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(a) Mesh Near Airfoil Surface.

(b) Entire Mesh.

Fig. 5.6: Example of Unstructured Computational Mesh Created for Optimization.
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Since DAKOTA had to use PBS to submit jobs, it did not have direct access to monitor

each OpenFOAM simulation. To monitor completion of jobs the simulator script captured

the job id when each job was submitted to the cluster. Using a while-loop, each job id was

periodically compared to the id’s of jobs active on the cluster. If the job id was not active

the script checked to make sure the job ran to completion. If the job had completed then

the loop would exit and move on to the next step of calculating lift and drag, but if it had

not completed the loop would automatically resubmit the job and wait for completion. The

loop compared job id’s every 300 seconds, putting the process to sleep between each check

to reduce the load on the login node.

Occasionally a simulation would end prematurely and resubmitting the job did not

result in a completed simulation. This would cause the optimization to hang because

DAKOTA must wait until all simulations for a particular surrogate model iteration are

completed before continuing. A simple solution was to change the time step of the sim-

ulation, although this would cause the simulation to run slightly longer. Changing the

time step had the potential to cause problems on its own since the while-loop checked for

a specific time directory while monitoring for completion. Changing the time step could

result in a different time directory than expected. The loop would act as if the job had not

completed and DAKOTA would hang as it continually resubmits the job. To end this loop

the user could simply create the specific time directory without stopping the optimization

or affecting the results of the OpenFOAM simulation.

The lift and drag coefficients of the airfoil were used as a guide to measure OpenFOAM

convergence and due to unsteadiness in the flow convergence was oscillatory. The oscilla-

tions were limited to ten complete cycles and took place over a period of 6,433 time steps.

Since the convergence is oscillatory no single value was returned for lift or drag, which is

necessary for the optimization to move forward. A python program averaged the lift and

drag coefficients over the interval of the steady oscillations and these average values were

then used to calculate a lift to drag ratio that was returned to DAKOTA as the objective

function value.
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For each OpenFOAM simulation a very small initial time step was used to initialize the

flow field, resulting in a maximum Courant number of 0.016 after 2000 time steps. The time

step was then increased and the simulation was carried out for an additional 17,500 time

steps with the final Courant number having a maximum value of 0.67. Each OpenFOAM

simulation ran for as little as 4 hours, while occasionally running for up to 5 hours.

5.3 Airfoil Surrogate-Based Optimization with Genetic Algorithm

5.3.1 Surrogate-Based Optimization Setup

A quadratic polynomial data fit surrogate model was used in combination with a genetic

algorithm to optimize the airfoil. During initial tests eight sample points were used for each

iteration of the surrogate model due to a lack of resources. Poor accuracy led to an increase

in the number of samples used for each iteration. After testing was complete additional

resources became available for the optimization so the number of sample points for an

iteration was increased to 24.

Resources were still limited, however, so only 12 sample points could be evaluated

on the cluster simultaneously. DAKOTA generated the sample points and assigned them

to individual DAKOTA processes. Each process was assigned two simulations to perform

which could only run one after the other. As a result, each iteration of the surrogate model

took twice the time possible for evaluations. In terms of computational time the efficiency

of the surrogate model is very dependent upon the computational resources available.

The surrogate model went trough ten iterations with a soft convergence limit of five

specified. The initial trust region covered the entire range of variables with specifications

that allow the trust region to contract to 85% of its previous value for poor accuracy or

allow the trust region to expand to 125% of its previous value for excellent accuracy.

The genetic algorithm used to optimize the surrogate model used a population size

of 10 with a maximum of 15 iterations. There was no crossover with a 100% chance of

mutation of sample points. Additional details of the surrogate-based optimization with

genetic algorithm setup are contained in the DAKOTA input file included in appendix B.1.
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5.3.2 Surrogate-Based Optimization Results

The surrogate-based optimization was performed at three different angles of attack:

2o, 5o, and 10o. Two optimizations were performed for each angle of attack to test whether

the same optimum value would be returned for different simulations. Table 5.1 lists the

airfoil geometries that were returned from the surrogate-based optimizations at each angle

of attack. The only optimization that was able to return an identical airfoil for repeated

optimizations was the one for a 10o angle of attack. The two optimizations at a 2o angle of

attack had the same initial conditions but did not return the same solution. The resulting

airfoils were similar, with a difference of 1 bump and 1.1 mm in the bump height with the

lift to drag ratios of the two airfoils being fairly close. The optimization at a 5o angle of

attack resulted in greater differences in the number of bumps and the lift to drag ratios

while the bump heights only differed by 0.2546 mm

For each optimization the number of bumps stays very close to the original value, as

can be seen when comparing the initial number of bumps (ni) to the final number of bumps

(nf ) in table 5.1. The final bump height, however, was always lower than the initial value

with most of the airfoils returning the same optimum bump height. The lowest bump height

returned was the lower limit for the given range of h.

