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ABSTRACT

Essays on Population Aging and Social Security in the U.S.

by

Shantanu Bagchi, Doctor of Philosophy

Utah State University, 2011

Major Professor: Dr. Frank N. Caliendo
Department: Economics and Finance

Over the past few decades, falling birth rates and increasing life expectancies have

threatened the viability of social security programs all across the Organisation for Economic

Co-operation and Development (OECD). In this dissertation, I attempt to shed some light

on the extent of the crisis that the social security program in the United States (U.S.)

currently faces, and I also recommend one possible reform policy. In the first essay, I

provide an alternative estimate of the impact of population aging on the future social

security benefits in the U.S., while accounting for the household-level and macroeconomic

adjustments to population aging. Using a general equilibrium life-cycle consumption model

with endogenous retirement and incomplete private annuity markets, I find that once these

adjustments are accounted for, population aging in the U.S. is likely to cause a significantly

smaller decline in the future benefits as compared to the commonly reported estimates

that suggest a 25-33% decline. I also find that ignoring either the household retirement

mechanism or the aggregate factor price adjustment mechanism could lead to a roughly

comparable overestimation of the decline in the future retirement benefits. In the second

essay, I ask what should be the optimal or welfare-maximizing social security (OASI) tax

rate in the U.S. under such demographic developments. I examine this question using a
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heterogeneous-agent general equilibrium model of life-cycle consumption and labor supply,

where social security provides partial insurance against unfavorable efficiency realizations

that occur before the agents enter the model. I first calibrate the model such that the current

OASI tax rate in the U.S. maximizes social welfare under the current demographics, and

then I incorporate empirically reasonable population projections into the calibrated model.

Finally, I search for the tax rates that are optimal under such projections. I find that the

tax rates that maximize welfare under such projections are about 2 to 5 percentage points

higher than the current rate. I also find that a large part of the tax burden of population

aging is picked up by the households with relatively favorable efficiency realizations. Finally,

the model also predicts that population aging and the optimal tax response may imply a

decline in the projected retirement benefits, but of a magnitude smaller than when the tax

rate is held unchanged at the current level.

(109 pages)
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CHAPTER 1

INTRODUCTION

All across the Organisation for Economic Co-operation and Development (OECD), so-

cial security programs form an important component of national budgets. For example,

social security expenditures as percentage of GDP range from 20.9% in Sweden to 8.3% in

Australia, with an all-OECD average of roughly 16%.1 Even though there are significant

cross-country differences in the nature of financing, administration and generosity of social

security programs, a key determinant of their health is the underlying population structure.

Over the past few decades, falling birth rates and increasing life expectancies have threat-

ened the viability of social security programs all across the OECD. In this dissertation, I

attempt to shed some light on the extent of the crisis that the social security program in

the United States (U.S.) currently faces, and I also recommend one possible reform policy.

In the first essay, I provide an alternative estimate of the impact that population aging

in the U.S. is likely to have on the projected retirement benefits in the future. The U.S.

Social Security Administration (SSA), among others, reports actuarial estimates of the ex-

tent by which future retirement benefits will have to decline given the present unfunded

structure of the social security program. However, one simplifying characteristic of these

estimates is they do not account for the household-level and macroeconomic adjustments

that may be associated with population aging. I argue that accounting for such adjustments

is important, as household-level consumption-saving and retirement responses, and the as-

sociated factor price adjustments in general equilibrium may to lead to a natural increase

in the tax base of the social security program that the conventional estimates overlook.

Using a general equilibrium life-cycle consumption model with endogenous retirement and

1Source: OECD Historical Statistics.
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incomplete private annuity markets, I find that population aging in the U.S. is likely to lead

to a much smaller decline in the projected benefits, when compared to the commonly re-

ported estimates. I also find that ignoring either the household-level retirement mechanism

or the aggregate factor price adjustment mechanism could lead to a roughly comparable

overestimation of the social security crisis.

In the second essay, I adopt a normative perspective and examine the optimal or welfare-

maximizing social security reform in the U.S. under the future demographic projections. I

construct a heterogeneous-agent general equilibrium model of life-cycle consumption and

labor supply, where the source of heterogeneity is a productivity or efficiency realization

that occurs before the agents enter the model. In the model, an unfunded social security

program provides partial insurance against an unfavorable efficiency realization by paying

retirement benefits through a pro-poor rule. I calibrate the model such that the current

social security program in the U.S. maximizes welfare under the current demographics (i.e.

the optimal tax rate is equal to the current OASI tax rate in the U.S.), and then I introduce

empirically reasonable low-cost, intermediate and high-cost demographic shocks using data

from the 2009 OASDI Trustees Report. I find that the welfare-maximizing social security

tax rates under the future demographic projections are higher than the current rate: 12.5%,

13.9% and 15.5% under the low-cost, intermediate and high-cost shocks respectively. I also

find that households with different efficiency realizations respond asymmetrically to the the

demographic developments, and that a large part of the tax burden of population aging is

picked up by the households with relatively favorable efficiency realizations. Therefore, given

that the demographic shocks only have a small impact on the relatively poor households

who actually benefit from social security, the model predicts increases in the tax rate that

are relatively small compared to several other studies in pension reform under population

aging in the U.S.

The results from the two essays broadly suggest that population aging in the U.S.

may impose a significantly lesser burden on the social security program once the associ-

ated household-level and macroeconomic adjustments are accounted for, and also that the
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welfare-maximizing tax increases under population aging in the near future are likely to

be in the neighborhood of 2 to 5 percentage points. Sensitivity analysis of the results also

demonstrates that these findings are not an outcome of the specific model calibrations: I

find that the quantitative predictions of the respective models are roughly invariant to the

values of several underlying model parameters used in the simulations.

The rest of this dissertation is organized as follows. In Chapter 2, I present an alternative

estimate of the decline in the projected retirement benefits in the U.S. under population

aging. In Chapter 3, I identify the optimal or welfare-maximizing change in the current

social security tax rate under the future demographic in the U.S. Finally, in Chapter 4,

I outline some concluding remarks. Within each chapter, I break up the discussion into

sections that introduce the specific research question, describe the model being used to

answer the question at hand, outline the baseline calibration of the constructed model,

and then quantitatively investigate the question. I provide an appendix to each of the two

chapters 2 and 3, where I discuss the computational methods used in generating the results.

In an additional appendix for Chapter 3, I consider an extension of the basic model by

introducing a second role for social security: management of a pollution externality.
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CHAPTER 2

IS THE SOCIAL SECURITY CRISIS REALLY AS BAD AS WE THINK?

2.1 Introduction

Mitigating the effect of population aging on unfunded social security programs has been

a major policy concern in the developed world over the last few decades. Primarily driven

by lower birth rates and higher life expectancies, these demographic developments have

significantly strained pension programs all across the OECD. In the U.S., with the current

contribution rate, a direct or indirect reduction in the retirement benefits is required to

keep the social security program solvent under the projected future demographics. Feldstein

(2005) points out that keeping the payroll tax rate unchanged at the current level with the

present unfunded structure would require reducing benefits by almost 33% in the year 2075.

One difficulty with using actuarial estimates to measure the social security crisis is that

they ignore the household-level and macroeconomic adjustments associated with population

aging. There are at least two reasons why accounting for such adjustments is important:

first, if incomplete annuity markets prevent households from insuring against the risk of

out-living their assets, a higher life expectancy may stimulate private saving, and therefore

the aggregate capital stock and the wage rate. Second, a higher life expectancy may directly

increase the labor supply because there are more workers alive at any age, and also indirectly

because it may induce households to delay retirement. When the factor markets are cleared,

these effects may lead to an increase in the tax base of the social security program, which

implies that population aging may have a smaller impact on projected social security benefits

once these effects are accounted for.1

1It is useful to note that the Social Security Administration (SSA) uses actuarial estimates to measure
the crisis.



5

Economists have long emphasized the importance of studying pension reform in the

U.S. using models that account for these household-level and macroeconomic adjustments.

Notable studies in this area, such as Kotlikoff (1997), De Nardi et al. (1999), Nishiyama

and Smetters (2005) and Conesa and Garriga (2008a,b), have used large scale applied

general equilibrium models to examine different policy responses to the future demographic

projections. Moreover, the possible impact of a longer lifespan on a household’s retirement

choice is also well-known (Sheshinski, 1978). Given these facts, I make two contributions

in this paper. First, I provide an alternative estimate of the decline in projected retirement

benefits that accounts for these household-level and macroeconomic adjustments. Second, I

also show that the declines in the projected retirement benefits are roughly comparable when

only either the household retirement mechanism, or the factor price adjustment mechanism

is accounted for. This implies that ignoring either of them could lead to biased estimates

of the social security crisis in the U.S.

To achieve this, I begin by constructing an applied general equilibrium model with

incomplete annuity markets, in which life-cycle permanent income households face mortality

risk and optimally choose their consumption-saving paths and retirement ages. In the

model, unfunded social security insures households against mortality risk, and the factor

markets clear endogenously with perfectly competitive firms choosing capital and labor

inputs through profit maximization. Then, I calibrate the model to match some key features

of the U.S. economy and I quantitatively examine the decline in the projected retirement

benefits associated with population aging.

Understanding the effect of population aging on future social security benefits in the

U.S. is important from the perspective of policymaking, as it is a crucial determinant of

the increase in the contribution rate that may be needed to prevent the benefits from

declining. For example, Feldstein’s (2005) estimate of an increase in the Old-Age and

Survivors Insurance (OASI) tax rate from the current level of 10.6% to 15.7% in the year

2075 is based on the assumption that population aging would lead to a 33% reduction in

future benefits. Given that the current model predicts a smaller reduction in the future
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benefits, the predicted tax increase required to avert the crisis is also smaller: increasing

the social security tax rate from 10.6% to just 13.8% in the current model keeps projected

retirement benefits unchanged under population aging.

The rest of the paper is organized as follows: Section 2.2 introduces the applied general

equilibrium model, Section 2.4 describes the calibration procedure, Section 2.5 examines

the impact of population aging on future benefits, and Section 2.7 concludes.

2.2 The model

Consider a continuous time overlapping generations economy in which households are

identical in all respects but their date of birth (τ). The life cycle of a representative

household consists of two phases: work from date τ to τ + T and retirement from date

τ + T to τ + T̄ . Households face a finite probability Q(t − τ) of surviving up to any age

(t − τ), and they cannot insure against mortality risk because of the absence of private

annuity markets. Household income over the life cycle consists of wages net of taxes during

the work life, social security benefits past the eligibility age of Tr, interest income from

asset holdings and an accidental bequest from the deceased households. Period utility is a

function of consumption (c) as well as the fraction of period time endowment enjoyed in

leisure (l), and is given by

u(c, l) =


(cηl1−η)

1−σ

1−σ if σ 6= 1

ln
(
cηl1−η

)
if σ = 1

(2.1)

where η is the share of consumption in period utility and σ is the Inverse Elasticity of

Intertemporal Substitution (IEIS). The population grows exponentially at rate n and there

is labor augmenting technological progress at rate g per annum.

I assume that a representative household solves a two-step decision problem: it first

solves for the optimal consumption-saving plan corresponding to a given retirement age,

and then chooses the retirement age for which the discounted lifetime utility of the optimal

consumption plan is maximized. To focus exclusively on the extensive margin of the labor
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supply decision (i.e. whether or not to supply labor), I follow Ortiz (2009) and others

and assume that the household inelastically supplies a fraction (1− lW ) of its period time

endowment to the labor market during the work life. Formally, the optimal retirement age

of a household is given by

T ∗ = arg max V (T ; ·) T ≤ T̄ (2.2)

when V (T ; ·) is the solution value of the objective functional (for a given retirement age)

corresponding to the problem

max

∫ τ+T̄

τ
exp {−ρ(t− τ)}Q(t− τ)

{
c(t; τ)ηl(t; τ)1−η}1−σ

1− σ
dt (2.3)

subject to

c(t; τ) +
da(t; τ)

dt
= ra(t; τ) + y(t; τ) +B(t) (2.4)

y(t; τ) = (1− θ) (1− l(t; τ))w(t)e(t− τ) + Θ(t− τ − Tr)b(t) (2.5)

l(t; τ) =

 lW t ∈ [τ, τ + T ]

1 t ∈
(
τ + T, τ + T̄

] (2.6)

a(τ ; τ) = a(τ + T̄ ; τ) = 0 (2.7)

lW ∈ (0, 1)

where

Θ(x) =

 1 x > 0

0 x ≤ 0

is a step function, ρ is the discount rate, a(t; τ) is the asset holding at date t of a household

born at date τ , θ is the social security tax rate, e(t − τ) is an age-dependent efficiency

endowment, w(t) and r are respectively the wage rate and the rate of return, B(t) is the

accidental bequest, and b(t) is the social security benefit at date t.
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The government balances the social security budget every period, which implies that

the expected total tax revenues at date t equal the expected total benefits paid at date t

∫ T ∗

0
N(t− s)Q(s)θ (1− lW )w(t)e(s) ds =

∫ T̄

Tr

N(t− s)Q(s)b(t) ds (2.8)

where N(t−s) is the size of the cohort born at date (t−s). Equation (2.9) can be rearranged

and expressed as

b(t) = θw(t)

∫ T ∗0 N(t− s)Q(s) (1− lW ) e(s) ds∫ T̄
Tr
N(t− s)Q(s) ds

 (2.9)

where the box-bracketed term is the labor-to-retiree ratio (Re), which is endogenous in the

current model because of the household retirement choice. Also, note from (2.9) that with

exponential population growth, the labor-to-retiree ratio is time invariant.

Finally, the assets of the deceased households at date t are uniformly distributed over

the living population, which implies that the accidental bequest B(t) at date t satisfies

∫ T̄

0
N(t− s)Q(s)B(t) ds =

∫ T̄

0
N(t− s)Q(s)h(s) a(t; t− s) ds (2.10)

where

h(s) = − d

ds
lnQ(s) (2.11)

is the hazard rate of dying at age s. Aggregate capital and labor at date t are given by

K(t) =

∫ T̄

0
N(t− s)Q(s) a(t; t− s) ds (2.12)

L(t) =

∫ T ∗

0
N(t− s)Q(s) (1− lW ) e(s) ds (2.13)

I assume that aggregate production activity can be characterized by a Cobb-Douglas pro-
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duction function with inputs capital, labor, and a stock of technology A(t)

Y (t) = K(t)α (A(t)L(t))1−α (2.14)

where A(t) = A(0)egt, and α is the share of capital in total income. I also assume that

factor markets are perfectly competitive and equilibrate instantaneously, which implies

r = MPK − δ = α

[
K(t)

A(t)L(t)

]α−1

− δ (2.15)

w(t) = MPL = A(t)(1− α)

[
K(t)

A(t)L(t)

]α
(2.16)

where δ is the depreciation rate of physical capital. I define a stationary competitive equi-

librium in this framework by (i) a cross-sectional consumption profile {c(t; t− s)}T̄s=0, a

cross-sectional saving profile {a(t; t− s)}T̄s=0, and an optimal retirement age T ∗ that solves

the household’s optimization problem, (ii) an aggregate capital stock K(t), effective la-

bor supply A(t)L(t), and a labor-to-retiree ratio Re(t) that are consistent with household

behavior, (iii) factor prices r and w(t) that clear the respective markets, (iv) retirement

benefits b(t) that keep the budget of the social security program balanced, and (v) acci-

dental bequests B(t) that satisfy the bequest-balance condition (2.10). It is useful to note

that for this economy, along the steady state growth path aggregate output grows at rate

(n+g), the rate of return is time-invariant, and the wages and the accidental bequests grow

at rate g.

2.3 Solving the model

As described in the previous section, I assume that a representative household’s first-

step decision problem is to solve for the optimal consumption and saving plan for any

given retirement age, and the second-step is to solve for the retirement age for which the

discounted lifetime utility of the optimal consumption plan is maximized. The first-step

problem is a standard fixed-endpoint optimal control problem and can be solved using the
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Pontryagin Maximum Principle.2 The present value Hamiltonian for the problem is given

by

H = exp {−ρ(t− τ)}Q(t− τ)

{
c(t; τ)ηl(t; τ)1−η}1−σ

1− σ
+ψ(t; τ) [ra(t; τ) + y(t; τ) +B(t)− c(t; τ)] (2.17)

where ψ(t; τ) is the present value co-state variable. The first-order condition with respect

to consumption is given by

∂H
∂c(t; τ)

= exp {−ρ(t− τ)}Q(t− τ)ηc(t; τ)η(1−σ)−1l(t; τ)(1−η)(1−σ) − ψ(t; τ) = 0 (2.18)

and the law of motion of the co-state variable is given by

dψ(t; τ)

dt
= − ∂H

∂a(t; τ)
= −rψ(t; τ) (2.19)

The solution to the differential equation (2.19) is given by

ψ(t; τ) = ψ(τ ; τ)exp {−r(t− τ)} (2.20)

Using (2.20) in (2.18) yields

c(t; τ) =

[
ψ(τ ; τ)

ηQ(t− τ)l(t; τ)(1−η)(1−σ)

] 1
η(1−σ)−1

exp {gc(t− τ)} (2.21)

where gc = r−ρ
1+η(σ−1) . Also, note that

d

dt
[a(t; τ)exp {−r(t− τ)}] = [y(t; τ) +B(t)− c(t; τ)] exp {−r(t− τ)} (2.22)

2See Kamien and Schwartz (1992) for a detailed discussion of the Pontryagin Maximum Principle for
fixed-endpoint optimal control problems.
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Integrating both sides of (2.22) with respect to t yields

a(t; τ)exp {−r(t− τ)} =

∫ t

[y(s; τ) +B(s)− c(s; τ)] exp {−r(s− τ)} ds+ C1 (2.23)

where C1 is a constant of integration. Finally, using the boundary conditions (2.7) in (2.23)

yields ∫ τ+T̄

τ
[y(t; τ) +B(t)− c(t; τ)] exp {−r(t− τ)} dt = 0 (2.24)

which is simply the condition that for the life-cycle budget constraint to be satisfied, the

present value of consumption should equal the present value of income. Using (2.21) in

(2.24) and simplifying, the boundary value ψ(τ ; τ) can be pinned down as

ψ(τ ; τ) =

 ∫ τ+T̄
τ exp {−r(t− τ)} (y(t; τ) +B(t)) dt∫ τ+T̄

τ exp {(gc − r)(t− τ)}
(
ηQ(t− τ)l(t; τ)(1−η)(1−σ)

) 1
1+η(σ−1)

dt


η(1−σ)−1

(2.25)

As characterized in equation (2.6), for a given retirement age T the household’s labor supply

over the life-cycle is given by

l(t; τ) =

 lW t ∈ [τ, τ + T ]

1 t ∈
(
τ + T, τ + T̄

] (2.26)

Therefore, using (2.26) in (2.25), and then using (2.25) in (2.21) yields the optimal con-

sumption plan for a given retirement age T . This solves the first-step of the household’s

decision problem.

