


and the boundaries between each zone
based on topography observed in 2002.
The imagery from 2002, 2004, 2005, and
2009 were acquired at an approximate
steady discharge of 226m3/s, and we
use the delineation of the observed
shoreline in the image to define the
lower extent of the terrestrial area for
each of these dates [Davis, 2012]. Thus,
for the lowest zone (zone 1), the
terrestrial area varies between 2002 and
2009 based on shoreline topography.
We use the 2002 shoreline to define the
lower extent of the terrestrial area for
the 1965–1992 data.

Because observations of water-surface
elevations for discharges above 226m3/
s are not available throughout the entire
study area, the best practical method to
define boundaries between the five

zones and the upper extent of the terrestrial area is the flow model developed by Magirl et al. [2008]. This
one-dimensional flow model for the entire 362 km of the river channel between Lees Ferry and Diamond
Creek was calibrated to the water-surface elevation at 226m3/s and consists of 2682 cross sections at approxi-
mately 130m intervals [Magirl et al., 2008]. Model-predicted water-surface elevations were estimated to be
accurate to within 0.4m for discharges less than 1300m3/s, within 1.0m for discharges up to 2500m3/s, and
within 1.5m for discharges up to 5900m3/s [Magirl et al., 2008]. The model-predicted water-surface
elevations for the discharge defining the upper extent of the terrestrial area and the discharges defining the
boundaries between each riparian zone were projected onto a digital elevation model derived from the
2002 images, interpolating water-surface elevation between each of the cross sections [Magirl et al., 2008].
The result is a continuous map of each of the five zones (Figure 4).

The assumption that the boundaries between the zones are constant introduces some uncertainty into the
analysis of changes in vegetation in the zones, although it does not affect the analysis of changes in the total
extent of riparian vegetation. For example, the mean change in terrestrial area for zone 1 in sequential years
of imagery for 2002, 2004, 2005, and 2009 varies from �9% (decreased area) to +17% (increased area) per
0.16 km unit. We are not able to similarly quantify changes in the shoreline topography and terrestrial area
for zone 1 between 1965 and 1992. For zones 2–5, however, the areas are constant throughout all images
analyzed (1965–2009).

3.2. Vegetated Area

The image-based classifications of total vegetation in each year (Table 2) are used to determine the proportion
of terrestrial area that is vegetated (“vegetated area”%) within each zone for each 0.16 river kilometer unit. We
analyze long-term change for five shorter, sampled segments of the study area, because, with the exception of
2002 and 2009, the vegetation classifications were completed only in these segments (Figure 1 and Table 2)
[Waring, 1995]. These sampled segments together cover approximately 14% of the study area, while the
2002 and 2009 data sets include the entire study area.

The long-term (1965–2009) rate of change in vegetated area (%/yr) is determined by the slope coefficient of lin-
ear regression of mean vegetated area versus year for the five zones. Spatial and temporal variability in vege-
tated area are further analyzed in several ways. Long-lived, stable, dense vegetation patches with greater
than 60% canopy cover are identified by spatially intersecting the vegetated area data sets for all years to iden-
tify vegetation patches that persist from 1965 to 2009. The vegetated area attributed to these persistent (stable)
patches is determined for each zone. The composition of the persistent patches within each of the five zones is
determined from the vegetation type that each patch was most recently mapped [Kearsley et al., 2015].

Figure 5. Total vegetated area in 2009 (m2) versus river kilometer for the
entire 2009 data set and the shorter, sampled segments used in the
long-term analysis. Note that vegetated area varies by relative width of the
river channel. Areas of low vegetation tend to be located where the river
channel and the canyon are narrower, such as Marble Canyon and the
gorges of Grand Canyon.
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Figure 6. Mean (standard error)-vegetated area measured from aerial imagery in eight, postdam acquisition dates in each
of the five riparian zones. Different patterns in the long-term trends of vegetated area are evident for the zones. The
different patterns can be in part explained by effects and interactions of river hydrology and precipitation (drought).
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The shorter sampled segments intro-
duce some uncertainty for making infer-
ence to the entire study area. Prior to
this study, we compared the shorter
sampled segments to the entire
362 km of river in the 2009 data
(Figure 5). We found that the sampled
segments include a diverse range of
biogeomorphic conditions along the
river and provide a reasonable subset
for making inference to the entire study
area. The sampled segments include
locations where the river is both wide
and narrow (Figure 5). However, the pro-
portion of terrestrial area that is vege-
tated in the sampled segments is 5.7%
larger than in the entire corridor. The
sampled segments include a compar-
able area of eddies, butmore debris fans,
and fewer channel margin deposits.

