(Version 6.0) (StatSoft, 2001) was used for all

statistical analyses.
2.5.2. Classification of reference samples

The Sørensen (Bray–Curtis) similarity index was

used to measure the compositional similarity between

all pairs of reference site samples. Rare taxa, defined

as those taxa that were collected at 10 or fewer sites

within the reference dataset, were excluded from the

classification analysis. A flexible hierarchical

unweighted pair-group average (UPGMA) agglom-

erative clustering method with b = �0.5 was then used

to cluster samples based on these similarities.

2.5.3. Prediction of class membership

Once we identified groups of reference sites,

stepwise multiple discriminant function analysis

(DFA) was used to determine which environmental

variables were most strongly associated with

group membership. Candidate predictor variables

included: stream origin, geological chemical activ-

ity, geological physical activity, geological nutrient

activity, primary contributing bedrock geology, date

(day of year) of collection, water chemistry

variables (alkalinity, conductivity, hardness, and

sulfate), level III ecoregions and sub-regions,

latitude, longitude, elevation, watershed area, land-

scape type, percent substrate type (cobble, coarse

gravel, fine gravel, sand, silt/clay), percent coarse

substrate, percent fine substrate, and velocity. Final

selection of variables for inclusion in the discrimi-

nant model was based on the results of both forward

and backward DFA analysis, ease of variable

measurement, and ease of ecological interpretation.

The final discriminant model was used to estimate

the probability that a new site belonged to each of

the biotically defined classes.

2.5.4. Estimating probabilities of capture, E, and

O/E

We estimated site-specific probabilities of capture

(pc) as the frequencies of occurrence of taxa observed

within each reference site group weighted by the

DFM-derived probabilities that a site was a member of

each class. The number of pc-values �0.5 were

summed to estimate the number of expected (E) taxa

in each sample. Use of pc � 0.5 results in a more

precise index than pc � 0 (Hawkins et al., 2000;

Ostermiller and Hawkins, 2004; Van Sickle et al.,

2005). O/E was estimated as the ratio of the observed

number of predicted taxa (O) to E.
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2.6. Model validation and responsiveness

Following methods described by Hawkins et al.

(2000) and Van Sickle et al. (2005), we evaluated the

accuracy and precision of the predictive model by

applying it to both the reference calibration dataset in

addition to the independent reference validation

dataset. We evaluated model accuracy and precision

by estimating the standard deviation of O/E-values in

calibration and validation data sets and by determining

how well O was correlated with E. The slope of the

regression of O on E should be near 1 for RIVPACS

models with good accuracy (Hawkins et al., 2000; Van

Sickle et al., 2005). Likewise, the scatter of points

along the regression line (evaluated as the coefficient

of determination, r2) should be small for a model with

good precision. Hawkins (2006), Hawkins et al.

(2000) and Van Sickle et al. (2005) found that the best

performing models generally have reference site O/E

standard deviations <0.20 and account for a sig-

nificant amount of the variation in O among reference

sites.

To further evaluate the overall precision of the

predictive model, we constructed a null model and

estimated the standard deviation expected for

replicate reference site samples following the

methods of Van Sickle et al. (2005). Together, the

null model and replicate sample standard deviations

estimate the minimum and maximum levels of

precision, respectively, that is theoretically attainable

by any RIVPACS model given the reference dataset

(Van Sickle et al., 2005). Comparison of the predictive

model’s precision with these minimum and maximum

levels of precision provided context regarding how

well the model performed relative to its possible

performance. We also examined model bias by testing

(ANOVA, a = 0.05) whether reference site O/E-

values were associated with ecoregions/sub-regions

and landscape setting. We used Tukey multiple

comparison tests to identify sets of ecoregions and

landscape types that differed in mean reference site O/

E-values.

2.7. Application of the model to reference and test

sites

Based on protocols described by Clarke et al.

(1996), Hawkins et al. (2000), and Moss et al.
(1987), all repeat reference and test sites were

evaluated as to whether they were within the

experience of the model. These procedures determine

if the Mahalanobis squared distances between a test site

and each classification group in multivariate discrimi-

nant space are greater than expected as measured by a

x2-test. Repeat reference or test samples that failed this

test were not considered in the evaluation of model

performance. For those test samples evaluated with the

model, we then used ANOVA (a = 0.05) followed by

Tukey multiple comparison tests to determine

whether O/E-values differed among ecoregions/

sub-regions and landscapes as described above. We

used the 10th and 90th percentiles of reference

calibration O/E-values to establish thresholds to infer

whether a test site was significantly different from

reference and thus biologically impaired (Clarke

et al., 1996; Ostermiller and Hawkins, 2004). The

parametric two-sample t-test was used to determine if

significant differences existed between (1) mean

calibration and validation O/E-values, (2) mean

reference, repeat reference, and test site O/E-values,

(3) mean O/E-values at calibration and known

degraded test sites from the 1993 to 1999 dataset,

and (4) mean values of continuous predictor variables

for sites that fell either outside or within model

experience. We used scatter-plots to visualize how

those sites that fell outside model experience differed

from the population of reference sites in predictor

variable values. To examine inter-annual variability in

O/E-values, we calculated the mean coefficient of

variation (CV) for repeat reference samples.
3. Results

3.1. Operational taxonomic units

Two-hundred and nineteen operational taxonomic

units (OTUs) were identified from the reference

calibration dataset (Appendix A). Ninety-six of

these taxa occurred at 10 or more calibration sites

and were used to create the biotic classification.

