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Fig. 4.1: Pure sequential integral image implementation.

previous row to zero sets the conditions for the next image to start processing without

delays. It has to be noted that input pixels have to feed in row major order as stored in

memory, one row at a time going through all columns before passing to the next row.

4.2 Two-dimensional Systolic Array Accelerator

The first approach towards a parallel implementation of an integral image accelerator

was inspired by two-dimensional Systolic Arrays. A common SA structure is the rectangular

one, however for our purposes, the triangular one proved to be more appropriate based on

the way data has to flow and the operations involved in the computation of integral images.

With some analysis of the data and the way systolic arrays synchronously process data,

a two-dimensional implementation was designed. The architecture, as shown in Figure 4.2,

has two types of processing elements or nodes. The edge node is always the leftmost node

in the structure and only passes its results to the node on the right. The other type of node

is a regular Processing Element which takes an input from the top and the left, passing

results to the node on its right, and propagating the unaltered input to the one beneath.

By using a triangular structure, it is assured that memory is distributed across all nodes

and a node is only entitled to store a single previous integral pixel result before handing it
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to its neighbors.

The sample image in Figure 4.2 is 4 x 4 pixels and is assumed to have pixel values from

1 - 16 for demonstration purposes only. It is appreciated how the data is placed on the

inputs at the top with a skew-like organization to ensure consistency and timing. Observe

that the inputs are to be placed in reverse order for the system to produce the correct

results. Outputs are also out of order; rows are actually the columns of the output integral

image representation, where the first element out of each row forms the first row of the

result, the second of each row belong to the second row and so on. Reorganizing the output

data is required to maintain addressing consistency along stages.

Data to the Systolic Array has to be provided in a synchronized manner to ensure that

data reaches the correct nodes at the right time to produce the correct result. Therefore,

data has to be skewed before passing it to the inputs of the Systolic Array. Skewing has to

be done in such a way that the first node to the left receives data first, and in the next clock

cycle its result has to reach the next node simultaneously with the corresponding input to be

processed together. The same propagation behavior happens along the complete structure.

4.3 One-dimensional Systolic Array Accelerator

After having designed the two-dimensional SA accelerator concept and simulated differ-

ent sizes of images, it was noticed that the same processing could be achieved with a fraction

of the resources previously used. This was achieved with the use of a one-dimensional sys-

tolic array approach capable of providing the same results with a L+1
2 % reduction in the

number of nodes required. Instead of using L2+L
2 processing elements or nodes in the two-

dimensional architecture, it can be reduced to just L nodes (where L is the length of the

SAII accelerator). The reduction of nodes does not reduce the amount of inner memory

required by the system, therefore the resource savings are not linear with the number of

nodes eliminated. Memory actually depends on the width of the image to be processed,

this is because the previous row of integral results needs to be kept available to process the

rest of the image regardless of the number of PEs.

A representation of the one-dimensional SA implementation is shown in Figure 4.3. It
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Fig. 4.2: Two-dimensional SA integral image.

can be seen that inputs to the system are the same if compared with the two-dimensional

implementation. In this approach, the Most Significant Bit (MSB) is always to the left.

However, using this structure the results are only correct in three cases: (i) when only

one Processing Element is used, (ii) when two PEs are used, and (iii) when the width of

the accelerator equals the image width. Since we want a fully scalable system that can

have any number of nodes as required, some improvements were implemented to be able to

instantiate any number of nodes without compromising the results.

Figure 4.4 provides an example of how the computation was affected by the number

of nodes in the accelerator. The example has a 6 x 6 input image and is processed by an

accelerator with three PEs splitting a single row of the original image into two pieces of the

same size as the accelerator. Both the original sample image and the correct result are shown

on the right, labeled accordingly to identify them. On the expected integral image result,

the numbers in bold represent the pixels with unresolved issues that require additional

processing. Each emphasized number on the expected result matrix has its corresponding
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Fig. 4.3: One-dimensional SA implementation.

erroneous value marked on the output of the nodes. For example, {10, 15, 21} are the

expected values; however, {4, 9, 15} are the actual values produced by the nodes. The same

happens with the sets {44, 60, 78} and {14, 30, 48}. The second set needs to be normalized

with an offset of 30 and the first with 6. A trend was observed on the erroneous stream

of data produced, and it was noticed that erroneous sets were missing an offset value that

happens in the future. In the case of 4, 9, and 15, they all require the rightmost value

from the previous result row (6) to produce the correct set 4 + 6 = 10, 9 + 6 = 15, and

15 + 10 = 21. On the same figure, offsets have been identified with a bounding box; this

allows us to compare the time when this value is produced and the time step when it is

needed.

