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ABSTRACT

AN interactive decision-support program is presented
for the rapid modification of optimal regional
multiobjective groundwater planning strategies. This
capability is important for water managers seeking to
select the most satisfactory groundwater management
strategies for their areas. The program guides decision
maker(s) in refining numerically optimal regional
strategies into strategies that may be socially or
politically more acceptable. Strategy refinements are
made by informed modification of constraining
conditions on regional objectives or local variables,
Application is illustrated by modifying a bicriterion,
sustained groundwater withdrawal strategy for
minimizing the cost of meeting regional water demand
on the Arkansas Grand Prairie, an important irrigated
area. The strategy was developed using a model in which
the finite difference form of the two-dimensional
groundwater flow equation is embedded in an
optimization process. Results from the formal
optimization process are submitted to the interactive
program for evaluation and modification. This algorithm
applies the constraint method and constrained
derivatives to develop noninferior solutions and tradeoff
functions and to determine the influence on the regional
objectives caused by repeated changes in several local
decision variables. Although its application is
demonstrated with only a single optimization model, the
interactive program can be utilized to modify optimal
strategies resulting from other models as well.

INTRODUCTION

In many areas, irrigated agricultural production is
dependent on the availability of groundwater,
Groundwater withdrawal by one user affects
groundwater availability for other users. Hence, there is
increasing emphasis on the development of appropriate
strategies for managing groundwater on regional or sub-
state scales.

The development of a regional groundwater
management strategy often includes the application of
optimization to determine the allocation plan that most
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effectively satisfies a desired objective. The three major
elements of manry optimization formulations are the
objective function, the variables and the constraints. An
objective function is a statement of a desired regional
goal. In a finite difference scheme, such as the one used
in this paper, variables may be groundwater used or
groundwater levels in each cell. The constraints in the
optimization problem represent criteria which the
variables must satisfy and which affect attainment of the
regional objectives.

Within the complex arrangement of legislative,
sociologic, and economic goals influencing water
resources management, it is difficult, if not impossible,
to optimize achievement of a single objective without
adversely affecting other regional aobjectives. When
conflicting objectives exist in the same problem, no
single solution is available in which all goals are
optimally attained. However, through the application of
generating techniques (Cohon and Marks, 1975) a
noninferior set of solutions can be created. This solution
set is also referred to as a “nondominated™ set, the
“Pareto Optimum", the “transformation curve” or the
“efficiency” curve.

A feasible solution is noninferior if no other feasible
solution exists that will cause one objective to improve
without forcing at least one other objective to degrade
(Cohon 1978). At each noninferior solution, the
relationship between competing goals is expressed in
terms of a tradeoff function. The tradeoff function
describes the amount of one objective that must be
sacrificed in order to improve attainment of another
objective, Consideration of tradeoff values is essential in
designing strategies that best satisfy multiple regional
goals,

It is also practically impossible to develop an optimal
regional strategy without harming attainment of the
‘local' goals of the individual cells. Regional objectives
are frequently a maximization or minimization of the
ageregate effects on groupings of cells within the region.
This utilitarian approach provides for regional
optimization at the expense of local development. As
bounds on local variables change, the achievable
optimum value of an objective function may also change.
Dual values, LaGrange multipliers, shadow prices or
constrained derivatives all describe the relative effect of
changes in local decision variables on attainment of
regional objectives. Knowledge of how much local
changes affect optimality is important in determining
how much a regionally optimal strategy should be
modified in order to better achieve local goals.

An automated method for designing regional water
management strategies should incorporate
representation of the complex interaction between
attainment of regional objectives and local satisfaction
via tradeoff values and constrained derivatives. In
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addition, because several decision makers (DMs) are
usually involved in selecting a water resources
management strategy, the method should be as rapid
and interactive as possible.

Interactive techniques have been used in the past to
improve the coordination of subjective DMs with an
objective numerical process (Monarchi et al., 1973;
Haimes and Hall, 1974). The term ‘interactive’, however,
reflects varying degrees of speed and efficiency.

Datta and Peralta (1986) present a interactive
computer graphics-based program that aids in the
selection of a water management strategy in a bi-
objective problem. The program assists multiple DMs in
zeroing in on the most satisfactory compromise strategy
that exists within a particular Pareto Optimum. The
selection of the compromise strategy is accomplished
using the Surrogate Worth Trade-off (SWT) method
(Haimes and Hall, 1974) through interactive query and
response from a minicomputer. The shortcoming of the
program is that only strategies on a predetermined
Pareto Optimum can be evaluated. No new strategies
that might become feasible by changing bounds or
constraints on ‘local’ variables can be analyzed. Their
program therefore cannot rapidly modify a regionally
optimal strategy in order to better consider needs on the
cell level. After discussing the results of using the
program with a group of commissioners of a state water
agency, Datta and Peralta (1986) emphasize the
importance of truly interactive decision-making.