Among all 219 OTUs, 25%, 21%, 12%, 11%, 11%,

10%, and 6% of OTUs were allocated among

the Chironomidae, Trichoptera, Diptera, Ephemer-

optera, non-insects, Plecoptera, and Coleoptera,

respectively.
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Table 1

Mean and range of values for selected environmental variables at reference and test sites

Referencea (n = 296) Test (n = 629)

Mean Range Mean Range

Julian sample data 266.7 217–305 267.5 92–305

Alkalinity (mg/L) 104.5 10–310 158.9 5–1,630

Conductivity (mS/cm) 312.5 23–2420 838.6 8–21,700

Hardness as CaCO3 (mg/L) 157.2 8–1455 276.7 11–2,680

Sulfate (mg/L) 81.5 9–2037 257.7 10–8,678

Elevation (m) 2031 1091–2798 1834 1,024–2,930

pH 8 6–9 8 5–10.5

Chloride (mg/L) 6.5 <5–89 53.3 <5–6,685

Turbidity (NTU) 2.9 <0.1–58.2 7.6 0–425

Nitrate-nitrogen (mg/L) 0.2 <0.1–4.5 0.2 <0.1–12.8

Total phosphorous (mg/L) <0.1 <0.1–0.3 0.1 <0.1–4.0

Water temperature (8C) 9.6 2.1–19 10.5 0–37.5

Watershed area (km2) 450.1 0.8–7620 771.6 0.8–11,103

Percent located in the foothills 26.1 – 23.9 –

Percent located in the mountains 54.8 – 35.1 –

Percent located in the plains 19.1 – 41 –

Percent coarse gravel 15.8 0–78 19.3 0–91

Percent cobble 58.4 0–95 45.1 0–95

Percent fine gravel 11.6 0–59 16.9 0–83

Percent sand 10.1 0–98 11.8 0–100

Percent silt 3.6 0–99 5.2 0–100

Percent clay 0.6 0–46 1.4 0–84

Percent coarse substrate 85.8 0–100 81.3 0–100

Percent fine substrate 14.3 0–100 18.4 0–100

Velocity (m/s) 0.5 0.1–1.0 0.5 0.5–3.3

Discharge (m3/s) 1.2 <0.1–14.2 1.2 <0.1–531

a Includes calibration, validation and repeat reference samples.
3.2. Reference and test sample characteristics

Considerable environmental variation occurred

among both reference and test sites (Table 1).

Reference and test sites generally occurred at similar

elevations, were well buffered, alkaline, and sampled

within comparable dates. However, we found differ-

ences in substrate composition between reference and

test sites. These differences were minimal when

individual substrate composition categories were

compiled as either coarse or fine substrate. Overall,

test sites had higher conductivity, greater watershed

area, lower elevation, and elevated levels of hardness,

alkalinity, sulfate, total phosphorous, nitrate-nitrogen,

and turbidity relative to reference sites. Reference

sites were distributed throughout most perennial lotic

systems within the ecoregion/sub-regions of Wyoming

(Fig. 1). The distribution of test sites among

ecoregions/sub-regions in Wyoming was not similar
to the distribution of reference sites primarily because

a greater proportion of test sites were located in the

Northwestern Great Plains and Wyoming Basin

ecoregions (Table 4 and Fig. 1). Reference and test

sites were absent from large areas of the southern

Northwestern Great Plains and central and southern

portions of the Wyoming Basin because most streams

in these regions are ephemeral to intermittent.

3.3. The predictive model

3.3.1. Reference site classification

We derived 15 reference groups from the cluster

analysis of the calibration samples (Fig. 2). Percent

chaining of the cluster analysis was low (0.52). All

reference groups contained a minimum of five

reference samples. Generally, samples from upper-

elevation montane regions (groups 1–11) were distinct

from those from the plains and the low-elevation
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Fig. 2. UPGMA flexible beta cluster analysis of calibration samples showing the 15 biologically defined groups that were used to develop the

RIVPACS model.
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Fig. 3. Relationship between observed (O) and expected (E) OTU

richness for calibration (top) and validation (bottom) samples.
mountains of northeastern Wyoming (groups 12–15).

Reference site samples from the Northwestern Great

Plains and Western High Plains ecoregions tended to

fall in either group 14 or 15. Samples from streams in

the mid to upper-elevations of the Absaroka, Gallatin

and Beartooth mountains of northwestern Wyoming

clustered into groups 1, 2, 3, or 9. The majority of

samples from streams in the sub-alpine regions of the

Bighorn Mountains clustered together to form group

6. Regional structuring of macroinvertebrate commu-

nities was less pronounced among assemblage groups

5, 7, 8, 10, and 11. Samples from these groups were

scattered among the mountain ranges of the Southern

Rockies ecoregion, the Wyoming, Salt River, and

Wind River ranges of western Wyoming, and foothills

along the eastern slope of the Bighorn Mountains.