Table 5.1: Optimal Airfoils from Surrogate Optimization.
α of optimization nf hf Cl/Cd ni hi

2 15 9.09375e-3 1.743 15 1.5e-2
2 14 8.0e-3 2.056 15 1.5e-2
5 11 8.2546e-3 5.429 11 1.2e-2
5 13 8.0e-3 7.002 10 1.0e-2
10 15 8.0e-3 5.521 15 1.5e-2
10 15 8.0e-3 5.521 15 1.5e-2

The results from all of the OpenFOAM simulations were plotted on a single chart for

each angle of attack with the data grouped by bump height (figs. 5.7, 5.9, and 5.11). At

each angle of attack the trend in the OpenFOAM simulations was for airfoils with lower

bump heights to have an higher lift to drag ratio. The plots also show that small variations

in the bump height can produce large variations in the lift to drag ratio. To gain a better
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understanding of the data linear trendlines were applied to the results. The trendlines

displayed in figures 5.8, 5.10, and 5.12 reveal the typical behavior of the simulations. They

better illustrate that a lower bump height leads to a higher angle of attack. The relative lift

to drag values of the trendlines also show that reducing the number of bumps can lead, in

general, to an increase in the angle of attack. The trendlines tend to have an increasingly

higher intercept of the lift to drag axis as the number of bumps decreases.

Fig. 5.7: Cl/Cd Data from Optimization at α = 2.

The trendlines tended to be more meaningful for data sets for which there is a large

range in bump heights for each bump. Because the surrogate optimization did not always

match OpenFOAM results well the trust region contracted towards the lower range of bump

heights for most iterations. This resulted in more simulations for airfoils with lower bump

heights. Varying the bump height produced large variations in the lift to drag ratio so the

trendline slope for sets with a small range in bump height was typically higher than those

for which h has a larger range. This can be seen in the trendlines for the optimization at 10o

(fig. 5.12). The trendlines for nine bumps and twelve bumps would lead to the conclusion
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Fig. 5.8: Trendlines of Cl/Cd from Optimization at α = 2.

Fig. 5.9: Cl/Cd Data from Optimization at α = 5.
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Fig. 5.10: Trendlines of Cl/Cd from Optimization at α = 5.

Fig. 5.11: Cl/Cd Data from Optimization at α = 10.
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Fig. 5.12: Trendlines of Cl/Cd from Optimization at α = 10.

that twelve bumps would return the best lift to drag value, but the data in figure 5.11 shows

that an airfoil with nine bumps will result in the best lift to drag ratio.

5.4 Airfoil Optimization with Genetic Algorithm

The airfoil was also optimized using the coliny ea algorithm by itself as a basis of

comparison for the surrogate model. The genetic algorithm optimization used the same

DAKOTA-OpenFOAM interface as the surrogate-based optimization.

The genetic algorithm creates a random sample set and submits the simulations to the

cluster. Once the simulations are completed and lift to drag ratios returned, the samples

are tested for fitness. The most optimal points are used to propagate new sample points for

new simulations. This process continues for the number of iterations specified by the user

or until the maximum number of function evaluations is reached.
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5.4.1 Genetic Algorithm Setup

The genetic algorithm optimization used a population size of eight with a maximum

of ten iterations. Enough resources were available for all eight simulations to take place

concurrently. A 100% mutation rate was specified with no specification of mutation scale

or mutation range, no crossover was used, and eight new solutions were generated for each

iteration of the algorithm. For additional details of the algorithm setup see the input file

in appendix B.2.

5.4.2 Genetic Algorithm Optimization Results

The genetic algorithm was used to optimize the airfoil twice at a 5o angle of attack.

