
Utah State University Utah State University

DigitalCommons@USU DigitalCommons@USU

All Graduate Plan B and other Reports Graduate Studies

12-2016

Tutorial for Using the Center for High Performance Computing at Tutorial for Using the Center for High Performance Computing at

The University of Utah and an example using Random Forest The University of Utah and an example using Random Forest

Stephen Barton
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/gradreports

 Part of the Multivariate Analysis Commons, and the Other Statistics and Probability Commons

Recommended Citation Recommended Citation
Barton, Stephen, "Tutorial for Using the Center for High Performance Computing at The University of Utah
and an example using Random Forest" (2016). All Graduate Plan B and other Reports. 873.
https://digitalcommons.usu.edu/gradreports/873

This Report is brought to you for free and open access by
the Graduate Studies at DigitalCommons@USU. It has
been accepted for inclusion in All Graduate Plan B and
other Reports by an authorized administrator of
DigitalCommons@USU. For more information, please
contact digitalcommons@usu.edu.

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/gradreports
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/gradreports?utm_source=digitalcommons.usu.edu%2Fgradreports%2F873&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/824?utm_source=digitalcommons.usu.edu%2Fgradreports%2F873&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/215?utm_source=digitalcommons.usu.edu%2Fgradreports%2F873&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/gradreports/873?utm_source=digitalcommons.usu.edu%2Fgradreports%2F873&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

TUTORIAL FOR USING THE CENTER FOR HIGH PERFORMANCE COMPUTING AT THE UNIVERSITY

OF UTAH AND AN EXAMPLE USING RANDOM FOREST

by

Stephen Willis Barton

A report submitted in partial fulfillment
of the requirements for the degree

of

MASTER OF SCIENCE

In

Statistics

Approved:

Dr. Adele Cutler
Major Professor

 Dr. Richard Cutler
 Committee Member

 Dr. John Stevens
 Committee Member

UTAH STATE UNIVERSITY
Logan, Utah

2016

ii

ABSTRACT

Tutorial for Using the Center for High Performance Computing at The

University of Utah and an example using Random Forest

by

Stephen Willis Barton, Master of Science

Utah State University, 2016

Major Professor: Dr. Adele Cutler

Department: Mathematics and Statistics

Random Forests are very memory intensive machine learning algorithms and most computers

would fail at building models from datasets with millions of observations. Using the Center for High

Performance Computing (CHPC) at the University of Utah and an airline on-time arrival dataset with 7

million observations from the U.S. Department of Transportation Bureau of Transportation Statistics we

built 316 models by adjusting the depth of the trees and randomness of each forest and compared the

accuracy and time each took. Using this dataset we discovered that substantial restrictions to the size of

trees, observations allowed for each tree, and variables allowed for each split have little effect on

accuracy but improve computation time by an order of magnitude.

Becoming familiar with the CHPC is significantly easier with the included tutorial at the end of

the paper.

(32 pages)

iii

ACKNOWLEDGMENTS

 I would like to thank my wife for the tireless support, helpful hand, and willing ear that she gives

me. The IT administrators at the Mathematics and Statistics Department have also been invaluable in

setting up an RStudio Server for me to use. I would especially like to thank my committee members Drs.

Richard Cutler and John Stevens, and most especially Adele Cutler, my major professor.

 The support and resources from the Center for High Performance Computing at the University

of Utah are gratefully acknowledged. Wim Cardoen was an indispensable resource in setting up the

supporting code to run jobs on the cluster.

iv

CONTENTS

ABSTRACT .. ii

ACKNOWLEDGMENTS .. iii

LIST OF FIGURES .. v

1. INTRODUCTION ... 1

2. METHODOLOGY .. 2

3. AIRLINE DATA .. 3

4. EXPERIMENTS .. 4

4.1. Predicting Late Flights Using Subset of 2008 Data With 5% Sample Size 4

4.2. Predicting Late Flights Using All of the 2008 Data and 5% Sample Size 6

4.3. Repeated Model Building .. 7

4.4. Random Forest Performance .. 8

5. CHPC TUTORIAL ... 10

5.1. Virtual Private Network .. 10

5.2. Transferring Files ... 11

5.3. Interactive GUI .. 13

5.4. Submitting Batch Scripts ... 17

5.4.1. Dummy Example of Slurm ... 18

5.4.2. Actual Random Forest example using Slurm .. 21

6. BIBLIOGRAPHY .. 22

APPENDIX .. 23

A.1. R Code ... 23

A.2. Configuration File .. 26

A.3. SLURM Batch File .. 27

v

LIST OF FIGURES

Figure 1 Maxnodes vs Error Rate with 5% sampling of subset of 1 million observations; log scale on

horizontal axis .. 5

Figure 2 Maxnodes vs Error Rate with 5% sampling on full dataset; log scale on horizontal axis 7