Opposing interests and ideas cannot be ignored in the
development of optimal strategies for actual
implementation. Truly there is a need for the ability to
rapidly modify the constraining conditions on objectives
or local variables and determine the resulting effect on
other regional objectives. DMs need to be able to rapidly:
(a) select a compromise regional strategy by facile
movement through the decision space defined by
multiple objectives, (b) evaluate, in map format, the
spatial distribution of the consequences of strategy
implementation (This is particularly important to elected
decision makers that need to protect constituent
interests.), and (¢) modify the compromise regional
strategy to reflect local concerns by changing the bounds
on decision variables.

The purpose of this paper is to describe a program that
provides these abilities. In order to accomplish this, we
first utilize quadratic parametric programming
techniques in an interactive manner to develop a
noninferior solution set and tradeoff functions. (We do
not discuss the manner of selecting a compromise
strategy from a noninferior solution set since it has been
described previously (Datta and Peralta, 1986).) Then we
demonstrate how this program may be used to rapidly
determine the effect on the compromise solution due to
repeated changes in any number of decision variables or
constraints. In addition, optional graphic products
which aid the strategy design process are displayed.

As a developmental step in the Grand Prairic Water
Supply Project, (Peralta et al., 1984), the interactive
method is demonstrated, in this paper, through
application to the bicriterion problem of developing a
conjunctive use, sustained yield pumping strategy for the
Grand Prairie region of Southeast Arkansas. Opposing
objective functions considered in this example include a
linear function to maximize regional groundwater
withdrawal and a quadratic expression to minimize the
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total cost of supplying regional water demand. These
objective functions are simultaneously evaluated within
the same framework of physical and institutional
constraints,

These two regional goals are contradictory because the
surface water network proposed by the Corps of
Engineers does not supply surface water to all areas of
the Grand Prairie. Consequently, areas not serviced by
the surface water network must rely on groundwater
resources alone to fulfill irrigation needs. Pumping
groundwater in areas where surface water is not
available, may ‘‘force use of surface water (where
available) in lieu of groundwater, even if it costs more
than groundwater.

Groundwater flow is simulated by applying the finite
difference form of the two-dimensional steady-state
groundwater flow equation, (Pinder and Bredehoeft,
1968) as part of the constraining conditions in the
optimization model. This technique of including
simulation cquations within an optimization model is
called the embedding method (Gorelick, 1983).
Utilization of steady-state equations is a quasi-black box
approach which relies on the premise that
implementation of approximately steady stimuli
(pumping and recharge) will ultimately cause a stable
response in the groundwater potentiometric surface,
While not as sophisticated as response matrix methods of
optimizing groundwater management, the approach
does have the advantages of causing the evolution of
stable water levels and of requiring less computer
storage. It is also more practical than using the
embedding approach with unsteady flow equations.
Gorelick (1983), Tung and Koltermann (1985) and
Casola et al (1986) report either numeric difficulties or
unwieldiness with embedding unsteady flow cquations as
constraints,

In the illustrative example, local variables subject to
management constraint include drawdown, pumping,
and recharge in each finite difference cell. (Some
considerations for limiting these variables are listed by
Bear (1979).) In this paper drawdown is defined as the
difference in elevation between a horizontal datum,
located above the ground, and the potentiometric
surface. Groundwater pumping is the volume of
groundwater removed from the system by wells
penetrating the aquifer. Recharge is the volume of water
entering the groundwater system from outside the
region. Because of an impermeable layer, recharge at
internal cells is insignificant. The net sum of pumping
and recharge in each cell is referred to as excitation.

OBJECTIVES FOR THE GRAND PRAIRIE

The quadratic objective function applied in the
example, estimates the cost of maintaining a sustained
yield by minimizing the cost of both groundwater and
surface water required to satisfy regional demand. A
complete derivation of this objective function and the
factors involved is presented by Peralta and Killian
(1985). For the purposes of this paper the following
general representation is satisfactory.

N
minimize z; = iEI c (i) p(i) fs(i)) + ¢, (3) pli)

........................ (1]
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where:

z, = the total annual cost of water supply,
$/year

N = The total number of finite difference cells
in which drawdown and pumping are
variable

c(i) = the cost associated with raising a unit
volume of groundwater one unit distance,
$/1.4

pli) = the positive valied annual volume of
groundwater pumy.2d from cell i, LY/ year

f(s(i)) = a linear function of drawdown which
describes the total dynamic head at cell i, L

¢ (i) = the cost associated with a unit volume of

groundwater pumped, $/L*
c(i) = the cost per unit volume of alternative
water supplied in cell i, $/L°
the annual volume of alternative water use
at cell i, L/year.
Because water requirements of each cell are satisfied by
the conjuctive use of groundwater and an alternative
water source, the following relationship is used to replace
p,(1) in equation [1].

p,(i)

pali) = wii) - p(i) T G L e T e (2]
where:
w(i) = the annual water requirements in cell i,

L3/ year.