To solve the second-step of the household’s decision problem (i.e. finding the optimal

retirement age), I use the optimal consumption plan derived in the first step in the life-cycle

utility function in equation (2.3), and then solve for the retirement age for which the value

of life-cycle utility is maximized. However, because of the complex nature of the survival

probability function (which is usually estimated using a sixth or seventh order polynomial),

equation (2.25) and the value of life-cycle utility for a given retirement age do not have
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analytic closed form solutions. Therefore, I compute them numerically by approximating

the integrals using the trapezoidal method, and then I search over a grid for the optimal

retirement age. The detailed computational procedures are discussed in Appendix 2.8.

2.4 Baseline calibration

I parameterize the baseline stationary competitive equilibrium of the model using em-

pirical evidence from various sources. A population growth rate of n = 1% is consistent

with the U.S. demographic history, and I set the rate of technological progress to g = 1.56%,

which is the trend growth rate of per-capita income in the postwar U.S. economy (Bullard

and Feigenbaum, 2007). I assume that households enter the model at actual age 25, which

corresponds to the model age of zero. I obtain the survival probabilities from Feigenbaum’s

(2008) sextic fit to the mortality data in Arias (2004), which is given by

lnQ(s) = −0.01943039 +
(
−3.055× 10−4

)
s+

(
5.998× 10−6

)
s2

+
(
−3.279× 10−6

)
s3 +

(
−3.055× 10−8

)
s4 +

(
3.188× 10−9

)
s5

+
(
−5.199× 10−11

)
s6 (2.27)

where s represents household age. The 2001 U.S. Life Tables in Arias (2004) are reported

up to actual age 100, so I set the maximum model age to T̄ = 75. Also, I set the model

benefit eligibility age to Tr = 41, which corresponds to the current full retirement eligibility

age of 66 (for those born between 1943 and 1954) in the U.S. According to the 2001 Current

Population Survey (CPS), production workers in the U.S. on an average work for 34 hours

per week. Accounting for 8 hours per day as sleep time, this roughly implies that 30.36%

of the total weekly time endowment is spent in market work. Using this information, I set

the leisure share of total time endowment during work life to lW = 0.6964. I set the social

security tax rate to θ = 10.6%, which is equal to the current combined OASI tax rate in

the U.S.3 As the household’s age-dependent efficiency endowment is difficult to observe, I

3I abstract from the disability component as it is not used to finance retirement benefits.
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use normalized average cross-sectional hourly income data from the 2001 CPS as a proxy

for efficiency. The Bureau of Labor statistics (BLS) reports the average hourly earnings

of production workers in the discrete age intervals 25-34, 35-44, 45-54, 55-64, and 65 and

above. To use this data, I first use piecewise linear interpolation to obtain average hourly

earnings for all ages between 25-65, and then normalize the data such that efficiency at

actual age 25 is unity. As is well known in the literature, using hourly income to proxy

for efficiency can be problematic at higher ages because of the associated sample selection

effects. To account for this, I assume that age 65 onwards, efficiency declines at the same

rate as it declines before age 65. Finally, I fit a quartic polynomial to the interpolated data,

which gives

ln e(s) = −0.02829952 + (0.02410291) s+
(
−6.831× 10−4

)
s2

+
(
−2.2205× 10−6

)
s3 +

(
5.702× 10−8

)
s4 (2.28)

where s represents household age. The efficiency data from the 2001 CPS are plotted along

with the fitted polynomial in Figure 2.1.

The historically observed value of capital’s share in total income in U.S. ranges between

30-40%, so I set α = 0.35. Finally, I set t = 0 in all the computations and normalize the

initial stock of technology and the population to A(0) = N(0) = 1.

Once all the observable parameters have been assigned empirically reasonable values, I

calibrate the unobservable preference parameters ρ (discount rate), σ (IEIS) and η (share of

consumption in period utility) such that the model jointly matches a steady state capital-

output ratio of 2.5, an actual retirement age of 64, and a ratio of consumption to income

of 75%.4 Note that with these targets, the depreciation rate that is consistent with the

model’s steady state is δ = 0.0744.

The values for the unobservable parameters for which the model matches the data targets

are ρ = 0.016, σ = 3.2 and η = 0.332. Under these parameter values, the model generates

4The capital-output ratio and the consumption-income ratio targets are consistent with the larger macroe-
conomic literature, and the retirement age target is also consistent with the U.S. (Gendell, 1999, 2001).
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Figure 2.1: Efficiency data from the 2001 CPS along with the fitted quartic polynomial.

a steady state capital-output ratio of K/Y = 2.495, an optimal (actual) retirement age of

64.4, and a consumption to income ratio of C/Y = 75.1%. The equilibrium rate of return

from the capital stock is r = 0.0659, and the accidental bequest is B = 0.01.

2.5 The impact of population aging

To understand the quantitative importance of accounting for the household-level and

macroeconomic adjustments to population aging, the first step is to construct a future de-

mographic projection that generates a decline in the projected retirement benefits that is

consistent with the commonly reported estimates of the social security crisis. More specifi-

cally, I construct a demographic scenario such that the decline in model benefits (without

the household-level and the macroeconomic adjustments) matches the upper-bound esti-

mate of a 33% decline in benefits in the real world. To accomplish this, I first set the

population growth rate to n = 0.47%, and then I change the survival probability distri-

bution of the model such that holding household behavior, factor prices, and the social
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security tax rate constant at the baseline level, the model predicts a 33% decline in the

projected retirement benefits.5 Specifically, I augment the model survival probabilities with

an age-specific increment of the form

dQ(s) = γsµ (2.29)

where γ and µ are positive constants to be parameterized, and s represents household age.

Therefore, the projected survival probabilities are given by

Qp(s) = Q(s) + γsµ (2.30)

Note that these age-specific increments are consistent with the fact that old-age survivorship

in the U.S. has increased at a faster rate than young-age survivorship in the later half of the

twentieth century, making the population survival curve more rectangular (Arias, 2004).

With household behavior, factor prices, and the social security tax rate held fixed at

the baseline level, parameter values of γ = 0.0001 and µ = 1.553 lead to a 32.48% decline

in the projected retirement benefits. With these values, the model life expectancy increases

from 51.31 in the baseline calibration to 53.7 under the future projections, which implies

an increase in the actual life expectancy from age 76.31 to age 78.7. It is worth noting

that these values are very close to the average life expectancies for the years 2001 and 2075

respectively reported in the 2009 OASDI Trustees Report. The baseline and the projected

survival probabilities are plotted together in Figure 2.2.

5Note that studies published by the SSA identify smaller declines required in the projected retirement
benefits. For example, Goss (2006) reports that with no change in the current social security laws, about 70%
of currently scheduled OASI benefits would be payable in 2080 (implying a decline of 30%). In the 2009 Social
Security Trustees Report, the long-range actuarial estimates predict that tax revenues under the current laws
are sufficient to support expenditures at a level of 74% of scheduled benefits in 2083 (implying a decline
of 26%). My results (accounting for the household-level and macroeconomic adjustments to population
aging) continue to be quantitatively important when I consider an alternative demographic projection under
which the baseline decline in model benefits (without the household-level and macroeconomic adjustments)
matches the lower-bound estimate of a 25% decline. This suggests that constructing future demographic
projections that are consistent with smaller alternative estimates of the social security crisis simply amounts
to a re-scaling of the problem. Therefore, for the remaining part of the discussion I simply focus on the
quantitative results generated assuming a baseline decline of 33% in model benefits.
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Figure 2.2: Baseline and the projected survival probabilities.

It is also useful to note that with the above demographic projection, holding household

behavior and factor prices fixed at the baseline, a payroll tax rate of θ = 15.7% restores

the projected retirement benefits to their baseline level. This value is consistent with what

Feldstein (2005) reports to be necessary to prevent a decline in projected retirement benefits

in the year 2075.

The next step of the analysis is to compute the implied decline in the projected re-

tirement benefits when the household-level and macroeconomic adjustments to population

aging have been accounted for. To do this, I incorporate the constructed demographic pro-

jection in the baseline model and then compute a new stationary competitive equilibrium

in which both household consumption-saving and retirement, as well as the factor prices

respond to the demographic change. Also, to understand the relative importance of the

household retirement and the factor price adjustment mechanisms, I compute projected

retirement benefits under two situations: holding retirement fixed at the baseline level, but

allowing the consumption-saving and factor price adjustment mechanisms to respond to
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population aging, and holding the factor prices fixed at the baseline level, but allowing the

household retirement mechanism to respond to population aging. I label the four cases as

follows:

• Case 1: exogenous retirement, exogenous factor prices,

• Case 2: exogenous retirement, endogenous factor prices,

• Case 3: endogenous retirement, exogenous factor prices, and

• Case 4: endogenous retirement, endogenous factor prices.

The percentage decline in the projected retirement benefit at actual age 70 from the baseline

level for all the four cases are reported in Table 2.1. The following facts are clear from the

table. First, the impact of population aging on the projected retirement benefits is smallest

when both the household-level consumption-saving and retirement responses, as well as the

aggregate factor price adjustments are fully accounted for (Case 4). The percentage decline

in the projected benefits from the baseline level in this case is roughly 20%, which implies

that ignoring these adjustments could lead to an overestimation of the crisis by about 65%

(33/20 = 1.65). The two intermediate cases also provide some interesting insights into

how ignoring either of the two mechanisms leads to an overestimation of the decline in the

projected retirement benefits. On the one hand, holding retirement fixed at the baseline

level but allowing for the consumption-saving and factor price adjustment mechanisms (Case

2), population aging leads to a roughly 22% decline in the projected benefits. On the other

hand, allowing for the household-level retirement response but holding the factor prices

Table 2.1: The impact of population aging on the projected retirement benefits.

Decline from the baseline

Case 1 32.48%
Case 2 22.23%
Case 3 24.64%
Case 4 19.87%
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Table 2.2: Effect of population aging on household behavior and factor prices.

Baseline Case 1 Case 2 Case 3 Case 4

Capital stock 42.69 - 52.44 - 52.84
Retirement age (actual) 64.4 - - 64.6 67.12
Labor supply 10.46 - 11.64 - 12.14
Rate of return 0.0659 - 0.0571 - 0.0601
Wage rate 1.06 - 1.1 - 1.09

fixed at the baseline (Case 3) causes the projected benefits to decline by about 25%.6

What is the intuition behind the smallest decline in the projected retirement benefits

under Case 4? Table 2.2 shows that when the private annuity markets are incomplete,

households respond to a higher life expectancy by saving more, which leads to a higher

aggregate capital stock, and also by delaying retirement by almost three years, which in-

creases the effective labor supply (Case 4). However, a larger-than-proportional increase in

the capital stock leads to a lower rate of return and a higher wage rate than the baseline,

which along with the delayed retirement implies a strictly larger level of aggregate taxable

income. This increase in the tax base of the social security program is behind the smallest

decline in the projected retirement benefits under Case 4.7 Experimenting with different so-

cial security tax rates also shows that given this decline, increasing the tax rate from 10.6%

to 13.8% restores the projected retirement benefits to their baseline level. This increase is

significantly smaller than Feldstein’s (2005) projection of 15.7%.

2.6 Sensitivity analysis

Given that the extent of the social security crisis identified in the current model is

conditional on the set of parameter values used in the baseline calibration, it is important

6With a future demographic projection that generates a roughly 25% decline in the baseline benefits
holding retirement and the factor prices fixed (Case 1), the respective declines under cases 2, 3 and 4
are 16%, 17% and 15%. Therefore, in this case, the crisis would be overestimated by as much as 67%
(25/15 = 1.67).

7Note from Table 2.2 that when household retirement is held fixed at the baseline but the consumption-
saving and the factor price adjustment mechanisms are allowed (Case 2), the increase in the labor supply
documented in the third row is purely due to a higher life expectancy. Also, holding the factor prices fixed
at the baseline but allowing for the household retirement mechanism (Case 3) leads to a slight delay in
retirement that is documented in the second row of Table 2.2.
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to verify whether the quantitative predictions of the model are sensitive to them or not. To

do this, in this section I estimate the impact of population aging on the projected retirement

benefits under different values of some key model parameters.

Three parameters that are treated as observable in the baseline calibration of the model

are capital’s share in total income (α), leisure share of total time endowment (lW ) and

the age-dependent household efficiency endowment (e(s)). The value of capital’s share in

total income is set to α = 0.35 in the initial baseline calibration, but the macroeconomic

estimates historically observed in the U.S. range between 30 − 40%. Therefore, to verify

the sensitivity of the simulation results with respect to α, I first compute new calibrated

baseline equilibria of the model under α = 0.3 and α = 0.4, and then study the impact of

population aging on the projected retirement benefits. The unknown preference parameters

and target values for the baseline calibrations with α = 0.3, 0.35 and 0.4 are reported in

Table 2.3. It is clear from the table that calibrated baseline equilibria of the model under

α = 0.3 and α = 0.4 provide reasonable fits to the data targets, with the values for the

unknown parameters falling conveniently in the range used in the larger macro-calibration

literature.

Once the baseline equilibria under the different α-values have been identified, the next

step is to determine the values of the parameters γ and µ, which control the extent by which

the baseline retirement benefits decline in response to population aging. As in the initial

Table 2.3: Calibrated baseline equilibria under different values of capital’s share in total
income.

α = 0.3 α = 0.35 α = 0.4

Discount rate (ρ) -0.003 0.016 0.032
IEIS (σ) 3.4 3.2 3.1
Share of consumption in period utility (η) 0.308 0.332 0.357
Optimal (actual) retirement age 64.2 64.4 64.36
Capital-output ratio 2.508 2.495 2.499
Consumption-income ratio 0.749 0.751 0.75
Rate of return 0.0452 0.0659 0.0857
Accidental bequest 0.0066 0.016 0.014



20

Table 2.4: Values of the population aging parameters under different values of capital’s
share in total income.

α = 0.3 α = 0.4

γ 0.0001 0.0001
µ 1.554 1.553
Actual life expectancy 78.72 78.7
Decline in projected benefits 32.51% 32.51%

baseline, I augment the model survival probabilities by choosing γ and µ such that holding

household behavior, factor prices and the social security tax rate fixed, the model predicts

a 33% decline in the projected retirement benefits. In Table 2.4, I report the values of

these two parameters under α = 0.3 and 0.4, and I also report the actual life expectancies

associated with them.8 It is worth noting from the table that with the reported γ- and

µ-values, the actual life expectancies of the model households are very close to the SSA’s

projections for the year 2075. Also, as in the initial baseline, holding household behavior

and factor prices fixed, a social security tax rate of θ = 15.7% restores the post-population

aging retirement benefits to the respective baseline levels.

To identify the quantitative importance of the household-level and macroeconomic ad-

justments to population aging under different values of capital’s share in total income, I

compute new stationary competitive equilibria in which both household consumption-saving

and retirement, as well as the factor prices respond to the demographic change (Case 4).

I also compute the two intermediate cases: holding retirement fixed at the baseline but

allowing the consumption-saving and the factor price mechanisms to respond (Case 2), and

holding the factor prices fixed at the baseline level but allowing the household retirement

mechanism to respond (Case 3). I report the percentage declines in the projected retirement

benefits from the respective baselines in Table 2.5. The table reveals a pattern very similar

to the one observed under α = 0.35: the smallest decline in the projected benefits occurs

under Case 4, when all the household-level and macroeconomic adjustments to population

aging are accounted for. Moreover, the magnitude of the decline in the projected benefits

8As in the initial baseline, I set the population growth rate to n = 0.47% under both α = 0.3 and 0.4.
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Table 2.5: The impact of population aging on the projected retirement benefits under
different values of capital’s share in total income.

α = 0.3 α = 0.4

Case 1 32.51% 32.51%
Case 2 22.23% 22.19%
Case 3 23.79% 25.09%
Case 4 19.61% 19.91%

under Case 4 also appears fairly robust: the model predicts declines of roughly 20% from

the respective baselines, compared to the commonly reported estimate of 33%. The relative

importance of the household retirement and the aggregate factor price adjustment mecha-

nisms also appears to be fairly robust with respect to the value of capital’s share in total

income used in the simulations: ignoring either of the two mechanisms leads to a roughly

comparable decline in the projected retirement benefits under both α = 0.3 and 0.4.

Since the model’s predictions about the declines in the projected retirement benefits

under different values of capital’s share in total income are fairly similar, it is natural to

expect that the underlying household-level and macroeconomic adjustments to population

aging are also similar. To verify this, I report in Table 2.6 the effect of the demographic

change on household behavior and factor prices under both α = 0.3 and 0.4. It is clear from

the table that both the household-level responses and the aggregate factor price adjustments

to population aging are fairly robust to the underlying value of capital’s share in total

income. Under both α = 0.3 and 0.4, households respond to a higher life expectancy by

increasing their private saving (and therefore aggregate capital and the wage rate) and also

by delaying retirement, which leads to an increase in the tax base of the social security

program.

It is also useful to note that accounting for both the household-level and macroeconomic

adjustments to population aging, the tax increases required to restore projected retirement

benefits to their respective baseline levels are also very similar for different α-values. For

α = 0.3, increasing the tax rate to 13.7% restores projected benefits to their baseline level

under Case 4, and for α = 0.4 a tax rate of 13.8% achieves this.



22

Table 2.6: Effect of population aging on household behavior and factor prices under
different values of capital’s share in total income.

(a) Effect of population aging with α = 0.3.

Baseline Case 1 Case 2 Case 3 Case 4

Capital stock 38.78 - 48.51 - 48.79
Retirement age (actual) 64.2 - - 65.12 67.12
Labor supply 10.43 - 11.6 - 12.13
Rate of return 0.0452 - 0.0358 - 0.0388
Wage rate 1.04 - 1.08 - 1.06

(b) Effect of population aging with α = 0.4.

