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ABSTRACT 

AN inleraclive.decis io~.support progra~ is presented 
~or . th~ rapid mocllficatlon of optimal regional 

multlobJcdlve groundwater planning strategies. This 
capabi lity is important for water managers seeking to 
select the most satisfactory groundwater management 
strategies for their areas. The program guides decision 
maker(s) in refining numerically optimal regional 
strategies into strategies that may be socially or 
politically more acceptable. Strategy refinements are 
made by informed modification of constraining 
conditions on regional objectives or local variables. 
Appli~ation is illustrated by . mOdifying a bicriterion, 
sustained groundwater Withdrawal strategy for 
minimizing the cost of meeting regional water demand 
on the Arkansas Grand Prairie, an important irrigated 
area. The strategy was developed using a model in which 
the finite difference form of the two-dimensional 
groundwater flow equation is embedded in an 
optimization process. Results from the formal 
optimization process are submitted to the interactive 
program for evaluation and modification. This algorithm 
applies the constraint method and constrained 
derivatives to develop noninferior solutions and tradeoff 
fu~cti~ns and to determine the innuence on the regional 
objectives caused by repeated changes in several local 
decision variables. Allhough its application is 
demonstrated with only a single optimization model. the 
interactive program can be utilized to modify optimal 
strategies resulting from other models as well. 

INTRODUCTION 

In many areas, irrigated agricultural production is 
dependent on the availability of groundwater. 
Groundwater withdrawal by one user affects 
groundwater availability for other users. Hence. there is 
increasing emphasis on the development of appropriate 
strategies for managing groundwater on regional or sub· 
state scales. 

The development of a regional groundwater 
management strategy often includes the applkarion of 
optimization to detennine the allocation plan that most 
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effectively satisfies a desired objective. The three major 
elements of ma .. y optimization formulations an:: the 
objective function, the variables and the constraints. An 
objective function is a statement of a desired regional 
goal. In a finite difference scheme, such as the one used 
in this paper. variables may be groundwater used or 
groundwater levels in each cell. The constrainlS" in the 
optimization problem represent criteria which the 
variables must sa tisfy and which affeci attainment of the 
regional object ives. 

Within the complex arrangement of legislative. 
socioio&1c, and economic goals influencing water 
resources management, it is difficult, if not impossible, 
to optimize achievemcnt of a single objective without 
adversely affecting other regional objectives. When 
conflicting objectives exist in the same problem, no 
single soludon is available in which all goals are 
optimally attained. However, through the application of 
generating teehniques (Cohon and Marks, 1975) a 
noninferior set of solutions can be created. This solution 
set is also referred to as a "nondominated" sct, the 
"Pareto Optimum", the "transformation curve" or the 
"efficiency" curve. 

A feasible solution is noninferior if no other feasible 
solution exists that will cause one objective to improve 
without forcing at least one other Objective to degrade 
(Cohon 1978). At each noninferior solution. the 
relationship between competing goals is expressed in 
terms of a tradeoff function. The tradeoff function 
describes the amount of one objective that must be 
sacrinced in order to improve attainment of another 
objective . Consideration of tradeoff values is essential in 
designing strategies that best satisfy multiple regional 
goals. 

h is also practically impossible to develop an optimal 
regional strategy without harming attainment of the 
'local' goals of the individual cells. Regional obj«tives 
are frequently a maximization or minimization of the 
aggregate effects on groupings of cells within the region . 
This utilitarian approach provides for regional 
optimization at the expense of local development. As 
bounds on local variables change, the achievable 
optimum va lue of an objective function may also change. 
Dual values, LaGrange multipliers. shadow prices or 
constrained derivatives aU describe the relative effect of 
changes in local decision variables on attainment of 
regional objectives. Knowledge of how much local 
ehanges affect optimality is important in determinim'·J 

how much a regiona lly opt imal strategy should be 
modified in order to better achieve local goals. 

An automated method for designing regional water 
management strategies shou ld incorporate 
representation of the complex interaction between 
attainment of regional objectives and local satisfaction 
via tradeoff va lues and constrai ned derivatives. In 
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addition, because several decision makers (DM ~) afC! 
usually involved in selecting a water resources 
management stra tegy, the mel hod should be as rapid 
and interactive as possible. 

Inleracti\'e techniques have been used in the pa!>1 10 

improve the coordinalion of subjective OMs with an 
objective nunlerical proccss (Mona rchi e l aI., 1973; 
Haimes and Hall , 1974). The term 'intcractive', however, 
renects varying degrees of speed and cfficiency. 

Dalla and Peralta (1986) present a interactive 
computer graphics-based program that aids in the 
selection of a water management strategy in a bi­
objective problem. The program assists multiple OMs in 
ze roing in on the most sa tisfactory compromise stra tegy 
Ihal exists within a particular Pareto Optimum . The 
selection of the compromise strategy is accomplished 
using the Surrogate Worth Trade·ofT (SWT) method 
(Haimes and Hall, 1974) through intcractive query and 
response from a minicomputer. The shortcoming of the 
program is that only strategies on a predetermined 
Parelo Optimum can be evaluated . No new strategies 
that might become feasible by changing bounds or 
constraints on 'local' variables can be analyzed . Their 
program therefore cannot rapidly mOdify a regionally 
optimal strategy in order 10 belter consider needs on Ihe 
cell level. After discussing the results of using the 
program wilh a group of commissioners of a state water 
agency, Datta and I'eralta (1986) emphasize the 
importance of truly inleraClive decision· making. 

Opposing interests and ideas cannot be ignored in Ihe 
deyelopment of optimal strategies for actual 
implementation. Truly there is a need for the ability 10 
rapidly modify the constraining cond ilions on objectives 
or local variab les and determine the resulting effecl 011 
other fCgional Objectives. OMs need to be able to rapidly: 
(a) select a compromise regional strategy by facile 
movement through the decision space defined by 
multiple Objectives, (b) evaluate. in map formal. the 
spatial distribution of the consequences of strategy 
implementation (This is particularly important to e lected 
decision makers that need 10 protect constituent 
interests.) . and (c) modify Ihe compromise regional 
strategy to reflect local con«rns by changing the bounds 
on decision variables. 