The linear objective function used to maximize
regional groundwater pumping is similar to the
formulation used by Aguado and others (1974), Alley
and others (1976), and Elango and Rouve (1980). This is
described as follows:

N
maximize z, = ’El I R e et [3]
"_"
where:
z, = the total volume of groundwater annually

withdrawn from the region, L/year.

The problem consisting of both objective functions is a
two dimensional vector within a solution space of
dimension 2N + M, where M is the total number of
constant head cells. The following notation is used to
describe this situation:

optimize z = }zl. z, £

Because it is not possible to maximize or minimize this
problem without either prior knowledge or numerical
representation of management preference, the term
“optimize"”, as it appears in equation [4], refers to
defining the set of noninferior solutions.

The regional goals expressed by the objective functions
are dependent on the drawdown, pumping, and recharge
in each finite difference cell. Each of these local variables
is limited by an upper and lower bound. The bounds on
these variables delineate the feasible region, or solution
space. The feasible region for the bicriterion example
problem is defined by the following constraints.

K
pli) = _2'.1 (-t(ij) s(j) ) fori=1,N
J:
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t(m)= 'EI (-t{mj) s(j)) form=IM .......... |6]
J=
S inll) S3(i) S5, () fori=lN ........... [7]
Puin(l) SPOE) Spmax(i) fori=lN .......... (8]
Tnin(m)St(m) Sryo(m) form=1M ....... [9]
where
K
t(id) = & (-tfiy) )
i
il
t(i, j) = The geometric mean transmissivity
between finite difference cell i and cell j,
fori# j, L3/year
s(j) = the drawdown in finite difference cell j, L
K = the total number of cells in the study
area, also the total number of inequality
constraints, K = N + M
M = the total number of constant head cells in
the region
S.all) = the lower limit on drawdown in cell i, L
S.ull) = the upper limit on drawdown in cell i,
P.i.ll) = the lower limit on annual groundwater
pumping in cell i, L/year
Pmll) = the upper limit on annual groundwater
pumping in cell i, LY/year
r(m) = the annual recharge at constant head cell
m, (positive implies discharge, negative
means recharge) L/ year
r,,(m) = the lower limit on annual recharge in
constant head cell m, L*/year
f..,(m) = the upper limit annual recharge in

constant head cell m, L/year.

Equality constraint [6] describes the ‘recharge’,
necessary to achieve mass balance, which occurs in the
constant head cells. The lower bound used at a particular
constant head cell, r_, (m), represents the maximum
recharge volume that can physically occur at that cell
without causing the assumed constant head elevation to
drop. Using the bound implies that as long as the
recharge is less negative than r, (m), one can validly
treat cell m as a constant head cell. The upper bound,
f,.. (M), if non-positive assures that no groundwater will
leave the region at this point. In application of the
management model, the upper limit on r was typically set
equal to a positive value of large magnitude such that
there was no restriction on the annual volume of water
which could leave the system at constant head cells,
under steady-state conditions.

Equality constraints [5] and [6] are substituted into
the objective functions and constraints [8] and [9] such
that the only explicity defined variable is drawdown.
Pumping and recharge are defined in terms of the slack
variables associated with constraints [8] and [9],
respectively.

THEORY

Generation Techniques
The method used in this paper to generate the
noninferior solution set is referred to by Cohon and
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Marks (1975) as the constraint method. Under the
constraint method, all but one objective become
additional constraints. The single, or principal objective
is optimized by conventional methods while the
constrained objectives are limited by a chosen value. The
selection of a principal objective does not indicate
management preference.

To construct the noninferior solution set, the limiting
value for a particular constrained objective is varied and
the principal objective optimized at each new point. This
is generally detined by the following formulation.

minfmax 2, =f(x) o ooiiaiciiii i [10]
subject to:

z!‘l)l'h For h=1,H ................... [11]
where:

z, = value of the principal objective function

z, = value of objective constraint h

L, = the limiting value of objective constraint h

H = total number of objective constraints.

For example, the linear objective function, equation
[3], becomes an objective constraint and the problem
description is represented in the operational form:

minimize z; = g(s)
Subject to the conditions of the feasible region as

previously defined by equations [5-9], and the following
additional condition.

22 > Lz ............................ [13]
where
g(s) = equation [1] expressed in terms of drawdown
alone;
L, = the minimum allowable total groundwater

annually withdrawn from the aquifer
underlying the region, L3/year,
At the value of L,, a new value of z, is computed. Within
the feasible region of the solution space, the objective
constraint will be binding. Therefore, a noninferior
solution exists as a set of N drawdown values, at which z,
is equal to L.