Baseline Case 1 Case 2 Case 3 Case 4

Capital stock 48.11 - 58.47 - 59.15
Retirement age (actual) 64.36 - - 64.2 67
Labor supply 10.45 - 11.63 - 12.11
Rate of return 0.0857 - 0.0774 - 0.0801
Wage rate 1.11 - 1.15 - 1.13

The next step is to verify the sensitivity of the simulation results with respect to the

leisure share of total time endowment parameter (lW ). According to 2001 CPS data on hours

worked by production workers in the U.S., 34 hours per week on an average were spent on

market work. Accounting for 8 hours per day as sleep time, this roughly implies that

30.36% of the total weekly time endowment is spent on market work. However, to account

for vacations, holidays, weekends and sick days, the value of the leisure share parameter

needs to be revised downward. Therefore, to verify the sensitivity of the simulation results

with respect to the leisure share of total time endowment parameter (lW ), I compute new

calibrated baseline equilibria with the values lW = 0.575 (based on a five-day working week)

and lW = 0.6458 (based on a six-day working week), and then re-compute the impact of

population aging on the projected retirement benefits. The unknown preference parameters

and the associated model-generated target values for the calibrated baseline equilibria with

lW = 0.575, 0.6458 and 0.6964 are reported in Table 2.7. It is clear from the table that

calibrated baseline equilibria of the model under lW = 0.575 and lW = 0.6458 provide

reasonable fits to the data targets, with the values for the unknown parameters falling
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Table 2.7: Calibrated baseline equilibria under different values of leisure share in total
time endowment.

lW = 0.575 lW = 0.6458 lW = 0.6964

Discount rate (ρ) 0.012 0.014 0.016
IEIS (σ) 3 3.1 3.2
Share of consumption in period utility (η) 0.434 0.372 0.332
Optimal (actual) retirement age 64.72 64.2 64.4
Capital-output ratio 2.493 2.506 2.495
Consumption-income ratio 0.751 0.749 0.751
Rate of return 0.066 0.0653 0.0659
Accidental bequest 0.0148 0.0118 0.01

Table 2.8: Values of the population aging parameters under different values of leisure
share in total time endowment.

lW = 0.575 lW = 0.6458

γ 0.0001 0.0001
µ 1.554 1.553
Actual life expectancy 78.72 78.7
Decline in projected benefits 32.49% 32.49%

conveniently in the range used in the larger macro-calibration literature.

The values of the population aging parameters γ and µ for which, holding household

behavior, factor prices and the social security tax rate fixed at the baseline, the model

predicts a 33% decline in the projected retirement benefits under lW = 0.575 and 0.6458

are reported in Table 2.8. Note that the table also reports the actual life expectancies under

these parameter values.9 As before, the actual life expectancies of the model households

with these γ- and µ-values are in reasonable agreement with the SSA’s projections for the

year 2075. Also, with these values, a social security tax rate of θ = 15.7% restores the

post-population aging retirement benefits to the respective baseline levels when household

behavior and factor prices are held fixed.

In Table 2.9, I report the percentage decline in the projected retirement benefits in new

stationary competitive equilibria where both household consumption-saving and retirement,

as well as the factor prices respond to the demographic change (Case 4). Similar to the

9The population growth rate is set to n = 0.47% under both lW = 0.575 and 0.6458.
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Table 2.9: The impact of population aging on the projected retirement benefits under
different values of leisure share in total time endowment.

lW = 0.575 lW = 0.6458

Case 1 32.51% 32.51%
Case 2 22.23% 22.19%
Case 3 23.79% 25.09%
Case 4 19.61% 19.91%

earlier analysis, I also report the two intermediate cases (Cases 2 and 3) under the different

lW -values. The table reveals a pattern very similar to the one observed in the initial baseline.

The smallest decline in the projected benefits occurs under Case 4, and the magnitude of

the decline is also very similar. Moreover, the declines in benefits are roughly comparable

when either of the two mechanisms is not accounted for.

To examine how the demographic change affects household behavior and factor prices

under different values of the leisure share parameter, I report in Table 2.10 the values

of the total capital stock, retirement age, labor supply and the factor prices in the post-

demographic change steady states under both lW = 0.575 and 0.6458. The table shows that

Table 2.10: Effect of population aging on household behavior and factor prices under
different values of leisure share of total time endowment.

(a) Effect of population aging with lW = 0.575.

Baseline Case 1 Case 2 Case 3 Case 4

Capital stock 59.96 - 74.17 - 74.67
Retirement age (actual) 64.72 - - 64.96 67.52
Labor supply 14.71 - 16.38 - 17.08
Rate of return 0.066 - 0.0567 - 0.0597
Wage rate 1.06 - 1.1 - 1.09

(b) Effect of population aging with lW = 0.6458.

Baseline Case 1 Case 2 Case 3 Case 4

Capital stock 50 - 61.61 - 62.09
Retirement age (actual) 64.2 - - 64.44 66.96
Labor supply 12.17 - 13.53 - 14.12
Rate of return 0.0653 - 0.0563 - 0.0593
Wage rate 1.07 - 1.1 - 1.09
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the household-level responses and the aggregate factor price adjustments to population aging

are not sensitive to the underlying lW -value used in the simulations. Households respond

to population aging by increasing their private saving (and therefore aggregate capital and

the wage rate) and also by delaying retirement, which leads to an increase in the tax base

of the social security program under both lW = 0.575 and 0.6458. Moreover, similar to

the experiments with different values of capital’s share in total income, the social security

tax rate required to restore projected retirement benefits to their respective baseline levels

under Case 4 is roughly 13.8% for both lW = 0.575 and 0.6458.

The coefficients of the age-dependent household efficiency profile (e(s)) are also treated

as observable in the initial baseline calibration. Given that it is difficult to observe effi-

ciency, the coefficients in (2.28) were estimated from the normalized average cross-sectional

hourly wages data from the 2001 CPS. However, the age-dependent component of household

efficiency used in several other studies on social security and population aging (De Nardi

et al., 1999; Conesa and Garriga, 2008a,b) are estimated from Hansen (1993). Therefore,

the next step is to verify the sensitivity of the simulation results using the age-dependent

household efficiency data from Hansen (1993). The efficiency units in Hansen (1993) are

constructed by taking a weighted sum of the hours worked by each age-sex subgroup using

annual data from 1979 to 1987, where the weights reflect the relative productivity of that

subgroup. To use this data, I first calculate the average of male and female weights for each

age group, and then use piecewise linear interpolation to obtain the weights for all ages

between 25 and 65. To control for the sample selection effects beyond age 65, I assume that

age 65 onwards, efficiency declines at the same rate as it decline before age 65. Finally, I

fit the a quartic polynomial to the interpolated data, which gives

ln e(s) = 0.00271799 + (0.01490187) s−
(
1.688× 10−4

)
s2 (2.31)

−
(
1.4399× 10−5

)
s3 +

(
1.365× 10−7

)
s4

where s is household age. The age-dependent efficiency profiles estimated from the inter-
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Figure 2.3: The age-dependent household efficiency profiles estimated from the 2001 CPS
and Hansen (1993).

polated efficiency data in the 2001 CPS and Hansen (1993) are reported in Figure 2.3.

Next, I compute a new calibrated baseline equilibrium using the efficiency profile from

Hansen (1993) and then re-compute the impact of population aging on the projected re-

tirement benefits. The unknown preference parameters and the associated model-generated

target values for the calibrated baseline equilibria with the efficiency profile from Hansen

(1993) are reported in Table 2.11. The table demonstrates that the calibrated baseline

equilibrium of the model with the efficiency profile from Hansen (1993) is very similar to

the one in the initial baseline calibration; the values for the unknown parameters are also

consistent with the larger macro-calibration literature.

Holding household behavior, factor prices and the social security tax rate fixed at the

baseline with the efficiency profile from Hansen (1993), the population aging parameters

for which the model predicts a roughly 33% decline in the projected retirement benefits are

γ = 0.0001 and µ = 1.553. With these values, benefits decline by 32.5% and the actual life



27

Table 2.11: Calibrated baseline equilibria under the different efficiency profiles.

2001 CPS Hansen (1993)

Discount rate (ρ) 0.016 0.017
IEIS (σ) 3.2 3.2
Share of consumption in period utility (η) 0.332 0.339
Optimal (actual) retirement age 64.4 64.16
Capital-output ratio 2.495 2.504
Consumption-income ratio 0.751 0.75
Rate of return 0.0659 0.0654
Accidental bequest 0.01 0.0092

Table 2.12: The impact of population aging on the projected retirement benefits under
the efficiency profile from Hansen (1993).

Decline from the baseline

Case 1 32.5%
Case 2 22.38%
Case 3 24.85%
Case 4 20.31%

expectancy predicted by the model increases to 78.7, which is identical to the value in the

initial baseline calibration. Also, the benefit-preserving tax rate with household behavior

and factor prices fixed at the baseline level is 15.7%.10

The percentage decline in the projected retirement benefits under Cases 1, 2, 3 and 4

with the efficiency profile from Hansen (1993) are reported in Table 2.12. The table shows a

pattern very similar to the earlier experiments. The smallest decline in the projected benefits

occurs under Case 4, and the magnitude of the decline is roughly 20%, compared to the

commonly reported estimate of 33%. Moreover, the relative importance of the household

retirement and the factor price adjustment mechanisms are fairly similar: the declines in

benefits under Cases 2 and 3 are 22.38 and 24.85% respectively.

The effect of population aging on household behavior and factor prices under the ef-

ficiency profile from Hansen (1993) is reported in Table 2.13. It is clear from the table

that the household-level responses and the aggregate factor price adjustments to popula-

10As in the other experiments, I set the population growth rate under the future demographics to n =
0.47%.
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Table 2.13: Effect of population aging on household behavior and factor prices under the
efficiency profile from Hansen (1993).

Baseline Case 1 Case 2 Case 3 Case 4

Capital stock 41.63 - 51.08 - 51.43
Retirement age (actual) 64.16 - - 64.32 66.64
Labor supply 10.14 - 11.26 - 11.68
Rate of return 0.0654 - 0.0566 - 0.0591
Wage rate 1.07 - 1.1 - 1.09

tion aging are fairly robust with respect to the coefficients of the age-dependent efficiency

profile: households respond to population aging by saving more and working longer, which

has the effect of increasing aggregate taxable income. Also, similar to the experiments with

different values of capital’s share in total income, a social security tax rate of roughly 13.8%

restores projected retirement benefits to the baseline level when both the household-level

and the aggregate factor price adjustments are accounted for.

Sensitivity analysis with respect to the value of capital’s share in total income, leisure

share in total time endowment and the parameters in the age-dependent household efficiency

profile demonstrates that the quantitative predictions of the model are fairly robust. Under

all the parameterizations, the model predicts a significantly lower decline in the projected

retirement benefits once the household-level and aggregate factor price adjustments to pop-

ulation aging are accounted for. The natural increase in the tax base associated with the

demographic change allows the social security program to remain solvent with a relatively

smaller impact on the retirement benefits. The only parameter not entertained in the above

sensitivity analyses is the economic growth rate. However, re-calibrating the baseline model

with a growth rate different from g = 1.56% would simply lead to slightly different values

for the unobservable parameters. The above results show that the quantitative importance

of the household-level and the macroeconomic adjustment to population aging are largely

insensitive to the unobservable parameter values as long as the model is well-calibrated.

Therefore, a different economic growth rate should have no material effect on the results.

One concern with the existing applied general equilibrium model could be that it ab-
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stracts from various other taxes that exist in the real world, such as taxes on labor and

capital income. In a baseline equilibrium with nonzero labor and capital income taxes, the

distortions in the consumption, saving and the retirement decisions at the household level

will likely be larger. However, if these tax rates are stationary under population aging, then

the distortions are also likely to be largely unchanged in a relative sense. Therefore, the

simulation results are not likely to be sensitive to the fact that the current model abstracts

from these taxes.

2.7 Conclusions

In this paper, I provide an alternative estimate of the decline in the projected social

security benefits under population aging in the U.S. that accounts for the household-level

consumption-saving and retirement responses to population aging, as well as the aggregate

factor price adjustments. I construct an applied general equilibrium model with endogenous

retirement and incomplete annuity markets, calibrate it to some key features of the U.S.

economy, and then examine the impact of an empirically consistent future demographic

projection on the level of projected retirement benefits. I find that when both the household

retirement and the factor price mechanisms are accounted for, the decline in the projected

benefits is significantly smaller than what is commonly reported.

2.8 Appendix: Computational methods

In this section I provide a discussion of the computational methods used in the current

research, including the development of the required computer codes. Both for its ability to

handle complicated symbolic operations and providing a stable programming platform for

developing suitable solver algorithms, I choose MATLABTM version 7.4.0.287 as the main

computational software, powered by an Intel PentiumTM T4200 Dual-Core CPU with 3 GB

memory.

First, note that given the complex nature of the survival probability function Q(t− τ),

the integrals identified in the various expressions in Section 2.3 do not have analytical
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closed form solutions. Therefore, I implement the trapezoidal method to approximate these

integrals, which uses the idea that an integral is nothing but the limit of a sum. Specifically,

I use the approximation

∫ b

a
f(x) dx ≈

[
0.5× {f(a) + f(b)}+

N−1∑
i=1

f(a+ i∆)

]
×∆ (2.32)

where ∆ = (b− a)/N , which implies that the domain [a, b] has been divided into N equally

spaced intervals.

As defined earlier, a stationary competitive equilibrium in the current framework is

characterized by a cross-sectional consumption-saving profile and optimal retirement age,

an aggregate capital stock, labor supply and a labor-to-retiree ratio, a real rate of return

and wage rate, and an accidental bequest that solve the household’s optimization problem,

satisfy the aggregation conditions, equilibrate the factor markets, balance the social secu-

rity budget and also satisfy the bequest-balance condition. Therefore, computation of a

stationary competitive equilibrium can be broken down into the following two steps:

1. Solve for the household optimum for a given set of factor prices, a given labor-to-retiree

ratio, a given accidental bequest and given values for the other model parameters.

2. Using the aggregation conditions, find the factor prices, the labor-to-retiree ratio and

the accidental bequest consistent with the household optimum. The general equilib-

rium is obtained when the factor prices, the labor-to-retiree ratio and the accidental

bequest values computed from the household optimum match the given factor prices,

the labor-to-retiree ratio and the accidental bequest values that were used to compute

the household optimum.

To sequentially accomplish these two steps, I define a contraction mapping algorithm as

follows:

• Step 1: Set the model parameters to some values and guess some values for the factor

prices, the labor-to-retiree ratio and the accidental bequest (label as vector xin).
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• Step 2: Create a grid of retirement ages, compute the optimal consumption plans

at each point on the grid using the trapezoidal approximations to the integrals, and

then find the age at which the value of discounted life-cycle utility is maximized for

the given xin vector and the parameter values.

• Step 3: Compute the aggregate capital stock, labor supply, the labor-to-retiree ra-

tio and the accidental bequest that are consistent with the optimal retirement ages

obtained in Step 2 using the trapezoidal approximations to the integrals.

• Step 4: Compute the market-clearing factor prices consistent with the aggregate

capital stock and labor supply obtained in Step 3, and store the factor prices, the

labor-to-retiree ratio and the accidental bequest in a vector xout.

• Step 5: Compute the percentage difference between vectors xin and xout, and store

it in a vector diff.

• Step 6: If the 2-norm of the vector diff is greater than some tolerance parameter

Tol, then update xin using the rule xin = xin.*(1+step), where step is given by

step = diff/9, and repeat steps 2 through 5.11,12

• Step 7: If the 2-norm of the vector diff is lesser than some tolerance parameter Tol,

then terminate the algorithm.

At the end of these steps, the program returns a vector of factor prices, the labor-to-retiree

ratio and an accidental bequest that solves the households’ optimization problem, clears

the factor markets, balances the social security budget and satisfies the bequest-balance

condition for a given set of values for the model parameters. Then, calibrating the model

to data targets simply involves repeating these steps for different combinations of values for

the unobservable parameters and choosing the one that produces model-generated values

in reasonable neighborhood of the targets.

11For a n× 1 vector [x1x2 . . . xn]′, the 2-norm is defined as
√∑n

i=1 x
2
i .

12This implies that the algorithm updates the guessed vector by a factor that depends on the divergence
between the guess and the feedback.
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CHAPTER 3

OPTIMAL SOCIAL SECURITY REFORM UNDER POPULATION AGING IN THE

U.S.

3.1 Introduction

All across the OECD, lower birth rates and higher life expectancies have threatened

the viability of unfunded social security programs. In the U.S., actuaries of the Social

Security Administration (SSA) estimate that in the year 2080, a roughly 25-30% decline in

the projected retirement benefits is required to keep the current program solvent with the

existing contribution rate (Goss, 2006). Also, Feldstein (2005) estimates that to prevent

any decline in the projected benefits for the year 2075, the current Old-Age and Survivors

Insurance (OASI) tax rate may have to be increased to 16.4%.

In this paper I ask what should be the optimal or welfare-maximizing OASI tax rate

in the U.S. under the population developments projected in the future. There are at least

two reasons why this question is not trivial. First, even though it is intuitive that a higher

tax rate may be required to balance the social security budget under population aging, it is

not clear what impact such a strategy would have on social welfare: a higher tax rate can

potentially distort individual behavior and equilibrium factor prices in a way that reduces

utility. Second, whether or not social security improves welfare depends on which missing

market it substitutes. If individuals face uninsurable productivity realizations that occur

prior to their entering the labor force, and if social security already insures them against

this through a pro-poor retirement benefit rule, then it is not clear whether population

aging would create the need for a larger program.1

1Note that I use the term “optimal” in a relatively narrow sense, as I only consider changes in the OASI
tax rate, holding all the other institutional features of the program and its PAYG structure unchanged. For
policy experiments along these other dimensions, see studies such as De Nardi et al. (1999), Conesa and
Garriga (2008a) and Conesa and Garriga (2008b).



33

To examine this issue, I begin by constructing a heterogeneous-agent general equilibrium

model of life-cycle consumption and labor supply, where the source of heterogeneity is a

productivity or efficiency realization that occurs before the agents enter the model. In the

model, an unfunded social security program provides partial insurance against an unfavor-

able efficiency realization by paying retirement benefits through a pro-poor rule. Agents in

the model also face mortality risk, against which they cannot insure because of the absence

of private annuity markets. I first calibrate the benefit rule to match the degree of redistri-

bution in the U.S. social security program, and then I calibrate the distribution of efficiency

such that the current OASI tax rate in the U.S. maximizes social welfare under the current

demographics. Then, I introduce empirically reasonable future population projections into

the calibrated model, and finally I search for the tax rates that maximize social welfare

under those projections.

The baseline equilibrium of the model performs reasonably well in matching some key

features of the current U.S. economy, such as the aggregate capital-output ratio, the average

fraction of time spent on market work, and the gross benefit replacement rates in the

population. Also, in the baseline equilibrium, social security is welfare-improving only for

the households with relatively poor efficiency realizations. The relatively efficient households

experience welfare losses from social security: their internal rates of return from the program

are lower than the market rate of return on capital stock.