The offset value at the rightmost position of the output vector is separated from T0

by N − 1 clock cycles, where T0 is the time step when the value is expected to be available

and N is the number of PEs in the accelerator. To compensate for this problem, an extra

stage was added before outputs from the accelerator are final. Data coming out of the

PEs requires additional processing (DeSkew) such that data comes out aligned instead of
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Fig. 4.4: Incorrect results when number of PEs /∈ {1, 2, image width}.

having a diagonal arrangement of data. When output data is aligned, the offset required to

normalize the current vector of results is only one clock cycle away, making this the optimum

point to correct the values produced before. The correction is achieved with a simple array

of 32-bit adders (one for each PE lane of results) and a single 32-bit accumulator to store

the previous row rightmost value. The only exception to this correction is when the current

vector of data is the first set of data of an integral row, as is shown in Figure 4.4; the first

elements of every row have the expected values and require no adjustment. It is not shown,

however, that exercising the node equations will demonstrate that the first set is always

correct regardless of the width of the accelerator. To account for this, the array of adders

at the end of the process will skip the beginning of every row of results to maintain the

consistency.

PEs are ruled by two different sets of equations listed in Table 4.1, which define the

results for each type of node in the accelerator.

As was mentioned before, the number of nodes can be adjusted to control the amount
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Table 4.1: Set of equations for SAII accelerator PE nodes.
Node Type Equations

Master Node
Output = Inner mem(Index) + Input
Inner mem(Index) = Inner mem(Index) + Input
Feed Out = Inner mem(Index) + Input

Helper Node
Output = Inner mem(Index) Feed In + Input
Inner mem(Index) = Inner mem(Index) + Input
Feed Out = Inner mem(Index) Feed In + Input

of resources dedicated to the accelerator, but the amount of memory required is constant for

the same size of the input image. equation (4.1) gives the amount of memory required per

node in the SA. More nodes in the system means that the inner memory will be smaller for

each node. The total memory depends on the input image width as described by equation

(4.2), where requirement is given in bytes assuming a 32-bit integral image result. Attempts

to reduce memory requirements exist [14, 16], and could bring this requirement down by

having a shorter integral pixel word length.

Node memory size =
Image width

Number of PE
∗ 4bytes (4.1)

Total memory size = Image width ∗ 4bytes (4.2)

With the proposed adjustments, the correct output is produced at all times at the cost

of an extra clock cycle without depending on the number of nodes in the SA structure. In

the next section the linear Systolic Array Integral Image (SAII) architecture is detailed as

a whole, including the control signals that arbiter the computation of the integral image,

ensuring the correct results are produced.

4.4 Integral Image Accelerator Architecture

Having a working Systolic Array architecture correctly processing data individually was

the first step; now it needs to be integrated into a system that a user would use and interact

with. The proposed core system will be in charge of arranging the input data, arbitrating
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PE nodes, preparing results to be presented on the outputs, and adjusting results to obtain

the desired results. Having this level of abstraction is important to produce an efficient

interface for end users of this type of module. The simplified block diagram for the final

architecture is presented in Figure 4.5, where the different components can be appreciated.

The proposed architecture is composed of (i) a Skew block, where the input data is

arranged in the correct order for the PEs to process the data synchronously; (ii) a Master

Node; (iii) N − 1 Helper Nodes, where N is the number of nodes in the accelerator; and

(iv) a DeSkew block, which has to ensure that data produced by the nodes arrives to the

output in the correct order and also has to perform an offset adjustment before presenting

the results to the output of the accelerator.

Each component of the final architecture will be detailed separately in subsequent

sections of this chapter, including the controller which is not shown in the main block

diagram.

4.4.1 Skew - Data Preparation

Prior to any computation, it is of great importance that input data needing to be

processed arrives in the correct order to the processing nodes. This will ensure a synchronous

and correct operation. If input data was to arrive with wrong timing, the result would not

be reliable and subsequent results would also be affected.