The values of L, represent the minimum allowable
regional pumping imposed by a management decision.
The range of L, for which the objectives will be
conflicting and the corresponding range of regional cost
values are defined by the following limits.

2gatminz) SLyCmaxzy «.oovevnaenonnn [14]

for:

min z, <z, <z, at max z,

for values of L, less than z, at min z,, the constrained
objective and the principal objective are not in
opposition, the objective constraint is not binding and
the value of z, resulting from the optimization is equal to
min z,.

A systematic approach to developing the noninferior
solution set varies the value of L, from one extreme to the
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other, covering the entire range in a predetermined
number of steps. By using a controlled interactive
method, only areas of the solution set which are of
particular interest to the decision makers need be
examined. Thus, by ignoring areas of the region which
are of little concern, such as the extreme ends of the
feasible range, each decision maker can accurately
pinpoint his best-compromise solution with minimal
computational effort. By using a differential algorithm in
this interactive procedure. tradeoff functions for each
regional objective and each local decision variable are
readily available.

General Differential Algorithm

The General Differential Algorithm, developed by
Wilde and Beightler (1967) and discussed in detail by
Morel-Seytoux (1972), is a direct climbing method of
locating the optimal solution through a systematic
gradient search routine. The interactive technique
presented in this paper uses an extension of the General
Differential Algorithm to evaluate the change in the
value of the principal objective function and the system
response resulting from a change in the optimal solution
sel.

To aid in the explanation of the General Differential
Algorithm consider the minimization of a quadratic
objective function with N variables subject to K
inequality constraints. During any iteration in the search
process, the problem will consist of K equations and
N+ K variables, (K of these variables are slack variables
introduced to transform the inequality constraints into
equality conditions). The constraining equations are
linear and K variables can be expressed as a function of
N independent variables. N independent variables are
initially referred to as decision variables while K
dependent variables are referred to as solution or state
variables. The specific separation of variables into state
variables and decision variables is known as the partition
of the system.

The functional equivalents of the state variables are
directly substituted into the objective function such that
the objective function is an unconstrained expression of
N decision variables and no state variables. During each
iteration in the optimization process, one decision
variable is changed to improve the value of the objective
function, A change in any decision variable will cause
every state variable related by the K equality conditions
to change.

Because the objective function is expressed in terms of
drawdown alone in the example problem, a decision
variable is either a drawdown variable, or a slack
variable corresponding to one of the inequality
conditions described by constraints [8], [9], and [13]. At
the optimum, all decision variables that are limited by a
binding constraint are associated with a non-zero
constraint derivative. Assuming a minimization process,
if a decision variable is against an upper limit, the
related constrained derivative must be negative. A

~decision variable has a positive constrained derivative
associated with it if the lower limit is binding. If the value
of a decision variable is not equal to a limiting condition,
the corresponding constrained derivative is zero and any
change in the decision variable does not improve the
value of the objective function. This is simply a non-
dogmatic explanation of the Kuhn-Tucker conditions.
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Constrained Derivatives

The change in the value of the unconstrained form of
the principal objective function, for a given change in a
particular decision variable, is expressed in terms of the
gradient of the unconstrained objective function. The
gradient of the objective function is the vector of first
partial derivatives with respect to the decision variables,
Each first partial derivative is referred to as a
constrained derivative. (" Constrained’ derivative
implies that the constraining conditions have been
substituted into the objective function.) The constrained
derivative describes the direction and magnitude of a
change in the value of the objective function for an
instantaneous change in the value of the decision
variable,

Because the objective function described in this
application is a quadratic expression, each constrained
derivative of the objective function is a linear function of
decision variables, Thus, for a change in the value of a
single decision variable, the values of all related
constrained derivatives also change. The change in the
value of each constrained derivative is determined by
evaluating the vector of second partial derivatives of the
objective function with respect to the decision variables.
For a quadratic objective function, this is a vector of
constant terms. The change in the constrained
derivatives of the principal objective function for a
change in decision variable i is described in terms of the
second partial derivatives as follows.

Av() = b(jii) Axg(i) forj=1N ........... (15)
andi=1,N
where:
Av(j) = the change in the value of the constrained

derivative of j on the objective function

Ax (i) = the specific change in the decision variable
i, or the difference between x(i) and x,(i)

b(j, i) = the second partial derivative of z_ taken first
with respect to decision variable j and again
with respect to decision variable i

x{i) = the new value of decision variable i

x(i) = the value of decision variable i, prior to

increasing or decreasing the value.
Utilizing equation [15], the change in the value of the
objective function for a change in one decision variable
can be expressed in terms of both the first order and
second order partial derivatives.

d 2, /d x4(i) = v(i) + b(isi) Ax4(i)

fori=1, N
where:
v(i) = the constrained derivative of z, with respect
to decision variable x (i);
b(i, i) = the second partial derivative of 2
respect to decision variable x(i).
For a specific change in a decision variable the above
equation is integrated over Ax (i) to yield

with

P

Bz, = ’v(i)+0.55{i.i){md{i1 Jt (Axg(i)) + ... [17a]

fori=1, N
where:
Az, = the change in the value of the principal
objective function;
404

For a specific change in the decision variable associated
with an objective constraint, equation [17b] describes the
tradeoff function.