The purpose of Ihis paper is to describe a program that 
provides these abilities. In order to accomplish this, we 
firsl utilize quadralic para mel ric programming 
techniques in an interactive manner to develop a 
non inferior solution SCI and tradeoff functions. (We cio 
not discuss the manner of selecting a compromise 
strategy from a noninferior solution sci sin« il has been 
described previously (Datla and Peraita, 1986).) Then we 
demonstrate how this program may be used to rapidly 
determine the effect on the compromise solution due to 
repealed changes in any number of decision variables or 
constrainls. In add ition, oplional graphic products 
which aid the strategy design proct:ss are displayed. 

As a developmental step in the Grand Prairie Waler 
Supply Projecl , (Peralta et al.. 1984), the interactive 
method is demonscrated , in Ihis paper. through 
application to the bierile rion problem of developing a 
conjunclive use, sustained yield pumping strategy for the 
Grand Prairie region of Soulheast Arkansas. Opposing 
objective functions considered in this example include a 
linear function to maximize regional groundwater 
withdrawal and a quadra tic ex pression to minimize Ihe 
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10lal cost of supplying rct:ional waler demand. These 
objective funclio ns arc simultaneously evalu.lled within 
Ihe same framewo rk of physical and institutional 
constraints. 

These two regional goals arc contradictory because the 
surface " 'ater network proposed by the Corps of 
Enginl..'ers docs nOI supply surface water to all areas of 
the Grand Prairie. Consequently, areas nOI serviced by 
the surface water nelwork Illusl rely on ground ..... nter 
resources alone to fulfill irrigalion needs. Pumping 
groundwaler in areas where surface water is nOI 
available, may "force" use of surface water (where 
available) in lieu of groundwater, even if it costS more 
than groundwater. 

Groundwater flow is simu lated by applyi ng the finite 
diffcrence form of Ihe Iwo·dimensional steady,slale 
groundwater flow eq uat ion, (Pinder and Bredehoeft. 
1968) as pari of the conslraining condilions in the 
optimization model. This technique of including 
simulation cqualions within an oplimizalion model is 
called the embedding method (Gorelick, 1983). 
Utilization of steady· slate equalions is a quasi· black box 
app roach which reli es 011 the premise that 
implementation of approx imately steady st imuli 
(pumping and recharge) will ultimately cause a stable 
response in the groundwater potentiometric surface . 
While not as sophisticated as response malrix methods of 
optimizing groundwater managemenl. the approach 
does have the advantages of causing Ihe evolution of 
stable water levels and of requiring less computer 
storage . 11 is also more practical than using the 
embedding approach wilh unsteady flow equations. 
Gorelick (1983), Tung and Koltermann (1985) and 
Casola et a l (1986) report either numeric difficulties or 
unwieldiness wilh embedding unsteady flow equations as 
constrainls. 

In the illustrative example, local variables subject to 
management constraint include drawdown, pumping , 
and recharge in each finite difference cell. (Some 
consideralions for limiting these variables are listed by 
Bcar (1979).) In this paper drawdown is defined as the 
difference in elevation belween a horizontal datum, 
located above the ground. and Ihe potentiometric 
surface. Groundwater pumping is the volume of 
groundwater removed from the system by wells 
penetrating the aquifer. Recharge is the volume of water 
enlering the groundwater system from outside the 
region. Because of an impermeable layer. recharge at 
inlernal cells is insignificant. The net sum of pumping 
and recharge in each cell is referred to as excilation. 

OBJECTIVES FOR THE GRAND PRAIRIE 

The quadratic objcclive function applied in the 
example. C!stimates Ihe cost of maintaining a suslained 
yield by minimizing the cost of both groundwater and 
surface water required 10 satisfy regiona l demand. A 
complete derivation of Ihis objective function and the 
factors involved is presented by Peralta and Killian 
(1985). For the purposes of Ihis papcr ,i.!le following 
general representation is satisfaclory. 

N 
minimi'Z.e'Z.l = .1: e(i) p(i) f(s(i» + ern{i) p{i) .. , 

+(.~( i)p.(i) ..........•............. PI 
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where: 
'ZI = the total annual cost of water supply, 

S/ycar 
N = The total number of finit e differcnce cells 

in which drawdown and pumping are 
variable 

c.(i) = the cost associated with raising a unit 
volume of groundwater one unit distance. 
S/ L4 

p(i) = the positive vaJored annual volume of 
groundwater pum~ .:d from ccl1 i. Ll/year 

((s(i» = a linear function of drawdown which 
describes the total dynamic head at cell i, L 

c",O) = the cost associated with a unit volume of 
groundwater pumped. SI Ll 

c.(i) = the cost per unil volume of altcrnative 
water supplied in cell i , SI Ll 

p. (i) the annual volume of alternative water use 
at cel1 i, Ll/ year. 

Because water requirements of each cell are satisfied by 
the conjuctive use of groundwater and an altcrnative 
water source, the following relationship is used to replace 
P.(O in equation 111. 

Pa(i)· wei) - p(i) fori "' l ,N ......•...... (2J 

where: 
wU) = the annual water req uirements in cell i, 

Ll/ year. 
The linear objective function used to max..imize 

regional groundwater pumping is similar to the 
formulation used by Aguado and others (974), Alley 
and others (1976), and Elango and Rouve (1980). This is 
described as follows: 

N 
maximi:tc:t2"". 2: p(i) ...•..••.•••••.•••.. (3J 

1= 1 

where: 
lJ = the total volume of groundwater annually 

withdrawn from the region. Ll/year. 
The problem consisting of both objective functions is a 

two dimensional vector within a solution space of 
dimension 2N + M, where M is the total number of 
constant head cells. The following notation is used to 
describe this situation: 

optimi:tc'l"" ~ 'lI':t2 t ............•...•. (41 

Because it is not possible to maxim ize or minimize this 
problem without either prior knowledge or numerical 
representation of management preference. the term 
"optimize", as it appears in equation 14), refers to 
defining the sel of noninferior solutions. 