To ensure that data is always delivered to the PEs synchronously, a Skew module was

designed to properly arrange input data without having the host system worry about input

data ordering to use this integral image accelerator. Input data vector contains multiple

gray-scale pixel values; each of them needs to be delayed differently such that when the

rightmost pixel is processed by its corresponding processing node, the result of all previous

pixels are already available for it to use. A graphical representation of this skewed delay

method can be appreciated in Figure 4.6. Input data, as labeled in the aforementioned

figure, can have N pixels, and each one is placed in a delay lane with increasing length up

to N − 1. The leftmost pixel is passed to the Master Node without further delay to start

the processing sequence. The rest of the pixels will arrive at their corresponding processing
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Fig. 4.5: Proposed integral image accelerator structure.

node in subsequent clock cycles, one at a time, in a left to right ordering scheme.

Delay lanes were implemented using Shift Registers (SR) with different lengths and

operating under a common clock. The leftmost pixel is not placed in a delay lane, instead it

is directly transmitted to the Master Node. This makes the total number of shift registers

required N − 1 where N is the number of nodes in the accelerator. Length of each shift

register is the lane number minus one, leaving the rightmost lane to be also N −1 in length.

The amount of resources dedicated for shift registers increases when more nodes are added

to the architecture; this is because having more nodes means more and longer SRs.

4.4.2 Master Node

In the proposed accelerator, it is mandatory to have a single master node regardless of

the width of the accelerator. Since a Master Node is only required once, it has a different

behavior compared with the rest of the processing nodes. It most be noted that Master

Nodes do not have any inputs from other PEs, making the outputs purely dependent on

current input values and previous results stored in their inner memory. A block of memory

is necessary for all nodes to remember the previous row of results in order to produce

subsequent results as described in the integral image equation (3.2). The amount of memory
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Fig. 4.6: Skew module inner diagram.

required is Imagewidth
NumberofNodes and it only holds results generated by itself. Lets assume that

the input image has a width of 24 pixels and the accelerator has four processing nodes; this

leaves every node holding 24
4 = 6 integral pixels. With a memory size of six integral pixels

(32-bits), the Master Node would hold integral pixel results at positions 1, 5, 9, 13, 17, 21.

The behavior of this node is described by the set of equations (4.3), (4.4), and (4.5).

Output = Inner mem(Index) + Input (4.3)

Inner mem(Index) = Inner mem(Index) + Input (4.4)

Feed Out = Inner mem(Index) + Input (4.5)

A visual representation of a Master Node is given in Figure 4.7, where all interface ports

and basic inner component representations can be appreciated for a better understanding of

the implementation. The node has the typical clk, rst, and ce signals to maintain synchro-

nization with the rest of the system. Besides that, it has an 8-bit input port and a done flag,

which tells the Node to clear its memory and outputs in preparation for a new image frame
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Fig. 4.7: Master node inner diagram.

once the current image has finished processing. On the outputs, it has a 32-bit output and

feed out signals, along with a single valid bit that indicates when a valid value is produced

by the node. The abstract representation includes some components that help visualize

the operations the node undertakes. It has two 32-bit adders and a 32-bit memory block

holding previous results as mentioned before. The multiplexer activated by the Done signal

allows for the system to start filling the SA with zeros to avoid perturbing the calculations

in other nodes.

The naming of both types of nodes comes from the first stages of the design when the

Master Node had additional logic that made it more complex. Names stayed unaltered when

the Master Node was simplified and the data offset adjustment was moved to a posterior

stage of the processing pipeline. The change was due to an inconsistency and incapacity of

the system to compute the integral image with accelerator sizes other than 1, 2, and N.
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4.4.3 Helper Node

The accelerator is composed of two types of processing nodes. Since only one Master

Node is allowed in the proposed design, the rest of the processing power is provided by

multiple Helper Nodes. There can be any number of Helper Nodes in the design to expand

the accelerator, the only constraint is that there must always be a total number of PEs that

exactly divide the width of the image.

A Helper Node is ruled by a different set of equations than the Master Node because

of its additional input from neighbor nodes. The set of equations (4.6), (4.7), and (4.8)

describe how the outputs and inputs interact to generate the pre-integral pixels. Just as

a reminder to the reader, the output from the PEs need further offset adjustment before

representing the actual integral image.

Output = Inner mem(Index)Feed In+ Input (4.6)

Inner mem(Index) = Inner mem(Index) + Input (4.7)

Feed Out = Inner mem(Index)Feed In+ Input (4.8)

By observing Figure 4.8, the reader could be under the impression that a Helper Node

takes less resources than a Master Node, but is actually the opposite, as it has more inputs

to process. Having an additional input automatically instantiates a three input 32-bit adder

instead of a two input one like in the case of a Master Node. The rest of the components

are considered to be the same, including the inner memory block, which is the same size on

all nodes of an accelerator.

