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Growth and Gas Production of a Novel Obligatory Heterofermentative Cheddar Cheese 

Nonstarter Lactobacilli Species on Ribose and Galactose. Ortakci.	A novel lactic acid 

bacterium Lactobacillus wasatchii1 sp. nov. isolated from a  “gassy” Cheddar cheese, was 

studied. Lb. wasatchii is obligatory heterofermentative and grows rapidly on ribose compared to 

galactose, however, it co-utilizes both sugars well. Gas production occurs when Lb. wasatchii is 

grown in the presence of galactose. Lb. wasatchii survived HTST pasteurization and grows under 

salt and pH conditions typical to Cheddar cheese. The presence of nonstarter bacteria such as Lb. 

wasatchii can lead to unwanted gas-production and formation of slits and cracks that results in 

down-grading of cheese and subsequent economic losses to cheese manufacturers. 	

ABSTRACT 

An obligatory heterofermentative lactic acid bacterium Lactobacillus wasatchii sp. nov. isolated 

from gassy Cheddar cheese was studied for growth, gas formation, salt tolerance and survival 

against pasteurization treatments at 63°C and 72°C. Initially, Lb. wasatchii was thought to only 

use ribose as a sugar source and we were interested in whether it could utilize galactose. 

Experiments to determine rate and extent of growth and gas production in carbohydrate restricted 

(CR) de Man, Rogosa, and Sharpe (MRS) medium under anaerobic conditions with various 

combinations of ribose and galactose at 12, 23, and 37°C were conducted with 23°C being the 

more optimum growth temperature of Lb. wasatchii. When grown on ribose (0.1%, 0.5%, and 

1%), maximum specific growth rates (µmax) within each temperature were similar. When 

galactose was the only sugar, µmax was 2 to 4 times lower than with ribose. At all temperatures, 

highest final cell densities (OD640) of Lb. wasatchii were achieved in CR-MRS plus 1% ribose, 

0.5% ribose and 0.5% galactose, or 1% ribose combined with 1% galactose. Similar µmax values 
																																																								
1	The	name	of	this	bacterium	was	subsequently	revised	to	Lactobacillus	wasatchensis.	
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and final cell densities were achieved when 50% of ribose in CR-MRS was substituted with 

galactose. Such enhanced utilization of galactose in the presence of ribose to support bacterial 

growth has not previously been reported. It appears that Lb. wasatchii co-metabolizes ribose and 

galactose, utilizing ribose for energy and galactose for other functions such as cell wall 

biosynthesis. Co-utilization of both sugars could be an adaptation mechanism of Lb. wasatchii to 

the cheese environment to efficiently ferment available sugars for maximizing metabolism and 

growth. As expected, gas formation by the heterofermenter was observed only when galactose 

was present in the media. Growth experiments with MRS plus 1.5% ribose at pH 5.2 or 6.5, with 

0, 1, 2, 3, 4, or 5% NaCl revealed that Lb. wasatchii is able to grow under salt and pH conditions 

typical of Cheddar cheese (4 to 5% salt-in-moisture, ~pH 5.2). Finally, we found Lb. wasatchii 

cannot survive LTLT pasteurization but survives HTST lab pasteurization with 4.5 log reduction 

occurred. The ability of Lb. wasatchii to survive HTST pasteurization and grow under cheese 

ripening conditions implies that the presence of this nonstarter lactic acid bacteria can be a 

serious contributor to gas formation and textural defects in Cheddar cheese. 

KEYWORDS: nonstarter lactic acid bacteria, late blowing, ribose, cofermentation,  

INTRODUCTION 

Lactic acid bacteria (LAB) present in ripening cheese include deliberately added starter 

LAB and a variety of adventitious LAB referred to as nonstarter LAB (NSLAB). The NSLAB 

gain access to cheese through the milk or processing environment (Naylor and Sharpe, 1958; 

Peterson and Marshall, 1990; Martley and Crow, 1993; Somers et al., 2000). 