3.3.2. Predictor variables

Fourteen predictor variables were selected that best

accounted for the natural variability in taxonomic

composition among the 15 reference groups (Table 2).

Those variables most important in discriminating

between groups were log watershed area; log percent

coarse substrate; dummy values (0/1) for Western

High Plains, Middle Rockies West, Middle Rockies

Central, and Northwestern Great Plains ecoregions;

latitude; and longitude. Other factors were less

important in distinguishing groups.

3.3.3. Predictive model validation

O/E-values for both the calibration (x2 = 11.82,

P = 0.06) and validation (x2 = 2.08, P = 0.05) datasets
Table 2

Predictor variables (with corresponding F-values) used in the dis-

criminant model

Log watershed area 8.85

Log percent coarse substrate 6.01

Western High Plains (WHP) 6.00

Middle Rockies West (MRW) 4.98

Latitude 4.80

Middle Rockies Central (MRC) 4.54

Northwestern Great Plains (NGP) 3.35

Longitude 3.03

Geological chemical activity (majority in watershed) 2.37

Early Archaen gneiss bedrock geology 2.17

Log alkalinity 2.10

Log elevation 1.92

Middle Rockies East (MRE) 1.79

Geological nutrient activity (majority in watershed) 1.39
did not show any statistically significant departure

from normal distributions based on goodness of fit

tests. Predicted values of E were similar to values of O

for both calibration (r2 = 0.70, P < 0.001) and

validation (r2 = 0.69, P < 0.001) datasets (Fig. 3).

The mean and standard deviation of calibration O/E-

values were 1.01 and 0.174, respectively (Table 3).

The mean and standard deviation for validation O/E-

values were similar to calibration values, 0.98 and

0.152, respectively (Table 3). Mean O/E-values for

calibration and validation datasets were not signifi-

cantly different from one another (t = 0.789, P = 0.43)

(Fig. 4). There was no evidence that calibration O/E-

values varied among classification groups (F = 1.391,

P = 0.165), indicating the model was unbiased and

predicted similarly among reference groups. In

contrast, calibration O/E-values were significantly
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Table 3

Means, standard deviations (S.D.), percentiles, and minimum and maximum O/E-values for reference and test samples

Mean S.D. 10th 25th 75th 90th Minimum Maximum

Reference calibration (n = 157) 1.01 0.174 0.75 0.90 1.13 1.21 0.50 1.44

Reference validation (n = 46) 0.98 0.152 0.79 0.89 1.06 1.16 0.60 1.30

Repeat reference samples (n = 93) 0.98 0.187 0.74 0.88 1.12 1.19 0.41 1.37

Test (n = 509) 0.72 0.281 0.30 0.54 0.93 1.08 0.00 1.45

Includes all repeat reference samples and only those test samples that were within the experience of the model.
different (F = 2.527, P = 0.02) among ecoregion/sub-

regions (Table 4). The Tukey multiple comparison test

showed that calibration O/E-values were significantly

lower in the Western High Plains (mean = 0.90)

relative to the other regions, though not significantly

less than 1 (t = �1.289, P = 0.25). These results imply

that the model may over-predict E in the WHP,
Fig. 4. Box and whisker plots of O/E-values for different sets of

reference samples (top) and reference and non-reference samples

(bottom).
although the evidence is not conclusive. Mean

calibration O/E-values among landscape types (i.e.,

mountains, foothills, and plains) were similar

(F = 0.269, P = 0.77) (Table 4). The standard devia-

tion of calibration O/E-values (0.174) was moderately

larger than the replicate sample standard deviation of

0.140 (theoretical best model) but appreciably less

than that for the null model (0.289). These results

indicate that the predictive model accounted for a

large proportion of the natural variability in O within

the reference dataset.

3.3.4. O/E-values of repeat reference samples

Mean O/E-values for repeat reference samples

(0.98) were no different from that for calibration

samples (Fig. 4, t = 1.31, P = 0.19). The CV of O/E-

values for repeat reference samples ranged from 0.05

to 45.65 with a mean of 11.9, implying that sampling

error was somewhat less than that implied by the

estimated replicate sample standard deviation

(S.D. = CV/100 if mean is 1).

3.3.5. O/E-values of test sites

Mean test site O/E-values (0.73) were significantly

lower than calibration O/E-values (t = 11.95,

P < 0.001) (Fig. 4). Mean O/E-values (0.53) for

known degraded test sites from the 1993 to 1999

record were substantially lower than mean values

(1.01) for calibration sites (t = 11.73, P < 0.001)