4.4.4 DeSkew - Data Normalization

This module does the opposite of the Skew; it removes the skewed look of the data

coming out of the nodes. It also has the task of adjusting the offset of the data going out
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Fig. 4.8: Helper node inner diagram.

of the accelerator. The operation is split in two phases; the one that will ensure that the

output of each PE is placed in its corresponding delay lane. The other, which is the offset

adjustment, was accomplished with aid of an array of adders and a 32-bit accumulator which

stores the previous rightmost output for subsequent additions. Figure 4.9 tries to throw

more light on this, to help us understand the final adjustment and the correctly ordered

results.

The reordering of results is achieved in the same manner as the input data was prepared

for the nodes to process with help of a different length shift register in each lane to serve

as a controlled delay. Shift registers are ordered in decrementing length from left to right,

and the rightmost has no delay at all. After the values have been restored to proper order,

the data is handed to an offset adjustment module that will add the missing offset to each

set of data. Offset is taken from the rightmost value of each data set generated by the

DeSkew stage and stored in a local register to use on the next iteration. The local register

has a storage capacity of 32-bits, assuming that the integral pixel is that size, but it can be

reduced if a word length reduction method is used on the integral pixel.
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Offset adjustments consist of adding the local register value to all the elements in the

output data set and refreshing the value of the register with the most recent result produced.

The operation is applied to all outputs with the exception of the first element of each image

row which does not need adjustment. Arbitration of the outputs that require adjustment

is managed by the controller who emits a bypass signal indicating that the current data

requires no further adjustment. The system skips the addition when it sees the bypass flag;

however, it does refresh the local register value for future use.

4.4.5 Controller

This is the module that carries the burden of synchronizing the accelerator by using a

set of control signals at the appropriate time. The easiest way to explain this controller is

to show the Finite State Machine (FSM) diagrams involved in the system behavior. The

FSM diagram is presented in Figure 4.10, where all states and their transition conditions

are displayed along with the state of control signals.

There is also the requirement to control the offset adjustment module to skip the

addition of the register value to the first set of data of each integral image row. The FSM

that generates the globalbypass signal, as it is called, is described in Figure 4.11.

4.5 Software Simulation

Verification of the design was first completed using a software simulator, and once it

was confirmed that all parts of the design worked as expected, the design was implemented

on a Virtex 6 device to ensure actual hardware acceleration beyond software simulations.

The simulation software used for verification was GHDL, which is an open source

tool developed and maintained by Tristan Gingold [17]. This tool is perfectly capable of

simulating complex designs in VHDL language, even if Xilinx Libraries and Primitives are

used in the design. However, advanced knowledge and skills are required to setup and use

the mentioned libraries due to the fact that it is an open source and Xilinx libraries are

proprietary. The SAII accelerator proposed in this thesis makes use of some generated cores
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Fig. 4.9: DeSkew module inner diagram.

by the CoreGen tool provided by Xilinx with their development suite and is important that

the simulator handles them accordingly.

Every module was designed and tested independently until each behaved according to

design specifications and requirements for the accelerator. More detailed information is

provided for the top module simulation, which covers the overall behavior of the system

after all submodules are interconnected. Top module interface is represented by the block

diagram in Figure 4.12, where basic inputs clk, rst, and ce are present, along with the more

specialized inputs and outputs required for the task. Inputs to the top-level module include

the input data as a vector of bits, configuration inputs (image width, image height), and

the usual clock/reset/enable signals; outputs are the integral image data also as a vector of

bits, a valid flag, and a done signal.

For software simulation, input data was fed to the accelerator from a file containing

pixel values from a real gray-scale image. The size of the image and the number of nodes

were manipulated to explore a broad spectrum of possible scenarios and results. Results

produced by the accelerator were written to a file for further comparison with the expected
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Fig. 4.10: Main FSM for SAII controller module.

result.

To generate stimulus data for the accelerator and to read the results and compare them

with the expected correct result, a C++ program was created to help with those tasks. The

parameters required by the program are: (i) input image file to use as a stimulus to the

accelerator, (ii) the width, (iii) height of the final image data, (iv) the number of nodes

that will be used to process the data, and (v) the mode (create COE, generate stimulus, or

verification data). COE is a format used by Xilinx to initialize blocks of memory; that way

the image can be pre-stored in memory blocks before the device is programmed instead of

having to download it after. This is of importance to the hardware simulation, as it will be

demonstrated in the next section. For software simulation we are just interested in the last

two modes, stimulus generation and the verification data. The original image can be of any

size; the code will resize it to the size provided on the parameters and work with that size

instead. Stimulus data is generated as a bit-set; a sample is shown in Figure 4.13 where a

section of a gray-scale image is shown, along with the pixel values and the corresponding

stimulus generated from that data, as if they were generated for a two-node accelerator.