The predominant NSLAB in Cheddar cheese are facultative heterofermentative (FHF) 

lactobacilli and, less frequently pediococci or obligatory heterofermentative (OHF) lactobacilli 
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(Jordan and Cogan, 1993; Crow et al., 2001; Banks and Williams, 2004). Presence of OHF 

lactobacilli are a particular concern because these microbes may promote the development of 

undesirable flavor and body defects including gas formation in Cheddar cheese (Dacre, 1953; 

Laleye et al., 1987; Khalid and Marth, 1990). Unwanted gas formation in Cheddar cheese is a 

recurrent and wide-spread problem in dairy industry that has probably affected most cheese 

plants (Michael and Mullan, 2000). Our group recently isolated a new Lactobacillus species 

from a ‘’gassy’’ Cheddar cheese after incubation on de Man, Rogosa, and Sharpe (MRS) agar 

for 35 d at 6 °C. This bacterium was designated Lactobacillus wasatchii sp. nov. (Oberg et al., 

2015). 

Lactobacillus wasatchii is an OHF species and therefore uses the pentose phosphate 

pathway (PP) to generate energy from pentose and hexose sugars. Its preferred sugar is ribose, 

though hexoses such as galactose are also potential energy source in cheese. More importantly, 

hexose sugars can be fermented by OHF to lactate, acetate/ethanol plus CO2, making Lb. 

wasatchii a potential contributor to gassy defect in Cheddar cheese. 

This study examined growth characteristics of Lb. wasatchii with respect to ribose and 

galactose utilization, gas formation, tolerance to the salt and pH values found in Cheddar cheese, 

and its ability to survive pasteurization treatments. To our knowledge, this is the first report on 

growth and gas formation of a slow growing OHF lactobacilli species isolated as a NSLAB from 

a ‘’gassy’’ Cheddar cheese. 

MATERIALS AND METHODS 
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Materials 

	 Lactobacilli MRS broth, proteose peptone, polypeptone, beef extract, yeast extract, 

GasPak™ EZ, and agar were purchased from Becton Dickinson Inc. (Sparks, MD); ribose was 

donated by Bioenergy Life Science Inc. (Ham Lake, MN), UHT milk was from Gossner Foods 

Inc. (Logan, UT), Tween-80 and bromcresol purple were from Sigma-Aldrich Inc. (St. Louis, 

MO), dipotassium phosphate was from Fisher Scientific Inc. (Fair Lawn, NJ), sodium acetate 

trihydrate and diammonium citrate were from MallincKrodt Baker Inc. (Paris, KY), galactose, 

and triamonium citrate were from Alfa Aesar Inc. (Ward Hill, MA), magnesium sulfate was from 

Alfa Aesar Inc. (Heysham, England). 

 A carbohydrate-restricted version of MRS (CR-MRS) was prepared by the omission of 

glucose from the MRS broth formula. To 2 L of deionized water was added 20.0 g proteose 

peptone No. 3, 20.0 g beef extract, 10.0 g yeast extract, 2.0 g Tween-80, 4.0 g ammonium citrate, 

10.0 g sodium acetate, 0.2 g magnesium sulfate, 0.1 g manganese sulfate, and 4.0 g dipotassium 

phosphate. The CR-MRS was supplemented with different levels of ribose and galactose to study 

growth properties of Lb. wasatchii.  

Bacterium and Growth 

	 Stock cultures of Lb. wasatchii were maintained at -80°C in MRS broth supplemented 

with 1.5% Ribose (MRS+R) and 10% glycerol. Working cultures was prepared by two 

successive transfers into 10 ml of MRS+R broth, with anaerobic incubation using GasPak™ EZ 

at 23°C for 32 h after each transfer. Growth of Lb. wasatchii was evaluated by inoculation of the 

working culture into 10 ml CR-MRS broth acidified to pH 5.20 with HCl and supplemented with 

0.5 % galactose or ribose, 1.0% galactose, ribose, or a 0.50:0.50 combination) or 2.0% sugar (1% 

ribose plus 1% galactose).  Optical density of the cell suspensions were followed at 640 nm after 
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inoculation and every 12 h thereafter at 12, 23, or 37°C and during anaerobic incubation in jars 

containing GasPak™ EZ. Maximum specific growth rate (µmax) was calculated as the slope of 

the steepest linear portion of the growth rate curves. Broth samples containing Durham tubes 

were similarly prepared, inoculated, and incubated to test for gas production. Working cultures 

were prepared in duplicate for conducting growth curves and gas formation experiments. 

