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ABSTRACT 

Tutorial for Using the Center for High Performance Computing at The  

University of Utah and an example using Random Forest  

by 

Stephen Willis Barton, Master of Science 

Utah State University, 2016 

Major Professor: Dr. Adele Cutler 

Department: Mathematics and Statistics 

Random Forests are very memory intensive machine learning algorithms and most computers 

would fail at building models from datasets with millions of observations. Using the Center for High 

Performance Computing (CHPC) at the University of Utah and an airline on-time arrival dataset with 7 

million observations from the U.S. Department of Transportation Bureau of Transportation Statistics we 

built 316 models by adjusting the depth of the trees and randomness of each forest and compared the 

accuracy and time each took. Using this dataset we discovered that substantial restrictions to the size of 

trees, observations allowed for each tree, and variables allowed for each split have little effect on 

accuracy but improve computation time by an order of magnitude.  

Becoming familiar with the CHPC is significantly easier with the included tutorial at the end of 

the paper. 

(32 pages)  
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1. INTRODUCTION 

Random Forests (Breiman 2001) are standard tools for classification, in part because they work 

quite well “right out of the box”. The idea is to fit a forest of binary trees similar to those described in 

Breiman et al. (1984). However, at each node, instead of searching for the best possible split among all 

predictors, the search is done over a small random sample of predictors. Each tree is grown on a 

bootstrap sample of the data and predictions are obtained by passing a new observation down each tree 

and allowing the trees to vote for the predicted class of the new observation.  

For classification, there are three tuning parameters the analyst must choose: 

1. The number of randomly sampled predictors for each split (mtry). 

2. The number of trees in the forest (ntree). 

3. The size of the trees (maxnodes). 

The number of trees is usually chosen to be as large as feasible because it is well known that 

increasing the number of trees will not cause the predictions to deteriorate but rather become more 

robust. The size of the trees is usually chosen to be as large as possible by growing each tree until the 

terminal nodes can not be split (either they are all from the same class or they all have identical 

predictor variables at the node). Using these two default choices, the only tuning parameter of any real 

concern is the number of randomly selected predictors at each node. 

Random Forest is an example of “embarrassingly parallel” algorithms. In the traditional parallel 

computing paradigm, the data could be sent to a number of powerful machines which would each grow 

trees on the data. Finally, the trees would be combined to form a forest.  
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However, Random Forests are not easily adapted to today’s Big Data world. To understand why 

it’s important to understand how current computing environments use commodity machines to operate 

on Big Data. Commodity machines are low-cost computers that are housed in huge data centers. They 

regularly fail and are replaced. Current Big Data methodology breaks a large data set into small subsets 

and sends each subset to 3 or 4 commodity machines. In this way, the data are distributed over 

thousands of commodity machines, but each commodity machine has access to only a small subset of 

the data. The subsets are sent to 3 or 4 commodity machines to help reduce the chance that data will be 

lost due to failure. Each commodity machine works only on the piece of data it is given, and results are 

combined centrally. Much of the current research in statistical computing for Big Data has focused on 

how to compute standard statistical estimates such as regression coefficients when we combine results 

from the distributed framework.  

Random Forests face two main challenges in using commodity machines. The first is that each 

tree is grown on a bootstrap sample of the data, which is as big as the original data. The second is that 

the trees are grown very deep, which requires a lot of memory.  

This project investigates modifications of the Random Forest methodology to make Big Data 

Random Forests feasible for commodity machines. In order to perform the experiments required for this 

work, it was necessary to use the University of Utah Center for High Performance Computing (CHPC) 

facility. A major part of this project is a tutorial to help other statisticians at USU use the facility.  

 

2. METHODOLOGY 

One of the main difficulties for Random Forests for Big Data is that the data are dispersed 

among many commodity servers. Instead of trying to fight this, we consider fitting each tree in the 
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forest to a small subset of the data instead of bootstrapping. Ideally, the subsets would be random. 

Current Big Data implementations (e.g. Hadoop) do not guarantee randomness, but investigating this 

aspect is beyond the scope of this project. The second thing we explore is the effect of changing the tree 

size in the forest, and finally, we explore changing the value of the number of randomly selected 

predictors at each node.  

The R package randomForest (Liaw et al. 2002) was used to perform the experiments. The 

computations were not performed on commodity machines, but we simulated using them by sampling 

5% of the data at random, without replacement, for each tree on high-performance server CPUs. The 

number of trees was held constant at 500. 