The main findings of this paper are as follows. First, I find that the optimal or welfare-

maximizing OASI tax rate under the future population projections in the U.S. is about 2

to 5 percentage points higher than the current tax rate. Second, I also find that households

with different efficiency realizations respond asymmetrically to the the demographic devel-

opments, and that a large part of the tax burden of population aging is picked up by the

households with relatively favorable efficiency realizations. Finally, the model also predicts

that population aging and the optimal tax response may imply a decline in the projected

retirement benefits, but of a magnitude smaller than when the tax rate is held unchanged

at the current level.



34

Among others, three important quantitative studies on social security reform under

population aging in the U.S. are De Nardi et al. (1999), Conesa and Garriga (2008a) and

Conesa and Garriga (2008b). The current paper complements these studies in two ways.

First, I employ a heterogeneous-agent model to study optimal social security reform, where

social security provides partial insurance against unfavorable efficiency realizations through

a pro-poor retirement benefit rule. This allows me to replicate the degree of redistribution

in the U.S. social security program, as the benefit replacement rate of a household in

the U.S. is a concave function of work-life income.2 Second, I only consider equilibria of

the model in which the OASI tax rate maximizes social welfare. This allows me to run

controlled demographic experiments in which the welfare-maximizing changes in the tax

rate predicted by the model can be fully attributed to population aging. To accomplish

this, I first calibrate the efficiency distribution in the baseline model such that the current

OASI tax rate in the U.S. is exactly optimal, and then I introduce empirically reasonable

future population projections. Note that controlling for the optimal program size under the

current demographics is crucial, as failing to do so can potentially confound the optimal

tax response to population aging.

Beginning with Feldstein (1985), a number of studies have attempted to justify the size

of the current social security program in the U.S. on the grounds of its different welfare-

improving roles.3 However, studies in this area have typically focused on computing the

optimal or welfare-maximizing social security tax rate under the current U.S. demograph-

ics.4 The current paper also complements these studies, as I compute the optimal OASI tax

rate under the future demographic projections in the U.S., conditional on the assumption

that the current tax rate is exactly optimal.

The rest of the paper is organized as follows: Section 3.2 introduces the model, Sec-

2Huggett and Ventura (1999) investigate social security reform in the U.S. with a two-tier structure using
a heterogeneous-agent model with the concave Primary Insurance Amount (PIA) benefits formula used by
the SSA.

3See, for example studies such as İmrohoroğlu et al. (1995), İmrohoroğlu et al. (2003), Caliendo and
Gahramanov (2009) and Findley and Caliendo (2009), among others.

4An exception is found in Findley and Caliendo (2009), who find in a robustness analysis that the average
tax rate in the presence of short planning horizons under future demographics increases slightly from 11%
in their baseline to about 12%.



35

tion 3.5 describes the baseline calibration, Section 3.6 examines the impact of empirically

reasonable future population projections on the calibrated model, and Section 3.8 concludes.

3.2 The model

Consider a continuous time overlapping generations economy with life-cycle permanent

income households, where at each instant a new cohort is born and the oldest cohort dies.

Cohorts are identical in all respects but their date of birth, but within each cohort there is

heterogeneity with respect to household efficiency. The maximum lifespan of a household

is T̄ years, and the life cycle consists of two phases: work and retirement. During the final

T̄ −Tr years of life, the household receives social security benefits that are positively related

to their work life income. Households face mortality risk against which they cannot insure

because of closed private annuity markets, and they derive utility from consumption (c) as

well as the fraction of total time endowment enjoyed in leisure (l). They also accumulate a

risk-free asset: physical capital. The government runs an unfunded social security program

that is financed through taxes on labor income, and the assets of the deceased households

at each instant are uniformly distributed over the surviving population in the form of

accidental bequests. Perfectly competitive firms produce output using a constant returns

to scale Cobb-Douglas production function with constant labor-augmenting technological

progress at rate g per annum, and there is no aggregate uncertainty. Finally, population

grows at rate n per annum.

3.2.1 Preferences

The period utility function is

u(c, l) =


(cηl1−η)

1−σ

1−σ if σ 6= 1

ln
(
cηl1−η

)
if σ = 1

(3.1)

where η is the share of consumption in period utility and σ is the Inverse Elasticity of In-

tertemporal Substitution (IEIS). Expected lifetime utility from the perspective of a house-
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hold at age s = 0 is

U =

∫ T̄

0
exp {−ρs}Q(s)

{
c(s)ηl(s)1−η}1−σ

1− σ
ds (3.2)

where ρ is the discount rate and Q(s) is the unconditional probability of surviving to age s.

Also, since I define leisure as a fraction of the total time endowment, we have 0 ≤ l(s) ≤ 1.

3.2.2 Income

Each household in a given cohort is endowed with an efficiency endowment ϕe(s), where

ϕ is a realization from a stationary distribution with density f(ϕ) and support
[
ϕ,ϕ

]
that

occurs prior to birth, and e(s) is an age-dependent component that increases early in life,

peaks at about middle age, and then declines until death. Households’ saving a(s) earns a

real rate of return r, and during the work life labor income is taxed at rate θ, which is the

OASI tax rate. The tax receipts are used to pay social security benefits to households past

the eligibility age of Tr. The surviving households also receive an accidental bequest B(t)

from the deceased households every period.

3.2.3 Social security

The government runs an unfunded social security program that partially insures house-

holds against unfavorable efficiency realizations through a pro-poor benefit rule. The benefit

annuity at date t of a household with efficiency ϕ is b(t;ϕ), which is calculated as follows:

b(t;ϕ) = ζ(ϕ)b(t;ϕ) (3.3)

ζ(ϕ) = 1 (3.4)

ζ(ϕ) =

[
ζ(ϕ)ϕ− ϕ
ϕ− ϕ

]
+

[
1− ζ(ϕ)

ϕ− ϕ

]
ϕ (3.5)

where b(t;ϕ) is the retirement benefit paid at date t to the households with the highest

efficiency realization, ζ(ϕ) is a linear function of efficiency ϕ, and ζ(ϕ) is a parameter

that controls the extent of redistribution in the social security program. As Caliendo and
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Gahramanov (2009) have shown, for the social security program to be both pro-poor and

positively linked to past income with the benefit rule outlined in (3.3), we must have

ϕ ≤ ζ(ϕ) ≤ 1 (3.6)

Also, since I only consider equilibria of the model where the OASI tax rate is optimal or

maximizes social welfare, θ must satisfy

θ = arg max

{∫ ϕ

ϕ
U(ϕ) f(ϕ) dϕ

}
(3.7)

where U(ϕ) is the ex-ante expected lifetime utility of households with efficiency ϕ.5

3.2.4 Household optimization problem

A household born at date t with the efficiency realization ϕ faces the following opti-

mization problem

max
c(s),l(s)

∫ T̄

0
exp{−ρs}Q(s)

{
c(s)ηl(s)1−η}1−σ

1− σ
ds (3.8)

subject to

c(s) +
da(s)

ds
= ra(s) + y(s;ϕ) +B(t)exp {gs} (3.9)

y(s;ϕ) = (1− θ) {1− l(s)}w(t)exp {gs}ϕe(s) + Θ(s− Tr)b(t;ϕ)exp {gs} (3.10)

0 ≤ l(s) ≤ 1 (3.11)

a(0) = a(T̄ ) = 0 (3.12)

5Note that this representation of social welfare is essentially utilitarian, which treats utility as a cardinal
concept instead of ordinal. However, this is standard in this line of literature, and as Köbberling (2006)
points out, cardinal utility is an accepted concept in also a number of other areas, such as decision making
under risk, case-based decision theory or discounted utilities for intertemporal evaluations.
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where

Θ =

 0 x ≤ 0

1 x > 0

is a step function. I solve this problem using Pontryagin’s Maximum Principle for fixed-

endpoint optimal control problems.

3.2.5 Technology and factor prices

Output is produced using a Cobb-Douglas production function with inputs capital, labor

and a stock of technology A(t)

Y (t) = K(t)α (A(t)L(t))1−α (3.13)

where A(t) = A(0)exp {gt}, α is the share of capital in total income and A(0) is the initial

stock of technology. Factor markets are perfectly competitive and equilibrate instanta-

neously, which implies

r = MPK − δ = α

[
K(t)

A(t)L(t)

]α−1

− δ (3.14)

w(t) = MPL = A(t)(1− α)

[
K(t)

A(t)L(t)

]α
(3.15)

where δ is the depreciation rate of physical capital and w(t) is the wage rate at time t.

3.2.6 Aggregation

Aggregate capital stock and labor supply in the current model are given by

K(t) =

∫ ϕ

ϕ

∫ T̄

0
N(t− s)Q(s) a(t; t− s, ϕ) f(ϕ) ds dϕ (3.16)

L(t) =

∫ ϕ

ϕ

∫ T̄

0
N(t− s)Q(s) {1− l(t; t− s, ϕ)}ϕe(s) f(ϕ) ds dϕ (3.17)

where N(t − s) is the size of the cohort born at date (t − s). Also, given that the social

security program is unfunded, total taxes collected at any date must be equal to the total
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benefits paid out, i.e.

∫ ϕ

ϕ

∫ T̄

0
N(t− s)Q(s)θ {1− l(t; t− s, ϕ)}w(t)ϕe(s) f(ϕ) ds dϕ

=

∫ ϕ

ϕ

∫ T̄

Tr

N(t− s)Q(s)b(t;ϕ) f(ϕ) ds dϕ (3.18)

Using (3.3), we can rearrange and express (3.18) as

b(t;ϕ) = θw(t)

∫ ϕϕ ∫ T̄0 N(t− s)Q(s) {1− l(t; t− s, ϕ)}ϕe(s) f(ϕ) ds dϕ∫ ϕ
ϕ

∫ T̄
Tr
N(t− s)Q(s) ζ(ϕ) f(ϕ) dsdϕ

 (3.19)

which expresses the retirement benefits paid to the most efficient households in the pop-

ulation as a function of relevant macroeconomic and demographic variables. I define the

box-bracketed term in equation (3.19) as the labor-to-retiree ratio and denote it by the

symbol Re(t). Finally, total accidental bequests from the deceased households must satisfy

∫ ϕ

ϕ

∫ T̄

0
N(t− s)Q(s)h(s)a(t; t− s, ϕ) f(ϕ) ds dϕ

=

∫ ϕ

ϕ

∫ T̄

0
N(t− s)Q(s)B(t) f(ϕ) ds dϕ (3.20)

where

h(s) = − d

ds
lnQ(s) (3.21)

is the hazard rate of dying between age s and s+ ds.

3.2.7 Equilibrium

A Stationary Competitive Equilibrium (SCE) with an optimal OASI tax rate in the

current model can be characterized by a collection of

1. cross-sectional consumption programs {c(t; t− s, ϕ)}T̄s=0, saving programs

{a(t; t− s, ϕ)}T̄s=0 and labor supply programs {1− l(t; t− s, ϕ)}T̄s=0 for each ϕ,

2. aggregate capital stock K(t), labor supply A(t)L(t) and labor-to-retiree ratio Re(t),
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3. real rate of return r and wage rate w(t),

4. a tax rate θ, and

5. an accidental bequest B(t)

that

1. solves the households’ optimization problems,

2. equilibrates the factor markets and balances the social security budget,

3. satisfies the social welfare maximization condition (3.7), and

4. satisfies the bequest balance condition (3.20)

I assume that the model economy is initially at a SCE with an optimal OASI tax rate. It is

useful to note that for this economy, along the steady state growth path aggregate output

grows at rate (n+ g), the real rate of return is time-invariant and wages grow at rate g.

3.3 Solving the model

To solve this model, it is useful to break it into the intra-temporal and the inter-temporal

components. The intra-temporal component is

max
c,l

u = cηl1−η

subject to

c+ (1− θ)wϕel = E

0 ≤ l ≤ 1

Using a monotonic transformation on the utility function, the Lagrangian is given by

L = ηln c+ (1− η)ln l − λ [c+ (1− θ)wϕel − E]− µ(l − 1) (3.22)
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Given that the choice variables are c and l, the first-order conditions are

η

c
− λ = 0 (3.23)

1− η
l
− λ(1− θ)wϕe− µ = 0 (3.24)

c+ (1− θ)wϕel − E = 0 (3.25)

µ(l − 1) = 0, µ ≥ 0, l ≤ 1 (3.26)

First, consider the case when l < 1, which from (3.26) implies that µ = 0. Then, we have

from (3.23), (3.24) and (3.25)

η

c
=

1− η
(1− θ)wϕel

= λ (3.27)

c = ηE (3.28)

l =
(1− η)E

(1− θ)wϕe
(3.29)

λ =
1

E
(3.30)

Equations (3.27)-(3.30) are valid when l < 1, i.e. when

(1− η)E

(1− θ)wϕe
< 1

⇒ E <
(1− θ)wϕe

1− η
(3.31)

Now, consider the case when µ > 0, which from (3.26) implies that l = 1. Then, we have

from (3.23), (3.24) and (3.25)

c = E − (1− θ)wϕe (3.32)

λ =
η

E − (1− θ)wϕe
(3.33)

µ = (1− η)− η

E − (1− θ)wϕe
(1− θ)wϕe (3.34)
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For the condition µ > 0 to be satisfied from (3.34), we require

(1− η)− η

E − (1− θ)wϕe
θwϕe > 0

⇒ E >
(1− θ)wϕe

1− η
(3.35)

which is exactly the opposite of condition (3.31). Therefore, the solution consumption and

leisure functions for the intra-temporal problem can be compactly written as

c =

 ηE E < (1−θ)wϕe
1−η

E − (1− θ)wϕe E > (1−θ)wϕe
1−η

(3.36)

l =


(1−η)E

(1−θ)wϕe E < (1−θ)wϕe
1−η

1 E > (1−θ)wϕe
1−η

(3.37)

Now consider the inter-temporal component

max
E(s)

∫ T̄

0
exp{−ρs}Q(s)V (E(s;ϕ)) ds (3.38)

subject to

E(s;ϕ) +
da(s)

ds
= ra(s) + y(s;ϕ+B(t)exp {gs} (3.39)

a(0) = a(T̄ ) = 0 (3.40)

b(t;ϕ) = ζ(ϕ)b(t;ϕ) (3.41)

where

V (E(s;ϕ)) =

{
c (E(s;ϕ))η l (E(s;ϕ))1−η

}1−σ

1− σ
(3.42)
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is the value function from the intra-temporal component, and y(s;ϕ) is given by (3.10).

Then, the Hamiltonian for this problem is given by

H = exp{−ρs}Q(s)V (E(s;ϕ)) + ψ(s;ϕ) [rk(s) + (1− θ)w(t)exp {gs}ϕe(s)

+ Θ(s− Tr)b(t;ϕ)exp {gs}+B(t)exp {gs} − E(s;ϕ)] (3.43)

The first-order conditions are given by

exp{−ρs}Q(s)VE(E(s;ϕ))− ψ(s;ϕ) = 0 (3.44)

d

ds
ψ(s;ϕ) = −rψ(s;ϕ) (3.45)

The definite solution to (3.45) is given by

ψ(s;ϕ) = ψ(0;ϕ)exp{−rs} (3.46)

using which in (3.44) gives

exp{−ρs}Q(s)VE(E(s;ϕ)) = ψ(0;ϕ)exp{−rs} (3.47)

Equation (3.47) governs the movement of E(s) (and therefore c(s) and l(s)) over the life-

cycle. To obtain the closed form solution of E(s) over the life-cycle, we need to rewrite

(3.47) with only E(s) on the LHS, i.e. we need to invert VE(·) w.r.t. E(s). To do that, we

must show that VE(·) is actually continuous and invertible w.r.t. E(s). Now, note from the

intra-temporal problem

V (E(s;ϕ)) =


{
ηη

(
1−η

(1−θ)wϕe

)1−η
}1−σ

E1−σ

1−σ E < (1−θ)wϕe
1−η

{E−(1−θ)wϕe}η(1−σ)
1−σ E > (1−θ)wϕe

1−η

(3.48)
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which implies that

VE(E(s;ϕ)) =


{
ηη
(

1−η
(1−θ)wϕe

)1−η
}1−σ

E−σ E < (1−θ)wϕe
1−η

η {E − (1− θ)wϕe}η(1−σ)−1 E > (1−θ)wϕe
1−η

(3.49)

Note from (3.49) that

lim
E↑ (1−θ)wϕe

1−η

VE(·) = ηη(1−σ)

{
(1− θ)wϕe

1− η

}1+η(σ−1)

(3.50)

lim
E↓ (1−θ)wϕe

1−η

VE(·) = ηη(1−σ)

{
(1− θ)wϕe

1− η

}1+η(σ−1)

(3.51)

Therefore, VE(·) is continuous in E(s). Also, from (3.49)

VEE(E(s;ϕ)) =

 −
{
ηη
(

1−η
(1−θ)wϕe

)1−η
}1−σ

σE−σ−1 E < (1−θ)wϕe
1−η

−η (1 + η(σ − 1)) {E − (1− θ)wϕe}η(1−σ)−2 E > (1−θ)wϕe
1−η

(3.52)

both of which < 0 as long as E(s) > 0. Therefore, VE(·) is continuous and monotonic

(strictly decreasing) in E(s), which implies that it is invertible. Let VE(·) = x. Then, from

(3.49) we can write

x =


{
ηη
(

1−η
(1−θ)wϕe

)1−η
}1−σ

E−σ E < (1−θ)wϕe
1−η

η {E − (1− θ)wϕe}η(1−σ)−1 E > (1−θ)wϕe
1−η

(3.53)

which implies

E(s) =


[
x

{
ηη
(

1−η
(1−θ)wϕe

)1−η
}σ−1

]− 1
σ

x > x∗(
x
η

) 1
η(1−σ)−1

+ (1− θ)wϕe x < x∗

(3.54)

where

x∗ = ηη(1−σ)

(
1− η

(1− θ)wϕe

)1+η(σ−1)

(3.55)
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Also, rearranging (3.47) we get

VE(E(s;ϕ)) =
ψ(0;ϕ)

Q(s)
exp{−(r − ρ)s} (3.56)

Using equation (3.56) in (3.54), we finally have

E(s) =



[
ψ(0;ϕ)
Q(s) exp{−(r − ρ)s}

{
ηη
(

1−η
(1−θ)wϕe

)1−η
}σ−1

]− 1
σ

ψ(0;ϕ)
Q(s) exp{−(r − ρ)s} > x∗(

ψ(0;ϕ)
Q(s)

exp{−(r−ρ)s}
η

) 1
η(1−σ)−1

+ (1− θ)wϕe ψ(0;ϕ)
Q(s) exp{−(r − ρ)s} < x∗

(3.57)

The evolution of consumption and leisure over the life-cycle can be obtained by applying

(3.36) and (3.37) on (3.57). Also, note that

d

ds
(exp {−rs} a(s)) = exp {−rs}

[
da(s)

ds
− ra(s)

]
= exp {−rs} [(1− θ)w(t)exp {gs}ϕe(s)

+Θ(s− Tr)b(t;ϕ)exp {gs}+B(t)exp {gs} − E(s)]

(3.58)

By using the boundary conditions from (3.12), it can be shown that the life-cycle budget

constraint is satisfied when

∫ T̄

0
exp {−rs} [y(s;ϕ) +B(t)exp {gs}] ds =

∫ T̄

0
exp {−rs}E(s;ϕ) ds (3.59)

which is again the principle that the present value of income over the life-cycle should be

equal to the present value of E(·).