To test NaCl tolerance of Lb. wasatchii at pH 5.2 or 6.5, Lb. wasatchii working cultures 

were prepared in triplicate and inoculated into MRS+R broth containing 0, 1, 2, 3, 4, or 5% 

(wt/wt) NaCl. Growth at 23°C under anaerobic conditions was followed by spectrophotometrical 

(OD600) measurements every 8 h until the stationary phase was reached.  

Thermotolerance  

The ability of Lb. wasatchii to withstand pasteurization treatment was assayed by heating 

9.9 ml of UHT milk to 63°C and 72°C in sterile polypropylene tubes. Once the desired 

temperature was reached, each tube was inoculated with 0.1 ml of Lb. wasatchii working culture 

(prepared in triplicate) containing ~6 x 108 cfu/ml of and the samples held at 63°C and 72°C for 

30 min or 15 s, respectively, then placed in a 31°C water bath (the set temperature commonly 

used for making Cheddar cheese) for 2 h. These treatments were designed to mimic the high 

temperature short time (HTST) continuous pasteurization used in large-scale cheese operations 

and the low temperature long time (LTLT) batch pasteurization often used by small-scale artisan 

cheese makers. Samples were then plated on MRS+R agar in duplicate and incubated at 23°C 

anaerobically for 5 days.  
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Statistical Analysis 

Statistical analysis of the effect of different temperature, sugar, pH, and NaCl treatments 

on µmax and final cell density of Lb. wasatchii were performed using PROC GLM in SAS 

(version 9.1, SAS Institute, Cary, NC) and differences between means determined using 

REGWQ multiple range test and Tukey Least Squares Means.  

RESULTS 

Growth 

Ribose. Growth curves for Lb. wasatchii at 23, 37, and 12 °C in CR-MRS with ribose at 

pH 5.20 are represented in Figures 1A, 2A, and 3A, respectively. Within each temperature, 

significantly higher µmax values were observed when Lb. wasatchii was grown on CR-MRS plus 

ribose (P<0.05) compared to galactose as the sole sugar (Table 1). In the presence of 1% ribose, 

µmax of Lb. wasatchii was 23°C > 37°C = 12°C. When grown in the presence of 1.0% ribose at 

12 an 23°C, exponential growth continued until final OD640 levels of ~1.3 to 1.4 were reached 

(Table 2), with lower OD640 achieved at lower sugar levels, indicating available sugars was a 

limiting factor on extent of growth. Less cell growth occurred at 37°C with OD640 only reaching 

0.75. Assuming that exponential growth ends when the sugars are depleted, the lower final cell 

density at 37°C may be indicative that more of the energy obtained via fermentation is being 

used to maintain cell viability because of energy-intensive stress responses at the higher 

temperature. 

Galactose. When galactose was the only sugar, growth of Lb. wasatchii was slow 

(Figures 1B, 2B and 3B) with similar µmax of less than 0.01 at all temperatures (Table 1).  Final 
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cell densities were lower (P < 0.05) than when Lb. wasatchii was grown with ribose except when 

grown with the lowest sugar level (0.1%) at 12 and 37°C (Table 2). Slower utilization of 

galactose by Lb. wasatchii in the absence of ribose was expected, as we had previously seen that 

galactose did not provide a positive response on the API 50 CHL test even when held for longer 

than 48 h. With slower growth occurring with galactose as the only sugar, stationary phase in 

CR-MRS plus 0.5% galactose was only reached after 156 h at 23°C compared to 24 h in CR-

MRS plus 0.5% ribose. At 37°C, the extent of bacterial growth remained low (final OD640 ≤ 

0.22) even when galactose level was increased to 1% (Table 2).  

Combined Ribose and Galactose. When a 1:1 blend of galactose and ribose was used, 

µmax rate was not significantly different than for ribose alone (P<0.05), with only a slight 

difference observed when grown at 23°C (Figures 1, 2, and 3 and Table 1). In general, final cell 

densities were similar when total sugar content was the same (Table 2). This indicates that 

galactose utilization by Lb. wasatchii is slower when there is no ribose present but provides 

almost the same rate of growth as ribose when both sugars are present.  