Both optimizations from the genetic algorithm returned the same airfoil (table 5.2). One

of the surrogate-based optimizations at 5o returned the same bump height and lift to drag

ratio but a different number of bumps.

Table 5.2: Best Airfoil from Genetic Algorithm Optimization.
α of optimization nf hf Cl/Cd

5 8 8.00e-3 4.288

5.5 Comparison of Optimization Methods

The optimum airfoil returned by the surrogate optimization was always an airfoil pre-

dicted by the surrogate model to have the best performance. The predicted lift to drag

ratio of the optimum airfoil did not always have a similar lift to drag ratio when tested

against an OpenFOAM simulation. Occasionally an OpenFOAM simulation used to create

the surrogate models had a better lift to drag ratio than the optimum airfoil returned by

the simulation. One instance of the optimizations at 10o returned an optimal airfoil that

agreed perfectly with OpenFOAM simulations, while the optimizations at 2o and 5o did not

return any. The best airfoils from OpenFOAM simulations are listed in table 5.3.

The surrogate-based optimization was set to run for 10 iterations and construct the

surrogate model from the results of 24 simulations during each iteration. However, com-
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Table 5.3: Best Airfoils from OpenFOAM Simulations in Surrogate Optimization.
α of optimization nf hf Cl/Cd

2 8 8.96e-3 2.357
2 9 8.29e-3 1.886
5 7 9.03e-3 4.1203
5 8 8.0e-3 4.288
10 8 8.0e-3 5.521
10 9 1.02e-2 5.517

putational resources were limited and only 12 simulations could run simultaneously. Each

DAKOTA process created and submitted two OpenFOAM jobs but DAKOTA could only

submit one at a time and the other had to wait, meaning that each iteration of the surro-

gate model took twice the time it potentially could. The accuracy check of the surrogate

model also added time to each iteration. The total compute time for each iteration of the

surrogate model was triple the compute time for an individual OpenFOAM simulation.

Performed prior to the availability of more resources, the genetic algorithm was set to

use 8 simulations for each of its 10 iterations. Each iteration of the GA could run all of

the simulations simultaneously so each iteration of the GA only took the amount of time

required to run a single OpenFOAM simulation and one third the time it took to run each

iteration of the surrogate model. Table 5.4 lists the number of simulations and the time each

optimization method ran at the various angles of attack. Also listed is the computational

time saved through the use of surrogate model evaluations. The time savings calculations

are based on individual OpenFOAM simulations taking 4 hours with 12 SBO simulations

running simultaneously.

Table 5.4: Comparison of Run Times for SBO and GA.
method FOAM sims surrogate sims run time (hrs) time saved (hrs)

GA at 5 ◦ 88 N/A 44 N/A
SBO at 2 ◦ 251 1660 124 553
SBO at 2 ◦ 151 996 84 332
SBO at 5 ◦ 201 448 100 149
SBO at 5 ◦ 176 1162 88 387
SBO at 10 ◦ 176 1162 88 387
SBO at 10 ◦ 148 1162 76 387
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The GA took less time to run than any of the surrogate-based optimizations. Part of

this is due to the fact that fewer simulations were run by the GA, but also because each

iteration of the SBO had to run an accuracy check simulation after the surrogate model

was optimized. Had there been enough resources to run all 24 simulations at the same time

and had the GA also used 24 sample points for each iteration, the GA would run the same

number of iterations in roughly half the time.

The GA could double the population size or the number of iterations and run in the

same amount of time as the surrogate optimization. Since more simulations will be used

this should increase the accuracy of the GA. But according to the results of optimizations

on the Ackley function and Rastrigin’s function (see fig. 4.8), there is no guarantee that

such increases would improve the accuracy of the GA.

Figure 5.13 shows the progression of the solutions for the GA and some of the SBO’s

for each angle of attack. As stated previously the GA ran fewer overall simulations and took

less time than any of the SBO’s while following the trends predicted by the SBO’s. Based

on this fact alone it would seem that the GA is better suited to this problem. However,

comparing the progression of the solutions in figure 5.13, one can see that the surrogate

models all converged to their optimal lift to drag ratio on the third iteration while the

GA did not find its optimal airfoil until the fifth iteration. Furthermore, the GA does not

converge around the optimal geometry or lift-to-drag ratio like the SBO did.