Because of the presence of a kink in the labor supply function at the date of retire-

ment, the household’s optimization problem described above cannot be solved analytically.

Therefore, I rely on numerical methods (described in Appendix 3.9) to solve for the optimal

consumption, saving and labor supply profiles over the life-cycle.
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3.4 Computational algorithm

To compute the SCE for a given set of model parameters and an OASI tax rate, I use

the following algorithm:

• Step 1: Guess some values for the factor prices, the labor-to-retiree ratio and the

accidental bequest.

• Step 2: Solve the households’ optimization problems under the values guessed in step

1.

• Step 3: Aggregate the household-level optimal choices to obtain the implied total

capital stock and labor supply.

• Step 4: Compute the factor prices, the labor-to-retiree ratio and the accidental

bequest implied by the values obtained in steps 2 and 3.

• Step 5: Repeat steps 1-4 until the guessed values in step 1 converge to the implied

values in step 4.

Then, to find the optimal tax rate, I repeat steps 1-5 over a grid of tax rates and then

choose the value that maximizes social welfare (i.e. satisfies condition (3.7)).

3.5 Baseline calibration

I parameterize the baseline equilibrium of the model using empirical evidence from

various sources. A population growth rate of n = 1% is consistent with the U.S. demographic

history, and I set the rate of technological progress to g = 1.56%, which is the trend growth

rate of per-capita income in the postwar U.S. economy (Bullard and Feigenbaum, 2007). I

assume that households enter the model at actual age 25, which corresponds to the model

age of zero. I obtain the survival probabilities from Feigenbaum’s (2008) sextic fit to the
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mortality data in Arias (2004), which is given by

lnQ(s) = −0.01943039 +
(
−3.055× 10−4

)
s+

(
5.998× 10−6

)
s2

+
(
−3.279× 10−6

)
s3 +

(
−3.055× 10−8

)
s4 +

(
3.188× 10−9

)
s5

+
(
−5.199× 10−11

)
s6 (3.60)

where s is model age. The 2001 U.S. Life Tables in Arias (2004) are reported up to actual

age 100, so I set the maximum model age to T̄ = 75. Also, I set the model benefit eligibility

age to Tr = 41, which corresponds to the current actual full retirement eligibility age of

66 in the U.S. As the household’s age-dependent efficiency endowment e(s) is difficult to

observe, I use average cross-sectional hourly income data from the 2001 CPS as a proxy

for efficiency. To use this data, I first use piecewise linear interpolation to obtain average

hourly earnings for all ages between 25-65, and normalize the data such that earnings at

actual age 25 is unity. Then, I fit a quartic polynomial to the interpolated data, which gives

ln e(s) = −3.273× 10−5 +
(
1.423× 10−4

)
s+

(
−3.8696× 10−5

)
s2

+
(
−1.313× 10−5

)
s3 +

(
6.307× 10−8

)
s4 (3.61)

where s is model age and s ≤ 40. Beyond actual age 65 (i.e. for s > 40), for which data is

limited, I use the following quadratic function

ln e(s) = −f0 − f1s− 0.01s2 (3.62)

and parameterize f0 and f1 such that e(s) is continuous and once differentiable at age

s = 40.6 The resulting efficiency profile is plotted in Figure 3.1.

The historically observed value of capital’s share in total income in U.S. ranges between

30-40%, so I set α = 0.35. Also, since I focus only on SCE, I set t = 0 in all the computations

and normalize the initial stock of technology and the population to A(0) = N(0) = 1. I also

6The values that satisfy these conditions are f0 = 14.7416 and f1 = −0.7643.
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Figure 3.1: Efficiency profile estimated from the 2001 CPS.

assume that the random component of household efficiency (ϕ) is distributed uniformly

within a cohort, and then transform the continuous distribution into a 5-point discrete

distribution for computational convenience (i.e. f(ϕ) = 0.2).7 To express efficiency relative

to the most efficient households in the cohort (those with ϕ = ϕ), I specify the lower

limit of the support as a fraction of the upper limit, i.e. ϕ = ωϕ with 0 < ω ≤ 1, and

then normalize the upper limit to ϕ = 1. Note that with this specification, the degree of

efficiency heterogeneity within a cohort can be conveniently controlled by simply varying

the parameter ω. Finally, I set the depreciation rate to δ = 0.0744.

Once all the observable parameters have been assigned empirically reasonable values, I

calibrate the unobservable preference parameters σ (IEIS), ρ (discount rate) and η (share of

consumption in period utility), the efficiency heterogeneity parameter ω and the benefit rule

parameter ζ(ω) (which controls the degree of redistribution in the social security program)

such that the model jointly matches the following targets:

7Note that the 5-point specification also facilitates reporting model data by income quintiles.
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• a steady state capital-output ratio of 3.0,

• an average fraction of time of 34/168 = 0.202 spent on market work between ages

25-55,

• a replacement rate of 90% for the poorest households in the population, and

• an optimal or welfare-maximizing OASI tax rate of 10.6%.8

The capital-output ratio target is consistent with the larger macroeconomic literature. The

target for the fraction of time spent on market work is taken from the 2001 CPS, which

reports that on an average, production and nonsupervisory employees in the U.S. spend 34

hours per week on market work. The replacement rate target is taken from the Primary

Insurance Amount (PIA) benefit formula used by the SSA, which replaces 90% of the average

indexed monthly earnings among the poorest income earners in the population. Finally, the

current OASI tax rate target allows me to fully control for the optimal program size under

the current U.S. demographics.

The parameter values under which the model reasonably matches the above targets

are reported in Table 3.1. Note that discount rates close to zero or even negative are not

uncommon in the macro-calibration literature (Huggett, 1996; Bullard and Feigenbaum,

2007; Feigenbaum, 2008) as well as the quantitative public finance literature (Huggett

and Ventura, 1999; Conesa and Garriga, 2008a,b), and a share of consumption in pe-

riod utility around one-sixth is reasonably close to the values used in the general pension

reform literature (Kotlikoff, 1997; Huggett and Ventura, 1999; Nishiyama and Smetters,

8I compute the replacement rate at date t for a household with efficiency ϕ surviving to the eligibility
age as follows. First, I compute the average indexed pre-tax earnings using the formula

AIE(t;ϕ) =

{∫ T∗(ϕ)

0

{1− l(t; t− s, ϕ)}w(t)ϕe(s) ds

}
/T ∗(ϕ)

where T ∗(ϕ) is the retirement age of households with efficiency ϕ, or the age at which labor supply drops
to zero. Note that similar to the SSA’s calculations, I index past wages to date t in computing the AIE.
Then, the I compute the replacement rate using the formula

RR(t;ϕ) = b(t;ϕ)/AIE(t;ϕ)
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Table 3.1: Unobservable parameter values under the baseline calibration.

σ ρ η ω ζ(ω)

1.9 -0.0015 0.176 0.2 0.46

Table 3.2: Model performance under the baseline calibration.

Target Model

Capital-output ratio 3.0 3.37
Avg. fraction of work time between ages 25-55 0.202 0.205
Replacement rate for the poorest households 0.9 0.896
Social security tax rate 0.106 0.107

2005). Also, note that with leisure in period utility, the relevant IEIS for consumption is

σc = 1 + η(σ − 1) = 1.16, which lies conveniently within the range frequently encountered

in the literature.

The factor prices in the baseline equilibrium are r = 0.0293 and w = 1.25, the labor-

to-retiree ratio is Re = 0.6386, and the accidental bequest is B = 0.0015. I report the

model-generated values for the targets under the baseline calibration in Table 3.2. The

baseline equilibrium cross-sectional age-consumption and age-labor hour profiles for the

different efficiency groups are reported in Figures 3.2 and 3.3. It is useful to note that the

average cross-sectional consumption profile (not plotted in Figure 3.2) exhibits a peak at

about age 51, with a ratio of peak to initial consumption of 1.22. Also note that in the

figures, 1 corresponds to the lowest efficiency level and 5 corresponds to the highest.

Since households in the current model are life-cycle permanent income consumers, a

qualitative measure of their welfare gains from the social security program can be obtained

by comparing their internal rates of return (IRR) from the program with the equilibrium

rate of return from the capital stock. By definition, the IRR of a household with efficiency

ϕ is the discount rate β(ϕ) for which the net present value of the household’s social security



51

25 40 55 70 85 100
0

0.05

0.1

0.15

0.2

0.25

Age

C
on

su
m

pt
io

n

 

 
1
2
3
4
5

Student Version of MATLAB

Figure 3.2: Baseline cross-sectional age-consumption profiles by efficiency level.
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Figure 3.3: Baseline cross-sectional age-labor hour profiles by efficiency level.
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wealth equals zero. Mathematically, it is a solution to the following equation

∫ T̄

0
exp {(g − β(ϕ))s}Q(s)θ {1− l(s;ϕ)}w(t)ϕe(s) ds

=

∫ T̄

Tr

exp {(g − β(ϕ))s}Q(s)b(t;ϕ) ds (3.63)

where s is model age. Note that the first term in the above equation gives the present

value of total benefits received and the second term gives the present value of the total tax

payments. Numerically solving equation (3.63) for each efficiency group yields the follow-

ing IRR distribution under the baseline calibration: {0.0479, 0.0323, 0.0256, 0.0218, 0.0192}.

Comparing these IRRs with the equilibrium rate of return from capital stock shows that

the bottom two quintiles of the model population experience a welfare gain from partici-

pating in the social security program, and the top three quintiles experience a welfare loss.

With ζ(ω) = 0.46, the social security program partially insures the households against un-

favorable efficiency realizations: the benefit annuity of the poorest households is close to

half of that of the wealthiest, when the labor income of the former is only one-fifth of the

latter (as ω = 0.2). The gross benefit replacement rates in the model population under

the baseline calibration are compared to the ones implied by the U.S. PIA benefits for-

mula in Figure 3.4.9 The optimal retirement age distribution in the baseline calibration is

{61.48, 63.09, 63.61, 63.86, 64.02}, which shows that households with lower efficiency retire

earlier than those with higher efficiency.

3.6 Population aging

Population aging in the current model is driven by an increasing life expectancy and a

falling population growth rate. The 2009 OASDI Trustees Report published by the SSA

contains the long-range social security area population and the average life expectancy at

9It may be noted here that even though social security contributions and benefits are capped in the real
world, no such cap exists in the model. However, the baseline distribution of income in the model is such
that these caps would not bind even if they existed. As Huggett and Ventura (1999) point out, the maximum
creditable earnings in the U.S. social security program averaged at 2.47 times the average earnings over the
period 1990-94. The ratio of maximum earnings to average earnings in the baseline calibration is 1/0.6=1.67,
which is lesser than 2.47.
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Figure 3.4: Gross replacement rates: Model Vs U.S.

birth projections for 2075 under three plausible sets of assumptions: low-cost, i.e. favor-

able demographic conditions, intermediate, i.e. best estimates of likely future demographic

conditions, and high-cost, i.e. financially disadvantageous demographic conditions. The

projections are as follows:

1. Low-cost: life expectancy of 80.55, social security area population growth rate of

0.16%,

2. Intermediate: life expectancy of 83.95, social security area population growth rate

of 0.09%, and

3. High-cost: life expectancy of 87.55, social security area population growth rate of

0.01%.

The projections for the growth rate of the social security area population can be taken

directly to the model. To use the life expectancy projections, I augment the baseline
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Table 3.3: The demographic experiments.

Experiment n(%) γ µ Life expectancy

Low-cost (1) 0.16 1× 10−4 1.5577 80.55
Intermediate (2) 0.09 6× 10−5 1.9077 83.95
High-cost (3) 0.01 4× 10−5 2.1298 87.55

survival probabilities with an age-specific increment of the form

dQ(s) = γsµ (3.64)

where γ and µ are positive constants to be parameterized, and s represents household age.

Therefore, the projected survival probabilities are given by

Qp(s) = Q(s) + γsµ (3.65)

Note that these age-specific increments are consistent with the fact that old-age survivorship

in the U.S. has increased at a faster rate in the later half of the twentieth century, making the

population survival curve more rectangular (Arias, 2004) (see Figure 3.5). Then, I choose

values for γ and µ such that the model life expectancies under the augmented survival

probabilities match the projections described above. I report the specific demographic

experiments in Table 3.3.10,11 I incorporate these population projections into the baseline

model, and then compute a new SCE with an optimal OASI tax rate under each experiment.

I report the corresponding values of the social security tax rate and some other relevant

variables in Table 3.4.

The results of the three experiments can be summarized as follows. First, the optimal

or welfare-maximizing social security tax rate increases from the baseline level by 1.8 per-

centage points under the low-cost projection, 3.2 percentage points under the intermediate

10I hold the maximum lifespan unchanged at T̄ = 75 under all the three experiments.
11Note that in the current model, both the baseline life expectancy and the increases under population

aging are symmetric across the different income groups. However, there is evidence that both life expectancy
(Attanasio and Emmerson, 2003; De Nardi et al., 2006) and its rate of improvement (Waldron, 2007) are
strongly correlated with income.
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Figure 3.5: Baseline and the projected survival probabilities.

Table 3.4: The effect of population aging on the calibrated model.

Experiment Baseline 1 2 3

Social security tax rate 0.107 0.125 0.139 0.155
Replacement rate for the poorest house-
holds

0.896 0.736 0.706 0.68

Rate of return 0.0293 0.0251 0.0222 0.0194
Wage rate 1.25 1.28 1.3 1.32
Output 7.55 9.2 9.86 10.56
Capital 25.47 32.36 35.75 39.41
Labor 3.92 4.67 4.93 5.2
Capital-output ratio 3.37 3.52 3.62 3.73



56

projection, and 4.8 percentage points under the high-cost projection. Second, capital ac-

cumulation increases and reduces the equilibrium rate of return, with 0.42, 0.71 and 0.99

percentage point declines under experiments 1, 2 and 3, respectively. Finally, the replace-

ment rate for the lowest efficiency group declines to about 74, 71 and 68% under the three

experiments, and the output level, labor supply and the capital-output ratio all increase.

It is useful to compare the results in Table 3.4 to those in the other studies on social

security reform under population aging in the U.S. De Nardi et al. (1999) consider eight

alternative budget-balancing fiscal responses to future demographic shocks, which include

keeping the benefits fixed and allowing the tax rates to adjust to the burden of demographic

shocks, allowing the benefits to fall by increasing the retirement eligibility age, changing

their tax treatment, or changing the benefit formula to allow for a larger dependence of

benefits to past income. They find that allowing only the labor income tax rate to adjust

to the shock requires it to increase by almost 30 percentage points to keep the benefits un-

changed. However, when the benefits are allowed to fall from their baseline level, relatively

smaller but still fairly large increases in the tax rate are required (of the order of 13 to 23

percentage points). On the other hand, Conesa and Garriga (2008b) find that the average

effective tax rate on labor income (which includes both the regular labor income tax as well

as a payroll tax collected to finance social security) actually falls from its initial steady state

level of 24.8% to around 22%. In comparison, the current model predicts that the optimal

or welfare-maximizing response to population aging is likely to include tax increases ranging

from roughly 2 to 5 percentage points. Also, it is important to note that these increases in

the tax rate are always smaller than the actuarial projections of the SSA.

Why do the optimal or welfare-maximizing responses to population aging require rela-

tively small increases in the tax rate? To understand this, I examine how population aging

affects the extent to which households with different efficiency levels benefit from the social

security program. In Table 3.5, I report the households’ IRRs from social security under

the three experiments, while holding the tax rate fixed at the baseline level. Note that the

rates of return reported in Table 3.5 are the equilibrium values in post-population aging
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Table 3.5: The effect of population aging on the households’ IRRs from social security.

Experiment βϕ=0.2 βϕ=0.4 βϕ=0.6 βϕ=0.8 βϕ=1 Rate of return

Baseline 0.0479 0.0323 0.0256 0.0218 0.0192 0.0293
1 0.0406 0.0242 0.0172 0.0132 0.0106 0.0237
2 0.0399 0.0235 0.0165 0.0125 0.0099 0.0199
3 0.0391 0.0227 0.0157 0.0118 0.0092 0.0161

SCE with θ = 0.107. The table shows that population aging negatively impacts the IRRs

from social security across all the efficiency levels, but also reveals an interesting asymme-

try in the effect: the bottom quintiles of the model population experience smaller declines

relative to the top quintiles. Across the baseline calibration and experiment 3, the IRRs

for the respective groups decline by roughly 18, 30, 39, 46 and 52%, which implies that the

burden of population aging is lesser on the poorer households who actually benefit from

social security. Given this fact, it appears intuitive that the optimal or welfare-maximizing

response requires relatively small changes in the tax rate.

Why does population aging impose a lesser burden on the poorer households who benefit

the most from the social security program? Examination of equation (3.63) reveals that

the answer to this question lies in understanding how it affects household labor supply over

the life-cycle: a crucial determinant of the IRR. In Table 3.6, I report the expected labor

supply over the life-cycle (in efficiency units) for the different efficiency groups under the

three experiments, with the tax rate held fixed at the baseline level. Two facts are clear

from the table. First, households respond by increasing their labor supply: expected labor

supply over the life-cycle is higher than the baseline for all the efficiency groups. Second, the

Table 3.6: The effect of population aging on the households’ labor supply over the life-
cycle.

Experiment ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 ϕ = 1

Baseline 1.25 2.91 4.57 6.23 7.89
1 1.32 3.1 4.89 6.68 8.47
2 1.39 3.27 5.16 7.05 8.94
3 1.47 3.45 5.43 7.41 9.4
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labor supply responses are not symmetric: the households with higher efficiency experience

larger increases than the households with lower efficiency. Across the baseline calibration

and experiment 3, expected labor supply over the life-cycle increases by 17.5 and 18.7% for

the bottom two quintiles, and by 19, 19.1 and 19.2% for the top three quintiles of the model

population. As the relatively wealthy households supply more labor, they take up a larger

tax burden relative to the poorer households, which causes a larger decline in their IRRs.