Figure 3 Maxnodes vs Error Rate with mean and 95% confidence interval ... 8

Figure 4 The Cisco AnyConnect Secure Mobility Client .. 10

Figure 5 Confirmation of secure connection .. 10

Figure 6 CISCO's WebLaunch platform to download the client and automatically connect 11

Figure 7 Starting a new session with WinSCP ... 12

Figure 8 Click on the PuTTY button to open a terminal .. 13

Figure 9 FastX2 connection list before and after adding a connection .. 13

Figure 10 Create a new FastX2 SSH connection ... 14

Figure 11 Connection awaiting a session .. 14

Figure 12 Configure new session .. 15

Figure 13 Connection with active session ... 16

Figure 14 Virtual Desktop with the path to open a terminal window highlighted 16

Figure 15 Commands to open RStudio ... 17

Figure 16 Basic flowchart showing structure of clusters .. 17

1. INTRODUCTION

Random Forests (Breiman 2001) are standard tools for classification, in part because they work

quite well “right out of the box”. The idea is to fit a forest of binary trees similar to those described in

Breiman et al. (1984). However, at each node, instead of searching for the best possible split among all

predictors, the search is done over a small random sample of predictors. Each tree is grown on a

bootstrap sample of the data and predictions are obtained by passing a new observation down each tree

and allowing the trees to vote for the predicted class of the new observation.

For classification, there are three tuning parameters the analyst must choose:

1. The number of randomly sampled predictors for each split (mtry).

2. The number of trees in the forest (ntree).

3. The size of the trees (maxnodes).

The number of trees is usually chosen to be as large as feasible because it is well known that

increasing the number of trees will not cause the predictions to deteriorate but rather become more

robust. The size of the trees is usually chosen to be as large as possible by growing each tree until the

terminal nodes can not be split (either they are all from the same class or they all have identical

predictor variables at the node). Using these two default choices, the only tuning parameter of any real

concern is the number of randomly selected predictors at each node.

Random Forest is an example of “embarrassingly parallel” algorithms. In the traditional parallel

computing paradigm, the data could be sent to a number of powerful machines which would each grow

trees on the data. Finally, the trees would be combined to form a forest.

2

However, Random Forests are not easily adapted to today’s Big Data world. To understand why

it’s important to understand how current computing environments use commodity machines to operate

on Big Data. Commodity machines are low-cost computers that are housed in huge data centers. They

regularly fail and are replaced. Current Big Data methodology breaks a large data set into small subsets

and sends each subset to 3 or 4 commodity machines. In this way, the data are distributed over

thousands of commodity machines, but each commodity machine has access to only a small subset of

the data. The subsets are sent to 3 or 4 commodity machines to help reduce the chance that data will be

lost due to failure. Each commodity machine works only on the piece of data it is given, and results are

combined centrally. Much of the current research in statistical computing for Big Data has focused on

how to compute standard statistical estimates such as regression coefficients when we combine results

from the distributed framework.

Random Forests face two main challenges in using commodity machines. The first is that each

tree is grown on a bootstrap sample of the data, which is as big as the original data. The second is that

the trees are grown very deep, which requires a lot of memory.

This project investigates modifications of the Random Forest methodology to make Big Data

Random Forests feasible for commodity machines. In order to perform the experiments required for this

work, it was necessary to use the University of Utah Center for High Performance Computing (CHPC)

facility. A major part of this project is a tutorial to help other statisticians at USU use the facility.

2. METHODOLOGY

One of the main difficulties for Random Forests for Big Data is that the data are dispersed

among many commodity servers. Instead of trying to fight this, we consider fitting each tree in the

3

forest to a small subset of the data instead of bootstrapping. Ideally, the subsets would be random.