GHDL simulation will produce an output file with the same structure as the input

stimulus. The verification data from the C++ program has the same structure, therefore
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Fig. 4.11: Offset adjustment controller FSM.

both can be compared at a binary level. For this, it was chosen to use the Linux Diff tool,

passing the results and the golden verification data for comparison to ensure both were

exactly the same in every simulation scenario. GHDL produces a waveform file that can

be viewed with Gtkwave to obtain more details of signal transitions and the flow of data

every clock cycle. The total number of clock cycles it takes to complete the processing of an

input gray-scale image is extracted from the number of lines in the output file created by

the simulation. Since the accelerator produces a line every clock cycle (also confirmed on

waveform), we can use this information with confidence as long as the binary representation

matches the golden verification data produced by the C++ program.

4.6 Hardware Simulation

Once the design is verified with help of software tools (GHDL and a self-created C++

program in our case), the design is taken to the hardware realm for the final verification

and actual operation of the SAII accelerator under real world conditions.

The proposed SAII accelerator was deployed to an ML605 Development board with a

Virtex 6 XC6VLX240T. The board and device were chosen because of their flexibility and

abundant resources, in case they were needed for testing and verification purposes. Since the

hardware verification could not take place by reading from stimulus files as it was done in

the software simulation, the input and output files had to be replaced by blocks of memory
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Fig. 4.12: Block diagram of top model along with stimulus file read and write results.

Fig. 4.13: Gray-scale portion of an image along with its pixel values and stimulus represen-
tation in bit-set form.

instantiated using BRAMS in the FPGA as shown in Figure 4.14. Additional memory

addressing modules were added to control the loads and stores to outer memory blocks

containing the original image and to store the results. Since the focus of this thesis is a

novel integral image accelerator, memory interfaces are not of interest and are not discussed

in this document. Due to the lack of an interface to fill memory with the original image from

outside the FPGA, it was chosen to have memory pre-initialized with the image data before

programming the device. Our C++ program has the ability to take the original image file

on the host computer and produce a COE compliant file that serves as initialization data
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for the block of memory generated with Xilinx CoreGen.

The results from the accelerator are stored in an output memory block comprised of

multiple Brams. However, reading that output memory is not possible without additional

interface to the host computer. Therefore, Chipscope was used instead to monitor the

output of the accelerator and other critical signals that reflect the status of the accelerator.

Chipscope is a tool similar to common logic analyzers; however, it currently has a key

benefit of being able to debug signals that have no physical connection. Since Chipscope is

a module sitting in the inside of the FPGA, it can capture signals that otherwise would be

impossible to reach from outside the chip.

Information captured by Chipscope is of great value when looking for timing issues

and verifying correct execution of the inner modules of the design. Data can be represented

in many formats and plotted in waveform style for a more efficient inspection and better

readability.

Fig. 4.14: Hardware simulation flow showing input and output memory along with Chip-
Scope capturing results.
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Chapter 5

Results

This chapter presents the results of the proposed Systolic Array Integral Image (SAII)

accelerator and comparisons with the purely sequential approach as described in Chapter 3.

Based on the fact that the parallel approach by Ehsan et al. [13] to accelerate integral image

computation as described in their publication was not implemented in hardware, it can

not be compared beyond the number of clock cycles required to complete the calculation.

The proposed design is instead compared with the sequential approach running on the

same FPGA device as the proposed SAII accelerator. Comparison between approaches

considers the number of clock cycles required to process the input image and the maximum

frequency achieved by each design after Place and Route (PAR). From those two values, the

processing speed is estimated. This is because the purely sequential approach has a different

clock frequency than the proposed design due to differences in the design complexity. The

difference in clock frequency across implementations affects the outcome of the comparison.

The proposed design will only be compared with the sequential approach as they are

the only implementations that share a common target platform (FPGA). However, fps can

be easily calculated using the equations provided in this chapter to compare with other

platforms. The proposed accelerator was not compared with other target platforms besides

FPGAs because of their differences in footprint, power consumption, and other factors that

defeat the purpose of having an embedded image processing solution.