The classifications of total vegetation also introduce some uncertainty into the analysis of changes in vegeta-
tion among the zones. The maps of total vegetation from all dates were produced with methods that
included image interpretation to exhaustively identify total vegetation [Waring, 1995; Ralston et al., 2008;
Davis, 2012]. Image interpretation of high spatial resolution imagery has been shown to produce very high
classification accuracies and excellent correlation (e.g., >90%) between maps of total vegetation produced
by independent analysts and ground truth [Booth et al., 2005; Duniway et al., 2012]. The total classification
accuracy of vegetation presence and absence in the maps of total vegetation from each date of imagery that
we use is estimated to be greater than 95% [Ralston et al., 2008].

Figure 7. Vegetation composition of zones for locations persistently
vegetated from 1965 to 2009. Composition is summarized by dominant
lifeform and species.

Table 3. Relative Ability of Five Metrics to Predict Vegetated Area Within and Among Zonesa

Zone Metric x x SE yo yo SE AICc ΔAICc

1 Peak flow �0.006 0.002 17.903 2.431 51.97 0.00
Duration of elevated base flow 0.252 0.087 �7.353 6.582 52.55 0.59

Low flow 0.050 0.020 6.140 2.468 53.75 1.78
Constant not applicable (NA) NA 11.385 1.787 53.96 2.00

2 Low flow 0.141 0.022 8.105 2.788 55.69 0.00
Peak flow �0.013 0.004 37.177 5.362 64.62 8.93
Constant NA NA 22.999 3.909 66.48 10.79

3 Low flow 0.116 0.026 11.459 3.304 58.41 0.00
Peak flow �0.012 0.003 36.911 4.303 61.10 2.69

Duration of elevated base flow �1.431 0.507 28.321 2.923 63.28 4.87
Duration of inundation �2.150 0.843 27.334 2.931 64.17 5.75

Constant NA NA 23.760 3.442 64.45 6.03
4 Constant NA NA 22.433 1.961 55.45 0.00
5 Precipitation drought �6.518 2.287 23.727 1.980 48.88 0.00

Constant NA NA 18.839 1.407 50.13 1.29
All Duration of inundation �1.034 0.238 22.241 1.246 274.85 0.00

Duration of elevated base flow �0.144 0.040 22.352 1.367 279.19 4.34
Low flow 0.059 0.018 13.603 2.211 280.44 5.59
Peak flow �0.006 0.002 26.925 2.447 280.84 5.99
Constant NA NA 19.883 1.354 288.63 13.79

aPredictors are peak flow (1% exceedance), low flow (99% exceedance), duration of inundation (i.e., percent of time flows
inundate entire zone), duration of elevated base flow (i.e., percent of time flows reach but do not completely inundate
entire zone), and precipitation drought (indicator variable signifying whether vegetated area was measured from imagery
acquired during a regionally significant drought). Models are ranked by their respective delta AICc from univariate GLM
analysis. AICc is the Akaike information criterion for small sample size. Delta AICc shows the difference between the model
AICc and the lowest AICc for the zone. Only models with delta AICc smaller than the constant model are shown.

Journal of Geophysical Research: Biogeosciences 10.1002/2015JG002991

SANKEY ET AL. VEGETATION, COLORADO RIVER, AND CLIMATE 1541



Figure 8. Time series of imagery from several locations throughout the study area. The images from 2002 to 2009 are
displayed as false-color composites. (a) Riparian vegetation was suppressed at low elevations during periods of greater
flow duration of the 1970s and 1980s, and had reached, and potentially plateaued at high levels of vegetated area in
intermediate zones by the 1990s and 2000s. (b) Riparian vegetation expansion was subsequently confined to narrow zones
of shoreline (e.g., eddy bars in circled eddy areas) that exhibited dramatic rates of expansion in response to subtle changes
in area of exposed sand during the 2000s.
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3.3. Streamflow

To characterize the flow regime for each epoch between analyzed imagery, we compute the duration of flows
using the instantaneous discharge record for the Colorado River at Lees Ferry, Arizona (U.S. Geological Survey
station 09380000). The instantaneous flow record is obtained fromdischarge computed from the digitized trace
of the instantaneous stage record [Topping et al., 2003]. This record containing values at unequal intervals
(http://www.gcmrc.gov/discharge_qw_sediment/station/GCDAMP/09380000) is resampled by linear interpola-
tion to create a record with fixed 1h intervals. This record is used to compute the proportion of time discharge
equaled or exceeded a givenmagnitude for each interval between dates of image acquisition and for the entire
period of record preceding the 1965 imagery (1921–1965). These results are used to determine the proportion
of time each of the five zones is completely inundated for each interval between aerial imagery used to
map vegetation.