(Fig. 4). Mean test sample O/E-values varied by 0.19

O/E units among ecoregion/sub-regions (F = 6.43,

P < 0.001, Table 4), with larger O/E-values occurring

in streams in the mountainous sub-regions of the

Middle Rockies West and Middle Rockies Central

than in streams in the Middle Rockies East, Southern

Rockies and basin and plains regions (Table 4). Mean

test site O/E-values varied less markedly among

landscape types (0.14 O/E units) than ecoregions, but

mean values from streams in plains landscapes (0.72)
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were significantly lower (F = 15.22, P < 0.001) than

those from mountain (0.86) and foothill (0.81) regions

(Table 4). Of the 509 test site samples within the

model’s experience, 62% (n = 317) fell outside the

10th (0.75) and 90th (1.21) percentiles of reference

calibration O/E-values. Of these 317 impaired test site

samples, 309 had O/E-values below the 10th

percentile and only 8 samples were above the 90th

percentile. A sizeable proportion of test site O/E-

values in the plains (59%, n = 203) and foothills (46%,

n = 130) were outside the central 80% of reference

calibration O/E-values. In the mountains, only 28%

(n = 176) of test site O/E-values were considered

significantly different from reference.

3.3.6. Sites outside the experience of the model

Sites associated with 120 (16.6%) of the 722

combined repeat reference and test samples fell

outside the experience of the model and could not be

assessed. All 120 samples that fell outside model

experience were test samples. The majority of these

test sites occurred in four regions of the state: the Bear

River basin, lower Big Horn River basin, eastern

foothills of the Bighorn Mountains, and upper Powder

River basin (Fig. 5). On average, sites that fell outside

of the experience of the model differed in elevation

(mean = 1446 m, t = 8.51, P < 0.001), percent coarse

substrate (mean = 37.2, t = 10.36, P < 0.001), and

alkalinity (mean = 229 mg/L, t = 8.78, P < 0.001).

Several of these sites that fell outside the cluster of

reference sites defined in predictor variable space were

largely low-elevation streams with higher alkalinities

and higher percentages of fine sediment (Fig. 6).
4. Discussion

Benthic macroinvertebrates are a particularly

effective indicator of the condition of lotic systems

and are thus commonly used in bioassessments of

water quality conditions (Barbour et al., 1999; Plafkin

et al., 1989). Effective assessments, however, must

account for natural heterogeneity in assemblage

structure, something that can be strongly influenced

by both abiotic and biotic factors that are manifest at

both large (e.g., regional) and local-scales (Allan,

1995). In Wyoming, the diversity of assemblage

structure was evident in the 15 biotically defined



E.G. Hargett et al. / Ecological Indicators 7 (2007) 807–826818

Fig. 5. Location of samples that were outside (solid circles) and within (open circles) model experience.
groups derived from the reference dataset. This high

diversity in macroinvertebrate assemblages in Wyom-

ing appears to be structured, in large part, by the high

environmental heterogeneity within the state which

our model largely captured through the use of 14

predictor variables.

In our model, the strongest predictor variables were

those that described the substrate composition of the

streambed (percent coarse substrate) and the area of

the drainage basin upstream from a sample location.

These results are consistent with a large literature that

shows substrate type is a major determinant of the

distribution and abundance of aquatic insects (review

by Minshall, 1984) and that stream biota exhibit strong

longitudinal ‘zonation’ along river networks in

response to changes in physical and chemical factors

with distance downstream (review by Hynes, 1970).

The significance of the ecoregion/sub-region predic-
tors suggest that differences in stream macroinverte-

brate assemblages across Wyoming are tied to some

extent to broad-scale abiotic or biotic factors acting

upon streams, which may include steam geomorphol-

ogy, vegetation, climate, soils, hydrology, and

biogeography. We observed that several of the 15

reference groups were at least partially associated with

particular ecoregions/sub-regions and inclusion of

these predictors increased our model precision. Use of

these predictors allowed us to better characterize

factors that influence assemblage distribution and

perhaps capture region-specific expected values into a

single predictive model. The use of latitude, longitude,

and elevation by the model implies that temperature

has a large role in structuring aquatic assemblages, an

inference consistent with the ideas and observations of

Hawkins et al. (1997, 2000), Vannote and Sweeney

(1980) and Vannote et al. (1980) among others.
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Fig. 6. Relationships between alkalinity, percent coarse substrate

and elevation for sites within (open circles) and outside (solid

circles) model experience.
Geographic location, watershed area, and elevation

have been shown to be important predictor variables for

a number of RIVPACS models developed in the United

States (Hawkins, 2006; Hawkins et al., 2000). Such

commonality suggests that these variables should be

considered for development of any RIVPACS model.

The use of several geology related predictors and

alkalinity demonstrates that geologic setting probably

has a strong effect on invertebrate distributions by

affecting both physical and chemical aspects of the

stream environment. Early Archaen gneiss bedrock

geology appears to be a particularly important

predictor, a formation that is common in some mountain

ranges of northwestern and northcentral Wyoming.