The SBO tests the accuracy of its model and can terminate once sufficient accuracy

has been met, avoiding unnecessary use of computational resources. The SBO could be

set to terminate once two consecutive iterations returned the same optimum, decreasing

the overall time and number of simulations. The GA has no such capability. The only

way to check whether the GA has the best solution is to run more simulations and take

up resources. By using more computational resources and lowering the convergence limit

the SBO might have been able to find an optimal value in less time than the GA did while

giving more certainty as to the accuracy of the solution than the GA can.
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Fig. 5.13: Comparison of Lift-to-Drag Ratio vs Number of FOAM Simulations.
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Chapter 6

Conclusions and Discussion

6.1 Surrogate Model With Genetic Algorithm

Although the genetic algorithm took less overall time to come to a solution and the

results followed the trends predicted by the surrogate model, the surrogate-based optimiza-

tion performed better. As discussed in the next section, the surrogate-based optimization

with genetic algorithm returned better airfoils. This was done while saving up to 553 hours

of computing time on 192 processors. The surrogate model was also able to reduce the

effects of noise created by changing the geometry of the airfoils.

6.2 Airfoil Performance

The optimized airfoils for 2o and 10o were swept through a range of angles of attack from

0o to 20o using the first order discretization scheme and then the second order discretization

scheme. The smooth, original bumpy, and modified bumpy airfoil (starting geometry in

optimizations) were also swept through the same angles of attack for comparison.

The results for angles of attack larger than 7.5o were omitted because the lift and drag

coefficients did not display steady oscillations at 12.5o and up for the first order scheme

and at 10o and up for the second order scheme, hence averages taken would not be a good

measurement of lift to drag ratios.

Figures 6.1, 6.2, and 6.3 compare the first and second order results. The first order

results follow very well from the results of the optimization. The lift to drag ratios and lift

coefficients for the surrogate optimized airfoils are higher than those for the original bumpy

airfoil but not as high as those for the smooth airfoil. The airfoil from the 2o optimization

has the best values. The drag coefficients for the surrogate optimized airfoils are lower than

the drag for the bumpy airfoil and some of the drag coefficients for the smooth airfoil.
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The second order results are slightly different from the first order results. The overall

lift to drag ratios tended to be lower for second order schemes than first order. For the

second order scheme the optimized airfoils have lift to drag ratios that are very close to the

lift to drag ratio of the original bumpy airfoil, but the optimized airfoils no longer show

the same improvement that the first order airfoils show. However, the values only changed

slightly between first and second order so an optimization carried out with a second order

discretization scheme should still follow the same trends as the first order scheme.

There are slight differences in the geometries of the original bumpy and modified bumpy

airfoils, which created differences in performance. Only comparing the optimized airfoils

to the original bumpy airfoil is not the best measure of performance for the optimization.

Although second order results do not show an improvement over the original bumpy airfoil,

the surrogate optimizations show an improvement over the modified bumpy airfoil used as

a starting point in all optimizations.

The airfoil optimized by the genetic algorithm, although it followed the trends suggested

by the optimization process, did not produce an improvement over the original bumpy airfoil

for first or second order results, which was a surprising result.

Out of all of the airfoils, the best overall came from the surrogate-based optimizations.

The two with the best performance are the airfoils optimized with the surrogate models at

2o and 10o angles of attack. They both outperformed the airfoil optimized with the genetic

algorithm at 5o and the surrogate optimization at 5o. The 2o and 10o airfoils are very close

in performance but for angles of attack of 5o and 7.5o the airfoil optimized at 10o shows the

best performance with second order discretization.

6.3 Flow Separation

One goal in maximizing the performance of the airfoil was to reduce or eliminate the

size of the separation bubble forming on the upper surface of the airfoil. The velocity profiles

of the airfoils optimized at 2o and 10o were compared visually to the velocity profile of the

original bumpy airfoil at a time when the airfoils have a similar trailing vortex. The 2o

optimized airfoil was compared to the original airfoil at a 2o angle of attack (fig. 6.4). The
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(a) 1st Order. (b) 2nd Order.

Fig. 6.1: Plots of Cl/Cd vs α for 1st and 2nd Order Results.

(a) 1st Order. (b) 2nd Order.

Fig. 6.2: Plots of Cl vs α for 1st and 2nd Order Results.

(a) 1st Order. (b) 2nd Order.

Fig. 6.3: Plots of Cd vs α for 1st and 2nd Order Results.
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10o optimized airfoil was compared to the original airfoil with both at a 5o angle of attack.