Salt Tolerance 

The growth characteristics of Lb. wasatchii grown in MRS+R with 0 to 5% NaCl at pH 

6.5 and 5.2 are shown in Figures 4A and 4B, respectively. After 48 h, an OD600 of 2.0 was 

reached in all media except for 5% salt at pH 5.2 which had an OD600 of 1.75 and only reached 

OD600 of 2.0 after 60 h. At pH 6.5, there was a slight decrease in µmax when grown with 4% NaCl 

although this was not observed with 5% NaCl (Table 3). At pH 5.2, there was also significantly 

lower µmax at both 4 and 5% NaCl (P<0.05). Final cell densities were the same (OD600 = 2.0) 

except at 5% NaCl with had final OD600 of 1.96 (P<0.05). A combination of salt and lower pH 

causes a decrease in µmax, but Lb. wasatchii can grow in the same environment that occurs during 
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Cheddar cheese ripening (~pH 5.2, 4 to 5% salt-in-moisture). Such salt tolerance is expected for 

NSLAB isolated from Cheddar cheese, Jordan and Cogan (1993) observed growth of NSLAB 

such as Lactobacillus casei, Lb. plantarum and Lb. curvatus in 6% and some up to 8% (wt/wt) 

NaCl. Typically, at least 6% salt is needed to slow growth of NSLAB (Lane et al., 1997) and 

even then NSLAB populations in Cheddar cheese still reached about the same numbers at all salt 

levels (2.8 to 6.1%, salt-in-moisture) after 6 mo of storage. It is interesting to note that strains of 

Lactobacillus danicus, the NSLAB that is phylogenetically closest to Lb. wasatchii, was 

susceptible to salt and had negligible growth at 4% NaCl and none detected with 6.5% NaCl 

(Kask et al., 2003).  

Gas Formation 

Gas formation by Lb. wasatchii was only observed when galactose was present in the 

media. No gas formation was observed at 23°C when the sole sugar source was ribose or when 

the total sugar concentration, both ribose and galactose, was below 0.5%. At 12°C, no gas 

formation was observed at sugar contents of <1.0%. This may be because of the higher solubility 

of CO2 at lower temperatures (CRC Handbook of Chemistry and Physics, 2009). At 37°C, gas 

formation was only detected in CR-MRS containing 1% ribose plus 1% galactose.  

Thermotolerance 

Subjecting Lb. wasatchii to HTST heat treatment (72°C for 15 s) resulted in~ 4.5-log 

reduction, from 6 x 106 cfu/ml to 9.2x101 cfu/ml surviving after cooling to 31°C. In contrast, no 

detectable colonies of Lb. wasatchii (i.e., <101 cfu/ml) were found after the LTLT treatment 

(63°C for 30 min). Survival of lactobacilli after milk pasteurization has been previously reported 

and underscores the potential for lactobacilli in milk to be a source of NSLAB in cheese made 

from pasteurized milk (Turner et al., 1986; Golnazarian, 2001; Beresford et al., 2001). The 
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finding that Lb. wasatchii can withstand HTST indicates the bacterium could gain access to 

cheese directly or produce biofilms in the cheese processing environment that provide a regular 

source of contamination.   

 

DISCUSSION 

Metabolic Capability 

Lactobacillus wasatchii sp. nov. (Oberg et al., 2015) is an OHF lactobacilli closely 

related to Lb. suebicus (isolated from apple and pear mashes), Lb. vaccinostercus (isolated from 

cow dung), Lb. hokkaidonensis (isolated from timothy grass silage), Lb. oligofermentans 

(isolated from poultry) and Lb. danicus (isolated from cheese). None of these species is regularly 

isolated from cheese, which could be due to the fact that NSLAB isolation methods do not 

incorporate the long time, low temperature conditions used to isolate Lb. wasatchii and Lb. 

danicus (Kask et al., 2003; Oberg et al., 2011; Broadbent et al., 2013). Because its closest 

phylogenetic relatives are associated with plant materials and cow dung, we speculate that the 

origin of Lb. wasatchii was a dairy farm. 

Lactobacillus wasatchii is an OHF lactobacilli possessing genes encoding 

phosphoketolase but lacking the genes encoding fructose-1,6-diphosphate aldolase. Thus, Lb. 

wasatchii ferments pentose and hexose sugars through the PP. Utilization of hexoses via OHF 

lactobacilli results in CO2, lactate, and acetate/ethanol production, whereas pentose metabolism 

does not yield CO2 (Axelsson, 2004). An OHF lifestyle corresponds with the finding that gas 
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formation was only observed when Lb. wasatchii was grown in CR-MRS plus galactose or CR-

MRS plus ribose and galactose.  