The regional goals expressed by the objective functions 
are dependent on the drawdown, pumping, and recharge 
in each finite difference cell. Each of these local variables 
is limited by an upper and lower bound . The bounds on 
these variables delineate the feasible region, or solution 
space. The feasible region for the bicriterion example 
problem is defined by the following constraints. 

K 
p(i) > . ~ (-t(iJ).Ol) fod· ' ,N ............ (51 ,>, 

402 

K 
rem) "" 1: (-t(mJ) slj) for m"' t ,M ......... ·16J 

j'" 1 

'mm(i) <: lei) <: "nu(i) for i'" l.N .....•..... (1] 

Pnlln{i) <: p(i) <: Pnll). (i) (or i=l,N .......... [8\ 

where 

K 
t(i,i)"'.2: (-t(iJ» 

1~ 
t(1 . j) 

sO) 
K 

M 

= The geometric mean transmissivity 
between fin ite difference cell i and cell j, 
for i ". j. V lyear 

= the drawdown in finite difference cell j, L 
= the total number of cells in the study 

area, also the total number of inequality 
constraints, K = N + M 

= the total number of constant head cells in 
the region 

= the lower limit on drawdown in cell i, L 
= the upper limit on drawdown in cell i, 

the lower limit on annual groundwater 
pumping in cell i, Ll/year 

P .... (i) = the upper limit on annual groundwater 
pumping in cell i, LJ/year 

rem) = the annual recharge at constant head cell 
m, (positive implies discharge, negative 
means recharge) Ll/ year 

r .. ,.(m) = the lower limit on annual recharge in 
constant head cell m, LJ/year 

r_, (m) = the upper limit annual recharge in 
constant head cell m , LJ/year. 

Equality constraint (6J describes the 'recharge', 
necessary to achieve mass balance, which occurs in the 
constant head ct:lIs. The lower bound used at a particular 
constant head cell, r",,,, (m). represents the maximum 
recharge volume that can physically occur at that cell 
without causing the assumed constant head elevation to 
drop. Using the bound implies that as long as the 
recharge is less negative than rool• (m). one can validly 
treat cell m as a constant head cell. The upper bound, 
r ..... (m). if non· positive assures that no groundwater will 
leave the region at this point. In application of the 
management model, the upper limit on r was typically set 
eq ual to a positive value of large magnitude such that 
there was no restriction on the annual volume of water 
which could leave the system at constant head cells. 
under steady·sta te conditions. 

Equality constraints (5J and f6J are substituted into 
the objective functions and constraints 18J and 191 such 
that the only explicity defined variable is drawdown. 
Pumping and recharge are defined in terms of the slack 
variables asso ... j ated with constraints 181 aDd (91. 
respectively. 

THEORY 

Generallon TechnIques 
The method used in this paper to generate the 

noninferior solution set is referred to by Cohon and 
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Marks (1975) as the constraint method. Under the 
constraint method, all but one objective become 
additional constrain ts. The single. or principal objective 
is optimized by conventional methods while the 
constrained objectives 3re limited by a choscn value. The 
seleclion of a principal objective does not indica te 
management prererence. 

To construct the noninferior solution set, the limiting 
yalue for a particular constrained objective is \'ari<:d and 
the principal objective optimized at each new point. This 
is generally del"ed by the following formulation. 

min/max lp· f(;.) ....•.•...•....•••• 110] 

subject to: 

where: 
z, = valuc of the principal objective function 
Zh = value of objeetive constraint h 
L" = the limiting value of objective constraint h 
H = total number of objective constraints. 
For example. the linear objective function, equation 

(3], becomes an objective connraint and the problem 
description is representcd in the operational form: 

minimi:r.e:r.l ~ g{s) ...... • •.•..•... .. 1121 

Subject to the conditions of the feasible region as 
previously defined by equations 15·9). and the following 
additional condition. 

:r.2>L2 .....•.• . ..........•.•.... [131 

where: 
g(s) = equation II) expressed in terms of drawdown 

alone; 
~ = the minimum allowable total groundwater 

annually withdrawn from th e aquifer 
underlying the region, LJ/year. 

At the value of L J • a new value ofz l is computed. Within 
the feasible region of the solution space, the objective 
constraint will be binding. Therefore, a noninferior 
solution exists as a set of N drawdo ..... n values, at which Zl 

is equal to ~. 
The values of ~ represent the mininmm allowable 

regional pumping imposed by a management dedsion. 
The range of LJ for which the objectives will be 
conflicting and the corresponding range of regional COSt 
values are defined by the following limits. 

:r.2atmin~1 <L 2 <max:t2 ....••..•.•.•.. (1 4 1 

for: 

for values of Ll less than zJ at min zl' the constrained 
objective and the principal objective are not in 
opposition, the objective constraint is not binding and 
the value of ZI resulting from the optimization is equal to 
min zl' 

A systemotic approach to developing the noninferior 
solution set varies the value of L, from one extreme to the 
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other. covering the entirc ra nge in n predctcrmined 
number 01 steps . B~ using 3 cOlltrolled interactive 
method. only areas of the solution sct \\hich arc of 
particular interest to the decision makers need be 
examined. Thus, by ignoring areas of the region ..... hich 
arc of little conccrn. such as the e,(treme ends of the 
feasible range. each deci)ion maker can accurately 
pinpoint his best·compromise solution ..... ith nlinimnl 
computational efrort. By using a differential algorithnl in 
this interacti\e procedure. tradeoff functions for each 
regional objective and each local decision \'ariable lire 
readily.n-a ilable. 

General Differential Algorithm 
The General Dirrerential Algorithm, developed by 

Wildc and Bcightler (l967) and discussed in detail by 
Morel·Seytoux (1972). is a direct climbing method of 
locating the optimal solution through a systematic 
gradient sea rch routin e. The interaclive technique 
presented in this paper uses an extension of the General 
Differential Algorithm to eyaluate the change in the 
value of the principal objective function and the system 
response resu lling rrom a change in the optimal solution 
set. 