Current Big Data implementations (e.g. Hadoop) do not guarantee randomness, but investigating this

aspect is beyond the scope of this project. The second thing we explore is the effect of changing the tree

size in the forest, and finally, we explore changing the value of the number of randomly selected

predictors at each node.

The R package randomForest (Liaw et al. 2002) was used to perform the experiments. The

computations were not performed on commodity machines, but we simulated using them by sampling

5% of the data at random, without replacement, for each tree on high-performance server CPUs. The

number of trees was held constant at 500.

3. AIRLINE DATA

The focus of the 2009 Joint Statistical Meetings' Data Exposition poster session, jointly

sponsored by the Graphics Section and Computing Section was on Airline on-time performance

(http://stat-computing.org/dataexpo/2009/). The departure and arrival details of all commercial flights

from 1987 to 2008 in the US were made available in yearly segments because of the size of the dataset:

nearly 120 million flights. The goal was to illustrate a graphical summary of a research question left up to

the participants. We use these data to compare different Random Forest parameters for predicting

whether a flight will be at least 15 minutes late.

The variables in the dataset (Table 1) describe flight details regarding departure time and

airport, delays in departure and arrival and reasons for delays, time spent taxiing, and arrival time and

airport. The 2008 data have 7,009,728 observations, with a file size of 657.5 Megabytes. There were

154,699 flights that were either canceled or diverted and have been removed from the dataset for this

http://stat-computing.org/dataexpo/2009/

4

analysis. Airports, flight numbers, and tail numbers were also removed because they were categorical

variables with hundreds of levels. The models were built on the following variables, ActualElapsedTime,

AirTime, ArrTime, CRSArrTime, CRSDepTime, CRSElapsedTime, DayofMonth, DayOfWeek, DepDelay,

DepTime, Distance, Month, TaxiIn, and TaxiOut.

Variable Name Description Variable Name Description

Year 1987-2008 DepDelay departure delay, in

minutes
Month 1-12 Origin origin IATA airport code

DayofMonth 1-31 Dest destination IATA airport

code

DayOfWeek 1 (Monday) - 7 (Sunday) Distance in miles
DepTime actual departure time

(local, hhmm)
TaxiIn taxi in time, in minutes

CRSDepTime scheduled departure

time (local, hhmm)
TaxiOut taxi out time in minutes

ArrTime actual arrival time (local,

hhmm)
Cancelled was the flight

cancelled?
CRSArrTime scheduled arrival time

(local, hhmm)
CancellationCode reason for cancellation

(A = carrier, B =

weather, C = NAS, D =

security)
UniqueCarrier unique carrier code Diverted 1 = yes, 0 = no

FlightNum flight number CarrierDelay in minutes
TailNum plane tail number WeatherDelay in minutes
ActualElapsedTime in minutes NASDelay in minutes
Table 1 Variables in airline dataset and descriptions

4. EXPERIMENTS

4.1. Predicting Late Flights Using Subset of 2008 Data With 5% Sample Size

Our initial investigation was to determine the accuracy of smaller and more constrained trees on

predicting flights with delays of 15 or more minutes. For classification problems such as this one, the

default mtry, or the number of variables randomly sampled as candidates at each split, is the square

root of the number of predictors, rounded down; in this experiment, with 14 predictor variables the

5

algorithm randomly samples three of them. These models were restricted to a randomly selected subset

of size one million to investigate the effect that mtry and maxnodes have on the error rate with such

constraints. Figure 1 summarizes the results of 120 models. The most interesting observation was the

immediate drop in error rate when mtry was increased from 6 to 7 variables with maxnodes=3. The

disparity disappears by increasing the size of the trees by one node. More generally, as maxnodes

increases, the models generated by mtry=3 take much longer to minimize error rate than those with

higher mtry values.

Figure 1 Maxnodes vs Error Rate with 5% sampling of subset of 1 million observations; log scale on horizontal axis

Using Subset of 2008 Data and 5% Sampling

6

4.2. Predicting Late Flights Using All of the 2008 Data and 5% Sample Size

Extending the previous experiment to the whole year’s dataset was much more complicated

than simply changing the input data frame and response vector because of the size of the data and the

amount of time required in computation. This experiment and the following one were performed

through the Center for High Performance Computing at The University of Utah. The results of 312

models are summarized in figure 2.