The SAII accelerator was implemented in VHDL and synthesized using Xilinx ISE 12.1.

The specific target platform for comparisons is a Virtex 6 LX240T FPGA.

5.1 Execution Time

Verification of the design took place with different image sizes (1280x960, 640x480,
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320x240, 160x120, 80x60, and 40x30 pixels) and a subset of all the possible number of PEs

that the SAII accelerator can have (2, 4, 8, 16, 32 nodes). Various combinations of these

parameters were made to analyze the performance of the proposed integral image accelerator

under several scenarios. It is already known from Chapter 4 that the purely sequential

implementation of an integral image architecture is capable of processing a single gray-scale

pixel every clock cycle. Therefore, the total execution time in clock cycles can be calculated

with (ImageWidth) ∗ (ImageHeight) for the sequential implementation. Conversion from

total clock cycles to execution time was required to fairly compare the sequential approach

and the different sizes of the proposed design (differences exist in the maximum frequency

achievable by each approach). Execution times for the sequential and the proposed SAII

architecture are listed in Table 5.1 for comparison purposes. It can be seen that execution

time (in microseconds) of the proposed design is lower on all test cases and for all sizes

of the SAII accelerator being the difference more pronounced at larger number of PEs as

expected.

5.2 Speed-Up

Based on the execution time previously presented, speed-up of the proposed acceler-

ator compared with the sequential approach under different scenarios is shown in Figure

5.1. Speed-up is obtained by using the execution time of the sequential implementation as

reference. Results not plotted correspond to test scenarios where the input image width

Table 5.1: Total execution time estimate for the sequential implementation and various
sizes of the SAII accelerator. Time estimate based on total clock cycles required to process
an image and the maximum clock frequency achievable after synthesis.

Execution Time (µs)

Approach\Image Size 1280x960 640x480 320x240 160x120 80x60 40x30

SequentialCPU 15361 4570 1652 239 117 49

SequentialFPGA 8610.167 2152.542 538.135 134.534 33.633 8.408

2 PEs 4331.554 1082.915 270.755 67.715 16.955 4.265

4 PEs 2132.345 533.123 133.317 33.366 8.378 2.131

8 PEs 1066.225 266.613 66.711 16.735 4.241 1.118

16 PEs 533.206 133.400 33.449 8.461 2.214 NA

32 PEs 266.780 66.877 16.902 4.408 NA NA
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was not exactly divisible by the number of nodes in the accelerator.

Figure 5.1 includes a range of image sizes used for the design verification where each

integral image was calculated with different numbers of processing elements in the SAII

accelerator. It can be appreciated that by using the SAII approach, an average speedup

between 1.987 - 32.27X is obtained, depending on the number of processing elements used

(2 - 32, respectively). Under some conditions, the proposed accelerator achieves a speed-up

greater than the number of PEs used because of the higher operational frequency it achieves

over the sequential implementation.

The number of PEs can be increased to further demonstrate the speedup that can be

obtained with the proposed accelerator; however, performance is susceptible to a constant

overhead delay that depends on the number of PEs in the accelerator. Figure 5.2 shows

how the measured overhead is constant for the same number of PEs across all image sizes.

Overhead is dependent on the number of nodes in the accelerator, the time it takes to

propagate input data from the first node to the last one, and the time it takes to produce

the first valid data on the output.

Because of the aforementioned constant overhead for each accelerator size, performance

drops when the image width gets closer in size to the overhead value. An example can be

observed in Figure 5.3, where an 8 PE accelerator (with an overhead of 11 clock cycles)

starts losing performance when the size of the input image starts decreasing, making itself

more pronounced as the size approaches 40 x 30 pixels. Small images are frequently used in

image processing when working with reduced regions of interest; therefore, it is important

to achieve an acceptable speed-up across a wide range of image sizes, including smaller

ones. Although performance shows a slight drop with smaller images, the speed-up is

still several times higher than with the sequential implementation. Even compared with

Ehsan’s approach, where a 4X speed-up is claimed prior to implementation in hardware,

almost 8 times more speed-up than Ehsan’s approach is obtained by using the proposed

SAII accelerator with 32 PEs when processing small images.
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Fig. 5.1: Speed-up obtained by the proposed SAII accelerator compared to the pure sequen-
tial implementation.