To aid in the explanation of thc General Differential 
Algorithm consider the minimization of a quadratic 
objective function with N variables subject to K 
inequality constraints. During any iteration in the search 
process. the problem will COnsist of K equations and 
N+ K Yariables, (K of these variables are slack variables 
introduced to transform the inequality constraints into 
equality conditions). The constraining equations are 
linear and K variables can be expressed as a function of 
N independent variables. N independent variables are 
initially referred to as decision variables while K 
dependent variables are referred to as solutioll or state 
variables. The specific separation of variables into Slate 
variables and decision variables is known as the partition 
of the system. 

The functional equivalents of the state variables are 
direclly substituted into the objective fUllction such that 
the objective function is an unconstrained expression of 
N decision variables and no state variables. During each 
iteration in the optimization process. olle decision 
v3fiable is changed to improve the valuc or the objective 
function . A change in any decision variable will cause 
every state variable related by the K equality conditions 
10 change. 

Seeause the objective function is expressed in terms of 
drawdowlI alone in the example problem. a decision 
variable is either a drawdown variable. or a slack 
variable corresponding to one of the inequality 
conditions described by constraints 18J, 19], and lIJ). At 
the optimum, all decision variables that arc limited by a 
binding constraint are associated with a non -zero 
constraint derh·ative. Assuming a minimization process, 
if a decision variable is against an upper limit, the 
related constrained derivative must be negative. A 

-uecision variable has a po5ilive constrained derivative 
associated with it if the lower limit is binding. If the value 
of a decision \'ariable is not equal to a limiting condition. 
the corresponding constrained derivative is zero and any 
change in the decision variable does not improve the 
value of the objective function. This is simply a non · 
dogmatic explanation of the Kuhn·Tucker conditions. 
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Constrained Derivathu 
The change in the value of the unconstrained form of 

the principal objective function. for a given change in a 
part icular decision variable. is expressed in terms of the 
gradient of the unconstrained objective function. The 
gradient of the objective function is the vector of first 
partial derivatives with respect to the decision variables. 
Each firsl partial derivative is referred to as a 
constuined derivative . ("Constrained" derivative 
implies that the constraining conditions have been 
substituted into the objective function.) The constrained 
derivative describes the direction and magnitude of a 
change in the value of the objective function for an 
instantaneous change in the value of the decision 
variable. 

Because the objective function described in this 
application is a quadratic expression. each constrained 
derivative of the objective function is a linear function of 
decision variables . Thus, for a change in the value of II 
single decision variable, the values of all related 
constrained derivatives also change. The change in the 
value of each constrained derivative is determined by 
evaluating the vector of serond partia l derivatives of the 
objective function wit h respect 10 the decision variables . 
For a quadratic objective funclion. this is a vector of 
constant terms. The change in the constrained 
derivatives of the principal objective function for a 
change in decision variable i is described in terms of the 
second partial derivatives as follows. 

where: 

forj Dl,N ......•.... [15) 
andi"l,N 

A.o) = the change in the value of the constrained 
derivative of j on the objective function 

4xd(i) = the specific change in the decision vari able 
i, or the difference between x~(i) and xdO) 

b(j. i) = the second partial derivative ofz, taken first 
with respect to decision variable j and again 
with respect to decision variable i 

= the new value of decision variable i 
= the value of decision variable i, prior to 

increasing or decreasing the value. 
Utilizing equation IISI . the change in the value of the 

objective function for a change in one decision variable 
can be expressed in terms of both the first order and 
second order partial derivatives. 

d lp/d xd(i) = v(i) + b(i.i) lUd(i) ...•. . ..... ·116] 

for i=l, N 
where: 

~i) = the con<t"ined ded .. ti,e or z, with ""peet 
to decision variable xd(i); 

bO. i) = the second partial derivative of zp with 
respect to decision variable xdOl. 

For a sperific change in a decision yariable the above 
eq uation is integrated over 4x. fi) to yield 

!up ,., J vIi) + 0.5 b (i.i) (6x d(i) ) I (Axd(i» .... 1171 J 

fori = l , N 
where: 

Az, 

'0' 

the change in the value of the principal 
objective function; 

For a specific change in the decision variable associated 
with an Objective constraint. equation [17bl describes the 
tradeoff function. 

Alp" ) v(h}+ 0.5 b(h,h) (Axd(h ) l( (Axd(h» ... [l7bJ 

forh =I. H 
Equations [ISJ, 116J, 1I7al and It 7b) are valid when the 
change in the decision variable does nOl ca use a 
repartitioning of system varia bles. This limitation is 
discussed in detail in a subsequent section. 

The change in all system variables in response to a 
change in the value of a single decision variable is 
referred to as the system response. Beca use a ll decision 
variables are independent. a change to one decision 
variable will not affect the value of the remaining 
decision variables. Every sta te variable however, is 
expressed as a function of decision variables and is 
therefore affected. By evaluating the gradients of the 
state varia bles, the change to the state variables in 
response to a change in the value of a single decision 
variable is determined. 

In the example. the constrai nts are linear and the 
resultant state gradients are vectors of constants. 
Therefore. the first partial of a state variable with respect 
to each decision variable is valid for any arbitrary change 
in a single decision variable. not merely an incremental 
change. The system response to a change in the value of a 
single decision variable is represented by the following 
formulation . 

Ax,(k)" d(k,i) 6xd(i) for k"' l ,K .......... t 181 

AX,(k) = the change in state variable k 
d{k. i) = the first partial derivative of state variable k 

with respect to decision variable i. 
The partial derivatives of the state variables, d(k . i). are 
revised each time the system variables are re-partitioned, 

The concepts described indicate how the value of the 
principal objective function and the system variables 
change for a given change in a single decision variable. 
These methods are applied in the develop ment of the 
in teractive procedure. 