The life-cycle labor supply responses documented in Table 3.6 are a combined effect

of responses both along the intensive margin (i.e. hours worked) as well as the extensive

margin (i.e. retirement or the age of exiting the labor force). In Table 3.7, I decompose

these changes: Sub-table 3.7a documents the average weekly hours spent on market work

between ages 25-55 for the different efficiency groups (the intensive margin), and Sub-table

3.7b documents the actual retirement ages (the extensive margin). Note that in both the

sub-tables I report post-population aging equilibrium values with the tax rate held fixed at

the initial baseline. Sub-table 3.7a shows that in general, all the efficiency groups experience

an increase in their weekly work hours due to population aging (the only exception are the

Table 3.7: Decomposing the labor supply responses along the intensive and the extensive
margins.

(a) The intensive margin: average weekly hours spent on market
work between ages 25-55.

Experiment ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 ϕ = 1

Baseline 29.9 34.07 35.44 36.13 36.54
1 29.75 34.24 35.73 36.47 36.91
2 29.95 34.6 36.14 36.91 37.37
3 30.25 34.92 36.48 37.25 37.72

(b) The extensive margin: actual retirement age.

Experiment ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 ϕ = 1

Baseline 61.48 63.09 63.61 63.86 64.02
2 64.37 65.88 66.24 66.41 66.5
3 65.9 66.89 67.17 67.3 67.38
4 66.9 67.67 67.91 68.02 68.09
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Table 3.8: Equilibrium social security benefits with the optimal tax response.

Experiment ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 ϕ = 1

Baseline 0.0171 0.0342 0.0513 0.0684 0.0855
1 0.014 0.0279 0.0419 0.0558 0.0698
2 0.0136 0.0271 0.0407 0.0543 0.0678
3 0.0133 0.0266 0.0399 0.0532 0.0665

poorest households under the low-cost experiment). Across the baseline and experiment

3, average weekly hours spent on market work increases by roughly 1.2, 2.5, 2.9, 3.1 and

3.2% respectively. With respect to the extensive margin, Sub-table 3.7b shows that the

retirement age also increases under population aging. Across the baseline and experiment

3, the age at which labor supply drops to zero for the respective efficiency groups increases

by 5.4, 4.6, 4.3, 4.2 and 4.1 years. Note that even with the largest delay in retirement,

the smallest increase in the weekly hours for the poorest households leads to the smallest

increase in their expected labor supply over the life-cycle.

What is the final impact of population aging and the optimal tax response on the equi-

librium social security benefits? In Table 3.8, I report the equilibrium retirement benefits

of the households surviving to the eligibility age (Tr) under the three demographic experi-

ments, with the OASI tax rate set at the optimal levels identified in Table 3.4. The table

shows that population aging always leads to a decline in social security benefits even in the

presence of the optimal or welfare-maximizing tax response: benefits fall by roughly 18, 21

and 22% under the three experiments. However, it is important to note that these declines

are significantly smaller than what would have occurred if the tax rate were held fixed at

the baseline level. Social security benefits in post-population aging equilibria are about 28,

36 and 43% lower under the three demographic experiments with θ = 0.107.

3.7 Sensitivity analysis

The optimal or utility-maximizing social security tax rates under the projected future

demographics in the U.S., as outlined in the previous section, are conditional on the set of

parameter values used in the baseline calibration. However, as Hansen and Heckman (1996)
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note, empirical evidence reports not only the point estimates of data targets but also their

sampling distributions. This implies that multiple values for the observable parameters

(those within a reasonable statistical interval), rather than one, are in agreement with data.

In addition, different sets of values for the observable parameters imply different sets of

values for the unobservable parameters under which the model matches the data targets.

However, as Caliendo and Gahramanov (2009) and Findley and Caliendo (2009) demon-

strate, the welfare consequences of social security are crucially dependent on the values

that are assigned to these unobservable parameters: different parameterizations that are

consistent with the same macro-general equilibrium have very different policy implications

for social security. Given these facts, in this section I examine how the results outlined in

the previous section are sensitive to the assigned values of some key model parameters.

Two sets of parameters that are treated as observable in the baseline calibration of the

model are capital’s share in total income (α) and the age-dependent household efficiency

endowment (e(s)). The value of capital’s share in total income is set to α = 0.35 in the

initial baseline calibration, but the macroeconomic estimates historically observed in the

U.S. range between 30− 40%. Therefore, to verify the sensitivity of the simulation results

with respect to α, I first compute new calibrated baseline equilibria of the model under

α = 0.3 and α = 0.4, and then re-simulate experiments 1, 2 and 3. The unknown preference

parameters and target values for the baseline calibrations with α = 0.3, 0.35 and 0.4 are

compared in Table 3.9.

It is clear from the table that calibrated baseline equilibria of the model under α = 0.3

and α = 0.4 provide reasonable fits to the data targets, with the values for the unknown

parameters falling conveniently in the range used in the larger macro-calibration literature.

Baseline cross-sectional age-consumption and age-labor hour profiles for the different ef-

ficiency groups under α = 0.3 and α = 0.4 are reported in Figures 3.6-3.7 and Figures

3.8-3.9. The figures show that both baseline consumption as well as labor hour profile

exhibit empirically reasonable shapes.

Numerically solving equation (3.63) for each efficiency group yields the following baseline
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Table 3.9: Baseline equilibria under different values of capital’s share in total income.

(a) Unobservable parameter values.

α = 0.3 α = 0.35 α = 0.4

Discount rate (ρ) 0.001 -0.0015 -0.0025
IEIS (σ) 1.8 1.9 1.7
Share of consumption in period utility (η) 0.177 0.176 0.175
Efficiency heterogeneity parameter (ω) 0.16 0.2 0.2
Benefit redistribution parameter (ζ(ω)) 0.38 0.46 0.48

(b) Model performance.

α = 0.3 α = 0.35 α = 0.4

Capital-output ratio 2.92 3.37 3.86
Avg. fraction of work time between ages
25-55

0.202 0.205 0.208

Replacement rate for the poorest house-
holds

0.93 0.896 0.9

Social security tax rate 0.102 0.107 0.106
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Figure 3.6: Baseline cross-sectional age-consumption profiles under α = 0.3.
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Figure 3.7: Baseline cross-sectional age-labor hour profiles under α = 0.3.
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Figure 3.8: Baseline cross-sectional age-consumption profiles under α = 0.4.
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Figure 3.9: Baseline cross-sectional age-labor hour profiles under α = 0.4.

household IRR distributions for the two α values: {0.0501, 0.0322, 0.0256, 0.0221, 0.0199}

and {0.0489, 0.0327, 0.0256, 0.0215, 0.0189}, respectively. Comparing these IRR distribu-

tions with the rates of return from capital stock shows that only the bottom two quintiles

of the model population experience welfare gains from participating in the social security

program. Therefore, the welfare implications of social security in this model are not sen-

sitive to the α values used in the simulations. The gross benefit replacement rates in the

baseline model under the different α values are compared to the ones implied by the U.S.

PIA benefits formula in Figures 3.10 and 3.11.

The baseline optimal retirement age distributions under the different values of capital’s

share in total income are compared in Table 3.10. Also, note that in the table, 1 corresponds

to the lowest efficiency level and 5 corresponds to the highest. The table demonstrates that

even with different values of capital’s share in total income, households with lower efficiency

continue to exit the labor force earlier than those with higher efficiency.

The next step is to conduct experiments 1, 2 and 3 on the calibrated model with different
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Figure 3.10: Gross replacement rates: Model Vs U.S. under α = 0.3.
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Figure 3.11: Gross replacement rates: Model Vs U.S. under α = 0.4.



65

Table 3.10: Retirement age distributions under different values of capital’s share in total
income.

Capital’s share in income 1 2 3 4 5

0.3 62.75 64.47 64.94 65.15 65.26
0.35 61.48 63.09 63.61 63.86 64.02
0.4 59.52 61.32 61.9 62.18 62.35

Table 3.11: The effect of population aging on the calibrated model.

(a) With capital’s share of α = 0.3.

Experiment Baseline 1 2 3

Variable

Social security tax rate 0.102 0.127 0.141 0.157
Replacement rate for the poorest
households

0.93 0.82 0.79 0.76

Rate of return 0.0285 0.0252 0.0223 0.0195
Wage rate 1.11 1.12 1.14 1.15
Output 6.03 7.25 7.72 8.22
Capital 17.57 21.83 23.97 26.27
Labor 3.81 4.52 4.75 5.0
Capital-output ratio 2.92 3.01 3.1 3.19

(b) With capital’s share of α = 0.4.

Experiment Baseline 1 2 3

Variable

Social security tax rate 0.106 0.122 0.136 0.151
Replacement rate for the poorest
households

0.9 0.73 0.73 0.67

Rate of return 0.0293 0.0249 0.0221 0.0193
Wage rate 1.48 1.52 1.55 1.58
Output 9.69 11.87 12.8 13.81
Capital 37.38 47.84 53.1 58.95
Labor 3.94 4.69 4.96 5.25
Capital-output ratio 3.86 4.03 4.15 4.27

values of capital’s share in total income, and then compute post-population aging SCE

with an optimal OASI tax rate. I report the corresponding values of the tax rate and

some other relevant variables in Table 3.11. It is clear from the table that the general

impact of population aging on the welfare-maximizing social security tax rate and the
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other endogenous variables is fairly robust across different values for capital’s share in total

income. With all realistic α values, the model predicts a 2-5 percentage point increase in the

social security tax rate under the projected future demographics. Population aging reduces

the equilibrium rate of return from capital and increases the equilibrium wage rate, output,

capital stock, labor supply and the capital-output ratio under all realistic α values.

Given that the welfare-maximizing changes in the tax rate predicted by the model are

fairly robust across different values for capital’s share in total income used in the simulation,

it is natural to expect that the factors driving such changes are also robust to the different

α-values. To verify this, I document in Table 3.12 how the households’ IRRs from the

social security program are affected by population aging, holding the social security tax

rate fixed at the corresponding baseline level identified in Table 3.9. The tables reveal a

familiar pattern of the impact of the demographic shocks on the households’ IRRs from

the social security program. Across the baseline and experiment 3, the IRRs of the five

efficiency groups decline by roughly 16, 30, 39, 45 and 51%, respectively, under α = 0.3,

and by roughly 18, 30, 39, 46 and 53%, respectively, under α = 0.4. Therefore, the fact

that population aging imposes a lesser burden on the poorer households who are actually

Table 3.12: The effect of population aging on the households’ IRRs under different α-
values.

(a) With capital’s share of α = 0.3.

Experiment βϕ=0.16 βϕ=0.37 βϕ=0.58 βϕ=0.79 βϕ=1 Rate of return

Baseline 0.0501 0.0322 0.0256 0.0221 0.0199 0.0285
1 0.0433 0.0242 0.0172 0.0135 0.0112 0.0232
2 0.0428 0.0234 0.0165 0.0128 0.0105 0.0195
3 0.0421 0.0226 0.0157 0.0121 0.0098 0.0158

(b) With capital’s share of α = 0.4.

Experiment βϕ=0.2 βϕ=0.4 βϕ=0.6 βϕ=0.8 βϕ=1 Rate of return

Baseline 0.0489 0.0327 0.0256 0.0215 0.0189 0.0293
1 0.0415 0.0246 0.0172 0.013 0.0103 0.0237
2 0.0408 0.0238 0.0165 0.0123 0.0096 0.0201
3 0.0399 0.023 0.0157 0.0116 0.0089 0.0165



67

Table 3.13: The effect of population aging on the households’ labor supply over the life-
cycle.

(a) Labor supply responses with α = 0.3.

Experiment ϕ = 0.16 ϕ = 0.37 ϕ = 0.58 ϕ = 0.79 ϕ = 1

Baseline 0.86 2.33 3.81 5.29 6.76
1 1.01 2.82 4.63 6.43 8.24
2 1.07 2.99 4.92 6.85 8.78
3 1.14 3.18 5.23 7.28 9.33

(b) Labor supply responses with α = 0.4.

Experiment ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 ϕ = 1

Baseline 1.05 2.49 3.94 5.38 6.82
1 1.26 3.01 4.76 6.52 8.28
2 1.34 3.22 5.1 6.98 8.86
3 1.45 3.46 5.46 7.47 9.48

the beneficiaries of the social security program also appears to be robust to the value of

capital’s share in total income used in the simulations.

In Table 3.13, I demonstrate that the asymmetry in the labor supply responses from

the different efficiency groups is behind the asymmetric declines in the respective IRRs.

The table reports expected labor supply over the life-cycle (in efficiency units) for the

different efficiency groups under the three experiments, with the social security tax rates

held fixed at their respective baseline levels with different α values. The table shows a

pattern similar to that observed under the baseline case: households with higher efficiency

experience larger delays in retirement than households with lower efficiency under both

α = 0.3 and 0.4. Across the baseline calibration and experiment 3, life-cycle labor supply

for the five efficiency groups increases by roughly 32.3, 36.4, 37.4, 37.8 and 38% respectively

under α = 0.3, and by roughly 37.6, 38.6, 38.8, 38.9 and 39% respectively under α = 0.4.

Once again, the relatively larger increases in labor supply experienced by the more efficient

households serves to transfer a larger tax burden onto them, which has a larger negative

impact on their IRRs from social security.

Decomposing households labor supply responses over the life-cycle under the different α-
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Table 3.14: Decomposing the labor supply responses under capital’s share of α = 0.3.

(a) The intensive margin: average weekly hours spent on market
work between ages 25-55.

Experiment ϕ = 0.16 ϕ = 0.37 ϕ = 0.58 ϕ = 0.79 ϕ = 1

Baseline 29.34 33.85 35.08 35.65 35.99
1 28.54 33.68 35.09 35.75 36.13
2 28.42 33.81 35.3 35.99 36.39
3 28.41 33.9 35.41 36.12 36.53

(b) The extensive margin: actual retirement age.

Experiment ϕ = 0.16 ϕ = 0.37 ϕ = 0.58 ϕ = 0.79 ϕ = 1

Baseline 62.75 64.47 64.94 65.15 65.26
1 65.4 66.64 66.91 67.03 67.1
2 66.5 67.45 67.68 67.79 67.85
3 67.33 68.13 68.34 68.43 68.48

values also reveals a familiar pattern. To see this, consider Table 3.14, in which I report both

the average weekly hours spent in market work between ages 25-55 (the intensive margin),

as well as the ages at which households exit the labor force (the extensive margin) under a

capital’s share of α = 0.3. Note that similar to the other tables, I hold the social security

tax rate held fixed at the baseline level. The table shows that across the baseline and

experiment 3, average weekly hours spent on market work for efficiency groups 2 through

5 increases by roughly 0.16, 0.1, 1.3 and 1.5%, respectively. The only exception are the

poorest households, whose hours decline under population aging. However, the delays in

actual retirement experienced by the different efficiency groups under α = 0.3 are very

similar. Across the baseline and experiment 3, the age at which labor supply drops to zero

for the respective efficiency groups increases by 4.6, 3.7, 3.4, 3.3 and 3.2 years. Note that it is

the large delay in retirement for the poorest households that more than compensates for the

lower average hours spent on market work between ages 25-55 and generates increased labor

supply over the life-cycle. Table 3.15 reports simulation results in the same two categories,

but for α = 0.4, and shows that household labor supply responses along both the intensive

and the extensive margins are fairly robust to the underlying capital’s share parameter.
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Table 3.15: Decomposing the labor supply responses under capital’s share of α = 0.4.

(a) The intensive margin: average weekly hours spent on market
work between ages 25-55.

Experiment ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 ϕ = 1

Baseline 29.64 34.56 36.18 36.98 37.47
1 29.96 35.05 36.72 37.56 38.05
2 30.44 35.61 37.32 38.17 38.68
3 31.01 36.15 37.85 38.7 39.21

(b) The extensive margin: actual retirement age.

Experiment ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 ϕ = 1

Baseline 59.52 61.32 61.9 62.18 62.35
1 62.47 64.33 64.93 65.21 65.37
2 64.24 65.87 66.25 66.42 66.52
3 65.82 66.85 67.13 67.27 67.35

Table 3.16: Equilibrium social security benefits with the optimal tax response.

(a) With capital’s share of α = 0.3.

Experiment ϕ = 0.16 ϕ = 0.37 ϕ = 0.58 ϕ = 0.79 ϕ = 1

Baseline 0.0282 0.0397 0.0512 0.0626 0.0741
1 0.0242 0.034 0.0439 0.0538 0.0636
2 0.0233 0.0328 0.0424 0.0519 0.0614
3 0.0227 0.032 0.0413 0.0505 0.0598

(b) With capital’s share of α = 0.4.

Experiment ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 ϕ = 1

Baseline 0.0475 0.0604 0.0732 0.0861 0.099
1 0.0384 0.0488 0.0592 0.0697 0.0801
2 0.0377 0.0479 0.0581 0.0683 0.0784
3 0.0371 0.0471 0.0571 0.0672 0.0772

Finally, I report in Table 3.16 the equilibrium social security benefits at actual age 70

(model age 45) for the different efficiency groups under α = 0.3 and 0.4 with the welfare-

maximizing tax response. The table demonstrates that the equilibrium social security ben-

efits with the optimal tax response are lower than the baseline level: benefits decline by

roughly 14, 17 and 19% under the three experiments with α = 0.3. However, these are sig-
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nificantly lower than what would have occurred if the tax rate were held fixed at the baseline

level, in which case the decline are about 29, 27 and 44% respectively. Therefore, the effect

of population aging and the welfare-maximizing tax response on equilibrium benefits also

appears to be fairly robust to the underlying value of the capital’s share parameter.

Computing new calibrated baseline equilibria of the model with different but empirically

consistent values of capital’s share in total income and re-simulating experiments 1, 2 and

3 demonstrates that the simulation results are fairly robust to the underlying α values.

Note that even though using different values for capital’s share in total income changes the

values for the unknown preference parameters for which the model matches data targets,

the quantitative predictions of the model remain largely unchanged.