4.1. Model performance and validation

In general, the Wyoming predictive model was

accurate and precise enough to detect modest

degradation. However, a small amount of systematic

bias occurred associated with ecoregion setting

(Table 4). For such a systematic bias to occur, the

model had to over-predict for some streams and under-

predict for others. We cannot fully explain this bias at

this time, but because the model is statistical in nature,

the average O/E-value for calibration samples must be

approximately one, and any errors of under-prediction

will be balanced by errors of over-prediction. The

apparent over-prediction that occurred in the Western

High Plains may be due to two factors: (1) incomplete

representation of the macroinvertebrate assemblage in

the Western High Plains from only six reference sites

and (2) classification of these six sites into more than

one reference group. Several of our reference groups

were associated with a particular ecoregion/sub-

region, including the Western High Plains. Reference

sites in the Western High Plains were equivalent in site

quality and generally associated with one reference

group, however, two of the six reference sites were

classified into a neighboring reference group. We

suspect that the combined effects of these two factors

limited the discriminatory power of the Western High

Plains predictor since it did not entirely account for

macroinvertebrate assemblage variation within the

ecoregion and thus resulted in the systematic bias for

sites within this ecoregion.

The fact that the mean and standard deviation of O/

E-values for samples in our calibration and validation
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datasets were similar implies that our model should

accurately predict expected biological condition for

new datasets. These results also indicate that there is

no evidence to suggest that the model is overfit. In

other words, the model did not spuriously associate

random variation in biological structure with variation

in predictor variables, something that could result in

either imprecise or biased predictions.

4.2. Temporal variability in reference condition

Ideally, a RIVPACS model based on one-time

sampling should be able to effectively account for both

spatial and temporal variation in biotic structure

(Hawkins, 2006; Hawkins et al., 2000). Temporal

variability in macroinvertebrate assemblage structure

is associated not only with life-history traits such as

timing of emergence and dispersal, but also temporal

variation in both environmental variables and mea-

surement error. Such temporal variation in either

biotic processes or environmental setting could

influence the prediction of E and hence the estimate

of O/E-values. However, temporal variability in

biological condition, as measured by O/E, was

relatively constant through time as indicated by the

low mean CVof 12%. We can infer from these results

that the Wyoming model was reasonably temporally

robust in spite of inter-annual changes in macro-

invertebrate assemblages, environmental factors, and

crew sampling efficiencies.

4.3. Detection of anthropogenic disturbance

Because the model was able to predict invertebrate

composition, and hence richness, across a broad range

of naturally differing stream conditions, any deviation

between observed and predicted assemblages beyond

model error should be interpreted as biological

degradation of a site associated with some stress, i.e.,

habitat alteration or direct toxicity by pollutants. Test

sites with high O/E-values were primarily distributed

among Wyoming’s mountainous regions where the

potential for human disturbance is minimal due to rough

terrain and the limited number of population centers.

Areas with high densities of test sites with appreciably

low O/E-values were confined to the plains and basin

regions, particularly in southwest, central, and northeast

Wyoming. Predominant human activities that have the
potential to either directly or indirectly alter the biota of

stream ecosystems in these areas include hydrologic

modifications, point and non-point source pollutants,

and stream alterations such as channelization, excessive

aggradation or degradation of sediment in the stream

channel, and urbanization.

Test site O/E-values that fell outside the 10th and

90th percentiles of the reference calibration O/E-

values imply some degree of biological impairment

caused by anthropogenic disturbances. The vast

majority of impaired test site O/E-values were below

the 10th percentile (0.75) of reference calibration O/E

scores suggesting that at least 25% of expected taxa

were absent from samples taken at these sites. The fact

that impairment was most prevalent (for the period of

record) for streams in the plains (59% of test sites) and

foothills (46% of test sites) comes as no surprise given

that the majority of human development (and their

influences on aquatic systems) and the major

population centers of Wyoming occur in low-land

grassland/sagebrush steppe and foothill environments.

Conversely, streams in the less altered mountainous

(28% of test sites) landscapes of Wyoming were less

degraded. Collectively, these findings suggest that

different levels of biological degradation occur within

Wyoming. Implementation of best management

practices, pollutant removal, and/or broad-scale

watershed improvement projects in Wyoming since

the period of record analyzed here may have improved

biological condition in some streams, but we have not

yet been able to address that question.

4.4. Model limits

RIVPACS assessment software is typically pro-

grammed to flag sites that fall outside the experience

of the model and thus prevent extrapolation of

predictions to environmental settings beyond those

used in model development. In general, poor or

incomplete representation by reference sites of the

range of naturally occurring conditions in the region of

interest will result in data gaps that could lead to

unreliable estimates of E at some sites. Flagging these

problematic sites is therefore critical to help eliminate

biases in site bioassessments. However, the use of

dummy variables for categorical predictors (e.g.,

ecoregion) may cause problems with the use of the

Mahalanobis squared distance, Unless reference sites



E.G. Hargett et al. / Ecological Indicators 7 (2007) 807–826 821
in each ecoregion used in predictions have a similar

range in the values of the continuous predictors used

(latitude, longitude, watershed area, elevation, etc.), a

test site could be flagged as having a combination of

conditions not observed in the reference data. This

issue appears to be of particular concern in the WY

model, which uses dummy variables for six catego-

rical variables. Further analysis of the use and effects

of categorical predictors in RIVPACS-type models is

needed. These findings imply that when a site is

flagged as being outside model experience, it is

important to thoroughly evaluate whether predictor

variable values are truly outside the expected range of

reference conditions before excluding the accuracy of

the result. Of the 120 samples that were flagged as

having predictor variable values outside the experi-

ence of the model, only 27 sites were flagged because

of clear extrapolations (Fig. 6). Conditions at these 27

sites are probably most indicative of general limita-

tions in the model.