 

3. AIRLINE DATA 

The focus of the 2009 Joint Statistical Meetings' Data Exposition poster session, jointly 

sponsored by the Graphics Section and Computing Section was on Airline on-time performance 

(http://stat-computing.org/dataexpo/2009/). The departure and arrival details of all commercial flights 

from 1987 to 2008 in the US were made available in yearly segments because of the size of the dataset: 

nearly 120 million flights. The goal was to illustrate a graphical summary of a research question left up to 

the participants. We use these data to compare different Random Forest parameters for predicting 

whether a flight will be at least 15 minutes late. 

The variables in the dataset (Table 1) describe flight details regarding departure time and 

airport, delays in departure and arrival and reasons for delays, time spent taxiing, and arrival time and 

airport. The 2008 data have 7,009,728 observations, with a file size of 657.5 Megabytes. There were 

154,699 flights that were either canceled or diverted and have been removed from the dataset for this 

http://stat-computing.org/dataexpo/2009/
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analysis. Airports, flight numbers, and tail numbers were also removed because they were categorical 

variables with hundreds of levels. The models were built on the following variables, ActualElapsedTime, 

AirTime, ArrTime, CRSArrTime, CRSDepTime, CRSElapsedTime, DayofMonth, DayOfWeek, DepDelay, 

DepTime, Distance, Month, TaxiIn, and TaxiOut. 

Variable Name Description Variable Name Description 

Year 1987-2008 DepDelay departure delay, in 

minutes 
Month 1-12 Origin origin IATA airport code 

DayofMonth 1-31 Dest destination IATA airport 

code 

DayOfWeek 1 (Monday) - 7 (Sunday) Distance in miles 
DepTime actual departure time 

(local, hhmm) 
TaxiIn taxi in time, in minutes 

CRSDepTime scheduled departure 

time (local, hhmm) 
TaxiOut taxi out time in minutes 

ArrTime actual arrival time (local, 

hhmm) 
Cancelled was the flight 

cancelled? 
CRSArrTime scheduled arrival time 

(local, hhmm) 
CancellationCode reason for cancellation 

(A = carrier, B = 

weather, C = NAS, D = 

security) 
UniqueCarrier unique carrier code Diverted 1 = yes, 0 = no 

FlightNum flight number CarrierDelay in minutes 
TailNum plane tail number WeatherDelay in minutes 
ActualElapsedTime in minutes NASDelay in minutes 
Table 1 Variables in airline dataset and descriptions 

4. EXPERIMENTS 

4.1.  Predicting Late Flights Using Subset of 2008 Data With 5% Sample Size 

Our initial investigation was to determine the accuracy of smaller and more constrained trees on 

predicting flights with delays of 15 or more minutes. For classification problems such as this one, the 

default mtry, or the number of variables randomly sampled as candidates at each split, is the square 

root of the number of predictors, rounded down; in this experiment, with 14 predictor variables the 
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algorithm randomly samples three of them. These models were restricted to a randomly selected subset 

of size one million to investigate the effect that mtry and maxnodes have on the error rate with such 

constraints. Figure 1 summarizes the results of 120 models. The most interesting observation was the 

immediate drop in error rate when mtry was increased from 6 to 7 variables with maxnodes=3. The 

disparity disappears by increasing the size of the trees by one node. More generally, as maxnodes 

increases, the models generated by mtry=3 take much longer to minimize error rate than those with 

higher mtry values. 

 

Figure 1 Maxnodes vs Error Rate with 5% sampling of subset of 1 million observations; log scale on horizontal axis 

Using Subset of 2008 Data and 5% Sampling 
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4.2.  Predicting Late Flights Using All of the 2008 Data and 5% Sample Size 

Extending the previous experiment to the whole year’s dataset was much more complicated 

than simply changing the input data frame and response vector because of the size of the data and the 

amount of time required in computation. This experiment and the following one were performed 

through the Center for High Performance Computing at The University of Utah. The results of 312 

models are summarized in figure 2. 