Another set of parameters treated as observable in the initial simulation results are

the coefficients of the age-dependent component of household efficiency (e(s)) as specified

in (3.61). Given that it is difficult to directly observe efficiency, a standard approach in

literature is to use cross-sectional hourly wages as a proxy. Following this approach, the

coefficients in (3.61) were estimated from normalized average cross-sectional hourly wages

data from the 2001 CPS. However, the age-dependent component of household efficiency

used in De Nardi et al. (1999), Conesa and Garriga (2008b) and Conesa and Garriga (2008a)

are estimated from Hansen (1993). Therefore, I now re-simulate the baseline results of

the current chapter with the age-dependent household efficiency data reported in Hansen

(1993). The efficiency units in Hansen (1993) are constructed by taking a weighted sum of

the hours worked by each age-sex subgroup using annual data from 1979 to 1987, where

the weights reflect the relative productivity of that subgroup. To use this data, I first

calculate the average of male and female weights for each age group, and use piecewise

linear interpolation to obtain the weights for all ages between 25 and 65. Then, I fit a

quartic polynomial to the interpolated data, which gives

ln e(s) = −0.0194 +
(
7.44× 10−3

)
s+

(
1.46× 10−4

)
s2 (3.66)

−
(
4.1× 10−6

)
s3 −

(
1.21× 10−7

)
s4
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Figure 3.12: Efficiency profiles from the 2001 CPS and Hansen (1993).

where s is model age and s ≤ 40. Similar to the baseline calibration, beyond actual age 65

(i.e. for s > 40), I use the following quadratic function

ln e(s) = −f0 − f1s− 0.01s2 (3.67)

and parameterize f0 and f1 such that e(s) is continuous and once differentiable at s = 40.

This yields f0 = 14.7984 and f1 = −0.7685. The age-dependent efficiency profile from

Hansen (1993) is compared to the initial profile computed from the 2001 CPS in Figure

3.12.

Following the same approach used in sensitivity analyses with respect to the capital’s

share in total income, I first compute a new baseline equilibrium with the new age-dependent

efficiency profile, and then I re-simulate demographic experiments 1, 2 and 3. The unknown

preference parameters and the associated model generated target values for the endogenous

variables for the efficiency profile estimated from Hansen (1993) are compared to the initial
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Table 3.17: Baseline equilibria with efficiency data from 2001 CPS and Hansen (1993).

(a) Unobservable parameter values.

2001 CPS Hansen (1993)

Discount rate (ρ) -0.0015 -0.004
IEIS (σ) 1.9 1.8
Share of consumption in period utility (η) 0.176 0.175
Efficiency heterogeneity parameter (ω) 0.2 0.18
Benefit redistribution parameter (ζ(ω)) 0.46 0.4

(b) Model performance.

2001 CPS Hansen (1993)

Capital-output ratio 3.38 3.39
Avg. fraction of work time between ages 25-55 0.205 0.203
Replacement rate for the poorest households 0.896 0.924
Social security tax rate 0.107 0.104

baseline calibration in Table 3.17. It is clear from the table that the values for the unknown

preference parameters which calibrate the model to data under the efficiency profile esti-

mated from Hansen (1993) are very similar to those under the efficiency profile estimated

from 2001 CPS. The baseline cross-sectional age-consumption and age-labor hour profiles

are plotted in Figures 3.13 and 3.14, where in the figures 1 corresponds to the lowest effi-

ciency level, and 5 corresponds to the highest. Note that the baseline labor hours under the

efficiency profile estimated from Hansen (1993) are not hump-shaped, which is inconsistent

with empirical evidence.

The baseline households’ IRR distribution with the efficiency profile from Hansen (1993)

is as follows: {0.0485, 0.0321, 0.0256, 0.0221, 0.0198}. As in the initial baseline, the bottom

two quintiles of the model population experience a welfare gain from participating in the

social security program, as their IRRs are higher than the rate of return on capital stock.

The gross benefit replacement rates in the baseline model with the efficiency profile from

Hansen (1993) are compared to the ones implied by the U.S. PIA benefits formula in Figure

3.15.

Baseline household retirement behavior under the two different age-dependent efficiency
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Figure 3.13: Baseline cross-sectional age-consumption profiles under Hansen (1993).
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Figure 3.14: Baseline cross-sectional age-labor hour profiles under Hansen (1993).
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Figure 3.15: Gross replacement rates: Model Vs U.S. under Hansen (1993).

profiles are compared in Table 3.18, in which 1 corresponds to the lowest efficiency level

and 5 corresponds to the highest. The table shows that even with the efficiency profile from

Hansen (1993), less efficient households continue to exit the labor force before the more

efficient households.

Next, I report in Table 3.19 the results of re-simulating demographic experiments 1,

2 and 3 on the calibrated baseline model identified above. Examination of Table 3.19

reveals that the quantitative predictions of the model are fairly robust with respect to the

underlying efficiency profile. As in the previous cases, the welfare-maximizing social security

tax rates under population aging are 2-5 percentage points higher than the baseline level.

The associated general equilibrium adjustments, similar to those in the initial baseline, lead

Table 3.18: Retirement age distributions under the different efficiency profiles.

1 2 3 4 5

2001 CPS 61.48 63.09 63.61 63.86 64.02
Hansen (1993) 59.52 61.32 61.9 62.18 62.35
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Table 3.19: The effect of population aging on the calibrated model.

Experiment Baseline 1 2 3

Variable

Social security tax rate 0.104 0.125 0.139 0.156
Replacement rate for the poorest
households

0.92 0.78 0.74 0.71

Rate of return 0.0286 0.0249 0.022 0.0193
Wage rate 1.26 1.28 1.3 1.32
Output 7.41 9.08 9.77 10.49
Capital 25.17 31.99 35.47 39.2
Labor 3.83 4.61 4.88 5.16
Capital-output ratio 3.39 3.53 3.63 3.74

to a lower real rate of return, higher wages, output, capital stock and labor supply.

The driving forces behind these optimal tax changes predicted by the model also show a

similar pattern. In Table 3.20, I report how the IRRs from the social security program for

each efficiency group are affected by population aging, and in Table 3.21 I report the life-

cycle labor supply responses from the households (in efficiency units). Note that in both the

tables, I hold the social security tax rate fixed at the corresponding baseline level. Table

3.20 shows that the asymmetric impact of population aging on the IRRs of the different

efficiency groups is not sensitive to the coefficients of the underlying age-dependent efficiency

profile: across the baseline and experiment 3, the IRRs of the five efficiency groups decline

by roughly 17, 30, 39, 45 and 51%, respectively. Also, Table 3.21 shows that the asymmetric

changes in household labor supply are behind this: across the baseline and experiment 3,

labor supply (in efficiency units) of the five efficiency groups increase by about 38, 40.2,

40.8, 41 and 41.2%, respectively.

Table 3.20: The effect of population aging on the households’ IRRs with the efficiency
profile from Hansen (1993).

Experiment βϕ=0.18 βϕ=0.385 βϕ=0.59 βϕ=0.795 βϕ=1 Rate of return

Baseline 0.0485 0.0321 0.0256 0.0221 0.0198 0.0286
1 0.0415 0.024 0.0172 0.0135 0.0111 0.0234
2 0.0409 0.0233 0.0165 0.0128 0.0104 0.197
3 0.0402 0.0225 0.0157 0.0121 0.0097 0.016
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Table 3.21: The effect of population aging on the households’ labor supply with the
efficiency profile from Hansen (1993).

Experiment ϕ = 0.18 ϕ = 0.385 ϕ = 0.59 ϕ = 0.795 ϕ = 1

Baseline 0.95 2.39 3.83 5.27 6.72
1 1.14 2.92 4.7 6.49 8.27
2 1.22 3.13 5.04 6.95 8.86
3 1.31 3.35 5.4 7.44 9.48

Decomposing the household labor supply responses along the intensive and the extensive

margins with the efficiency profile from Hansen (1993) also reveals a similar pattern (see

Table 3.22). As in the earlier cases, both the average labor hours between ages 25-55 and

the retirement ages increase under population aging. Across the baseline an experiment

3, the average labor hours for all but lowest efficiency group increase by 0.9, 1.6, 1.9 and

2%, respectively. The labor hours for the lowest efficiency group actually declines by 1.4%.

However, large delays in retirement across the baseline and experiment 3 for all the efficiency

groups: 8.3, 7.2, 6.8, 6.6 and 6.5 years, ensure that the more efficient households experience

larger increases in labor supply over the life-cycle.

Table 3.22: Decomposing the labor supply responses under the efficiency profile from
Hansen (1993).

(a) The intensive margin: average weekly hours spent in market work
between ages 25-55.

Experiment ϕ = 0.18 ϕ = 0.385 ϕ = 0.59 ϕ = 0.795 ϕ = 1

Baseline 29.3 33.79 35.14 35.8 36.18
1 28.82 33.73 35.21 35.94 36.36
2 28.78 33.93 35.49 36.25 36.8
3 28.89 34.11 35.7 36.47 36.92

(b) The extensive margin: actual retirement age.

Experiment ϕ = 0.18 ϕ = 0.385 ϕ = 0.59 ϕ = 0.795 ϕ = 1

Baseline 59.52 61.32 61.9 62.18 62.35
1 66.23 67.16 67.41 67.52 67.59
2 67.09 67.88 68.1 68.2 68.26
3 67.82 68.51 68.7 68.8 68.85
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Table 3.23: Equilibrium social security benefits with the optimal tax response under
Hansen (1993).

Experiment ϕ = 0.18 ϕ = 0.385 ϕ = 0.59 ϕ = 0.795 ϕ = 1

Baseline 0.034 0.0468 0.0595 0.0723 0.085
1 0.0287 0.0395 0.0503 0.061 0.0718
2 0.028 0.0385 0.049 0.0595 0.0701
3 0.0277 0.0381 0.0485 0.059 0.0694

Finally, I report in Table 3.23 social security benefits in post-population aging steady

states with the welfare-maximizing tax responses. The table reveals a similar pattern, in

the sense that benefits decline by 15.5, 17.5 and 18.4% under the three experiments with

the optimal tax response. Also, these decline are significantly smaller than what would have

occurred if the tax rate were held fixed under population aging: declines of 28, 35.5 and

42%, respectively.

Sensitivity analysis with respect to the parameters in the age-dependent component of

household efficiency shows that the quantitative predictions of the model are fairly robust.

The welfare-maximizing social security tax rates under population aging are roughly 2-5

percentage points higher than the baseline value even with the efficiency profile estimated

from Hansen (1993).

It is worth noting that all the simulation results so far have been based on the as-

sumption that the age at which households start receiving social security benefits (Tr) will

remain unchanged under population aging. However, the Social Security Administration

has been steadily increasing the full retirement age in the U.S. over the past several decades.

Currently, the full retirement age for an individual depends on when he/she was born (see

Table 3.24). In their applied general equilibrium study on the projected U.S. demographics

and social security, De Nardi et al. (1999) consider a fiscal response in which the full re-

tirement age is postponed twice by 2 years each time in 2032 and 2036, eventually raising

it to 69. What impact would such a postponement in full retirement eligibility have on

the quantitative predictions of the current model? To examine this, I design a new set of

computational experiments in which I increase the age at which households start receiving
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Table 3.24: Age to receive full social security benefits in the U.S.

Year of birth Full retirement age

1937 or earlier 65
1938 65 and 2 months
1939 65 and 4 months
1940 65 and 6 months
1941 65 and 8 months
1942 65 and 10 months
1943-54 66
1955 66 and 2 months
1956 66 and 4 months
1957 66 and 6 months
1958 66 and 8 months
1959 66 and 10 months
1960 and later 67

benefits from Tr = 41 in the initial baseline to Tr = 44 (actual age of 69) under population

aging. The effect of this policy on the welfare-maximizing social security tax rate and the

other relevant endogenous variables is reported in Table 3.25.

It is clear from the table that the welfare-maximizing changes in the tax rate with

postponement of the eligibility age are smaller in magnitude compared to the ones predicted

by the baseline model. This should not be surprising, as holding everything else constant,

increasing Tr would simply lead to higher benefits per retiree. However, these higher benefits

would induce the households to increase their labor supply by a smaller magnitude (see Table

Table 3.25: The effect of population aging on the calibrated model with Tr = 44.

Experiment Baseline 1 2 3

Variable

Social security tax rate 0.107 0.12 0.134 0.149
Replacement rate for the poorest
households

0.896 0.83 0.78 0.74

Rate of return 0.0293 0.0256 0.0226 0.0197
Wage rate 1.25 1.28 1.3 1.32
Output 7.55 9.19 9.87 10.6
Capital 25.47 32.17 35.63 39.43
Labor 3.92 4.68 4.94 5.22
Capital-output ratio 3.38 3.5 3.61 3.72
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Table 3.26: Percentage change in household labor supply from baseline under population
aging.

(a) Without postponement of the eligibility age.

Experiment ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 ϕ = 1

1 5.41 6.77 7.11 7.27 7.37
2 11.0 12.63 13.04 13.23 13.34
3 17.51 18.69 18.96 19.09 19.16

(b) With postponement of the eligibility age to Tr = 44.

Experiment ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 ϕ = 1

1 3.1 3.69 3.83 3.9 3.93
2 9.75 10.78 11.02 11.13 11.19
3 17.71 18.42 18.58 18.64 18.68

3.26) relative to the situation without any postponement. This would partially reduce the

leisure cost of population aging to the households, and would therefore require smaller

welfare-maximizing changes in the social security tax rate.

3.8 Conclusions

In the current chapter I ask what should be the optimal or welfare-maximizing OASI tax

rate in the U.S. under the projected future demographics. I construct a heterogeneous-agent

general equilibrium model of life-cycle consumption and labor supply, where the source of

heterogeneity is a productivity or efficiency realization that occurs before the agents enter

the model. In the model, an unfunded social security program provides partial insurance

against the unfavorable efficiency realization by paying retirement benefits through a pro-

poor rule. I first calibrate the benefit rule to match the degree of redistribution in the

U.S. program, and then calibrate the model’s efficiency distribution such that the current

OASI tax rate in the U.S. is optimal under the current demographics. Then, I introduce

empirically reasonable population projections from the 2009 OASDI Trustees Report into

the calibrated model, and finally search for the tax rates that maximize social welfare under

those projections. I find that the optimal tax rates under the projected future demographics

in the U.S. are roughly 2 to 5 percentage points higher than the current rate. I also find that



80

population aging has a smaller impact on the relatively poor households who benefit from

social security, as wealthier households respond by supplying more labor and picking up a

larger tax burden. Finally, the model also predicts that population aging and the optimal

tax response may imply a decline in the projected retirement benefits, but of a magnitude

smaller than when the tax rate is held unchanged at the current level.

3.9 Appendix A: Computational methods

In this section I provide a discussion of the computational methods used in this chap-

ter, including the development of the required computer codes. The computational tasks

required in the current research can be broadly classified into two categories: symbolic

math and numerical methods. The primary symbolic math required includes construction

of appropriate algebraic expressions and suitably interfacing them for use with appropri-

ate numerical optimization algorithms, and the numerical methods required include actually

solving the interfaced algebraic expressions using contraction mapping algorithms. Both for

its ability to handle complicated symbolic operations and providing a stable programming

platform for developing suitable solver algorithms, I choose MATLABTM version 7.4.0.287

as the main computational software, powered by an Intel PentiumTM T4200 Dual-Core

CPU with 3 GB memory.

First, note that given the complex nature of the survival probability function Q(s),

the integrals identified in the various expressions in Section 2.3 do not have analytical

closed form solutions. Therefore, I implement the trapezoidal method to approximate these

integrals, which uses the idea that an integral is nothing but the limit of a sum. Specifically,

I use the approximation

∫ b

a
f(x) dx ≈

[
0.5× {f(a) + f(b)}+

N−1∑
i=1

f(a+ i∆)

]
×∆ (3.68)

where ∆ = (b− a)/N , which implies that the domain [a, b] has been divided into N equally

spaced intervals.
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First, note that as defined earlier, a stationary competitive equilibrium with an optimal

social security tax rate in the current framework is characterized by a collection of cross-

sectional consumption-saving and age-labor hour profiles, an aggregate capital stock, labor

supply and a labor-to-retiree ratio, a real rate of return and wage rate, a social security tax

rate and an accidental bequest that solves the household’s optimization problem, satisfies

the aggregation conditions, equilibrates the factor markets, satisfies the social security bud-

get and the bequest-balancing conditions, and maximizes steady state expected life-cycle

utility. Therefore, the computational exercise can be broken down into the following steps:

1. Solve for the household optimum for a given set of factor prices, a given labor-to-

retiree ratio, a given accidental bequest, a social security tax rate and given values

for the other model parameters.

2. Using the aggregation conditions, find the factor prices, the labor-to-retiree ratio and

the accidental bequest consistent with the household optimum. The general equilib-

rium is obtained when the factor prices, the labor-to-retiree ratio and the accidental

bequest values computed from the household optimum match the given factor prices,

the labor-to-retiree ratio and the accidental bequest values that were used to compute

the household optimum.

3. Finally, repeat the above two steps for different social security tax rates until the value

that maximizes steady state expected life-cycle utility is found. At the end of this

step, we have computed a stationary competitive equilibrium with an optimal social

security tax rate for a given set of model parameters.

To sequentially accomplish these three steps, I define a contraction mapping algorithm as

follows:

• Step 1: Set the social security tax rate and the model parameters to some values and

guess some values for the factor prices, the labor-to-retiree ratio and the accidental

bequest (label as vector xin).
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• Step 2: Solve the household’s utility maximization problem for the given factor prices,

the labor-to-retiree ratio and the accidental bequest in the vector xin.

• Step 3: Compute the aggregate capital stock, labor supply, the labor-to-retiree ratio

and the accidental bequest that are consistent with the households’ utility maximizing

consumption-saving and labor hour profiles obtained in Step 2.

• Step 4: Compute the market-clearing factor prices consistent with the aggregate

capital stock and labor supply obtained in Step 3, and store the factor prices and

the labor-to-retiree ratio in a vector xout.

• Step 5: Compute the percentage difference between vectors xin and xout, and store

it in a vector diff.

• Step 6: If the 2-norm of the vector diff is greater than some tolerance parameter

Tol, then update xin using the rule xin = xin.*(1+step), where step is given by

step = diff/9, and repeat steps 2 through 5.12,13

• Step 7: If the 2-norm of the vector diff is lesser than some tolerance parameter Tol,

then terminate the algorithm.

At the end of these steps, the program returns a vector of factor prices, the labor-to-retiree

ratio and an accidental bequest that solves the households’ optimization problem, clears the

factor markets and satisfies the social security budget and bequest-balancing conditions for

a given OASI tax rate and model parameters. Then, to find the tax rate that maximizes

welfare, I simply search over a grid of tax rates, repeating the steps 1 through 6 at every

point, and finally choose that value at which steady state expected life-cycle utility is

maximized. At the end of this step, the model returns a stationary competitive equilibrium

with an optimal OASI tax rate for a given set of observable and unobservable parameters of

the model. Calibrating the model to data targets simply involves repeating these procedures

12For a n× 1 vector [x1x2 . . . xn]′, the 2-norm is defined as
√∑n

i=1 x
2
i .