Bz, = Mh) + 0.5 b(h,h) (Axy(h) j{mxd(h] ). .. [17b]

forh=1, H

Equations [15], [16], [17a] and [17b] are valid when the
change in the decision variable does not cause a
repartitioning of system variables. This limitation is
discussed in defail in a subsequent section,

The change in all system variables in response to a
change in the value of a single decision variable is
referred to as the system response. Because all decision
variables are independent, a change to one decision
variable will not affect the value of the remaining
decision variables. Every state variable however, is
expressed as a function of decision variables and is
therefore affected. By evaluating the gradients of the
state variables, the change to the state variables in
response to a change in the value of a single decision
variable is determined.

In the example, the constraints are linear and the
resultant state gradients are vectors of constants.
Therefore, the first partial of a state variable with respect
to each decision variable is valid for any arbitrary change
in a single decision variable, not merely an incremental
change. The system response to a change in the value of a
single decision variable is represented by the following
formulation.

Ax, (k) = d(k,i) Axgli) for k=1,K
Ax (k) = the change in state variable k
d(k,i) = the first partial derivative of state variable k
with respect to decision variable i.
The partial derivatives of the state variables, d(k, i), are
revised each time the system variables are re-partitioned.
The concepts described indicate how the value of the
principal objective function and the system variables
change for a given change in a single decision variable.
These methods are applied in the development of the
interactive procedure.

THE INTERACTIVE PROCEDURE

The bicriterion examples problem is formulated as it
appears in equation [12] and [13] with L, set equal to any
feasible value of total regional pumping. This problem is
initially solved by a quadratic programming procedure
written by Leifsson and others (1981) which uses the
General Differential Algorithm to determine the optimal
solution. The optimal set of N drawdown values, N
pumping values, and M recharge values that result from
the initial optimization represent one noninferior
solution. These values, along with the values of the first
and second order partial derivatives are transferred to a
separate program for interactive evaluation.

In constrained optimization, decision variables are
usually tight variables with non-zero constrained
derivatives. To modify the original noninferior solution,
any decision variable may be changed by modifying its
upper or lower bound to expand or reduce the size of the
solution space. To some extent, changing the bound
forces the decision variable to assume the value of the
new bound when the problem is optimized under the
revised conditions.

TRANSACTIONS of the ASAE



Moving Through the Noninferior Solution Set

To generate the set of noninferior solutions, several
changes to the binding limit, L, of the objective
constraint are input, consecutively, to the interactive
program. This modifies the value of the slack variable
associated with constraint [13]. The system response to
each change is determined by equation [18] and the new
value of the principal objective function is determined by
equation [17b]. The values of the constrained derivatives
are revised by equation [15] and the system is checked for
optimality. If the solution is not numerically optimal, the
interactive program performs the interactions necessary
to make the solution noninferior,

At any point in the noninferior solution set, the
relationship between regional objectives is described by
the constrained derivative of the principal objective
function with respect to the decision variable associated
with each objective constraint. Once a favorable
relationship is achieved and a compromise solution
agreed upon, the resulting values of all local variables
may be examined,

In examining the local variables, a group of decision
makers may identify areas at which the variable values of
drawdown, pumping, or recharge are socially or
otherwise unsatisfactory. To refine the compromise
strategy and address local concerns, the interactive
program is utilized as explained in the following section.

Local Influence on Regional Objectives

At a noninferior solution, each local variable is either a
state variable, or a decision variable. The constrained
derivative of the principal abjective function with respect
to a state variable is zero, indicating the independence
between the principal objective function and the state
variables. A change to a local condition represented by a
state variable may be made by changing a decision
variable, (or several decision variables), such that the
desired effect on the particular state variable, described
by equation [18], is achieved. To change the value of a
decision variable representing drawdown, pumping or
recharge, the binding limit is appropriately changed.

A change in the bound on a local decision variable
changes the feasible region of the solution space common
to both the principal objective and the objective
constraints. Depending on the extent of the change, the
noninferior solution that exists prior to changing a local
bound is not necessarily optimal after the bound has
been re-established. In other words, the solution may
become inferior. At an inferior solution, one objective
can be changed without adversely affecting the other
objectives. Using the interactive procedure, the decision
makers may choose the regional dimension in which to
move such that the solution becomes noninferior. That
is, the decision must be made as to what regional
objective to improve.