The phenomenon between mtry=6 and mtry=7 from the earlier experiment seems to have 

shifted to between mtry=7 and mtry=8. More models were built and it is even more apparent using the 

whole year as shown in figure 2 the high volatility in the forests with smaller trees. After increasing the 

maximum number of nodes to at least ten the models become more stable. This is consistent with the 

previous experiment (fig. 1). 
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Figure 2 Maxnodes vs Error Rate with 5% sampling on full dataset; log scale on horizontal axis 

 

4.3.  Repeated Model Building 

The strange pattern generated from the models with small trees and a lower number of mtry 

variables in Fig. 2 interested me. I therefore performed several repetitions of models with maxnodes 

less than 30 to determine if the oddity was persistent or based on the stochastic nature of the random 

forest algorithm. Figure 3 summarizes the results  after five repetitions of each model showing the 95% 

confidence interval of the mean error rate. Notice how the high variability in the smallest (maxnodes=2) 
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mtry=7 model could possibly explain the phenomenon from the previous experiments’ results because 

of the wide range of error rates produced by the random forest models. 

 

Figure 3 Maxnodes vs Error Rate with mean and 95% confidence interval 

4.4. Random Forest Performance 

Random forests are an example of an embarrassingly parallel algorithm because very little is 

required to distribute the workload across cores and nodes. One method of taking advantage of random 

forests’ easily parallelizable algorithm is by dispersing the tree growing phase. Tree growth is done on 

bootstrap samples of the data and trees are constructed independently. The randomForest package 
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includes a function to combine several trees or forests into one larger forest object thereby allowing 

multiple cores to build a forest.  

I did not implement this method of forest building, however. I built whole forests on single cores 

and I took advantage of the multitude of cores and nodes at the CHPC to reduce the physical time 

required. The 312 models built took over 584 hours of total CPU time to complete. However, these were 

not built in serial; each node I used contained 32 cores so I ran 10 jobs simultaneously. The longest job 

took a total elapsed time of 3.25 hours. 

The following four models were built one at a time using the CHPC. I grew them to their full depth.  

A model built using the one million observation subset and using 5% sampling from the one million 

observation subset took 7.75 minutes with an error rate of 4.85%. A similar model built using bootstrap 

sampling took 75 minutes with an error rate of 2.78%. Building a model using the full seven million 

observation dataset and 5% sampling took 70.33 minutes and produced an error rate of 3.25%. A 

random forest model with all default arguments would have taken over 10 hours if it had finished.  
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5. CHPC TUTORIAL  

Your Principal Investigator (PI, usually your major professor) will need to request access for you, 

after which you will be given a uNID and can sign up for an account with CHPC. For further information 

on topics not covered in this tutorial go to chpc.utah.edu. Three pieces of software are required for this 

tutorial—a virtual private network client, an interactive GUI, and a program for transferring files. 

5.1.  Virtual Private Network 

Use “Cisco AnyConnect Secure Mobility Client” application to connect to vpnaccess.utah.edu using 

your uNID and password in order to start a virtual private network (VPN), as in Fig. 4. 

 

Figure 4 The Cisco AnyConnect Secure Mobility Client 

On a Windows machine, the image in Fig. 5 will appear on your screen just above the taskbar 

when successfully connected. 

 

Figure 5 Confirmation of secure connection 

If you don’t have the Client, using a browser log on to vpnaccess.utah.edu, click on “Start 

AnyConnect”. The web app will detect your browser and operating system, attempt to automatically 

https://www.chpc.utah.edu/
file:///C:/Users/Willis/Dropbox/Utah%20State%20University/03%20Fall%202015/STAT%206970%20Thesis/Research/vpnaccess.utah.edu
file:///C:/Users/Willis/Dropbox/Utah%20State%20University/03%20Fall%202015/STAT%206970%20Thesis/Research/vpnaccess.utah.edu
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install the client, and start a connection (see Fig.6). Depending on your browser you may need to 

manually download the VPN client. 

 

Figure 6 CISCO's WebLaunch platform to download the client and automatically connect 

Note that beginning 12/28/16, you will be required to use two-factor authentication. Visit 

http://it.utah.edu/2fa/#get-started to enroll. It is recommended that you register a mobile phone as 

your authentication device. There are apps for smart phones and tablets and you can get an automated 

phone call if you don’t have either of those.  Search for and download the Duo Mobile app in your 

phone’s app store. Follow the onscreen instructions to register the phone. There are excellent step by 

step videos on the website for registering as well as logging in. Visit http://it.utah.edu/2fa/#training to 

view those videos.  