For both comparisons the optimized airfoils showed no noticeable change in the separation

bubble.

(a) Original Bumpy Airfoil. (b) Optimized at α = 2o.

Fig. 6.4: Velocity Profiles for the Original and 2o Optimized Airfoils at α = 2.

(a) Original Bumpy Airfoil. (b) Optimized at α = 10o.

Fig. 6.5: Velocity Profiles for the Original and 10o Optimized airfoils at α = 5.

6.4 Summary and Future Work

A bumpy airfoil based on the Eppler 398 profile was optimized using a genetic algorithm

and a surrogate-based optimization. The surrogate-based optimizations saved up to 553

hours of simulation time using the computational resources at USU. The best airfoil found

during the course of the optimizations was from a surrogate-based optimization at 10o and

had 15 bumps with a bump height of 8 mm, which is the same number of bumps as the

original bumpy airfoil but smaller radii.

The surrogate-based optimizations had limited accuracy due to ”noise,” or variations

in the lift to drag ratios as a result of small variations in bump height. The changes in

airfoil geometry also change the computational mesh which can change the discretization

error. This in turn can create additional noise in the simulations. The surrogate model can
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suppress noise in the function values and allow extraction of trends in the data. The trend

of the optimizations was that reducing the bump height or the number of bumps would

increase the lift to drag ratio of the airfoil. Based on this trend one would expect that the

best airfoil from an improved optimization would be one with the lowest number of bumps

and bump height possible.

Using more sample points to create the surrogate model for each iteration would result

in a more accurate model. This would result in a more accurate overall solution. Using

a second order scheme should also increase the accuracy of each OpenFOAM solution and

perhaps reduce the amount of noise present in the OpenFOAM results, which would be

another benefit for creating a more accurate surrogate model.

The modifiable airfoil created for the optimizations had a constant bump height for all

bumps along the surface of the airfoil. The original bumpy airfoil had a constant radius for

the bumps and since they had different arc lengths the bump height was slightly different

for each of the bumps with the largest bump near the 1/2 chord of the airfoil. The constant

bump height was used because it was difficult to change the radius to control the shape of

the airfoil without creating undesirable effects. Changing the radius also offered less direct

control over the bumps, making it more difficult to create small changes in the height of

the bumps. It might be beneficial to find a way to use a constant radius across the airfoil

surface, perhaps by controlling the height of one bump and then using the radius of that

bump for the rest of the bumps. This should offer more direct control over the bumps than

just changing the radius alone while producing varying bump heights.

The bumps help create lateral strength in a wing constructed from the 2D airfoil

section. Changing the number of bumps or the bump height may affect the weight the

wings can support, possibly resulting in an airfoil that will perform well aerodynamically

but not structurally. Using finite element analysis to test the strength of an inflatable wing

as part of the optimization might impose lower limits on the number and size of bumps

allowing for the creation of the best possible inflatable wing.



52

References

[1] Reasor, D. A., and LeBeau, R. P., 2007, “Numerical study of bumpy airfoil flow control
for low reynolds numbers.” In 37th AIAA Fluid Dynamics Conference and Exhibit,
Miami, FL, AIAA 2007-4100.

[2] Shahin, A. A., and Salem, O. M., 2004, “Using genetic algorithms in solving the one-
dimensional cutting stock problem in the construction industry.” Canadian J. of Civil
Eng., 31, pp. 321–332.

[3] Clarke, M., Hinde, C. J., Withall, M. S., Jackson, T. W., Phillips, I. W., Brown,
S., and Watson, R., 2009, “Allocating railway platforms using a genetic algorithm.”
In Research and Development in Intelligent Systems XXVI, M. Bramer, R. Ellis, and
M. Petridis, eds. Springer-Verlag London, pp. 421–434.

[4] Kornilakis, H., and Stamatopoulos, P., 2002, “Crew pairing optimization with genetic
algorithms.” In Proceedings of the Second Hellenic Conference on AI: Methods and
Applications of Artificial Intelligence, SETN ’02, Springer-Verlag, pp. 109–120.

[5] Park, J., Park, Y., Wong, J., and Lee, K. Y., 2000, “An improved genetic algorithm for
generation expansion planning.” IEEE Trans. on Power Systems, 15(3), pp. 916–922.