As opposed to common cheese NSLAB that are FHF lactobacilli, Lb. wasatchii 

preferentially utilizes ribose over glucose and other sugars (Oberg et al., 2015). Slow utilization 

of hexoses and active fermentation of pentoses was also reported for the OHF Lb. vaccinostercus 

KOZAKI and OKADA sp. nov. strains that were isolated from cow dung using a medium 

containing xylose as the sole carbon source (Okada et al., 1978). Another phylogenetic relative 

of Lb. wasatchii, Lb. oligofermentans sp. nov., also utilized glucose very weakly (Koort et al., 

2005).  

Ribose Fermentation 

The heterolactic fermentation of ribose results in a slightly different end product pattern 

compared to galactose fermentation. No CO2 is formed, and since no dehydrogenation steps are 

necessary to reach the intermediate xylulose-5-phosphate, the reduction of acetylphosphate to 

ethanol to regenerate NAD+ becomes redundant. Instead, acetylphosphate can be converted by 

acetate kinase in a substrate-level phosphorylation step to acetate and ATP. Fermentation of 

ribose thus leads to production of equimolar amounts of lactic acid and acetic acid and net 2 mol 

ATP/mol ribose consumed (Axelsson, 2004). 

Two amino sugars that are precursors to the peptidoglycan are N-acetylglucosamine and 

N-acetylmuramic acid. Both amino sugars are made from fructose-6-phosphate (F6P) that acts as 

the backbone molecule for cell wall synthesis (White, 2007). Lactobacillus wasatchii possesses a 

gene encoding transketolase that condenses two pentoses with F6P being one of the metabolic 

outputs with the remaining carbons eventually being converted into gylceraldehyde-6-phosphate. 

Based on this information, we speculate that when Lb. wasatchii is grown in CR-MRS plus 
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ribose, ribose is utilized for both cell wall synthesis and ATP generation to support cell division 

as shown in Figure 5 (Pathway directions {1}, {2} and {3}). 

At higher concentrations of ribose, generally, the µmax of Lb. wasatchii is the same as at 

lower concentrations. Thus, PP is operating as fast as possible in generating energy when Lb. 

wasatchii was grown in CR-MRS plus either ribose concentrations. It is interesting the similar 

µmax values were achieved when a ribose-galactose mixture was used even at the low level of 

0.05 % ribose plus 0.05% galactose (Table 1). The only notable change that was seen with 

increasing sugar concentration was that the time over which exponential growth occurs was 

lengthened and a higher final cell density was attained.  

Galactose Fermentation 

Lactobacillus wasatchii grew very slowly when galactose was the sole carbohydrate 

source of energy (µmax= 0.005, 0.009, and 0.008 on 1% galactose at 12, 23, and 37°C, 

respectively). At 37°C, Lb. wasatchii showed only limited growth with a final OD640 of ~0.2 

reached when galactose was the sole sugar (0.1% vs. 1%). It is interesting, that Lb. wasatchii 

reached significantly higher final cell densities when grown on ≥0.5% galactose at 12 and 23°C 

versus 37°C (P<0.05). Significantly lower final cell density at 37°C may be due to more of the 

ATP produced by fermentation being utilized to sustain cell viability because of energy-intensive 

stress responses at the higher temperature. Similar results were found by Adamberg et al. (2005) 

who reported slower growth of Lb. danicus with glucose or galactose at 30°C compared to 24°C. 

However, ribose utilization rates by Lb. danicus were the same at both temperatures. In 

comparison, utilization of hexose sugars by Lb. casei/paracasei was higher at 30°C compared to 

24°C while ribose utilization did not change (Adamberg et al., 2005).  
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Analysis of the Lb. wasatchii genome suggests galactose enters the cell via a permease 

and then fermented into the Leloir pathway and converted to glucose-6-phosphate (G6P) as 

shown in Figure 5.  The G6P then be utilized using PP via dehydrogenation to 6-

phosphogluconate, followed by decarboxylation to ribulose-5-phosphate (R5P) and CO2 

(pathway direction {4}, {5}, {1}, {2}). Both of these steps require reduction of NAD+ to NADH.  