3.4. Drought

An indicator variable is created to describe whether a particular vegetated area value (imagery data set) was
acquired during a drought, or not, based on Hereford et al.’s [2014] definitions of the durations of regional
droughts (Figure 3). Henceforth, we refer to this variable as “precipitation drought.” The precipitation data
used by Hereford et al. [2014] to define the time span of each drought were from inner canyon, canyon
rim, and regional weather stations.

3.5. Analysis of Vegetation, Streamflow, and Drought

We evaluate the relative ability of five metrics to predict vegetated area within and among zones: peak flow
(1% exceedance), low flow (99% exceedance), duration of inundation (i.e., percent of time flows inundate the
entire zone), duration of elevated base flow (i.e., percent of time flows reach but do not completely inundate
the zone), and and precipitation drought. For each zone, we predict vegetated area as a function of each
metric, and as a function of a constant (1), using univariate generalized linear model (GLM) analysis. We eval-
uate the relative predictive ability of each metric within each zone by comparing models by AICc (Akaike
information criterion for small sample size) [Akaike, 1974]. Within each zone, we consider the metric in the
model with the lowest AICc to be the best predictor of vegetated area. Within each zone, we consider models
with delta AICc less than 2.0 to not differ significantly from the model with the best predictor (where delta
AICc is the difference between the model AIC and the lowest AICc for the zone).

4. Results
4.1. Vegetation Change

From 1965 to 2009 there is a net increase in vegetation in zones 1–4 (Figure 6). The rate of increase is
greatest for zones 2 and 3 (mean = 0.6%/yr, and standard error = 0.1%/yr, in each zone) and somewhat less
for zones 1 and 4 (mean = 0.2%/yr, standard error= 0.1%/yr, in each zone). Vegetation decreases in zone 5 at a
mean rate of 0.2%/yr (standard error = 0.1) from 1965 to 2009. While the rates are useful for summarizing long-
term changes over the entire study period, they imply that the changes are constant with time. The long-term
changes in vegetation are noticeably different in the five zones and for some intervals of image dates, however
(Figure 6). In zones 1–4 mean-vegetated area is lowest in 1965 and increases from 1965 to 1973. From 1973 to
1992, vegetation does not increase in zone 1 but does in zones 2–4 when hydro-peaking was unconstrained,
one long-duration spillway flood occurred, and three other long-duration floods occurred [Schmidt and
Grams, 2011b]. The 1983 spillway flood and other long-duration floods that occurred between 1984 and
1986 are known to have removed areas of vegetation within zones 1–4 [Stevens and Waring, 1986].
Therefore, more vegetation probably existed prior to these events than is shown in the 1973 or 1984 imagery
(Figure 6). Vegetated area peaks in 1992 in zone 4 (Figure 6). Vegetation decreases slightly (~2%) in zones 1–3
between 2004 and 2005 during which time the 2004 controlled flood occurred (Figure 6). Vegetation dramati-
cally increases (~6–12%) from 2005 to 2009 in zones 1–3; the 2008 controlled flood occurred during this time
(Figure 6). Throughout the five decades, changes in zone 5 are very different compared to most of the lower
zones (Figure 6). In zone 5, vegetated area peaks in 1992 and then declines in the next two decades, which
is similar to changes from 1992 to 2009 in zone 4.
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4.2. Vegetation Composition and Persistence

There is a larger proportion of persistently vegetated area during the five decades in the higher zones. The
proportion of the zone that is persistently vegetated in zone 5 (mean=7.4%, standard error = 0.6%) is 2 times
greater than zone 4 (mean=3.2%, standard error=0.44%) and an order of magnitude greater than zones 1–3
(mean=0.3%, 0.9%, and 1.7%, standard error = 0.1%, 0.4%, and 0.7%, respectively). These persistent vegetation
patches are overwhelmingly composed of woody plants in all zones (Figure 7). The proportion of obligate ripar-
ian shrubs Baccharis spp., Salix exigua, Pluchea sericea, and the fluvial marsh species Phragmites australis
decreases from low to high zones. The proportion of the facultative, native riparian shrub Prosopis spp. with
deep-root system increases along the same elevation gradient. The facultative, nonnative riparian shrub
Tamarix spp. increases along the gradient as well, though to a lesser extent at higher zones.