[6] Ahuactzin, J. M., Talbi, E., Bessiere, P., and Mazer, E., 1993, “Using genetic algo-
rithms for robot motion planning.” In Geometric Reasoning for Perception and Action,
C. Laugier, ed., Vol. 708 of Lecture Notes in Computer Science. pp. 84–93.

[7] Samand, A., and Kim, K.-Y., 2008, “Shape optimization of an axial compressor blade
by multiobjective genetic algorithm.” Proc. of the Institution of Mechanical Engineers,
Part A: J. of Power and Energy, 222(6), pp. 599–611.

[8] Makinen, R. A., Periaux, J., and Toivanen, J., 1999, “Multidisciplinary shape optimiza-
tion in aerodynamics and electromagnetics using algorithms.” International Journal
for Numerical Methods in Fluids, 30, pp. 149–159.

[9] Holst, T., and Pulliam, T., 2003, “Transonic wing shape optimization using an evolu-
tionary algorithm.” Technical Report No. 20030022714, NASA Ames Reserach Center.

[10] Sasaki, D., Morikawa, M., Obayashi, S., and Nakahashi, K., 2001, “Aerodynamic
shape optimization of supersonic wings by adaptive range multiobjective genetic algo-
rithms.” In Evolutionary Multi-Criterion Optimization, E. Zitzler, L. Thiele, K. Deb,
C. Coello Coello, and D. Corne, eds., Vol. 1993 of Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, pp. 639–652.

[11] Theisinger, J. E., and Braun, D. R. D., 2007, “Hypersonic entry aeroshell shape opti-
mization.” MS Special Problems Report, Georgia Institute of Technology.



53

[12] Eldred, M. S., Giunta, A. A., S. F. Wojtkiewicz, J., and Trucano, T. G., 2002, “For-
mulations for surrogate-based optimization under uncertainty.” In 9th AIAA/ISSMO
Symposium on Multidisciplinary Analysis and Optimization, Atlanta, GA, AIAA 2002-
5585.

[13] Jansson, T., Nilsson, L., and Redhe, M., 2003, “Using surrogate models and response
surfaces in structural optimization - with application to crashworthiness design and
sheet metal forming.” Structural and Multidisciplinary Optimization, 25, pp. 129–
140.

[14] C. J. Steffen, J., 2003, “Fuel injector design optimization for and annular scramjet
geometry.” NASA STI/Recon Techinal Report N, 3, January, pp. 14707–+.

[15] Reisenthel, P. H., Childs, R. E., and Higgins, J. E., 2007, “Surrogate-based design
optimization of a large asymmetric launch vehicle payload fairing.” In 45th AIAA
Aerospace Sciences Meeting and Exhibit, Reno, NV, AIAA 2007-361.

[16] Glaz, B., Friedmann, P., and Liu, L., 2008, “Surrogate-based optimization of helicopter
rotor blades for vibration reduction in forward flight.” Structural and Multidisciplinary
Optimization, 35, pp. 341–363.

[17] Eric F. Charlton, M. B. D., 2008, “Compuational optimization of the f-35 external fuel
tank for store separation.” In 46th AIAA Aerospace Sceinces Meeting and Exhibit,
Reno, NV, AIAA 2008-376.

[18] Lissaman, P., 1983, “Low-reynolds-number-airfoils.” Annual Review of Fluid Mechan-
ics, 15(1), pp. 223–239.

[19] Santhanakrishnan, A., and Pern, N., 2005, “Effect of regular surface perturbations on
flow over an airfoil.” In 35th AIAA Fuid Dynamics Conference and Exhibit, Ontario,
Canada, AIAA 2005-5145.

[20] LeBeau, R. P., Gilliam, T. D., Schloemer, A., Reasor, D. A., Hauser, T., and Johansen,
T. A., 2009, “Numerical comparison of flow over bumpy inflatable airfoils.” In 47th
AIAA Aerospace Science Meeting and Exhibit, Orlando, FL, AIAA 2009-1478.

[21] Smith, S. W., LeBeau, R. P., Seigler, T. M., Reasor, D. A., Jacob, J. D., Gleeson, D.,
and Scarborough, S., 2008, “Testing of compact inflatable wings for small autonomous
aircraft.” In 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics,
and Materials Conference, Schaumburg, IL, AIAA 2008-2216.