The phenomenon between mtry=6 and mtry=7 from the earlier experiment seems to have

shifted to between mtry=7 and mtry=8. More models were built and it is even more apparent using the

whole year as shown in figure 2 the high volatility in the forests with smaller trees. After increasing the

maximum number of nodes to at least ten the models become more stable. This is consistent with the

previous experiment (fig. 1).

7

Figure 2 Maxnodes vs Error Rate with 5% sampling on full dataset; log scale on horizontal axis

4.3. Repeated Model Building

The strange pattern generated from the models with small trees and a lower number of mtry

variables in Fig. 2 interested me. I therefore performed several repetitions of models with maxnodes

less than 30 to determine if the oddity was persistent or based on the stochastic nature of the random

forest algorithm. Figure 3 summarizes the results after five repetitions of each model showing the 95%

confidence interval of the mean error rate. Notice how the high variability in the smallest (maxnodes=2)

8

mtry=7 model could possibly explain the phenomenon from the previous experiments’ results because

of the wide range of error rates produced by the random forest models.

Figure 3 Maxnodes vs Error Rate with mean and 95% confidence interval

4.4. Random Forest Performance

Random forests are an example of an embarrassingly parallel algorithm because very little is

required to distribute the workload across cores and nodes. One method of taking advantage of random

forests’ easily parallelizable algorithm is by dispersing the tree growing phase. Tree growth is done on

bootstrap samples of the data and trees are constructed independently. The randomForest package

9

includes a function to combine several trees or forests into one larger forest object thereby allowing

multiple cores to build a forest.

I did not implement this method of forest building, however. I built whole forests on single cores

and I took advantage of the multitude of cores and nodes at the CHPC to reduce the physical time

required. The 312 models built took over 584 hours of total CPU time to complete. However, these were

not built in serial; each node I used contained 32 cores so I ran 10 jobs simultaneously. The longest job

took a total elapsed time of 3.25 hours.

The following four models were built one at a time using the CHPC. I grew them to their full depth.

A model built using the one million observation subset and using 5% sampling from the one million

observation subset took 7.75 minutes with an error rate of 4.85%. A similar model built using bootstrap

sampling took 75 minutes with an error rate of 2.78%. Building a model using the full seven million

observation dataset and 5% sampling took 70.33 minutes and produced an error rate of 3.25%. A

random forest model with all default arguments would have taken over 10 hours if it had finished.

10

5. CHPC TUTORIAL

Your Principal Investigator (PI, usually your major professor) will need to request access for you,

after which you will be given a uNID and can sign up for an account with CHPC. For further information

on topics not covered in this tutorial go to chpc.utah.edu. Three pieces of software are required for this

tutorial—a virtual private network client, an interactive GUI, and a program for transferring files.

5.1. Virtual Private Network

Use “Cisco AnyConnect Secure Mobility Client” application to connect to vpnaccess.utah.edu using

your uNID and password in order to start a virtual private network (VPN), as in Fig. 4.

Figure 4 The Cisco AnyConnect Secure Mobility Client

On a Windows machine, the image in Fig. 5 will appear on your screen just above the taskbar

when successfully connected.

Figure 5 Confirmation of secure connection

If you don’t have the Client, using a browser log on to vpnaccess.utah.edu, click on “Start

AnyConnect”. The web app will detect your browser and operating system, attempt to automatically

https://www.chpc.utah.edu/
file:///C:/Users/Willis/Dropbox/Utah%20State%20University/03%20Fall%202015/STAT%206970%20Thesis/Research/vpnaccess.utah.edu
file:///C:/Users/Willis/Dropbox/Utah%20State%20University/03%20Fall%202015/STAT%206970%20Thesis/Research/vpnaccess.utah.edu

11

install the client, and start a connection (see Fig.6). Depending on your browser you may need to

manually download the VPN client.

Figure 6 CISCO's WebLaunch platform to download the client and automatically connect

Note that beginning 12/28/16, you will be required to use two-factor authentication. Visit

http://it.utah.edu/2fa/#get-started to enroll. It is recommended that you register a mobile phone as

your authentication device. There are apps for smart phones and tablets and you can get an automated

phone call if you don’t have either of those. Search for and download the Duo Mobile app in your

phone’s app store. Follow the onscreen instructions to register the phone. There are excellent step by

step videos on the website for registering as well as logging in. Visit http://it.utah.edu/2fa/#training to

view those videos.