4.3. Relationships of Vegetation to Streamflow and Drought

The best predictors of vegetated area differ among zones (Table 3). In zone 1, the best predictor of vegetated
area is peak flow, although duration of elevated base flow and low flow are also significant. Relationships
indicate that vegetation decreases with larger peak flows and that vegetation increases with larger low flows
and longer duration of elevated base flow. The peak flow relationship suggests that disturbance by large
floods controls the amount of vegetated area in this zone. The relationship for elevated base flow suggests
that flows that do not inundate the entire zone for long duration may provide water for pulses of vegetation
expansion (for example, the increases in vegetation in zone 1 from 2002 to 2004 and 2005 to 2009 that are
depicted in Figure 6 are periods of elevated base flow).

In zones 2 and 3, low flow is the best predictor of vegetated area. Relationships indicate that in these zones
vegetation increases with larger low flows. This suggests that shallow groundwater might make more water
available to deep-rooted plants when low flows are larger. In zone 4, none of the metrics is a significant
predictor of vegetated area. In zone 5, precipitation drought is the best predictor of vegetated area, though
does not differ significantly from the constant model; the relationship indicates that vegetation decreases
during drought.

In the entire riparian area (i.e., when data are analyzed among all zones), the duration of inundation is the best
predictor of vegetated area. Vegetated area decreases with longer duration of inundation. We use the model
coefficients for duration of inundation for all zones (Table 3) to estimate inundation duration that can keep
riparian vegetation from expanding. At the beginning of our study in 1965, vegetated area is less than 12%
in zones 1–4 (Figure 6). The model indicates that vegetated area does not exceed 12% when a zone is inun-
dated for more than 10% of time. Conversely, in our data, vegetated area does not exceed 12% (Figure 6) for
any zones inundated ≥5% of time (Figure 2c). Therefore, a useful estimate of inundation that can control the
expansion of riparian vegetation is at least 10% duration and possibly as low as 5%. The flow duration curves
for each of the time steps (Figure 2c) suggest that 5% duration of inundation is never exceeded in zone 5, is
exceeded only prior to 1965 for zones 2–4, and is exceeded prior to 1965 and from 1973 to 1992 in zone 1.

The statistical relationships between vegetation and hydrology are consistent with changes depicted in the
aerial images. For example, there is more unvegetated, bare sand visible in the images from 1965 to 1992,
which is the period of unrestricted hydro-peaking that is characterized by greater duration of inundation
and larger peak flows (Figure 8a). Many areas of bare sand in the 1965 image are more vegetated in the
1973 image but then less vegetated in the 1984 image due to scour of vegetation caused by high peak flows
during the spillway flood of 1983 [Rubin et al., 1990]. In the images after 1992, bare sand is mostly confined to
narrow areas of shorelines (e.g., eddy bars in circled eddy areas in Figures 8a and 8b) that exhibit dramatic
vegetation expansion during the 2000s. From 2002 to 2009 the bare eddy bars were inundated infrequently,
but elevated base flows at specific time intervals might have promoted pulses of riparian vegetation expan-
sion. Further upslope, vegetation appears to reach and plateau at high cover during the 2000s.

5. Discussion

Analyses of classified remotely sensed imagery for locations along 362 km of the Colorado River in Marble
and Grand Canyons confirm that there has been a progressive increase in riparian vegetation during the five
decades since the completion of Glen Canyon Dam. The magnitude and timing of vegetation changes differ
along five zones of the riparian area that are defined by stage above common postdam base flows. Much of
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the long-term increases in vegetation occurred in the lowest zones that are inundated by hydro-peaking and
were once part of the predam active channel. This finding indicates a downward expansion of vegetation
that filled in parts of the predam active channel, resulting in a long-term lowering of the riparian area
[Auble et al., 2005; Stromberg et al., 2007].