Equation [16a] is used to determine the change in the
principal objective function resulting from a specific
change in the value of a decision variable. In making this
change the objective constraints remain fixed and a new
solution set results. At the new solution, the change in
the value of an objective constraint, needed to insure that
the principal objective retains its original value, may be
calculated by solving equation [16b] for Ax,(h). This
value is then used as input to the interactive program
such that the original value of the objective function is
obtained.
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Conditions Under Which the Procedure may be Utilized

To change the value of a decision variable, the limiting
bound is replaced with a value that either expands or
reduces the size of the solution space. This effectively
creates a new problem. Depending on the extent of the
change to the bound, the new problem may require
subsequent iterations to achieve optimality.

The solution that exists prior to changing the bound
(the old optimal solution) is the starting point for the new
problem and must be feasible within the new solution
space. If a change in a bound increases the size of the
solution space (if the upper limit is increased or the lower
limit is decreased) the old solution is always a feasible
starting point. If however, the solution space is reduced
(a lower bound is increased or an upper bound is
decreased) the extent of the change to the bound on a
decision variable is limited by feasibility criteria. A
reduction in the size of the solution space that causes the
old optimal solution to be infeasible within the new
solution space is not permitted with the interactive
procedure,

The magnitude of the feasible change is determined by
the constraints imposed on the variables involved. A
decision variable is allowed to increase or decrease until
it, or another variable, encounters a limiting condition.
Since the bound on the decision variable itself is dictated
by the user, the feasible positive and negative deviation is
controlled by the first state variable to reach its upper or
lower limit. The value of the feasible deviation is found
by solving equation [18] for Ax, with Ax (i) defined as the
difference between the state variable and its approaching
bound.

If the change in the bound on a decision variable is
within, or equal to the feasible deviation, the
corresponding change in the value of the decision
variable is equal to the change in the bound. The
constraint remains tight, and the system response is
feasible, though not necessarily optimal.

Optimality is affected if a single decision variable is
changed such that application of equation [16] causes
one of the constrained derivatives to change signs. The
maximum absolute change in the value of a decision
variable such that none of the non-zero constrained
derivatives change sign is referred to as the optimal
deviation. To change sign. a constrained derivative must
first change from a positive or negative value, to zero.
The optimal deviation i5 determined by applying
equation [1S] with Av(j) as the difference between the
value of the constrained derivative and zero. If the
change in the bound on a decision variable is within both
the optimal deviation and the feasible deviation, the
change in the value of the decision variable is equal to the
change in the bound and the resulting strategy is
optimal.

The bound on a decision variable can be changed in
excess of the feasible and optimal deviation if the change
increases the size of the feasible region. In such a case, a

. state variable reaches its bound and the initial change in

the decision variable is less than the input change in the
bound. A re-partitioning of the variables is performed
such that the state variable becomes a decision variable
and the decision becomes a state variable. Additional
iterations may be necessary to make the feasibie solution
optimal as well.

In summary: (a) the interactive process may be used to
modify an existing strategy when a change in the limiting
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bound on any decision variable decreases the size of the
solution space, if the change to the bound is within the
feasible deviation determined through the use of the
constrained derivatives; (b) the interactive modifications
method may not be used to change a bound in excess of
the feasible deviation if the change decreases the size of
the solution space; (¢) the method can analyze any
arbitrary change in the limiting bound on a decision
variable if the change increases the size of the solution
space. When the change in the solution space exceeds the
optimal deviation, additional iterations are necessary if
the optimal result is desired. These iterations are
performed by the interactive program by utilizing the
same subroutines developed for the optimization
process; (d) the procedure is also applicable to other
optimization models as long as they have linear or
quadratic objective functions and linear constraints,

APPLICATION AND DISCUSSION

Site Description

The quadratic and linear objective functions for
minimizing total cost and maximizing total regional
groundwater withdrawal are applied in the
multiobjective format to the Grand Prairie of eastern
Arkansas. Fig. 1 shows the Grand Prairie subdivided
into 204 finite difference cells. Of the 204 total cells, 52
are constant head cells used to simulate conditions along
the periphery of the study area. Of the 204 inequality
constraints, 152 are pumping constraints (equation [5])
and 52 are recharge constraints applied to the constant
head cells (equation [6]). The total number of variables,
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Fig. 1—The Grand Prairie study area subdivided into finite difference

cells.
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including slack variables is 356: 152 decision variables
and 204 state variables.

The Grand Prairie is an extensively cultivated and
irrigated agricultural area and one of the prime rice
producing regions of the country (Griffis, 1972), A heavy
layer of clay underlies the topsoil and inhibits infiltration
from recharging the aquifer, The only apparent sources
of recharge are the rivers which border the area and
extensions of the aquifer outside the study area.
Extensive pumping and limited recharge has resulted in
a declining water table and water shortages in this
Quaternary aquifer.