THE INTERACTIVE PROCEDURE 

The bicriterion examples problem is formulated as it 
appears in equation 1121 and [131 with ~ set equal to any 
feasible value of total region al pumping. This problem is 
initially solved by a quadratic programming procedure 
written by Leifsson and others (1981) which uses the 
General Differential Algorithm (0 determine the optimal 
solution. The optimal set of N drawdown values. N 
pumping values. and M recharge values that result from 
the initial opt imization represent one noninferior 
solution. These values, along with the values of the first 
and second order partial derivatives are transferred to a 
separate program for interactive evaluation. 

In constrained optimitation, decision variables are 
usually tight variables with non -zero constrained 
derivatives. To modify the original noninferior solution. 
any decision variable may be changed by modifying its 
upper or lower bound to expand or reduce the size of the 
solution space. To some extent. changing the bound 
forces the dedsion va riable to assume the value of the 
new bound when the problem is optimized under the 
revised conditions. 
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Moving Through the Nonlnferlur Sululion Set 
To generate the set of noninferior solotioll$, several 

changes 10 the binding limit , L: , of th e objecli\'e 
conlotraint arc input, oonloecutive!y, to the illleracti\'e 
program, This modifies the value of the sla ck \"arinble 
associated wilh conSlraint (13). The system response io 
each change is determined by equation (18) and Ihe new 
value of the principal objective function is determined by 
equation 117bl. The values oflhe constrained derivatives 
are revised by equation 11 51 and the system is checked for 
optimality. If the Solulion is not numerically optimal. the 
interactive program performs the interactions necessary 
to make Ihe solution non inferior. 

At any point in lhe noninferior solotion set, the 
relalionship between regional Objectives is described by 
the const rained derivative of the principal objeetive 
function with respect to the decision variable associated 
with each objective constraint. Once a favorable 
relationship is achieved and a compromise solution 
agreed upon, the resulting values of all local variables 
may be examined. 

In exanlining the local vnriables. a group of decision 
makers may identify areas at which the variable \'alues of 
drawdown. pumping. or recharge are socially or 
otherwise unsatisfactory. To refine the compromise 
strategy and address local concerns, the interactive 
program is utilized 3S explained in the following section. 

Local Influence on Regional Objectives 
At It noninferior solution, each local variable is either a 

stale variable. or a decision variable. The constTained 
derivative of the principal objective function with respect 
to a state variable is zero, indicating Ihe independence 
between the principal objective function and the state 
variables. A change to a local condition represented by a 
stale variable may be made by Changing a decision 
variable. (or several decision variables), such that the 
desired effect on the particular state variable. described 
by equation (181, is achieved. To change the value of a 
decision variable represellling drawdown. pumping or 
recharge. the binding limit is appropriately changed. 

A change in the bound on a local decision variable 
changes the feasible region of the solution space common 
to both the principal objective and the objective 
constraints. Depending on the extent of the change. the 
noninferior solution that ex isIS prior to changing a local 
bound is not necessarily optimal after the bound has 
been re·established. In other words, the solution may 
became inferior. At an inferior solution. one objective 
can be changed without adversely affecting the other 
objectives. Using the interactive procedure. the decision 
makers may choose the regional dimension in which to 
move such that the solution becomes noninferior. Thnt 
is. the decision must be made as to what regional 
objective to improve. 

Equation [16a) is used to determine the change in the 
principal objecth'e function resulting from a specific 
change in the value of a decision variable, In making this 
change the objective constraints remain fixed and a new 
solution set results. At the new solution. the change in 
the value of an objective constraint. needed to insure.thst 
the principal objecth'e retains its original value. may be 
calculated by solving equation 116b) for 4x,,(h). This 
value is then used as input to the interactive program 
5uch that the original value of the objective function is 
obtained. 
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Conditions Under Which thc Procedure 111IIy be Utilized 
To change the value of a decision variable. the limiting 

bound is rtplaced with a \':llue Ihat either expands or 
n:duces the size of the sol ulion space. This efTecli~cly 
creates a new problcm. Depending on the extent of the 
change to the bound. the new problem may require 
subsequent iterations to achie\'e optimality. 

The solmion that exists prior to changing the bound 
(the old optimal solution) iJo Ihe slarting point for the new 
problem and must be feasible within the new solution 
space. If a change ill a bound increases the size of the 
solution space (if the upper limit is increased or Ihe lower 
limit is decreased) the old solution is always a feasible 
starting point. If however. Ihe solution space is reduced 
(a lower bound is increased or an upper bound is 
decreased) the extent of the cha nge to the bound on a 
decision nriable is limited by feasibility criteria. A 
reduction in the size of the solution space Ihat causes the 
old optimal solution to be infeasible: within the new 
solution space is not pcrmined with the interactive 
procedure. 

The magnitude of the fCllsible change is determined by 
the constraints imposed on the variables involved. A 
decision variable is allowed to increase or decrease until 
it. or another variable, encounters a limiting condition. 
Since the bound on the decision variable itself is dictated 
by the user, the feasible posith'e and negative deviation is 
controlled by the first state variable 10 reach its upper or 
lo .... <e r limit. The value of the feasible deviation is found 
by solving equation 118) for l!.xd with l!.x,(i) defined as the 
difference between the stale variable and its approaching 
bound. 

If the change in the bound on a decision variable is 
within. or equal 10 the feasible deviation. the 
corresponding change ill the value of the decision 
variable is equal to the change in the bound. The 
constraint remains tight , and the system response is 
feasible. though not necessarily optimal. 

Optimality is affected if a single decision variable is 
changed such that application of equation (16) causes 
one of the constrained derivatives to change signs. TIle 
maximum absolute change in the value of a decision 
variable such that none of the non-zero constrained 
derivatives change sign i~ referred to as the optimal 
deviation. To change sign. a cOllstrained derivative must 
first change from a posi tive or negati\·c value. to zero. 
The optimal deviation is determined by applying 
equation (IS) with 4v(j) as the difference between the 
value of the constrained derivative and zero. If the 
change in the bound on a decision variable is within both 
the optimal deviation and the feasible deviation. the 
change in the value or the decision variable is equal to the 
change in the bound and the resulting strategy is 
optimal. 