[22] Cadogan, D., Smith, T., Uhelsky, F., and MacKuskic, M., 2004, “Morphing inflat-
able wing development for compact package unmanned aerial vehicles.” In 45th
AIAA/ASME/ASCE/AHS/ACS Structures, Structural Dynamics and Materials Con-
ference, Palm Springs, CA, AIAA 2004-1807.

[23] Eldred, M. S., Adams, B. M., Gay, D. M., Swiler, L. P., Haskell, K., Bohnhoff, W. J.,
Eddy, J. P., Hart, W. E., Watson, J.-P., hough, P. D., and Kolda, T. G., 2009, Design
Analysis Kit for Optimization and TeraScale Applications (DAKOTA) Version 4.2+
User’s Manual. Sandia National Laboratories, May.



54

[24] OpenCFD Limited, 2008, OpenFOAM: The Open Source CFD Toolbox User Guide,
July.

[25] Geuzaine, C., and Remacle, J.-F., 2008, Gmsh Reference Manual, August.



55

Appendices



56

Appendix A

DAKOTA Ackley Function Test Input Files

A.1 DAKOTA input file for Ackley function surrogate-based opitmization.



# DAKOTA INPUT FILE - dakota_sbo_ackley
# Surrogate-based optimization to minimize Ackley's function.
# This file is formatted for use with DAKOTA version 4.1

strategy,
surrogate_based_opt   
tabular_graphics_data
max_iterations = 100
soft_convergence_limit = 10
opt_method_pointer = 'COLINY_EA'

###############################################
# the trust region (TR) commands specify the 
# size of the first trust region, plus the
# scaling factors that are applied to the TR
# on subsequent interations
###############################################

trust_region 
  initial_size = 0.3
  minimum_size = 1.0e-6
  contract_threshold = 0.25
  expand_threshold   = 0.75
  contraction_factor = 0.75
  expansion_factor   = 1.25

############################################### 
# begin opt specification 
############################################### 
method,

id_method = 'COLINY_EA'
model_pointer = 'SURROGATE'
coliny_ea
    population_size = 100 
    max_iterations = 1000  
    max_function_evaluations = 100000
    crossover_rate 0.0
    mutation_rate 1.0
    mutation_scale = 0.1 
    mutation_range = 2
    fitness_type linear_rank
    crossover_type uniform
    replacement_type random = 0
    new_solutions_generated = 10
    initialization_type unique_random
    mutation_type replace_uniform

model,



id_model = 'SURROGATE'
surrogate global       
  responses_pointer = 'SURROGATE_RESP'
  dace_method_pointer = 'SAMPLING' 

### Section to specify surface fit method.
  polynomial quadratic 

variables,
continuous_design = 2
  cdv_initial_point    0.1      0.1
  cdv_lower_bounds    -5.0     -5.0
  cdv_upper_bounds     5.0      5.0
  cdv_descriptor       'x1'     'x2'

responses,
id_responses = 'SURROGATE_RESP'
num_objective_functions = 1

  numerical_gradients
    method_source dakota
    interval_type central
   fd_gradient_step_size = 1.e-6

no_hessians

###############################################
# Sampling method specifications for sampling in
# the trust regions of the SBO strategy
###############################################
method,

id_method = 'SAMPLING'
model_pointer = 'TRUTH'
nond_sampling
  samples = 20
  seed = 531
  sample_type lhs
  all_variables

model,
id_model = 'TRUTH'
single
  responses_pointer = 'TRUE_RESP'

interface,
  analysis_driver = 'ackley_simulator_script'
  parameters_file = 'params.in'
  results_file    = 'results.out'
  file_tag file_save aprepro
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A.2 DAKOTA input file for Ackley function genetic algorithm.