5.2. Transferring Files 

http://it.utah.edu/2fa/#get-started
http://it.utah.edu/2fa/#training
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WinSCP is a simple click-and-drag application to transfer files from your own computer to a CHPC 

server. Direct your browser to https://winscp.net/eng/download.php, select either the full installation 

or a portable executable, and then either install or unzip it. Before running the program, follow the 

procedure to start a VPN to the University of Utah’s network (see section 5.1 above). After opening the 

application you will be prompted for a host name, user name, and password. Again, if you are using the 

ember cluster, use ember.chpc.utah.edu in the host name, and your own uNID and password, as in 

Figure 7. 

 

Figure 7 Starting a new session with WinSCP 

Once you are connected you have the ability to click and drag files from your computer to the 

remote drive. If you have written files on a Windows machine you will need to use the following 

command dos2unix [filename] to read it inside of a Linux environment. If you don’t need the 

https://winscp.net/eng/download.php
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interactive GUI you can open a session in PuTTY from WinSCP by clicking on the ribbon button at the top 

of the application, as in Figure 8.  

 

Figure 8 Click on the PuTTY button to open a terminal 

 Files in your directory on the CHPC server are not backed up. Make sure to have copies on your 

own machine.  

5.3.  Interactive GUI 

An interactive graphical user interface is useful for those who are unfamiliar with command line 

terminals. To install FastX2, in a browser go to http://ember1.chpc.utah.edu:3000 and click on the link 

labeled Looking for the desktop client? You can follow the CHPC instructions on their documentation 

website https://www.chpc.utah.edu/documentation/software/fastx2.php. 

Once installed and opened, you can create a new SSH connection by clicking on the plus symbol in 

the upper right corner of the program (see Figure 9).  

  

Figure 9 FastX2 connection list before and after adding a connection 

http://ember1.chpc.utah.edu:3000/
https://www.chpc.utah.edu/documentation/software/fastx2.php
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USU has a partition on the Ember cluster, and therefore, I am using the Ember cluster for my 

tutorial. You must give the connection a name, but what you call it is unimportant. The Host field needs 

to be ember.chpc.utah.edu or the name of the cluster you want to use if it isn’t Ember (see Figure 10). 

 

Figure 10 Create a new FastX2 SSH connection 

FastX2 will create another window where you can start a session (see Figure 11). 

 

Figure 11 Connection awaiting a session 
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Start a new session by clicking on the plus icon in the upper right corner and selecting one of the 

interfaces (see Figure 12), I prefer GNOME because of its familiar look and feel. Once you select the 

desired one the command and window mode prompts will automatically fill in and you can click on OK.  

 

Figure 12 Configure new session 

Clicking OK in the dialog box (see Figure 12) will begin a session with a virtual desktop (see 

Figure 14) where you have a familiar look and feel and can access the terminal to open RStudio, submit 

batches to the cluster through the Simple Linux Utility for Resource Management (Slurm) job scheduler, 

and access the Internet. Figure 13 shows a connection with an active session.  
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Figure 13 Connection with active session 

 

Figure 14 Virtual Desktop with the path to open a terminal window highlighted 
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You can open RStudio with shell commands within a terminal as shown in Figure 15. Remember 

the terminal is case sensitive. 

 

Figure 15 Commands to open RStudio 

5.4. Submitting Batch Scripts 

The computing power of the CHPC is best utilized by the compute nodes. Simply executing code on 

the virtual desktop in the interactive node will be only comparable to your own machine (see Figure 16).  

 
Figure 16 Basic flowchart showing structure of clusters 

Interactive 

Node 

(single core) 

Slurm 
Job Scheduler 

Compute Nodes 

Multicore 

nodes 

are 

fast 
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5.4.1. Dummy Example of Slurm 

Simple Linux Utility for Resource Management, or Slurm, is a workload management application that 

CHPC uses to schedule jobs for the clusters and requires three files to run a batch: 

 rscript.R - R script that holds all of the R commands 

 my.conf - file that holds the command line arguments 

 test.slurm - batch file that tells SLURM how to run the commands 

The following is an example rscript.R 

#!/usr/bin/env Rscript  

library("R.utils") 

 

sayHello <- function(){ 

   print('hello') 

} 

 

args <- cmdArgs() 

cat("User command-line arguments used when invoking R:\n") 

cat(str(args)) 

 

cat("\nInvoking sayhello\n") 

sayHello() 

Make note that you must load every library you wish to use. Furthermore, cmdArgs() is a very 

useful function for reading arguments from the command line into the script. It is not necessary, but 

makes it possible for incrementing through an index or a vector of parameters, for example, without 

needing to change the code for each repetition. 