The bound on a decision variable can be changed in 
excess of the feas ible and optimal deviation if the change 
increases the size of the feasible region. In such a case. a 
state variable reaches its bound and the initial change in 
the decision variable is less than the input change in the 
bound. A re·partitioning of Ihe variables is performed 
such that the state variable becomes a decision variable 
and the decision becomes II state \'ariable. Additional 
iterations may be necessary to make the feasible solution 
optimal as well. 

In summary: (a) the interactive process may be used to 
modify an existing Sirategy when a change in the limiting 
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bound on any decision variable decreases the size or the 
solution space, ir the ehange to the bound is within the 
feasible deviation determined through the use of the 
constramed derh'a lives; (b) the interactive modifications 
method may not be used to change a bound in excess of 
Ihe reasible deviation ir the Change decreases the size of 
the solution sp;u:e: (c) the method can analyze any 
arbitrary change in the Ilm iling bound on a decision 
variable ir Ihe change increases the size or the solution 
space. When the change in the solution space exceeds the 
optimal de\·iation. additional iterations are necessary ir 
the optimal result is desired. These iterations arc 
perrormed by the interactive program by utilizing the 
same su broutines developed ror the oplimilation 
process: (d) the procedure is a lso applicable to other 
optim ization models as long as they have linear or 
quadratic objcctl\'e functions and linear constraints. 

APPLICATION ANO DISCUSSION 
SHe DeJer:\ption 

The quadratic and linear objective runctions ror 
minimizing tOlal cost and maximizing 10la i regional 
groundwater withdrawal are applied in th e 
multiobjective rormat to the G rand Prairie or eastern 
Arkansas. Fig. I shows the Grand Prairie subdivided 
into 204 finite difference cells. or the 204 total cells. 52 
are constant head cells used to sim ulate conditions a long 
the periphery or the study area. or the 204 inequality 
constraints, 152 are pumping const'raints (equation (5]) 
and 52 are recharge constraints applied to the constant 
head cells (equation (6)). The total number of variables. 
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including slack \'ariables is 356: 152 decision variables 
and 204 state \'ariables. 

The Grand Prairie h an ex tensively cultivated and 
irrigated agricu ltural area and one or the prime rice 
producing regions of the country (Griffis. 1972). A heavy 
laler or clay underlies the topsoil and inhibits inliltration 
rrom recharging the aquirer. The only apparent sources 
of recharge are the rivers whieh border the area and 
extensions of the aquirer outside the study area. 
Extensive pumping and limited recharge has resulled in 
a declining ..... aler table and water shortages in this 
Quaternary aquirer . 

Aquirer characteristics utilized ror simulation are 
those used by Peralta and others (1985). These data 
include elevation or the potentiometric surface and top 
and base of the aquirer. (used in determining the 
sat urated thickness), and a hydraulic conductivity or 82 
m/ day, (270 rt / day) . The poltmtiometric surface is 
depressed in the central Grand Prairie. Recharge enters 
Ihe area through its periphery. Because or this obvious 
Stress, it is assumed that the maximum physically 
reasible recharge rates ror the peripheral cells (equation 
19)). ha\'e been observed and quantified (using Darcy's 
Law), 

The drawdo ..... n and pumping in the non·constant head 
cells are bounded by an upper and a lower limit . The 
lower lim it on drawdown represents the average elevation 
or the ground su rface in each cell. The upper limil on 
drawdown is such that 6 m (20 rl) or saturated thickness 
is guaranteed in each cell. The lower limit on pumping is 
zero (to prevent physically unrealistic internal recharge 
from being computed) and the upper limit on pumping is 
equal to the current average annual groundwater 
withdrawals. The variable recharge in constant head 
cells is limited such thai maximum an nual observed 
recharge rrom outside the system is never exceeded. 

Cost coerlicients used in the quadratic objective 
runction are estimated rrom inrormation received rrom 
the U.S. Army Corps of Engineers. (personal 
comm unication with Joe Clements. Dwight Smith, and 
Slony Burke). In a reas where no surface water is 
{\\'ailable ror use as an alternative soum:. the opponunity 
cost associated with reduced production is used as the 
alternative water cost. 

The matrix or second partial derivatives in the least­
COSt objective runction, equation II J. consists or 
groundwater cost coefficients and transmissivity values. 
Berore optimizalion, this Hessian matrix was examined 
and found to be positive-definite, thus insuring that the 
resu lting solution is the global optimum. 

Nonlnferfor Solullon Set 
Fig . 2 displays the resulting set or noninferior solutions 

inlerActively generated as outlined previously, Shown 
with every exactnoninrerior solution is the corresponding 
tradeoff runction expressed by the first order panial 
derivatives in units or dollars per cubic decameter. 
Although the 10131 range defined by equation 114) is 
presented in Fig. 2. in actual pract ice it is not necessary 
to produce the entire set or solUlions. 

From the noninrerior solution set. the best ­
compromise 50lution may be determined by 
implementing the surrogate worth tradeorf method 
introduced by Haimes and Hall (1974). For illustrative 
purposes. solution set A is chosen as a compromise 
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solution. though nOI necessarily the: best compromise 
solution. For solution A, the total annual regional 
groundwater pumping is mainlaincd at 138,000 dam' 
(l12 ,OOO acre fI). The total regional cost of the 
conjunctive use strategy is 9 .J million dollars, including 
opportunity cost and cost of groundwater and diverted 
river water. 

Local Cbange 
AI the compromise solution. the local groundwater 

pumping in cell (3.4), (see Fig. I fOf row, column 
location coordinates), is equal 10 its lower limit , which is 
0.0. In other words, fOf the benefit of the region ns a 
whole, no groundwater withdrawal is permined al this 
cell and in fact. no water needs are satisfi ed. Assuming 
that a group of decision makers wish to improve the 
equity of the compromise solution to groundwater users 
in cell (3,4). the lower limit on groundwater pumping in 
cell (3.4) is increased, and the regional effect analyzed. 