5.2. Transferring Files

http://it.utah.edu/2fa/#get-started
http://it.utah.edu/2fa/#training

12

WinSCP is a simple click-and-drag application to transfer files from your own computer to a CHPC

server. Direct your browser to https://winscp.net/eng/download.php, select either the full installation

or a portable executable, and then either install or unzip it. Before running the program, follow the

procedure to start a VPN to the University of Utah’s network (see section 5.1 above). After opening the

application you will be prompted for a host name, user name, and password. Again, if you are using the

ember cluster, use ember.chpc.utah.edu in the host name, and your own uNID and password, as in

Figure 7.

Figure 7 Starting a new session with WinSCP

Once you are connected you have the ability to click and drag files from your computer to the

remote drive. If you have written files on a Windows machine you will need to use the following

command dos2unix [filename] to read it inside of a Linux environment. If you don’t need the

https://winscp.net/eng/download.php

13

interactive GUI you can open a session in PuTTY from WinSCP by clicking on the ribbon button at the top

of the application, as in Figure 8.

Figure 8 Click on the PuTTY button to open a terminal

 Files in your directory on the CHPC server are not backed up. Make sure to have copies on your

own machine.

5.3. Interactive GUI

An interactive graphical user interface is useful for those who are unfamiliar with command line

terminals. To install FastX2, in a browser go to http://ember1.chpc.utah.edu:3000 and click on the link

labeled Looking for the desktop client? You can follow the CHPC instructions on their documentation

website https://www.chpc.utah.edu/documentation/software/fastx2.php.

Once installed and opened, you can create a new SSH connection by clicking on the plus symbol in

the upper right corner of the program (see Figure 9).

Figure 9 FastX2 connection list before and after adding a connection

http://ember1.chpc.utah.edu:3000/
https://www.chpc.utah.edu/documentation/software/fastx2.php

14

USU has a partition on the Ember cluster, and therefore, I am using the Ember cluster for my

tutorial. You must give the connection a name, but what you call it is unimportant. The Host field needs

to be ember.chpc.utah.edu or the name of the cluster you want to use if it isn’t Ember (see Figure 10).

Figure 10 Create a new FastX2 SSH connection

FastX2 will create another window where you can start a session (see Figure 11).

Figure 11 Connection awaiting a session

15

Start a new session by clicking on the plus icon in the upper right corner and selecting one of the

interfaces (see Figure 12), I prefer GNOME because of its familiar look and feel. Once you select the

desired one the command and window mode prompts will automatically fill in and you can click on OK.

Figure 12 Configure new session

Clicking OK in the dialog box (see Figure 12) will begin a session with a virtual desktop (see

Figure 14) where you have a familiar look and feel and can access the terminal to open RStudio, submit

batches to the cluster through the Simple Linux Utility for Resource Management (Slurm) job scheduler,

and access the Internet. Figure 13 shows a connection with an active session.

16

Figure 13 Connection with active session

Figure 14 Virtual Desktop with the path to open a terminal window highlighted

17

You can open RStudio with shell commands within a terminal as shown in Figure 15. Remember

the terminal is case sensitive.

Figure 15 Commands to open RStudio

5.4. Submitting Batch Scripts

The computing power of the CHPC is best utilized by the compute nodes. Simply executing code on

the virtual desktop in the interactive node will be only comparable to your own machine (see Figure 16).

Figure 16 Basic flowchart showing structure of clusters

Interactive

Node

(single core)

Slurm
Job Scheduler

Compute Nodes

Multicore

nodes

are

fast

18

5.4.1. Dummy Example of Slurm

Simple Linux Utility for Resource Management, or Slurm, is a workload management application that

CHPC uses to schedule jobs for the clusters and requires three files to run a batch:

 rscript.R - R script that holds all of the R commands

 my.conf - file that holds the command line arguments

 test.slurm - batch file that tells SLURM how to run the commands

The following is an example rscript.R

#!/usr/bin/env Rscript

library("R.utils")

sayHello <- function(){

 print('hello')

}

args <- cmdArgs()

cat("User command-line arguments used when invoking R:\n")

cat(str(args))

cat("\nInvoking sayhello\n")

sayHello()

Make note that you must load every library you wish to use. Furthermore, cmdArgs() is a very

useful function for reading arguments from the command line into the script. It is not necessary, but

makes it possible for incrementing through an index or a vector of parameters, for example, without

needing to change the code for each repetition.