13This implies that the algorithm updates the guessed vector by a factor that depends on the divergence
between the guess and the feedback.
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for different combinations of values for the unobservable parameters and choosing the one

that produces model-generated values in reasonable neighborhood of the targets.

Note that as pointed out earlier, the household’s optimization problem cannot be solved

analytically because of the presence of an endogenous kink in the labor supply function

at the date of retirement. Therefore, to solve the household’s problem for a given vector

of factor prices, the labor-to-retiree ratio and an accidental bequest, I use the following

numerical procedure:

• Step 1: Guess a value for ψ(0;ϕ).

• Step 2: Use the guess to generate the life-cycle profile for E(s;ϕ) using equation

(3.57).

• Step 3: Use the E(s;ϕ) profile to pin down consumption and leisure over the life-

cycle, which in effect pins down the income profile y(s;ϕ).

• Step 4: Update the guessed ψ(0;ϕ) and repeat steps 1-2 continuously until the

present value of income is within reasonable tolerance of the present value of E(s;ϕ)

(i.e. the life-cycle budget constraint equation (3.59) is satisfied).

3.10 Appendix B: Pollution externality

In this section, I introduce another role for social security in the current general equi-

librium model of life-cycle consumption with endogenous labor supply: management of a

pollution externality that is positively related to aggregate capital stock. To do this, I sim-

plify the model in two ways. First, I abstract from mortality risk, which reduces the number

of equilibrium objects that require to be computed for model equilibrium (specifically, the

accidental bequest). Second, I focus on only the extensive margin of a household’s labor

supply decision (i.e. retirement) and abstract from the labor hour choice (the intensive

margin). This allows me to compute analytically closed form solutions for the household’s

optimization problem without resorting to numerical approximations.
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I assume that there is a pollution externality (say “smoke”) that increases with aggre-

gate capital stock and reduces household utility. I re-specify the household’s period utility

function to incorporate the disutility from smoke S

u(c, l;S) =


(cηl1−η)

1−σ

1−σ − S if σ 6= 1

ln
(
cηl1−η

)
− S if σ = 1

(3.69)

Also, to capture the positive relationship between the volume of smoke and aggregate capital

stock, I assume

S(t) = κK(t)ν (3.70)

where κ and ν are positive constants. With this modification, life-cycle utility of a repre-

sentative household (in the absence of mortality risk) changes to

∫ T̄

0
exp {−ρs}

{
c(s;ϕ)ηl(s;ϕ)1−η}1−σ

1− σ
ds− S(0)

[
exp

{
(ν(n+ g)− ρ) T̄

}
− 1

ν(n+ g)− ρ

]

and the maximized value of the objective functional (for a given T ) used as the argument

in the household’s second-step problem changes to

VP(T ;ϕ) = V (T ;ϕ)− S(0)

[
exp

{
(ν(n+ g)− ρ) T̄

}
− 1

ν(n+ g)− ρ

]
(3.71)

where the subscript P stands for “Pollution”. Note that with this formulation, the house-

hold’s utility maximization problem remains unchanged (as S(0) is exogenous to the house-

holds), but the social planner’s problem of choosing the optimal social security tax rate

changes to account for the pollution externality. Life-cycle utility with the pollution exter-

nality is given by

UP = U − S(0)

[
exp

{
(ν(n+ g)− ρ) T̄

}
− 1

ν(n+ g)− ρ

]
(3.72)
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Table 3.27: Parameter values in the baseline calibration with the pollution externality.

σ ρ η ω ζ(ω) κ ν

3 -0.003 0.2449 0.15 0.65 0.25 0.3

Therefore, with the pollution externality, the social planner chooses the tax rate that satisfies

θ = arg max {UP} = arg max

{
U − S(0)

[
exp

{
(ν(n+ g)− ρ) T̄

}
− 1

ν(n+ g)− ρ

]}
(3.73)

With the introduction of the pollution externality, there are two more parameters κ

and ν that must be calibrated. To do this, I choose values for κ and ν such that in

the baseline stationary competitive equilibrium with an optimal social security tax rate,

pollution causes a loss of 15% in steady state life-cycle utility. The values of the parameters

for which the model reasonably matches the targets are reported in Table 3.27. With these

parameter values, the model generates a steady state capital-output ratio of 3.2, an average

retirement age of 62.48, an optimal social security tax rate of 10.51%, and a replacement

rate of 98% for the poorest households. The equilibrium rate of return is r = 0.0293, the

equilibrium stock of the pollution externality is S = 1.08 and it causes a roughly 14% decline

in aggregate utility. The baseline distribution of the households’ IRRs from social security is

{0.0579, 0.0326, 0.0203, 0.0104, 0.0023}, and comparing these with the rate of return shows

that the bottom two efficiency groups experience welfare gains from the social security

program, whereas the top three groups suffer welfare losses. The baseline retirement age

distribution is {62, 62, 62, 62.77, 63.64}, which shows that only the top two efficiency groups

in the model continue to supply labor beyond the minimum retirement eligibility age.14

Once I have identified the baseline calibration of the model with the pollution externality,

I examine the effect of the low-cost, intermediate and the high-cost projections (adjusted

for the absence of mortality risk) on the welfare-maximizing social security tax rate and

some other relevant variables. I report the results in Table 3.28. The table shows that

14I also assume that household retirement is synchronous with benefits collection, which is another sim-
plification. Therefore, I restrict retirement to be ≥ Tmin, where Tmin = 37 is the minimum eligibility age in
the model (actual age of 62 in the U.S.).
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Table 3.28: The effect of population aging on the calibrated model with the pollution
externality.

Experiment Baseline 1 2 3

Variable

Social security tax rate 0.1051 0.0827 0.099 0.099
Replacement rate for the poorest
households

0.98 0.79 0.8 0.71

Rate of return 0.0293 0.0276 0.0244 0.0201
Wage rate 1.22 1.23 1.25 1.28
Output 41.33 44.55 48.23 53.27
Capital 132.31 144.97 161.63 186.23
Stock of pollutant 1.08 1.11 1.15 1.2
Labor 22.09 23.6 25.15 27.15
Capital-output ratio 3.2 3.25 3.35 3.5
Decline in aggregate utility due to
pollution(%)

13.58 13.57 13.83 14.23

with the pollution externality, the optimal response to all the demographic shocks is to

reduce the social security tax rate: under the low-cost projection, the model predicts a

decline of slightly over 2 percentage points from the baseline, and under the intermediate

and the high-cost projections, it predicts a decline of 0.61 percentage points. The effect of

population aging and the optimal tax response on the equilibrium real rate of return, the

wage rate, output, aggregate capital stock, labor supply and the capital-output ratio are

very similar to that observed in the model without the pollution externality. However, the

table also shows that with the increase in capital stock, the equilibrium stock of pollutant

also increases, and the decline in aggregate utility remains roughly unchanged at about

14%.

The factors that drive these changes in the optimal social security tax rate are virtually

unaffected by the introduction of the pollution externality in the model. To see this, consider

Tables 3.29 and 3.30, where I respectively report the households’ IRRs from the social

security program and the optimal (model) retirement ages in the post-population aging

steady states with the social security tax rate held fixed at the baseline level of θ = 0.1051.

Table 3.29 reveals a very similar pattern of the impact of population aging on the IRRs of
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Table 3.29: The effect of population aging on the households’ IRRs with the pollution
externality.

Experiment βϕ=0.15 βϕ=0.3625 βϕ=0.575 βϕ=0.7875 βϕ=1 Rate of return

Baseline 0.0579 0.0326 0.0203 0.0104 0.0023 0.0293
1 0.0559 0.0303 0.0179 0.0072 -0.0011 0.0288
2 0.0548 0.03 0.0141 0.003 -0.0045 0.0246
3 0.0534 0.028 0.0101 0.0001 -0.0067 0.0203

Table 3.30: The effect of population aging on household retirement with the pollution
externality.

Experiment ϕ = 0.15 ϕ = 0.3625 ϕ = 0.575 ϕ = 0.7875 ϕ = 1 Average

Baseline 62 62 62 62.77 63.64 62.48
1 62 62 62 62.96 63.8 62.55
2 62 62 63.5 64.83 65.55 63.58
3 62 62.64 65.41 66.55 67.17 64.75

the different efficiency groups. Across the baseline and experiment 3, the IRRs of the five

efficiency groups decline by 7.8, 14.1, 50.3, 99 and about 400%, respectively. Once more,

it is clear that the effect on the households who actually benefit from the social security

program is relatively small. Table 3.30 shows that the asymmetric retirement responses from

the different efficiency groups are behind these IRRs: across the baseline and experiment

3, the retirement ages of the five quintiles increase by 0, 0.64, 3.41, 3.78 and 3.53 years

respectively. The larger delays in retirement experienced by the more efficient households

leads to their IRRs experiencing larger declines compared to the less efficient households.

I report in Table 3.31 the effective labor supply, the wage rate and the size of the tax

base in post-population aging steady state equilibria (with the social security tax rate held

fixed at the baseline level). This helps us understand the impact of population aging on

the tax base of the social security program in the presence of the pollution externality. It is

clear that even with the pollution externality, the delayed retirement and increased saving

mechanisms lead to an expansion of the tax base under population aging.

Finally, it is worth examining the effect that the optimal tax response has on the equilib-

rium stock of the pollutant in post-population aging equilibria. In Table 3.32, I compare the



88

Table 3.31: The effect of population aging on the tax base of the social security program
with the pollution externality.

Experiment Baseline 1 2 3

Effective labor 22.09 23.19 25.02 27.01
Wage rate 1.22 1.22 1.25 1.27
Tax base (Wage rate × Effective la-
bor)

26.87 28.27 31.17 34.41

Table 3.32: The effect of population aging on the equilibrium stock of the pollutant.

1 2 3

Without the optimal tax response 1.1008 1.1469 1.1965
With the optimal tax response 1.1126 1.1495 1.1994

equilibrium stocks of the pollutant under population aging with and without the optimal

tax response. It is clear from the table that the optimal tax response to population aging

generates a higher equilibrium stock of the pollutant. This should not be surprising, as a

lower social security tax rate further encourages private saving and aggregate capital accu-

mulation, and therefore a higher level of the pollution externality. Even though the social

planner’s response to the demographic shocks in welfare-maximizing, the model predicts

that it may come at the cost of a higher equilibrium stock of the pollutant.

To summarize, the household-level consumption-saving and retirement mechanisms, and

the aggregate factor price adjustment mechanisms continue to operate in very similar ways

with the pollution externality in the model.
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CHAPTER 4

CONCLUSIONS

In this dissertation, I attempt to achieve two objectives. First, I provide an alternative

estimate of the decline in the projected retirement benefits under population aging in the

U.S., while accounting for the household-level and macroeconomic adjustments that may

be associated with it. I find that when the household consumption-saving and retirement

responses, as well as the aggregate factor price adjustments are accounted for, the decline in

projected retirement benefits is significantly smaller than the commonly reported estimates

of the social security crisis. This result is driven by the fact that the households respond

to a higher life expectancy by delaying retirement and also by saving more, which leads to

a natural expansion of the tax base of the social security program through the associated

general equilibrium effects. The model also predicts that ignoring either the household

retirement mechanism or the aggregate factor price mechanism could lead to a roughly

comparable overestimation of the decline in the projected benefits due to population aging

in the U.S. Sensitivity analysis with respect to the values of several underlying parameters

used in the simulations demonstrates that these results are not calibration-specific.

Second, I examine welfare-maximizing social security reform in the U.S. under the pro-

jected future demographics using a general equilibrium model of life-cycle consumption with

endogenous retirement and labor efficiency heterogeneity. I find that if the role of the cur-

rent U.S. social security program is to partially insure households against old-age poverty

through a concave benefit-earnings rule, then the population aging projected in the near

future will require 2-5 percentage points increase in the current OASI tax rate. Also, the

model predicts that under the projected future demographics, the more efficient households

are likely to respond by supplying more labor (both in hours per week and retirement age),
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which will to transfer a larger tax burden away from the groups that actually experience

welfare gains from the social security program. Moreover, the model also predicts that

population aging and the optimal tax response may imply a decline in the projected retire-

ment benefits, but of a magnitude smaller than when the tax rate is held unchanged at the

current level. I also find that these results are fairly robust with respect to the underlying

values of the model parameters used in the simulations.

However, it is important to note here that all the above results are based on models

that abstract from a number of realistic features such as income uncertainty and borrowing

constraints. Also, I ignore the transition paths between pre- and post-population aging

steady states and focus on only steady state equilibria. Therefore, one must be cautious

before using these recommendations for the purpose of definitive policymaking.
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Köbberling, V., 2006. Strength of preference and cardinal utility. Economic Theory 27,

375–391.

Kotlikoff, L., 1997. Privatizing social security in the United States: Why and how. In:

Auerbach, A. J. (Ed.), Ficsal Policy: Lessons From Economic Research. MIT Press,

Cambridge, MA.

Nishiyama, S., Smetters, K., 2005. Does social security privatization produce efficiency

gains? Working Paper 11622, National Bureau of Economic Research.

Ortiz, J. A., 2009. Social security and retirement across oecd countries. Tech. Rep. 18563,

University Library of Munich, Germany.

Sheshinski, E., 1978. A model of social security and retirement decisions. Journal of Public

Economics 10 (3), 337–360.

Waldron, H., 2007. Trends in mortality differentials and life expectancy for male social

security-covered workers, by average relative earnings. Working Paper 108, Social Security

Office of Research, Analysis and Statistics Working Paper Series.



94

VITA

SHANTANU BAGCHI

Department of Applied Economics

Utah State University

3530 Old Main Hill

Logan, UT-84322

Email: shantanu.bagchi@aggiemail.usu.edu

Web: http://shan.bagchi.googlepages.com

Areas of Interest:

Research: Macroeconomic aspects of Public Finance, Social Security and Health-

care, Life-Cycle Consumption, Bounded Rationality, General Equilib-

rium, Dynamic Optimization, Computational Modeling

Teaching: Macroeconomics, Public Economics, Mathematical Economics, Econo-

metrics

Education:

2011 Ph.D. in Economics, Utah State University, Logan, UT (expected)

Dissertation: Essays on Population Aging and Social Security in the U.S.

Major Advisor: Dr. Frank N. Caliendo (Economics)

2006 M.A. in Economics, Jadavpur University, Kolkata, India

2004 B.A. in Economics, Jadavpur University, Kolkata, India

Academic Positions:

• Assistant Professor at School of Economic Development, Georgia Southern

University, Fall 2011



95

• Visiting Faculty at Department of Economics, Weber State University:

Principles and Intermediate Macroeconomics, and Mathematical Economics, Spring

2011

• MBA Instructor at Utah State University: Applied Econometrics in the Dis-

tance MBA program, Fall 2010

• Adjunct Faculty at Department of Economics, Weber State University:

Mathematical Economics, Spring 2010

• Instructor at Department of Economics, Utah State University

– Mathematical Methods for Economics (ECON 4310/5310), Fall 2008

– Applied Econometrics (ECON 5330) Spring 2008

• Teaching Assistant at Department of Economics, Utah State University

(responsible for grading assignments and lecture support)

– Advanced Econometrics (ECON 7320: PhD level course) by Dr. Basudeb Biswas,

Fall 2008

Current Research:

• Publication:

– “Can Overconfidence Explain the Consumption Hump?: A General Equilibrium

Inquiry” (2010), Journal of Economics and Finance, 35 (1): 41-70.

• Under Review:

– “Is the Social Security Crisis Really as Bad as the SSA’s Projections?”, Spring

2010 (Job Market Paper)

– “Optimal Pension Reform under Demographic Shocks and Endogenous Retire-

ment”, Spring 2010



96

• Working Papers:

– “Is Smoking a Fiscal Good?” (with James Feigenbaum), Spring 2010

– “A General Equilibrium Analysis of Pesticide Resistance in a Two-sector Stochas-

tic Neoclassical Growth Model” (with Kenneth S. Lyon), Fall 2008

– “The Time Frame for Free Trade: A Game-Theoretic Approach”, Fall 2007

• Work in Progress:

– “Should Social Security Redistribute Wealth?” (with Frank N. Caliendo), Sum-

mer 2010

– “Social Security and Saving under Endogenous Retirement: Micro and Macro

Consequences”, Spring 2010

Selected Presentations:

• “Optimal Pension Reform under Demographic Shocks and Endogenous Retirement”,

Midwest Macroeconomics Meetings, Michigan State University, East Lansing, MI

(Summer 2010); QSPS 2010 Summer Workshop, Logan, UT (Summer 2010)

• “Is Smoking a Fiscal Good?” (with James Feigenbaum), Midwest Macroeconomics

Meetings, Michigan State University, East Lansing, MI (Summer 2010)

• “Demographic Shocks, Retirement Decisions and Optimal Social Security”, Economics

Department, Weber State University, Ogden, UT (Fall 2009)

• “Social Security Solvency under Endogenous Retirement: A General Equilibrium

Analysis” (with T. Scott Findley), QSPS 2009 Summer Workshop, Logan, UT (Sum-

mer 2009); Applied Economics Graduate Seminar, Utah State University, Logan, UT

(Fall 2008)

• “A General Equilibrium Analysis of Pesticide Resistance in a Two-sector Stochastic

Neoclassical Growth Model” (with Kenneth S. Lyon), Annual Conference of the Re-



97

source Modeling Association, Juneau, AK (Summer 2009); Applied Economics Grad-

uate Seminar, Utah State University, Logan, UT (Spring 2009)

• “Can Overconfidence Explain the Consumption Hump?: A General Equilibrium In-

quiry”, Economics Seminar Series, Illinois State University, Normal, IL (Spring 2008)

Computer Skills:

• Numerical simulation: MATLAB, Microsoft Excel

• Statistics and Econometrics: MATLAB, EViews

• Symbolic math: MATLAB, Mathematica

• Document processing: LATEX, OpenOffice.org

Honors and Awards:

2010 Hemingway Adjunct Faculty Vitality Award, Weber State University

2010 Economics Department Conference Travel Award, Weber State Univer-

sity

2010 College of Agriculture Travel Grant, Utah State University

2006-10 Graduate Assistantship, Utah State University

2006 The University Medal for the first position in M.A. (Economics), Ja-

davpur University, Kolkata, India

2006 Susanta K. Mitra Memorial Gold-centered Medal for highest marks in

Economics, Jadavpur University, Kolkata, India

2006 The Chattagram Parishad (Jadavpur) Award for the first position in

M.A. (Economics), Jadavpur University, Kolkata, India

Service:

• Department Representative to the USU Graduate Student Senate, 2007-08


	Essays on Population Aging and Social Security in the U.S.
	Recommended Citation

	tmp.1305142824.pdf.r5vbG