The constrained derivative ror the pumping in cell 
(3,4) is 5321daml (540/ acre ft) . For every cubic 
dekameter increasc in groundwater pumping in cell 
(3,4). the regional cost increases by 532. Because the 
second partial derivative of the objective function with 
respect to the pumping is a positive SO.OO8Idaml/dam' 
(SO.OI21acn rvacre ft) the constrained derivative. (532/ 
dam'). will increase as the local pumping increases, 

The most that pumping can be increascd in cell (3,4) 
and still maintain feasibility is 237 daml. (192 acre ft ). at 
which point the pumping in cell (5.5) reaches its lower 
limit. Because the change will rt;duce the size of the 
solution space, the limit of237 dam' must be recognized . 
If the desired increase in the pumping at cell (3 ,4) is 
greater than 237 dam), the original problem must be 
reformulated and submitted ror execution using a 
standard optimization procedure. 
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Assume that the decision makers agree to increase 
pumping in cell (3.4) by U7 damJ (184 acre rt). In 
accordance with equation (l7al. the modification causes 
the total regional cost to increase by 57,730. The change 
of 227 daml also causes the values or some of the 
constrained derivatives to change sign, thus making the 
solulion inrerior. The interactive program requires five 
subsequent iterations to calculate the optimal !iolution. 
At the revised optimum. the increase in total regional 
cost is 57,400 and the pumping in cell (3,4) is 227 dam). 

This new non inferior solution is point B on Fig . 3, an 
enlarged section of Fig . 2 in the vicinity or the 
compronlise solution. At point B. the total regional 
pumping is still 138.00 dam) but the cost is 57.400 
greater than the cost of solution point A. 

The decision makers may also want to know how the 
total regional pumping of strategy A is affected by a local 
increase of227 daml in cell (3,4), irthe total cost remains 
constant . At point B, the constrained derivative of the 
principal objective with respect to the constrained 
objective. (the instantaneous tradeoff function), is 
S30/ dam1 (537 dollars/ acre ft), and the corresponding 
second partial derivative is 50.002ldam J / dam J • 

(SO.OO3/ acre ft / acre 0). Solving equation (l7b) ror 4". 
with Azp equal to -7,400 dollars results in a reduction in 
total regional pumping of2S0 cubic decameters (202 acre 
ft ). Because this increase in the size orthe feasible region 
is Icss than the maximum feasible deviation. the first and 
second partial derivatives remain valid . This means that 
in order to increase groundwater availabi lity at cell (3.4) 
rrom 0 to 227 daml, while maintaining i'otal regional cost 
at 9.3 million dollars, a total of 477 dam1 of groundwater 
must be rorsaken in all remaining cells. Implementing 
this change n!sults in the noninferior solution indicated 
by point C in Fig. 3. 

At point C, the total cost is the original 9.3 million 
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dollars. but the lotal regional pumping has decreased by 
250 daml. The curve connecting points Band C indicates 
a portion of the set of non inferior solutions for the new 
solution space. At the point on the revised curve, the 
minimum amount of groundwater pumping at cell (3,4) 
is 227 daml. Fig. 4 is a copy of the output from the 
interactive session used 10 locate points Band C on Fig . 
3. 

The extension of the noninferior solution set in a local 
dimension is possible at any compromise solution with 
any decision variable. Therefore. for the 152 decision 
variables in this example, the total number of possible 
decision directions, inc:1uding the two regional 
dimensions, is 154. 

Decision makers can review a variety of information in 
gridded (planar map) form to aid decision-making while 
using the interactive program. This includes spatially 
distributed information on water levels. aquifer 
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saturated thickness, water needs, supplied water, 
unsatisfied needs and recharge. For example, Figs. 5 and 
6, enhanced images of a color graphics display, show 
data useful for refining an optimal strategy. To date, 
most data is reviewed in gridded numeric form not 
requiring graphic processing to get the most rapid 
response possible. 
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Fig.5 shows the percentage of unsatisfied water needs 
that would exist in each cell of the Grand Prairie under a 
particular optimal sirategy. From such mapped output II 

program user can identify cells at which strategy 
modification is desirable. Review of the constrained 
derivatives showing the effect of changing the strategy on 
other cells and the region is helpful in deciding what 
change to make. 

Fig. <> shows the percentage ofthe assumed maximum 
physically feasible recharge that is being induced at each 
boundary cell for an optimal strategy. This information, 
combined with knowledge of constrained derivatives. is 
useful in determining where recharge basins should be 
placed or where additional hydrologic dala should be 
gathered (in order to possibly justify relaxing the 
recharge constraints). 

The described procedure was implemented in two 
computer programs. Unpublished instructions and 
documentation were prepared for each. QPSTEP, 
developed on an Amdahl 470. modified optimal 
quadratic strategies. LPSTEP, developed on a Portable 
Graphics Mainframe (PGM) with 640 K RAM and a 23 
MB hard disk. modified strategies having a linear 
objective function. 

It should be mentioned that t.he presented optimal 
strategies are the result of deterministic modeling. To 
achieve an understanding of the effect of uncertain 
knowledge of aquifer parameters on the likelihood of 
achieving desired goals after implementing an optimal 
Slrategy. the stochastic nature of aquifer parameters 
need to be considered. Current research is addressing 
this topic. 

SUMMARY 

An interactive computer program is presented which 
enables decision makers (OMs) to effectively and 
emdently design n regional water management strategy. 
With the program, users can evaluate several connicting 
groundwater management objectives. They can 
interactively investigate any area of the feasible solution 
space and utilize both regional and local tradeoff 
functions in the design process. They are provided with 
information in gridded map format thnt allows 
oonsideration of the local consequences of regional 
strategy implmentation. In short, OMs are provided with 
the information necessary to rapidly modify a 
numerically optimnl management strategy to betler 
satisfy regional and local concerns. 