5.3 Resources

Resource utilization was quantized for each SAII accelerator size and is presented in

Table 5.2 for further analysis. Included in that table are the number of Look Up Tables

(LUTs) and Flip Flops (FFs) used by sequential implementation, as well as different sizes

of the proposed architecture. Additionally, the maximum frequency that each design can

achieve was extracted from ISE to fairly compare both approaches. As the number of PEs

in the proposed architecture increases, the number of FF also increases. LUT utilization

has a different behavior; as the number of PEs increases, the number of LUTs used drops

until it reaches eight nodes, then it increases afterwards. This behavior might be due

to the effectiveness of PAR tools and the efficient filling of FPGA slices when using key

accelerator sizes. The maximum frequency that each design can achieve shows that the

proposed architecture is capable of achieving higher operational frequencies compared to

the sequential approach on all accelerator sizes, except with two nodes.

To further understand the resource utilization of the proposed accelerator, every module
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Fig. 5.2: Visible overhead on the output of the SAII accelerator before first valid output.

Table 5.2: FPGA resources utilized by the sequential approach and the proposed SAII with
different number of PEs.

Implementation

Resources Sequential 2 4 8 16 32

FFs 42047 41401 41710 42261 43397 45653

LUTs 34289 45573 41363 34201 39638 40783

Max. Freq. (Mhz) 142.715 141.844 144.07 144.07 144.07 144.07

was analyzed independently. It was observed in Table 5.2 that the LUT utilization was

decreasing as the number of nodes increased. Having individual resource measurements

allowed for trends to be extracted based on the number of PEs in the accelerator. Results

are presented in Figure 5.4 for all major modules of the SAII accelerator. From the obtained

trends several facts can be deduced: (i) Since arithmetic inside both processing elements

(PEs) is constant regardless of the size of the accelerator, the reduction of resources is only

due to the reduction of inner storage as it becomes distributed across more nodes; (ii) The

controller is completely independent of the accelerator size; (iii) Skew and DeSkew resources
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Fig. 5.3: SAII performance drop when image size decreases.

increase due to the use of more shift registers depending on the size of the accelerator.

5.4 Resource Estimation

Using the trend equations for each accelerator module presented in Figure 5.4, a re-

source estimation set of equation is presented. These equations can be used to estimate the

maximum number of nodes that the SAII accelerator can have when implemented on other

FPGA devices with different number of resources than the device used for this implemen-

tation.

The derived equations are presented below:

LUTreq = 55276.49N−0.99 + (N − 1)(30478.34N−0.94) + 3.95N1.22

+82.99N1.05 + 512.39 (LUTs), (5.1)
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(a) Skew module resource utilization and estimation equation.

(b) Master Node resource utilization and estimation equation.

(c) Helper Node resource utilization and estimation equation.

(d) DeSkew module resource utilization and estimation equation.

(e) Controller resource utilization and estimation equation.

Fig. 5.4: Detailed resource usage by individual modules in the SAII architecture.
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FFreq = 40970.19N−0.99 + (N − 1)(40809.12N−0.98) + 3.95N1.22

+64N1 + 181 (FFs), (5.2)

NumberOfNodesaprox =
LUTavail − 55875.33

102.28
, (5.3)

NumberOfNodesaprox =
FFavail − 41219.14

102.23
. (5.4)

Using this estimation method, Table 5.3 is presented as an example of how the SAII

would look on different FPGA devices. The calculations were made under the assumption

that all resources are devoted to the accelerator, which rarely will be the case in a real-world

application. However, resources used for estimation can be the ones available for integral

image purposes when other designs are also to be placed in the same device.

5.5 SAII Accelerator Model

Based on results and design characteristics, a model of the proposed SAII accelerator

was extracted. Using the given set of equations, it is possible to extrapolate the design

Table 5.3: Maximum number of PE nodes that can be instantiated across several devices.
Negative estimations refer to non-capable devices. The minimum of LUT and FF nodes
estimates is considered.

FFs Nodes LUTs Nodes Estimated Nodes

Spartan 3 XC3S1600E 29,504 -69 29,504 -138 -138

Spartan 6 XC6SLX100 126,576 503 63,288 39 39

Spartan 6 XC6SLX150 184,304 843 92,152 190 190

Virtex 4 XC4VLX40 53,248 71 106,496 266 71

Virtex 4 XC4VLX200 178,176 806 356,352 1577 806

Virtex 6 XC6VLX130T 160,000 699 80,000 127 127

Virtex 6 XC6VLX240T 301,440 1532 150,720 498 498

Virtex 6 XC6VLX760 948,480 5342 474,240 2196 2196

Artix 7 XC7A105 129,600 520 64,800 47 47

Artix 7 XC7A335T 440,400 2351 220,200 862 862
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to other devices that might have different resource counts, different clock frequencies, or

just another performance requirement. MaxFrequencySAII is the maximum frequency at

which the accelerator can run on a particular device. Overhead is the number of clock cycles

required until the first valid data is presented to the output. The rest of the parameters

should have names clearly related to their meaning, and should not cause confusion.