The following is an example configuration file, my.conf 

0  Rscript /uufs/chpc.utah.edu/common/home/u6009697/R_Test/rscript.R 1 2 

1  Rscript /uufs/chpc.utah.edu/common/home/u6009697/R_Test/rscript.R 21 31 

Each line in my.conf is its own separate command line. Each of these lines runs on a separate 

core of the node on the partition that you pass it to. The USU partition (usu-em) consists of 16 nodes 
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with 32 cores per node. This means you can have up to 32 lines in the my.conf file if you want to use this 

partition. The my.conf file has four components per line: 

 Number of the line - This is a number from 0-31; start with 0 and progressively work your way up 

 Rscript command - This tells it to run Rscript on the file specified in the path that follows 

 Directory path - This must be the full path, not just the path from your home directory 

 Arguments - These are the arguments you would type into the command line after Rscript if you 

were working on the command line in your home directory. It includes any arguments that you may 

need to pass to the script. In this example I am passing two arguments per line. The script reads 

these in to a list object called args 

The following is an example batch file, test.slurm

#!/bin/bash 1 
#SBATCH --job-name=myR-test 2 
#SBATCH --time=00:30:00       3 
#SBATCH --nodes=1            4 
#SBATCH --ntasks-per-node=2   5 
 6 
#SBATCH -o  out.%j  7 
#SBATCH -e  err.%j  8 
 9 
#SBATCH --mail-type=FAIL,BEGIN,END 10 
#SBATCH --mail-user=willis.barton@aggiemail.usu.edu 11 
 12 
#SBATCH --account=usu-em 13 
#SBATCH --partition=usu-em 14 
 15 
module load R/3.2.3.omp 16 
srun --multi-prog my.conf 17 

This batch file (test.slurm) holds the commands that tell Slurm what to do. The majority of the file 

tells Slurm how to set up the run. All of the lines with a # in front are commands that are needed. If you 

want to change these contact CHPC to make sure you get it right. You can email them your file and they 

can proof-read it for you.  
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On line 2 is the name of the job. Line 3 contains the upper limit approximation of the time the 

job is expect to take, there is a hard limit of 72 hours on general cluster nodes. Identify the number of 

tasks in your configuration file on line 5. Lines 7 and 8 will generate output and error files with the 

names out.[jobID] and err.[jobID], the output file will contain anything in the script that is written to the 

console and the error file will contain any warning messages and error messages. If you wish to receive 

an email when your job has started, completed, or failed include lines 10 and 11 with your email 

address. You will get an email with the subject line identifying what action has been taken and relevant 

time stamps. For using the USU partition include lines 13-14. Line 16 identifies the application you will 

be using. Finally the command   srun --multi-prog my.conf on line 17 tells Slurm to run the 

command lines in the my.conf file. The --multi-prog command tells it that there will be multiple 

calls running at the same time. Go to https://www.chpc.utah.edu/documentation/software/slurm.php 

for more documentation on Slurm. Once your files are ready to go send them to SLURM with the 

following command in the terminal:   sbatch test.slurm 

Rscript Called by 

Configuration 

File 

containing 
arguments 

Batch file 

Sent to 

compute 

nodes by 

sbatch test.slurm 

https://www.chpc.utah.edu/documentation/software/slurm.php
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 After submitting the batch you can exit the terminal session and/or close your virtual desktop 

and the job will queue until it begins. If you indicated you want emails, you’ll receive notification of 

when it started and the time it spent in the job queue. When it ends, you’ll receive an additional 

notification with the exit status and elapsed time. 

5.4.2. Actual Random Forest example using Slurm 

The code used in my second experiment (see section 4.2) is contained in A.1R Code. It expects one 

command line argument passed from the configuration file that is dynamically written to take advantage 

of the total number of cores on a node (see A.2). This is helpful if I weren’t using the USU partition as 

there are nodes with 8, 16, 24, or other numbers of cores. And finally, the batch file in A.3 creates a 

working directory with copies of the script and data, and then creates and runs the configuration file. 