#  DAKOTA INPUT FILE - dakota_ga_ackley.in
#  This input file optimizes the Ackley function using 
# the coliny_ea genetic algorithm

strategy, 
single_method
tabular_graphics_data

method,     
coliny_ea
  population_size = 5
  max_iterations = 10
  max_function_evaluations = 400
  crossover_rate 0.0
  mutation_rate 1.0
  mutation_scale = 0.1 
  mutation_range = 2.0
  fitness_type merit_function
  crossover_type uniform
  replacement_type random = 0
  new_solutions_generated = 10
  initialization_type unique_random
  mutation_type replace_uniform

variables,
continuous_design = 2
  cdv_initial_point    0.1      0.1
  cdv_lower_bounds    -5.0     -5.0
  cdv_upper_bounds     5.0      5.0
  cdv_descriptor       'x1'     'x2'

interface,
system
  analysis_driver = 'ackley_simulator_script'
  parameters_file = 'params.in'
  results_file    = 'results.out'
  file_tag file_save aprepro

responses,                                      
num_objective_functions = 1             

 numerical_gradients
   fd_gradient_step_size = .0000001

no_hessians



61

Appendix B

DAKOTA Airfoil Optimization Input Files

B.1 DAKOTA input file for airfoil surrogate-based opitmization.



# DAKOTA INPUT FILE - dakota_sbo_bumpy.in

# Surrogate-based optimization to minimize a bumpy airfoil.
# For use with DAKOTA 4.2

strategy,
single_method
method_pointer = 'SBLO'

method,
id_method = 'SBLO'
surrogate_based_local
model_pointer = 'SURROGATE'
approx_method_pointer = 'COLINY_EA'
max_iterations = 10
soft_convergence_limit = 5

###############################################
# the trust region (TR) commands specify the
# size of the first trust region, plus the
# scaling factors that are applied to the TR
# on subsequent interations
###############################################

trust_region
  initial_size = 1.0
  minimum_size = 1.0e-6
  contract_threshold = 0.30
  expand_threshold   = 0.85
  contraction_factor = 0.85
  expansion_factor   = 1.25

###############################################
# begin opt specification
###############################################
method,

id_method = 'COLINY_EA'
        coliny_ea
            population_siz = 15
            max_iterations = 10
            max_function_evaluations = 150
            seed=11011011
            crossover_rate = 0.0
            mutation_rate = 1.0
            fitness_type linear_rank
            crossover_type uniform
            replacement_type random = 0
            new_solutions_generated = 50



            initialization_type simple_random
            mutation_type replace_uniform

model,
id_model = 'SURROGATE'
surrogate global       
  responses_pointer = 'SURROGATE_RESP'
  dace_method_pointer = 'SAMPLING' 
  correction additive zeroth_order 

### Section to specify surface fit method.
  polynomial quadratic 

variables,
        discrete_design = 1
          ddv_initial_point   15
          ddv_upper_bounds    22
          ddv_lower_bounds    5
          ddv_descriptor      'n'

continuous_design = 1
  initial_point   0.015
  lower_bounds    0.008
  upper_bounds    0.02
  descriptors     'h'

responses,
id_responses = 'SURROGATE_RESP'
num_objective_functions = 1

  numerical_gradients
    method_source dakota
    interval_type central
   fd_gradient_step_size = 1.e-6

no_hessians

###############################################
# Sampling method specifications for sampling in
# the trust regions of the SBO strategy
###############################################
method,

id_method = 'SAMPLING'
model_pointer = 'TRUTH'
nond_sampling
  samples = 24
  seed = 531
  sample_type lhs
  all_variables
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B.2 DAKOTA input file for airfoil genetic algorithm.



#  DAKOTA INPUT FILE - dakota_ga_bumpy.in
#  This Dakota input file optimizes the bumpy
#  airfoil using coliny_ea
strategy, 

single_method
tabular_graphics_data

method,     
coliny_ea
  population_size = 8
  max_iterations = 10
  max_function_evaluations = 200

          seed = 1234                           
  crossover_rate 0.0
  mutation_rate 1.0
  #mutation_scale = 0.1 
  #mutation_range = 2.0
  fitness_type linear_rank
  crossover_type uniform
  replacement_type random = 0
  new_solutions_generated = 8
  initialization_type simple_random
  mutation_type replace_uniform

variables,
discrete_design = 1                     

          ddv_initial_point   18                
          ddv_upper_bounds    22                
          ddv_lower_bounds    5                 
          ddv_descriptor      'n'
        continuous_design = 1

  initial_point    0.011 
  lower_bounds     0.008
  upper_bounds     0.02  
  descriptor       'h'   

interface,
system
  evaluation_static_scheduling
  analysis_driver = './bumpy_simulator_script'
  parameters_file = 'params.in'
  results_file    = 'results.out'
  file_tag file_save aprepro

responses,                                      
num_objective_functions = 1             

 no_gradients
no_hessians