The R5P can then be further metabolized in the PP to lactate and acetate/ethanol with 

potential of generating up to net 2 ATP. However, the need to re-oxidize NADH may direct the 

pathway from acetylphosphate towards ethanol production rather than acetate. Thus, galactose 

utilization through Leloir and PP would supply 1 mol each of lactic acid, ethanol, and CO2, and 

net 1 mol ATP/mol of galactose (Axelsson, 2004). 

There are two possible explanations for the much slower growth of Lb. wasatchii on 

galactose compared to ribose: (1) there is a rate limiting step in the pathways leading to 

conversion of galactose into R5P, or (2) the need to re-oxidize NADH requires conversion of 

acetylphospate into ethanol rather than acetate so that only 1 mole of ATP per mole of galactose 

is produced as reported by Axelsson (2004). 

Co-metabolism of Galactose with Ribose 

There have been a few instances in which growth of lactobacilli is increased in the 

presence of two sugars compared to either of the sugars alone. Gobetti et al. (1995) reported that 

a fructose negative strain of Lactobacillus sanfrancisco (another OHF species) grows faster 

when it co-ferments fructose in the presence of maltose; maltose is consumed for energy and 

fructose serves as an external electron acceptor for re-oxidation of NADH. This does not seem to 

be the case for Lb. wasatchii as neither galactose nor ribose is known to function as an external 

electron acceptor.  
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In general, FHF lactobacilli such as Lb. plantarum can utilize both pentoses and hexoses 

although Westby (1989) and Westby et al. (1993) reported a strain of Lb. plantarum (NCIMB 

8026) that was unable to utilize ribose in the absence of glucose. They offered two hypotheses to 

explain this observation: (1) Lb. plantarum NCIMB 8026 lacks the pathways to produce F6P 

from pentose sugars through transketolase or via fructose-1,6-bisphosphatase thus being unable 

to make C6 units from C5 sugars and needing an external source of C6 units for biosynthesis of 

peptidoglycan and other cell building blocks; or (2) that phosphoenolpyruvate (PEP) production 

during pentose metabolism (compared to hexose fermentation via glycolysis) in Lb. plantarum 

NCIMB 8026 was insufficient to support the PEP-dependent uptake of ribose. According to 

Neidhardt et al. (1990) only one PEP molecule is produced per ribose molecule metabolized 

(versus two PEP molecules per glucose) leaving no PEP molecules for the other cellular 

functions such as peptidoglycan synthesis.  

With Lb. wasatchii, transketolase is available to covert pentoses into F6P, thus producing 

the needed C6 building blocks for peptidoglycan. Also, for Lb. wasatchii the uniqueness is 

improved utilization of a hexose in the presence of a pentose rather than the other way around. 

So, neither of these hypotheses explain the mechanism of galactose and ribose co-utilization by 

Lb. wasatchii (which appears highly adapted to ferment ribose). Ribose metabolism in Lb. 

wasatchii is more profitable than galactose (or other hexose) fermentation in terms of energy 

production. Fred et al. (1921) reported that certain groups of pentose-fermenting LAB commonly 

found in silage, sauerkraut, and related substances, showed high acid production from pentose 

sugars while, hexose sugars yielded low acid but high ethanol production. Once again, this 

observation is probably a reflection of the substrate energetics; with 2 ATP per pentose but only 
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1 ATP from hexoses due to the need to re-oxidize NADH to NAD+ using the ethanol branch of 

PP.  

To explain growth attributes of Lb. wasatchii during co-utilization of ribose and galactose, 

it is necessary to consider the potential fates of each sugar with regard to energy yield and 

cellular building blocks. Since the similar µmax, and final cell densities were observed when Lb. 

wasatchii is grown in the presence of ribose plus galactose or ribose alone, the rate of energy 

production and cell wall synthesis is likely the same. Given that Lb. wasatchii has the gene for 

G6P isomerase; it can convert G6P to F6P and utilizes galactose as a ready source of hexose for 

peptidoglycan synthesis (Figure 5, pathway direction {4}, {6}). 