The following is an example configuration file, my.conf

0 Rscript /uufs/chpc.utah.edu/common/home/u6009697/R_Test/rscript.R 1 2

1 Rscript /uufs/chpc.utah.edu/common/home/u6009697/R_Test/rscript.R 21 31

Each line in my.conf is its own separate command line. Each of these lines runs on a separate

core of the node on the partition that you pass it to. The USU partition (usu-em) consists of 16 nodes

19

with 32 cores per node. This means you can have up to 32 lines in the my.conf file if you want to use this

partition. The my.conf file has four components per line:

 Number of the line - This is a number from 0-31; start with 0 and progressively work your way up

 Rscript command - This tells it to run Rscript on the file specified in the path that follows

 Directory path - This must be the full path, not just the path from your home directory

 Arguments - These are the arguments you would type into the command line after Rscript if you

were working on the command line in your home directory. It includes any arguments that you may

need to pass to the script. In this example I am passing two arguments per line. The script reads

these in to a list object called args

The following is an example batch file, test.slurm

#!/bin/bash 1
#SBATCH --job-name=myR-test 2
#SBATCH --time=00:30:00 3
#SBATCH --nodes=1 4
#SBATCH --ntasks-per-node=2 5
 6
#SBATCH -o out.%j 7
#SBATCH -e err.%j 8
 9
#SBATCH --mail-type=FAIL,BEGIN,END 10
#SBATCH --mail-user=willis.barton@aggiemail.usu.edu 11
 12
#SBATCH --account=usu-em 13
#SBATCH --partition=usu-em 14
 15
module load R/3.2.3.omp 16
srun --multi-prog my.conf 17

This batch file (test.slurm) holds the commands that tell Slurm what to do. The majority of the file

tells Slurm how to set up the run. All of the lines with a # in front are commands that are needed. If you

want to change these contact CHPC to make sure you get it right. You can email them your file and they

can proof-read it for you.

20

On line 2 is the name of the job. Line 3 contains the upper limit approximation of the time the

job is expect to take, there is a hard limit of 72 hours on general cluster nodes. Identify the number of

tasks in your configuration file on line 5. Lines 7 and 8 will generate output and error files with the

names out.[jobID] and err.[jobID], the output file will contain anything in the script that is written to the

console and the error file will contain any warning messages and error messages. If you wish to receive

an email when your job has started, completed, or failed include lines 10 and 11 with your email

address. You will get an email with the subject line identifying what action has been taken and relevant

time stamps. For using the USU partition include lines 13-14. Line 16 identifies the application you will

be using. Finally the command srun --multi-prog my.conf on line 17 tells Slurm to run the

command lines in the my.conf file. The --multi-prog command tells it that there will be multiple

calls running at the same time. Go to https://www.chpc.utah.edu/documentation/software/slurm.php

for more documentation on Slurm. Once your files are ready to go send them to SLURM with the

following command in the terminal: sbatch test.slurm

Rscript Called by

Configuration

File

containing
arguments

Batch file

Sent to

compute

nodes by

sbatch test.slurm

https://www.chpc.utah.edu/documentation/software/slurm.php

21

 After submitting the batch you can exit the terminal session and/or close your virtual desktop

and the job will queue until it begins. If you indicated you want emails, you’ll receive notification of

when it started and the time it spent in the job queue. When it ends, you’ll receive an additional

notification with the exit status and elapsed time.

5.4.2. Actual Random Forest example using Slurm

The code used in my second experiment (see section 4.2) is contained in A.1R Code. It expects one

command line argument passed from the configuration file that is dynamically written to take advantage

of the total number of cores on a node (see A.2). This is helpful if I weren’t using the USU partition as

there are nodes with 8, 16, 24, or other numbers of cores. And finally, the batch file in A.3 creates a

working directory with copies of the script and data, and then creates and runs the configuration file.

For each job of the 10 jobs, I incremented the chunk object in line 54 in A.1 by one to cycle through each

group of 32 models.