Aquifer characteristics utilized for simulation are
those used by Peralta and others (1985). These data
include elevation of the potentiometric surface and top
and base of the aquifer, (used in determining the
saturated thickness), and a hydraulic conductivity of 82
m/day, (270 ft/day). The potentiometric surface is
depressed in the central Grand Prairie. Recharge enters
the area through its periphery. Because of this obvious
stress, it is assumed that the maximum physically
feasible recharge rates for the peripheral cells (equation
[9]), have been observed and quantified (using Darcy's
Law).

The drawdown and pumping in the non-constant head
cells are bounded by an upper and a lower limit. The
lower limit on drawdown represents the average elevation
of the ground surface in each cell. The upper limit on
drawdown is such that 6 m (20 ft) of saturated thickness
is guaranteed in each cell. The lower limit on pumping is
zero (to prevent physically unrealistic internal recharge
from being computed) and the upper limit on pumping is
equal to the current average annual groundwater
withdrawals. The variable recharge in constant head
cells is limited such that maximum annual observed
recharge from outside the system is never exceeded.

Cost coefficients used in the quadratic objective
function are estimated from information received from
the U.S. Army Corps of Engineers, (personal
communication with Joe Clements, Dwight Smith, and
Stony Burke). In areas where no surface water is
available for use as an alternative source, the opportunity
cost associated with reduced production is used as the
alternative water cost.

The matrix of second partial derivatives in the least-
cost objective function, equation [1], consists of
groundwater cost coefficients and transmissivity values.
Before optimization, this Hessian matrix was examined
and found to be positive-definite, thus insuring that the
resulting solution is the global optimum,

Noninferior Solution Set

Fig. 2 displays the resulting set of noninferior solutions
interactively generated as outlined previously. Shown
with every exact noninferior solution is the corresponding
tradeoff function expressed by the first order partial
derivatives in units of dollars per cubic decameter,
Although the total range defined by equation [14] is
presented in Fig. 2, in actual practice it is not necessary
to produce the entire set of solutions.

From the noninferior solution set, the best-
compromise solution may be determined by
implementing the surrogate worth tradeoff method
introduced by Haimes and Hall (1974). For illustrative
purposes, solution set A is chosen as a compromise
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Fig. 2—The noninferior solution set and tradeofl functions in dollars
per cubic decameler.

solution, though not necessarily the best compromise
solution. For solution A, the total annual regional
groundwater pumping is maintained at 138,000 dam’
(112,000 acre ft). The total regional cost of the
conjunctive use strategy is 9.3 million dollars, including
opportunity cost and cost of groundwater and diverted
river water.

Local Change

At the compromise solution, the local groundwater
pumping in cell (3,4), (see Fig. 1 for row, column
location coordinates), is equal to its lower limit, which is
0.0. In other words, for the benefit of the region as a
whole, no groundwater withdrawal is permitted at this
cell and in fact, no water needs are satisfied. Assuming
that a group of decision makers wish to improve the
equity of the compromise solution to groundwater users
in cell (3,4), the lower limit on groundwater pumping in
cell (3,4) is increased, and the regional effect analyzed.

The constrained derivative for the pumping in cell
(3,4) is $32/dam’ (8$40/acre ft). For every cubic
dekameter increase in groundwater pumping in cell
(3,4), the regional cost increases by $32. Because the
second partial derivative of the objective function with
respect to the pumping is a positive 50.008/dam’/dam’
(50.012/acre ft/acre ft) the constrained derivative, (532/
dam?), will increase as the local pumping increases.

The most that pumping can be increased in cell (3,4)
and still maintain feasibility is 237 dam?, (192 acre f1), at
which point the pumping in cell (5,5) reaches its lower
limit. Because the change will reduce the size of the
solution space, the limit of 237 dam’ must be recognized.
If the desired increase in the pumping at cell (3,4) is
greater than 237 dam’, the original problem must be
reformulated and submitted for execution using a
standard optimization procedure.
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Fig. 3—The noninferior solution set in the vicinity of the compromise
salution,

Assume that the decision makers agree to increase
pumping in cell (3,4) by 227 dam’ (184 acre ft). In
accordance with equation [17a], the modification causes
the total regional cost to increase by $7,730. The change
of 227 dam’ also causes the values of some of the
constrained derivatives to change sign, thus making the
solution inferior. The interactive program requires five
subsequent iterations to calculate the optimal solution.
At the revised optimum, the increase in total regional
cost is $7,400 and the pumping in cell (3,4) is 227 dam’,

This new noninferior solution is point B on Fig. 3, an
enlarged section of Fig. 2 in the vicinity of the
compromise solution. At point B, the total regional
pumping is still 138,00 dam® but the cost is $7,400
greater than the cost of solution point A.