In general, unsuccessful model predictions at these

27 test sites appeared to be largely the result of percent

coarse substrate and/or log alkalinity values that fell

outside the range of conditions found at reference sites

(Fig. 6). Many of these sites were located in low- to

moderate-elevation regions of the state where natural

substrate composition is likely characterized by

moderate to high percentages of sand, silt, or organic

material and alkaline water chemistry associated with

sedimentary watershed geology. A handful of sites

that fell outside model experience were characterized

by coarse substrates and alkaline waters. Considering

that very few reference sites used in the development

of this model were collected from sites with these

combinations of characteristics, it is understandable

that the model could not predict assemblage composi-

tion at many sites with these general characteristics.

This limitation in the model can only be remedied by

inclusion of additional reference sites that expand the

range of coverage for specific predictor variables or by

the substitution of appropriate surrogate predictors for

the ones currently in use.

Although most of the flagged sites appeared to fall

outside model experience because of naturally high

fine sediment or alkalinities, the alkalinities and fine

sediment levels observed at a handful of sites were

probably altered by human activity, and thus would

confound assessments. For example, although alka-
linity in streams of Wyoming is predominantly a

function of watershed geology (and hence natural),

there were a few instances where alkalinities were

probably elevated above natural ambient conditions by

point or non-point source pollution. In such cases the

model would either flag the sample if the alkalinity

value was outside the range observed at reference sites

or predict a fauna more associated with altered

conditions than natural ones. A similar situation could

occur if sediment composition were altered. At such

sites, additional data should be used to evaluate the

validity of any O/E-values obtained. In general, future

revisions of the model should avoid the use of direct

measures of alkalinity and substrate composition.

Although we thoroughly examined the suite of

environmental variables in our dataset to ultimately

choose the 14 predictor variables that most effectively

discriminated among all reference groups, those

variables did not account for 100% of the natural

variability within the reference dataset. Clarke et al.

(1996) suggested that errors in the predictive

capability of a RIVPACS model may be the result

of not including all necessary environmental variables

to effectively predict the correct biological classes.

Aspect, channel morphological parameters and cli-

matic data may prove to be useful predictors and

enhance the accuracy, precision, and spatial applic-

ability in future revisions of our predictive model.

4.5. Model limitations associated with effluent

dependent systems

Over a century of mineral development has altered

the lotic ecology of streams in several watersheds of

Wyoming, transforming what were once ephemeral or

intermittent drainages into perennial systems fed

almost exclusively by production water. In many of

these cases, there can be a net environmental benefit

from adding flow to an otherwise ephemeral or

intermittent stream through increases in macroinver-

tebrate assemblage diversity and structure. None-

theless, achievable biological condition may be less

than would be expected for naturally perennial

streams in the region due to concomitant alterations

of channel and water quality conditions from effluent

flows. Because of their unique characteristics, the

sensitivity and general applicability of our model to

effluent dependent systems is contingent on the
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appropriateness of the model’s predicted biological

condition. Our model is unable to detect whether an

effluent dependent stream was formerly ephemeral or

intermittent and therefore makes a prediction based on

the assumption that the stream is naturally perennial.

Several of our test sites in the Upper Powder River

Basin that fell outside model experience, were effluent

dependent and likely possessed perennial stream

characteristics that were unlike those expected by

the model. For such streams, case-by-case decisions

must be made on whether the network of reference

sites used to build a model provides an adequate

expectation of biological condition.

4.6. Comparison with other models and

geographic predictor variables

Several RIVPACS models have been developed in

the United States for the states of California,

Colorado, Maine, North Carolina, Ohio, Oregon,

Washington and the Mid-Atlantic Highlands region

(e.g., Hawkins, 2006; Hawkins et al., 2000). The

precision (standard deviation) of these models

generally ranged from about 0.10 to 0.30. Those

models that were most precise and most effective in

detecting anthropogenic disturbance were developed

from high resolution taxonomic data (genus and/or

species) collected from natural substrates at reference

sites of consistent quality. Considering that the

Wyoming model was developed with genus and

species level data collected from both minimally

disturbed and least-disturbed reference sites, the

overall precision of our model appears to be clearly

comparable with other successful predictive models.

Most of these other predictive models used fewer

predictor variables than in the Wyoming model. One

reason that the Wyoming model may have needed more

predictor variables is that Wyoming is an extraordina-

rily heterogeneous state both in terms of its physical

environment (topography, geology and climate) and its

invertebrate biota (elements of western and eastern

faunas). This heterogeneity notwithstanding, most

other models used many of the same predictor variables

used in the Wyoming model, most notably elevation,

latitude, longitude, and watershed area. Not only do

these factors provide insight into attributes that

structure regional stream faunas, but their common

use across regions underscores their likely universal
importance. Such variables should probably be

considered when developing RIVPACS models any-

where in the United States or elsewhere.