For each job of the 10 jobs, I incremented the chunk object in line 54 in A.1 by one to cycle through each 

group of 32 models. 
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APPENDIX 

A.1.  R Code 

#!/usr/bin/env Rscript  1 
########## Airline script with timing ##########  2 
# Load utils package 3 
if(require("utils")){ 4 
  print("utils is loaded correctly") 5 
} else { 6 
  print("trying to install utils") 7 
  install.packages("utils") 8 
  if(require(utils)){ 9 
    print("utils installed and loaded") 10 
  } else { 11 
    stop("could not install utils") 12 
  } 13 
} 14 
# Load stats package 15 
if(require("stats")){ 16 
  print("stats is loaded correctly") 17 
} else { 18 
  print("trying to install stats") 19 
  install.packages("stats") 20 
  if(require(doRNG)){ 21 
    print("stats installed and loaded") 22 
  } else { 23 
    stop("could not install stats") 24 
  } 25 
} 26 
# Load randomForest package 27 
if(require("randomForest")){ 28 
  print("randomForest is loaded correctly") 29 
} else { 30 
  print("trying to install randomForest") 31 
  install.packages("randomForest") 32 
  if(require(randomForest)){ 33 
    print("randomForest installed and loaded") 34 
  } else { 35 
    stop("could not install randomForest") 36 
  } 37 
} 38 
# Load R.utils package 39 
if(require("R.utils")){ 40 
  print("R.utils is loaded correctly") 41 
} else { 42 
  print("trying to install R.utils") 43 
  install.packages("R.utils") 44 
  if(require(R.utils)){ 45 
    print("R.utils installed and loaded") 46 
  } else { 47 
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    stop("could not install R.utils") 48 
  } 49 
} 50 
# Retrieve command line argument in the configuration file and 51 
# increment as needed. Count chunks starting at 0, each node in the  52 
# usu-em partition has 32 cores. 53 
chunk = 0 54 
arg <- as.numeric(cmdArgs()) + 1 + 32*chunk 55 
arg 56 
if(arg>312)stop("All done with loops") 57 
 58 
# Read 2008.csv in and clean up 59 
fileIn = "/uufs/chpc.utah.edu/common/home/u6009697/Research/2008.csv" 60 
fileInColumns = c("NULL", rep("integer", 7), rep("NULL", 3), 61 

rep("integer", 5), "NULL", "NULL", rep("integer", 62 
3), rep("NULL", 8)) 63 

data <- read.csv(fileIn, colClasses = fileInColumns) 64 
# Ignore flights that got completely canceled or diverted. 65 
data <- data[complete.cases(data),] 66 
# Create response variable, call it a factor variable to force it to 67 
# do classification 68 
data.late15 <- as.factor(data$ArrDelay >= 15) 69 
data <- data[,-11] 70 
 71 
 72 
class.sum=function(truth,predicted){ 73 
  xt=table(truth,round(predicted+0.000001)) 74 
  pcc=sum(diag(xt))/sum(xt) 75 
  spec=xt[1,1]/sum(xt[1,]) 76 
  sens=xt[2,2]/sum(xt[2,]) 77 
  return(c(PCC = pcc, Specificity = spec, Sensitivity = sens)) 78 
} 79 
 80 
# my_rf() is a wrapper for randomForest() and returns a data.frame of  81 
# accuracy of the model generated and  82 
my_rf <- function(input=data, output=data.late15, maxnodes, mtry){ 83 
  timer <- proc.time() 84 
  temp <- randomForest(x=input, y=output, ntree=500, replace=FALSE, 85 
                       sampsize=.05*nrow(input), keep.forest=FALSE, 86 
                       maxnodes=maxnodes, mtry=mtry) 87 
  timer <- proc.time() - timer 88 
  accuracy <- class.sum(as.numeric(output),  89 
                        as.numeric(temp$predicted)) 90 
  return(data.frame(mtry=temp$mtry,  91 
                    maxnodes=maxnodes,  92 
                    sampsizePercent=5,  93 
                    ntree=temp$ntree, 94 
                    error.rate=1-accuracy[1],  95 
                    false.negative=1-accuracy[2], 96 
                    false.positive=1-accuracy[3],  97 
                    time = timer[3], 98 
                    row.names=NULL)) 99 
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} 100 
 101 
# Generate the list of model arguments 102 
mtry <- c(3:14) 103 
maxnodes <- c(2,3,4,5,6,8,10,14,18,22,26,30,60,100,200,300,400,500, 104 