Vegetation in lower zones is substantially shorter-lived than vegetation in higher zones. This is attributable to
a greater susceptibility of vegetation at lower elevations to flooding, scouring, and burial [Stevens et al., 1995].
This is also attributable to the composition of long-lived, facultative riparian and phreatophytic vegetation
that can access deeper water at higher elevations [Clover and Jotter, 1944; Turner and Karpiscak, 1980]. In
all zones, the long-term composition of vegetation is overwhelmingly woody. Thus, results indicate a long-
term expansion of woody vegetation over the five decades; spatiotemporal trends exhibited in regulated
rivers throughout the western U.S. and elsewhere [Friedman et al., 2005; Webb and Leake, 2006; Mortenson
and Weisberg, 2010]. The nonnative woody species tamarisk is ubiquitous across zones but is a codominant
species with other riparian shrubs. This contrasts with the upper basin of the Colorado River in Utah and
Colorado where tamarisk often dominates the landscape [Merritt and Cooper, 2000; Cooper et al., 2003] and
suggests that tamarisk and other riparian shrubs may respond similarly to altered flow regimes and climate
in our study area.

The hydrology of the past five decades on the regulated Colorado River is characterized by net decreases in
flood magnitude, increases in the magnitude of base flows, and recent drought [Topping et al., 2003;
Mortenson et al., 2012; Hereford et al., 2014]. Our results suggest that for riparian vegetation in zone 1 these
changes in hydrology increase habitable space, decrease disturbance, and potentially increase water
availability. Collectively, these changes promote colonization of low-elevation bare surfaces and sandbars.
In contrast, the long-term expansion of riparian vegetation in zones 2 and 3 is most influenced by elevated
base flows that make groundwater more available to plants. In zone 4, effects of streamflow and precipitation
on vegetated area are not resolved. In zone 5, vegetation varies as a function of precipitation. The effects
observed in the lower zones are supported by previous research specific to shorter time intervals and/or spe-
cies [Cooper et al., 2003; Stevens et al., 1995; Turner and Karpiscak, 1980;Waring, 1995; Mortenson et al., 2012].
The effects in the highest zone indicate a decoupling of climate and hydrology that can be characteristic of
regulated rivers [Johnson, 2002;Mortenson et al., 2012; Perry et al., 2012, 2013]. It is particularly interesting that
in zone 4, vegetation increases during the first three decades of the study in similar fashion to zones 1–3 in
which vegetation responds to streamflow but then decreases from 1992 to 2009 which is consistent with
drought-related changes in zone 5. It is possible that the relative influence of streamflow versus precipitation
shifted for zone 4 during the past five decades and might explain why neither type of environmental variable
predicts vegetation changes in this zone.

In the future, river managers might consider changing dam operations in order to optimize a regulated flood
regime that can rehabilitate or increase the resilience of riparian ecosystems. However, under anticipated
future aridity [U.S. Department of the Interior, 2012], managers will contend with the compound effects of
riparian vegetation communities that continue to expand at lower zones of the riparian area, yet that are
subjected to drought and have become increasingly disconnected from river hydrology at higher zones.

6. Summary and Conclusions

Large dams decouple predam riparian vegetation from the streamflow regime for those zones of the riparian
area that are never again inundated. At those zones, vegetated area varies with precipitation and drought.
For zones that are rarely inundated by the postdam flow regime, there may be a decadal period of expansion
of riparian vegetation into parts of the active channel that are abandoned due to flood control, but
eventually, that response wanes. At even lower zones, however, riparian vegetation proliferates. Five decades
since completion of the Glen Canyon Dam, riparian vegetation communities of the downstream Colorado
River are subjected to drought and disconnected from river hydrology at higher zones, yet continue to
expand at lower zones. Flow regimes downstream from Glen Canyon Dam that decrease the magnitude
and frequency of peak floods but that also increase base flows result in riparian vegetation expansion and
lowering of the riparian area. Short pulses of high flow, such as the controlled floods of the Colorado River
in 1996, 2004, and 2008, do not keep vegetation from expanding onto bare sand habitat. Vegetation
expansion is coincident with inundation frequency; vegetated area apparently does not expand, in our study,
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if the surface is inundated for as little as 5% of the time (e.g., 18 d/yr), which might be a useful estimate of
inundation that can keep riparian vegetation expansion at bay.
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