22

6. BIBLIOGRAPHY

L. Breiman. Random forests. Machine Learning, 45(1): 5–32, 2001.

L. Breiman, J.H. Friedman, R.A. Olshen, C.J. Stone. Classification and Regression Trees. Wadsworth,

Behrnont, CA (1984)

A. Liaw and M. Wiener (2002). Classification and Regression by randomForest. R News 2(3), 18--22.

23

APPENDIX

A.1. R Code

#!/usr/bin/env Rscript 1
########## Airline script with timing ########## 2
Load utils package 3
if(require("utils")){ 4
 print("utils is loaded correctly") 5
} else { 6
 print("trying to install utils") 7
 install.packages("utils") 8
 if(require(utils)){ 9
 print("utils installed and loaded") 10
 } else { 11
 stop("could not install utils") 12
 } 13
} 14
Load stats package 15
if(require("stats")){ 16
 print("stats is loaded correctly") 17
} else { 18
 print("trying to install stats") 19
 install.packages("stats") 20
 if(require(doRNG)){ 21
 print("stats installed and loaded") 22
 } else { 23
 stop("could not install stats") 24
 } 25
} 26
Load randomForest package 27
if(require("randomForest")){ 28
 print("randomForest is loaded correctly") 29
} else { 30
 print("trying to install randomForest") 31
 install.packages("randomForest") 32
 if(require(randomForest)){ 33
 print("randomForest installed and loaded") 34
 } else { 35
 stop("could not install randomForest") 36
 } 37
} 38
Load R.utils package 39
if(require("R.utils")){ 40
 print("R.utils is loaded correctly") 41
} else { 42
 print("trying to install R.utils") 43
 install.packages("R.utils") 44
 if(require(R.utils)){ 45
 print("R.utils installed and loaded") 46
 } else { 47

24

 stop("could not install R.utils") 48
 } 49
} 50
Retrieve command line argument in the configuration file and 51
increment as needed. Count chunks starting at 0, each node in the 52
usu-em partition has 32 cores. 53
chunk = 0 54
arg <- as.numeric(cmdArgs()) + 1 + 32*chunk 55
arg 56
if(arg>312)stop("All done with loops") 57
 58
Read 2008.csv in and clean up 59
fileIn = "/uufs/chpc.utah.edu/common/home/u6009697/Research/2008.csv" 60
fileInColumns = c("NULL", rep("integer", 7), rep("NULL", 3), 61

rep("integer", 5), "NULL", "NULL", rep("integer", 62
3), rep("NULL", 8)) 63

data <- read.csv(fileIn, colClasses = fileInColumns) 64
Ignore flights that got completely canceled or diverted. 65
data <- data[complete.cases(data),] 66
Create response variable, call it a factor variable to force it to 67
do classification 68
data.late15 <- as.factor(data$ArrDelay >= 15) 69
data <- data[,-11] 70
 71
 72
class.sum=function(truth,predicted){ 73
 xt=table(truth,round(predicted+0.000001)) 74
 pcc=sum(diag(xt))/sum(xt) 75
 spec=xt[1,1]/sum(xt[1,]) 76
 sens=xt[2,2]/sum(xt[2,]) 77
 return(c(PCC = pcc, Specificity = spec, Sensitivity = sens)) 78
} 79
 80
my_rf() is a wrapper for randomForest() and returns a data.frame of 81
accuracy of the model generated and 82
my_rf <- function(input=data, output=data.late15, maxnodes, mtry){ 83
 timer <- proc.time() 84
 temp <- randomForest(x=input, y=output, ntree=500, replace=FALSE, 85
 sampsize=.05*nrow(input), keep.forest=FALSE, 86
 maxnodes=maxnodes, mtry=mtry) 87
 timer <- proc.time() - timer 88
 accuracy <- class.sum(as.numeric(output), 89
 as.numeric(temp$predicted)) 90
 return(data.frame(mtry=temp$mtry, 91
 maxnodes=maxnodes, 92
 sampsizePercent=5, 93
 ntree=temp$ntree, 94
 error.rate=1-accuracy[1], 95
 false.negative=1-accuracy[2], 96
 false.positive=1-accuracy[3], 97
 time = timer[3], 98
 row.names=NULL)) 99