Regional changes are made by moving through the set 
of noninferior solutions to locate a compromise solution 
and regional tradeoff functions. Local changes. or 
modifications in finite difference variables, are 
accomplished by changing the constraining conditions 
on the local decision variables. Ccnstrained derivatives 
are readily available for evaluating the response of 
regional objecth'es to repeated changes in local decision 
variables. 

1n Ihe example. the procedure is used to locate and 
modify a compromise solution to a regional conjunctive 
use. sustained groundwater withdrawal strategy. The 
slrategy is initially obtained from a management model 
that nlinimizes the cost of meeting water needs from the 
conjunctive use of groundwater and surface water while 
maintaining a sustained yield. The optimization process 
uses the finite difference form of a two dimensional 
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groundwater now equation as part of Ihe constraining 
conditions. For multiobjcctive analysis. 3. second 
objecti ve function that maximizes the 10lal regionnl 
groundwater withdrawal under sustained yield 
conditions is included in the original problem as an 
ndditional constraint. The results of the formal 
optimization include local values representing the 
drawdown. pumping , and recharge in each finite 
difference cell. The initial results also include the value 
of a decision variable that represents the total reginnal 
groundwater withdrawal under the optimum strates} . 

The results of the formal optimiznlion are used as 
mput to an interactive computer program and the SCI of 
non inferior solutions is generated . At any feasible 
solulion. the tradeoff function betwccn competing 
objectives is gh'en to aid in locating a compromise 
1>ollilion. The procedure also provides information Olilhe 
response of the regional objectives to a change in any 
local decision variable . This information is used for 
modifying the compromise solution with respect to local 
concerns. 

The interactive modification method may be applied 
for any chllnge in a bound on a decision variable. when 
the change increases the .. ize of the feasible region. For 
the gi\'en example of 152 decision variables and 204 
inequality constraints, if a change in the bound on a 
decision variable is less than the maximum feasible 
deviation, the optimal solution is calculated with a few 
additional iterations. If the change in the bound causes a 
re·partitioning of the system variables. it may take more 
than a hundred iterations and considerably more 
processing time 10 arrive at an optimum. 

When a change in a bound decreases the size of the 
feasible region, the change is limited by the feasible 
deviation determined by utilizing constrained 
derivatives . The interactive procedure is not appropriate 
if a desired change decreases the size of the feasible 
region in excess of the feasible deviation. In such a case 
the problem mUSI be re-submitted and solved by a 
standard optimization process. 

In conclusion. although the decision support program 
is demonstrated by application with a particular 
optimization model, it can be used to refine strategies 
developed by other llIodels having quadratic or linear 
fUlictions and linear CQnstraints. 
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NOMENCLATURE 

the second parti.1 derivallve of the IIncon~Ir.ined objective 
function wilh respect to variable i and vatllbk j 
the eOll pcr unit Yolume 0( altem.tive water supplied In cell 
i. SILl 
the cost .nociated with . unit volume of groundwater 
pumped. SILl 

c)i) 

d(k.1) 

H 
h 

J 
K 

k ... 
l, 

M 
m 
N 

p(1) 

r .... (m) 

I •• (i) 
1 ... (1) 
tn , j) 

v{i) 

v.1l) 
.",n 
1(;.1 i) .. ., 
" " 
'~J 
bd(i) 
AX,IIt) 

". 

the COSI associated with r.,sIIlI • unll volume of 
ground .... ter one unil dist.nce, S/L 4 

Ih~ lint Illrtlal derivatIve of stlte variable k "'lIh n:sjlectto 
deci~lon vari.ble i 
a IInelt jUllCtion of dra ... down Ik5CTibing the lotal dyn.mlC 
held at celt i. L 
the tot.1 number of objtclive ~onslraintJ 
.n mile. delining • Ipccilic ob}«\ive constnint 
• gener.1 index 
• gentr.1 IIldu 
the tot.1 number of finite difference cell' in the regIOn •• 00 
the tot.1 number of Inequ.'ity constr,ints 
an index defining. sp«/'k: SllIe yariable 
the hmiting value of objc...ive COfISlraint h 
the minimum .1I0wable total groundwlter .nnually 
"'lIhdr.wn from the aquir~r ullJerlylll1l the region. LJ/year 
the tOI.lnumber of constant head ceU\ tn the region 
.n index delining a SpeCifIC constant head cell 
lhe t()(11 number of linite dlffer~nce cells In whkh pumplll' 
.nd dr.wdown Itt ylti.blt 
the .nnu.1 volume of groundw.ler pumped from cell i. 
LJ/year 
the .nnll.1 Yolume of alternative w.ler u\o:.t cell i. L1/~ar 
tIM: lower limit on .nnu.1 ,roundwater I'Umpinll in cell I. 
LJ/yelt 
the upper limit on annu.1 ground .... ,ter pumping In cell l. 
LJ/yeaf 
11K: .nnu.1 recharge in consl.nt head cell m. LJ/yc~r 
the kl .. et limit on Innual rtthlfBt' in roni!'nt head ~II m. 
I..J/year 
Ihe upper limit on .nnu.1 rech.rre in conillnt head cell m. 
LJ/YCIr 
11M: lower limit on dr.wdown in cell i. L 
the upper limit on dr .... down in cell i . L 
thc average tl"lnsmin;vity bch.,ecn linite difference cell i .nd 
cell J. foc i = j. Ll/year 
the fint p.rti.1 deriva"ve of the unt'Onltrained ob}cctive 
funClion with respect to v.rI.ble j 
the .nnu.I Wiler requirements in cell i. LJ/~1r 
the old nlue of dccbioll v.rl.ble I 
the new nlue of deeUKlII variable i 
Ihc Yllue of objective cooslnint h 
the v.lue of the principal objective funct ion 
the 10lal .nnu.1 COllI of Wiler supply. S/~ar 
the total volume of groundw.ter .nnuaUy withdr.wn from 
the ~8ion. LJ/ycat 
tlK: ch.nte in tnc value of COfIslr.ined dem-.liYC: j . 
the eh'''ge in decision vari.ble i 
the change in ItDte vltiable k 
the change in the ¥.lue of tnc princip.1 ob}cetin function . 
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