In a parallel manner, final cell densities of Lb. wasatchii is identical for cells grown in 

ribose or with 50% of the ribose replaced with galactose (except for 0.5% ribose vs. 0.25% 

ribose plus 0.25% galactose at 23°C). This further suggests that only ribose is being used for 

energy production and that an insignificant amount of ribose is being diverted for peptidoglycan 

synthesis by transketolase conversion of pentoses to F6P (Figure 5, pathway direction {1}, {2}). 

This hypothesis is supported by findings in Bifidobacterium breve where Degnan and McFarlane 

(1991) found cells grown in the presence of 14C arabinose (a pentose) and glucose (a hexose) did 

not incorporate carbon from arabinose into cellular macromolecules.  

We propose that when an OHF LAB such as Lb. wasatchii has both ribose and hexoses 

available for growth, that the ribose is primarily utilized for ATP production via the lower 

portion of the PP (Figure 5, pathway direction {1}, {2}), while the hexose is utilized for 

synthesis of peptidoglycans and other cellular macromolecules (Figure 5, pathway direction {4}, 

{6}). This has the advantage of maximizing ATP production as the need to re-oxidize NADH is 

minimized when only ribose is fermented. The extent of ribose that is diverted from the PP for 
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peptidoglycan synthesis would depend on the relative amounts of hexoses present. A 

consequence of such simultaneous co-metabolism is that acetate would be expected as the end 

produce rather than ethanol from acetylphosphate. When ribose is depleted, then galactose would 

need to be fermented down the PP to provide energy to the cell. This corresponds with our 

observations that gas production occurred towards the end of exponential growth or early 

stationary phase (after 48h at 23°C). 

Our results clearly demonstrate that Lb. wasatchii can co-utilize ribose and galactose 

which are two potential substrates for NSLAB (Tinson et al., 1982; Thomas, 1987; Rapposch et 

al., 1999; Michel and Martley, 2001) in Cheddar cheese. We also have shown that Lb. wasatchii 

is quite tolerant to salt and pH conditions that usually exist in ripening Cheddar cheese. The 

ability to readily consume mixed putative cheese sugars, grow at cheese ripening temperatures as 

well as survival against harsh environment of cheese, support our hypothesis that Lb. wasatchii 

contributes late gas blowing and textural defects in Cheddar cheese. To better understand the 

adaptation of Lb. wasatchii to cheese microenvironment, it would be desirable to study whether 

other sugars in milk and cheese (e.g., lactose, N-acetylgalactosamine, N-acetyl neuraminic acid, 

mannose, fucose, N-acetylglucosamine) can also be co-utilized by Lb. wasatchii in the presence 

of ribose. When describing carbohydrate utilization abilities of bacteria, such co-utilization 

should also be considered as our initial testing of Lb. wasatchii led us to believe that it was not 

capable of utilizing galactose. 

CONCLUSIONS 

A new obligatory heterofermentative nonstarter lactic acid bacterium, Lactobacillus 

wasatchii sp. nov. (isolated from a blown Cheddar cheese) was shown to require ribose for rapid 
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growth unlike other cheese NSLAB that grow well on glucose. Due to its OHF nature, Lb. 

wasatchii utilizes six and five carbon sugars through the pentose phosphate pathway. 

Fermentation of hexoses such as galactose will produce CO2, so OHF have been implicated in 

late blowing of Cheddar cheese. We speculate that when ribose and galactose are both available, 

Lb. wasatchii uses ribose to produce energy and galactose for peptidoglycan synthesis and 

growth. This capability is well suited to cheese ripening and we have shown that Lb. wasatchii 

can grow under cheese-like stress conditions of low pH (5.2), and at least up to 5% salt content. 

It also has the potential to survive the HTST pasteurization used in large scale dairy processing, 

which may explain how it gains entry to the milk processing environment. 
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Figure Legends 

Figure 1. Growth of Lb. wasatchii (OD640) at 23°C in carbohydrate restricted MRS 

adjusted to pH 5.2 and supplemented with ribose (panel A), galactose (panel B), or a 

mixture of ribose and galactose (panel C). Numbers for each symbol represent the 

percent concentration (wt/vol) of sugar added to the medium.  Error bars = SE (n=2). 