1000,2000,3000,4000,5000,10000,15000,20000) 105 
loops <- expand.grid(mtry=mtry, maxnodes=maxnodes) 106 
 107 
loops[arg,] 108 
 109 
set.seed(925) 110 
result <- my_rf(  input    = data 111 
                , output   = data.late15 112 
                , maxnodes = loops$maxnodes[arg] 113 
                , mtry     = loops$mtry[arg] 114 
                ) 115 
 116 
fileOut=paste0("/uufs/chpc.utah.edu/common/home/u6009697/Research/Resu117 

lts/test_result", arg, ".csv") 118 
write.csv(result, file=fileOut, row.names=FALSE)119 
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A.2. Configuration File 

#!/bin/bash  1 
 2 
# NOTE: 3 
#   EXE : rwapper.sh  4 
#   TASK_ID     : Id of the task 5 
#   SCRATCH_DIR : EACH task has its own scratch directory 6 
#   SCRIPT_DIR  : Script is identical for each task => Same directory 7 
for ALL tasks 8 
#   OUT_DIR     : EACH task has its own output directory 9 
 10 
# Retrieve variable from the command line 11 
START_DIR=$PWD 12 
EXE=$0 13 
TASK_ID=$1 14 
SCRATCH_DIR=$2 15 
SCRIPT_DIR=$3 16 
OUT_DIR=$4 17 
 18 
if [ "$#" -ne 4 ] ; then 19 
     echo "  ERROR: Command line needs 4 parameters" 20 
     echo "  Current arg list: $@" 21 
else 22 
     echo "  TaskID:$TASK_ID started at `date`" 23 
     mkdir -p $SCRATCH_DIR   24 
     cd $SCRATCH_DIR 25 
     # Copy content SCRIPT_DIR to SCRATCH_DIR 26 
     cp -pR $SCRIPT_DIR/* .  27 
     Rscript airlinescript.R $TASK_ID > $TASK_ID.out 2>&1 28 
 29 
     # Copy results back to OUT_DIR 30 
     mkdir -p $OUT_DIR 31 
     cp -pR * $OUT_DIR 32 
     cd $START_DIR 33 
     rm -rf $SCRATCH_DIR 34 
     echo "  TaskID:$TASK_ID ended at `date`" 35 
fi36 
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A.3.  SLURM Batch File 

#!/bin/bash 1 
#SBATCH --time=08:00:00       2 
#SBATCH --nodes=1            3 
 4 
#SBATCH --mail-type=FAIL,BEGIN,END 5 
#SBATCH --mail-user=willis.barton@aggiemail.usu.edu 6 
#SBATCH -o out.%j  7 
#SBATCH -e err.%j 8 
 9 
#SBATCH --account=usu-em 10 
#SBATCH --partition=usu-em 11 
 12 
#SBATCH --job-name=airline 13 
 14 
# Job Parameters 15 
export EXE=./rwrapper.sh 16 
export WORK_DIR=~/Research 17 
export SCRATCH_DIR=/scratch/local/$SLURM_JOBID 18 
export SCRIPT_DIR=$WORK_DIR/RFiles 19 
export OUT_DIR=$WORK_DIR/`echo $UUFSCELL | cut -b1-4`/$SLURM_JOBID 20 
 21 
# Load R (version 3.2.3) 22 
module load R/3.2.3.omp 23 
 24 
# Run an array of serial jobs 25 
export OMP_NUM_THREADS=1 26 
 27 
echo " Calculation started at:`date`" 28 
echo " #$SLURM_TASKS_PER_NODE cores detected on `hostname`" 29 
 30 
# Create the my.config.$SLURM_JOBID file on the fly 31 
for (( i=0; i < $SLURM_TASKS_PER_NODE ; i++ )); \ 32 
   do echo $i $EXE $i $SCRATCH_DIR/$i $SCRIPT_DIR $OUT_DIR/$i ; \ 33 
done > my.config.$UUFSCELL.$SLURM_JOBID 34 
 35 
# Running a task on each core 36 
cd $WORK_DIR 37 
srun --multi-prog my.config.$UUFSCELL.$SLURM_JOBID 38 
 39 
# Clean-up the root scratch dir 40 
rm -rf $SCRATCH_DIR 41 
 42 
echo "  Calculation ended at:`date`" 43 
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