Overhead = NumberOfNodes+ 3 (cycles) (5.5)

TimeSAII =
Cyclestotal

MaxFrequencySAII
(seconds) (5.6)

Cyclestotal = Overhead+

[
ImageWidth

NumberOfNodes
∗ ImageHeight

]
(cycles) (5.7)

Speedup =

(ImageWidth∗ImageHeight)
MaxFrequencyseq

TimeSAII
(X) (5.8)

fps = (TimeSAII)−1 (fps) (5.9)

NumberOfNodesaprox =
Cyclestotal

ImageWidth ∗ ImageHeight

−1

(elements) (5.10)
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Chapter 6

Conclusions and Future Work

This chapter contains the conclusions obtained from simulation results of the proposed

architecture and some future work for upcoming research opportunities.

6.1 Summary

A novel scalable integral image accelerator was proposed based on systolic array ar-

chitectures. Simulations that involved multiple input image sizes and different number of

nodes in the accelerator were used to validate the design. The SAII accelerator is capable

of achieving a speed-up that depends almost linearly on the number of processing elements

instantiated in the architecture having as a limit the availability of resources. Based on the

results, an average speed-up of 1.98X 32.27X was obtained by the proposed architecture

over the basic sequential approach when using 2 - 32 PEs in the SAII accelerator.

The system offers scalability by allowing for the number of processing elements in the

accelerator to be adjusted as needed. Speed-up is dependent on the number of nodes on the

system, assuming that there is enough memory bandwidth to feed all processing nodes with

data every clock cycle and resources to instantiate them. In some cases memory bandwidth

is not a constraint. For example, images can be entirely downloaded to inner memory blocks

and then processing can begin with a larger number of PEs. This is very similar to what

a GPU approach does, where the host computer transfers the input image to the GPU’s

shared memory and then processes it, and writes it back.

A set of parameterized equations were derived to model the proposed architecture

under various scenarios. The model was parameterized with respect to the size of the input

image (width and height), total clock cycles, frames per second, desired speed-up, number

of Processing Elements (PE), and overhead to first valid data.



47

By using those equations, it is possible to estimate the maximum speed-up obtainable

on FPGAs with different amounts of resources available. A sample of such a projection was

shown on previous chapter.

6.2 Future Work

The accelerator proposed in this thesis was designed static in nature and is only viable

for known maximum image sizes prior to implementation, as the number of nodes cannot be

changed during runtime. Having a static implementation means additional work is needed

to determine the optimal number of nodes that can solve all the cases while satisfying

the resource constrains established by the design requirements. Extra functionality can be

obtained from this design if the accelerator is converted into a dynamic implementation,

meaning that the system could adapt the number of nodes to the conditions of a particular

task or field application dynamically.

A dynamic implementation would not affect resource utilization, but it would require

restructuring memory locations and control signals. In order to make such an approach

viable, it would be required that the disabled nodes resources be used for other tasks (for

example, Box Filtering) when they were not in use for integral image calculation. This could

be done by either having polymorphic nodes or by using Partial Dynamic Reconfiguration

(PDR). By using polymorphic nodes, nodes can be instructed to do different tasks while

keeping all their inherent functionalities, just using the fraction intended for the active task.

Using PDR has its advantages and disadvantages. No resources are wasted by reconfiguring

a section of the FPGA for the intended task; however, it takes longer to reconfigure a portion

of the FPGA than it takes to just instruct a node to switch tasks. Additionally, PDR

requires advanced knowledge in dynamic partial reconfiguration to design interchangeable

nodes that can fit in the same footprint.

It would be interesting to see an accelerator like this that is capable of dynamically

controlling its throughput based on the demand and priorities of the host system. This

would allow for a more flexible and more usable implementation of embedded systems that

have a reduced amount of resources but still need the high throughput required to process
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real-time video sources. A scheduler that decides which process has higher priority and

resizes the integral image accelerator accordingly to share its resources when needed would

be required to control the dynamic resizing of the accelerator.
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