Figure 2. Growth of Lb. wasatchii (OD640) at 37°C in carbohydrate restricted MRS 

adjusted to pH 5.2 and supplemented with ribose (panel A), galactose (panel B), or a 

mixture of ribose and galactose (panel C). Numbers for each symbol represent the 

percent concentration (wt/vol) of sugar added to the medium.  Error bars = SE (n=2). 

Figure 3. Growth of Lb. wasatchii (OD640) at 12°C in carbohydrate restricted MRS 

adjusted to pH 5.2 and supplemented with ribose (panel A), galactose (panel B), or a 

mixture of ribose and galactose (panel C). Numbers for each symbol represent the 

percent concentration (wt/vol) of sugar added to the medium.  Error bars = SE (n=2). 

Figure 4. Growth of Lb. wasatchii (OD600) in regular MRS broth supplemented with 

1.5% ribose (wt/vol) plus 0 to 5% NaCl and adjusted to pH 6.5 (panel A) or pH 5.2 

(panel B).  Error bars = SE (n=3). 

Figure 5. Proposed pathways for ribose and galactose utilization by Lb. wasatchii. 
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Table 1. Maximum specific growth rate (µmax) of Lb. wasatchii at 12, 23, or 37°C when 
grown in carbohydrate restricted MRS broth with various levels of ribose, and galactose. 
 

Sugar   µmax  
Ribose Galactose  12°C 23°C 37°C 

--------(% wt/vol)-------  ----------------------------(OD640/h) ----------------------- 
0.1 0  0.0085hij 0.0235cd 0.019de 
0.5 0  0.0145efghi 0.0365a 0.0195de 

1.0 0  0.0155efgh 0.0355ab 0.0215de 

0 0.1  0.003j 0.0095ghij 0.008ij 
0 0.5  0.006j 0.0095ghij 0.0075ij 

0 1.0  0.005j 0.009ghij 0.008ij 
0.05 0.05  0.010fghij 0.021de 0.0185de 

0.25 0.25  0.016efg 0.0285bc 0.021e 

0.5 0.5  0.018de 0.0385a 0.0205de 
1.0 1.0  0.017def 0.0375a 0.0195de 

a-jMeans values with the same letter are not significantly different from each other (α = 
0.05).   
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Table 2. Final cell density of Lb. wasatchii measured as optical density at 640 nm when 
grown at 12, 23, or 37°C in carbohydrate restricted MRS broth with various levels of 
ribose and galactose. 
 

Sugar  Final Cell Density1 

Ribose Galactose  12°C 23°C 37°C 
------(% wt/vol)--------  --------------(OD640)---------------- 
0.1 0  0.3j 0.35j 0.225kl 
0.5 0  0.795de 0.8de 0.705fg 

1.0 0  1.44a 1.37b 0.75ef 

0 0.1  0.298j 0.214l 0.205l 
0 0.5  0.68gh 0.69fgh 0.215l 

0 1.0  0.58i 0.755ef 0.195l 
0.05 0.05  0.335j 0.335j 0.300j 

0.25 0.25  0.83d 0.83d 0.62hi 

0.5 0.5  1.36b 1.285c 0.835d 
1.0 1.0  1.42ab 1.4ab 0.72fg 

1Measured as OD640 after incubation for 72 h for growth at 23 and 37°C for medium 
containing ribose, and after 204 h for all samples incubated at 12°C and those with only 
galactose at 23 and 37°C. 
a-lMeans values with the same letter are not significantly different from each other 
(α=0.05). 
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Table 3. Maximum specific growth rate (µmax) of Lb. wasatchii cells grown at 23°C in 
MRS broth supplemented with 1.5% ribose as a function of salt and pH. 
 
 µmax 

NaCl pH 5.2 pH 6.5 
(% wt/wt) ------------(OD600/h) --------------- 

0 0.05cde 0.061abcd 
1 0.064abc 0.076a 
2 0.058bcde 0.056bcde 
3 0.057bcde 0.068ab 
4 0.044e 0.048de 
5 0.044e 0.053bcde 

a-eMeans values with the same letter are not significantly different from each other 
(α=0.05). 
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Figure 1.  Ortakci.. 
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Figure 2. Ortakci.. 
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Figure 3. Ortakci.. 
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Figure 4. Ortakci.. 
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Figure 5. Ortakci. 

 

	

	

 
 
	