4.7. Utility of map/GIS variables in RIVPACS

models

Our results present strong evidence that RIVPACS

models can be developed based largely on map-level

predictor variables. Out of the 14 predictor variables

used in the Wyoming model, twelve were GIS-derived.

For a variety of reasons, the model development team at

Utah State University is now routinely developing

RIVPACS models based on only GIS-derived predictor

variables. Use of map-level predictors not only make

RIVPACS model development a more inviting endea-

vor for managers in terms of cost and time for data

collection, but GIS provides a readily available source

of candidate predictor variables. GIS data is easily

obtained from both government and non-profit spatial

data clearing houses. These data can be used as

surrogates for field collected variables that may be

important in influencing macroinvertebrate assem-

blages but which are influenced by human disturbance.

For example, sulfate bearing geological formations and

their effects on stream chemistry and stream biota has

been well documented in the literature. However,

human activities such as permitted discharges from gas

and oil production facilities hampered the use of this

variable in the Wyoming model. Instead, nutrient

content and the chemical weathering rate of geologic

material in the watershed (both derived with GIS)

served as adequate surrogates for sulfate. Percent coarse

substrate was an important predictor variable in the

Wyoming model, though human activities may

influence site values of this variable in some streams,

thereby affecting the predictive accuracy of our model.

Predictions of potential substrate based on our under-

standing of the geomorphic controls of sediment size

may allow us to avoid use of direct measures of

substrate composition in many models. Buffington et al.

(2004) were able to make predictions of sediment size

based on DEM-derived channel slopes and catchment

area/depth relationships. Refining these models to

include other controls on substrate, such as valley width

(R. Hill, Utah State University, unpublished data),

should further improve our predictions of substrate, and

hence biota.
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Appendix A (Continued )
Taxa group Operational taxonomic unit

Plecoptera Claassenia sabulosa*

Coleoptera Cleptelmis*

Chironomidae Cricotopus*

Chironomidae Diamesa*

Diptera Dicranota*

Ephemeroptera Diphetor hageni*

Trichoptera Dolophilodes*

*

In conclusion, the Wyoming RIVPACS model

provides a clear, simple and defensible measure of

biological condition of streams in a diverse landscape.

As such, the model should greatly assist in helping

Wyoming water quality managers establish priorities

for stream management and develop ecologically

realistic and meaningful restoration efforts and

watershed protection plans.

Plecoptera Doroneuria

Ephemeroptera Drunella coloradoensis/flavilinea*

Ephemeroptera Drunella doddsi*

Ephemeroptera Drunella grandis/spinifera*

Coleoptera Dubiraphia*

Coleoptera Dytiscidae*

Trichoptera Ecclisomyia*

Oligochaeta Enchytraeidae*

Ephemeroptera Epeorus*

Ephemeroptera Ephemerella*

Chironomidae Eukiefferiella*

Trichoptera Glossosoma*

Trichoptera Helicopsyche*

Diptera Hemerodromia*

Plecoptera Hesperoperla*

Coleoptera Heterlimnius*

Ephemeroptera Hexatoma*

Amphipoda Hyallela azteca*

Trichoptera Hydropsyche*

Trichoptera Hydroptila*

Plecoptera Isoperla*
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Appendix A

Operational taxonomic units (OTUs) derived from

the reference calibration dataset. Asterisks denote the

96 OTUs that occurred at 10 or more sites.

Taxa group Operational taxonomic unit

Acari Acari*

Ephemeroptera Acentrella insignificans*

Ephemeroptera Acentrella turbida*

Ephemeroptera Ameletus*

Diptera Antocha*

Trichoptera Arctopsyche grandis*

Diptera Atherix*

Ephemeroptera Baetis*

Trichoptera Brachycentrus americanus*

Trichoptera Brachycentrus occidentalis*

Chironomidae Brillia*

Plecoptera Capniidae*

Diptera Ceratopogoninae*

Chironomidae Chaetocladius*

Diptera Chelifera*

Trichoptera Cheumatopsyche*

Plecoptera Chloroperlidae*

Ephemeroptera Cinygmula*

Trichoptera Lepidostoma*

Trichoptera Limnephilus*

Oligochaeta Lumbriculidae*

Plecoptera Megarcys*

Trichoptera Micrasema*

Coleoptera Microcylloepus*

Chironomidae Micropsectra*

Nematoda Nematoda*

Trichoptera Neothremma*

Trichoptera Oecetis*

Trichoptera Oligophlebodes*

Oligochaeta Ophidonais serpentina*

Coleoptera Optioservus*

Chironomidae Orthocladius*

Chironomidae Pagastia*

Ephemeroptera Paraleptophlebia*

Trichoptera Parapsyche elsis*

Diptera Pericoma*

Gastropoda Physella*

Chironomidae Polypedilum*

Chironomidae Potthastia*

Trichoptera Protoptila*

Chironomidae Pseudosmittia*

Plecoptera Pteronarcella*

Plecoptera Pteronarcys*

Chironomidae Rheocricotopus*

Chironomidae Rheotanytarsus*
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Appendix A (Continued )
Taxa group Operational taxonomic unit