25

} 100
 101
Generate the list of model arguments 102
mtry <- c(3:14) 103
maxnodes <- c(2,3,4,5,6,8,10,14,18,22,26,30,60,100,200,300,400,500, 104

1000,2000,3000,4000,5000,10000,15000,20000) 105
loops <- expand.grid(mtry=mtry, maxnodes=maxnodes) 106
 107
loops[arg,] 108
 109
set.seed(925) 110
result <- my_rf(input = data 111
 , output = data.late15 112
 , maxnodes = loops$maxnodes[arg] 113
 , mtry = loops$mtry[arg] 114
) 115
 116
fileOut=paste0("/uufs/chpc.utah.edu/common/home/u6009697/Research/Resu117

lts/test_result", arg, ".csv") 118
write.csv(result, file=fileOut, row.names=FALSE)119

26

A.2. Configuration File

#!/bin/bash 1
 2
NOTE: 3
EXE : rwapper.sh 4
TASK_ID : Id of the task 5
SCRATCH_DIR : EACH task has its own scratch directory 6
SCRIPT_DIR : Script is identical for each task => Same directory 7
for ALL tasks 8
OUT_DIR : EACH task has its own output directory 9
 10
Retrieve variable from the command line 11
START_DIR=$PWD 12
EXE=$0 13
TASK_ID=$1 14
SCRATCH_DIR=$2 15
SCRIPT_DIR=$3 16
OUT_DIR=$4 17
 18
if ["$#" -ne 4] ; then 19
 echo " ERROR: Command line needs 4 parameters" 20
 echo " Current arg list: $@" 21
else 22
 echo " TaskID:$TASK_ID started at `date`" 23
 mkdir -p $SCRATCH_DIR 24
 cd $SCRATCH_DIR 25
 # Copy content SCRIPT_DIR to SCRATCH_DIR 26
 cp -pR $SCRIPT_DIR/* . 27
 Rscript airlinescript.R $TASK_ID > $TASK_ID.out 2>&1 28
 29
 # Copy results back to OUT_DIR 30
 mkdir -p $OUT_DIR 31
 cp -pR * $OUT_DIR 32
 cd $START_DIR 33
 rm -rf $SCRATCH_DIR 34
 echo " TaskID:$TASK_ID ended at `date`" 35
fi36

27

A.3. SLURM Batch File

#!/bin/bash 1
#SBATCH --time=08:00:00 2
#SBATCH --nodes=1 3
 4
#SBATCH --mail-type=FAIL,BEGIN,END 5
#SBATCH --mail-user=willis.barton@aggiemail.usu.edu 6
#SBATCH -o out.%j 7
#SBATCH -e err.%j 8
 9
#SBATCH --account=usu-em 10
#SBATCH --partition=usu-em 11
 12
#SBATCH --job-name=airline 13
 14
Job Parameters 15
export EXE=./rwrapper.sh 16
export WORK_DIR=~/Research 17
export SCRATCH_DIR=/scratch/local/$SLURM_JOBID 18
export SCRIPT_DIR=$WORK_DIR/RFiles 19
export OUT_DIR=$WORK_DIR/`echo $UUFSCELL | cut -b1-4`/$SLURM_JOBID 20
 21
Load R (version 3.2.3) 22
module load R/3.2.3.omp 23
 24
Run an array of serial jobs 25
export OMP_NUM_THREADS=1 26
 27
echo " Calculation started at:`date`" 28
echo " #$SLURM_TASKS_PER_NODE cores detected on `hostname`" 29
 30
Create the my.config.$SLURM_JOBID file on the fly 31
for ((i=0; i < $SLURM_TASKS_PER_NODE ; i++)); \ 32
 do echo $i $EXE $i $SCRATCH_DIR/$i $SCRIPT_DIR $OUT_DIR/$i ; \ 33
done > my.config.$UUFSCELL.$SLURM_JOBID 34
 35
Running a task on each core 36
cd $WORK_DIR 37
srun --multi-prog my.config.$UUFSCELL.$SLURM_JOBID 38
 39
Clean-up the root scratch dir 40
rm -rf $SCRATCH_DIR 41
 42
echo " Calculation ended at:`date`" 43

	Tutorial for Using the Center for High Performance Computing at The University of Utah and an example using Random Forest
	Recommended Citation

	tmp.1481938685.pdf.BJxyD