Ephemeroptera Rhithrogena*

Trichoptera Rhyacophila betteni Gr.*

Trichoptera Rhyacophila brunnea Gr.*

Trichoptera Rhyacophila coloradensis Gr.*

Trichoptera Rhyacophila hyalinata Gr.*

Trichoptera Rhyacophila pellisa*

Ephemeroptera Serratella tibialis*

Diptera Simuliidae*

Plecoptera Skwala*

Bivalvia Sphaeriidae*

Chironomidae Stempellina*

Plecoptera Taeniopterygidae*

Chironomidae Tanytarsus*

Chironomidae Thienemanniella*

Diptera Tipula*

Ephemeroptera Tricorythodes*

Oligochaeta Tubificidae*

Turbellaria Turbellaria*

Diptera Tvetenia*

Coleoptera Zaitzevia*

Plecoptera Zapada cinctipes*

Plecoptera Zapada columbiana*

Plecoptera Zapada oregonensis Gr.*

Trichoptera Agapetus

Trichoptera Agraylea

Hemiptera Ambrysus

Trichoptera Amiocentrus aspilus

Plecoptera Amphinemura

Odonata Argia

Diptera Blephariceridae

Chironomidae Boreoheptagyia

Coleoptera Brychius

Ephemeroptera Caenis

Ephemeroptera Callibaetis

Chironomidae Cardiocladius

Ephemeroptera Caudatella

Diptera Cecidomyiidae

Ephemeroptera Centroptilum

Trichoptera Ceraclea

Trichoptera Chimarra

Chironomidae Chironomus

Ephemeroptera Choroterpes

Chironomidae Cladotanytarsus

Diptera Clinocera

Chironomidae Conchapelopia

Chironomidae Cryptochironomus

Diptera Cryptolabis

Plecoptera Cultus

Chironomidae Demicryptochironomus

Diptera Deuterophlebia

Trichoptera Dicosmoecus atripes

Trichoptera Dicosmoecus gilvipes

Chironomidae Dicrotendipes

Diptera Dixa

Diptera Dixella

Appendix A (Continued )
Taxa group Operational taxonomic unit

Odonata Enallagma/Ischnura

Chironomidae Endochironomus

Chironomidae Euorthocladius

Ephemeroptera Fallceon qulleri

Gastropoda Ferrissia

Gastropoda Fluminicola

Amphipoda Gammarus

Diptera Glutops

Odonata Gomphidae

Coleoptera Haliplus

Oligochaeta Haplotaxis

Chironomidae Heleniella

Coleoptera Helichus

Hirudinea Helobdella stagnalis

Ephemeroptera Heptagenia/Nixe

Diptera Hesperoconopa

Odonata Hetaerina

Chironomidae Heterotrissocladius

Chironomidae Hydrobaenus

Gastropoda Hydrobiidae

Coleoptera Hydrophilidae

Plecoptera Isogenoides

Coleoptera Lara avara

Ephemeroptera Leptophlebia

Trichoptera Leucotrichia

Plecoptera Leuctridae

Diptera Limnophora

Chironomidae Limnophyes

Chironomidae Lopescladius

Oligochaeta Lumbricidae

Gastropoda Lymnaeidae

Chironomidae Macropelopia

Plecoptera Malenka

Trichoptera Mariliaa

Diptera Maruina

Trichoptera Mayatrichia

Chironomidae Microtendipes

Oligochaeta Nais communis

Oligochaeta Nais elinguis

Oligochaeta Nais variabilis

Chironomidae Nanocladius

Coleoptera Narpus

Trichoptera Nectopsyche

Trichoptera Neophylax

Trichoptera Neotrichia

Chironomidae Nilotanypus

Trichoptera Ochrotrichia

Chironomidae Odontomesa

Coleoptera Ordobrevia

Diptera Ormosia

Trichoptera Oxyethira

Chironomidae Parachaetocladius

Chironomidae Parakiefferiella

Chironomidae Paramerina

Chironomidae Parametriocnemus
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Appendix A (Continued )
Taxa group Operational taxonomic unit

Chironomidae Paraphaenocladius

Chironomidae Paratanytarsus

Chironomidae Paraorthocladius

Chironomidae Pentaneura

Lepidoptera Petrophila

Chironomidae Phaenopsectra

Gastropoda Planorbidae

Oligochaeta Pristina

Chironomidae Procladius

Chironomidae Prodiamesa

Plecoptera Prostoia

Chironomidae Pseudochironomus

Chironomidae Pseudodiamesa

Chironomidae Pseudorthocladius

Chironomidae Psilometriocnemus

Trichoptera Psychomyia

Diptera Ptychoptera

Trichoptera Rhyacophila angelita Gr.

Trichoptera Rhyacophila cyalinata Gr.

Trichoptera Rhyacophila iranda Gr.

Trichoptera Rhyacophila narvae

Trichoptera Rhyacophila vagrita Gr.

Trichoptera Rhyacophila verrula

Megaloptera Sialis

Oligochaeta Specaria

Ephemeroptera Stenonema

Chironomidae Stictochironomus

Diptera Stratiomyiidae

Chironomidae Sublettea
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