The decision makers may also want to know how the
total regional pumping of strategy A is affected by a local
increase of 227 dam? in cell (3,4), if the total cost remains
constant. At point B, the constrained derivative of the
principal objective with respect to the constrained
objective, (the instantaneous tradeoff function), is
$30/dam’ ($37 dollars/acre ft), and the corresponding
second partial derivative is $0.002/dam’/dam’.
(30.003/acre ft/acre ft). Solving equation (17b) for Ax,
with Az, equal to -7,400 dollars results in a reduction in
total regional pumping of 250 cubic decameters (202 acre
ft). Because this increase in the size of the feasible region
is less than the maximum feasible deviation, the first and
second partial derivatives remain valid. This means that
in order to increase groundwater availability at cell (3,4)
from 0 to 227 dam?, while maintaining total regional cost
at 9.3 million dollars, a total of 477 dam? of groundwater
must be forsaken in all remaining cells. Implementing
this change results in the noninferior solution indicated
by point C in Fig. 3.

At point C, the total cost is the original 9.3 million
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Fig. 4—Output from a sample interactive session.

dollars, but the total regional pumping has decreased by
250 dam?. The curve connecting points B and C indicates
a portion of the set of noninferior solutions for the new
solution space. At the point on the revised curve, the
minimum amount of groundwater pumping at cell (3,4)
is 227 dam’. Fig. 4 is a copy of the output from the
interactive session used to locate points B and C on Fig.
3

The extension of the noninferior solution set in a local
dimension is possible at any compromise solution with
any decision variable. Therefore, for the 152 decision
variables in this example, the total number of possible
decision directions, including the two regional
dimensions, is 154.

Decision makers can review a variety of information in
gridded (planar map) form to aid decision-making while
using the interactive program. This includes spatially
distributed information on water levels, aquifer
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strategy. s

saturated thickness, water needs, supplied water,
unsatisfied needs and recharge. For example, Figs. 5 and
6, enhanced images of a color graphics display, show
data useful for refining an optimal strategy. To date,
most data is reviewed in gridded numeric form not
requiring graphic processing to get the most rapid
response possible,
J
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Fig. S shows the percentage of unsatisfied water needs
that would exist in each cell of the Grand Prairie under a
particular optimal strategy. From such mapped output a
program user can identify cells at which strategy
modification is desirable. Review of the constrained
derivatives showing the effect of changing the strategy on
other cells and the region is helpful in deciding what
change to make.

Fig. 6 shows the percentage of the assumed maximum
physically feasible recharge that is being induced at each
boundary cell for an optimal strategy. This information,
combined with knowledge of constrained derivatives, is
useful in determining where recharge basins should be
placed or where additional hydrologic data should be
gathered (in order to possibly justify relaxing the
recharge constraints).

The described procedure was implemented in two
computer programs. Unpublished instructions and
documentation were prepared for each. QPSTEP,
developed on an Amdahl 470, modified optimal
quadratic strategies. LPSTEP, developed on a Portable
Graphics Mainframe (PGM) with 640 K RAM and a 23
MB hard disk, modified strategies having a linear
objective function.

It should be mentioned that the presented optimal
strategies are the result of deterministic modeling. To
achieve an understanding of the effect of uncertain
knowledge of aquifer parameters on the likelihood of
achieving desired goals after implementing an optimal
strategy, the stochastic nature of aquifer parameters
need to be considered. Current research is addressing
this topic.

SUMMARY

An interactive computer program is presented which
enables decision makers (DMs) to effectively and
efficiently design a regional water management strategy.
With the program, users can evaluate several conflicting
groundwater management objectives. They can
interactively investigate any area of the feasible solution
space and utilize both regional and local tradeoff
functions in the design process. They are provided with
information in gridded map format that allows
consideration of the local consequences of regional
strategy implmentation. In short, DMs are provided with
the information necessary to rapidly modify a
numerically optimal management strategy to better
satisfy regional and local concerns.

Regional changes are made by moving through the set
of noninferior solutions to locate a compromise solution
and regional tradeoff functions. Local changes, or
modifications in finite difference variables, are
accomplished by changing the constraining conditions
on the local decision variables. Censtrained derivatives
are readily available for evaluating the response of
regional objectives to repeated changes in local decision
variables, '

In the example, the procedure is used to locate and
modify a compromise solution to a regional conjunctive
use, sustained groundwater withdrawal strategy. The
strategy is initially obtained from a management model
that minimizes the cost of meeting water needs from the
conjunctive use of groundwater and surface water while
maintaining a sustained yield. The optimization process
uses the finite difference form of a two dimensional
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groundwater flow equation as part of the constraining
conditions. For multiobjective analysis, a second
objective function that maximizes the total regional
groundwater withdrawal under sustained yield
conditions is included in the original problem as an
additional constraint. The results of the formal
optimization include local values representing the
drawdown, pumping, and recharge in each finite
difference cell. The initial results also include the value
of a decision variable that represents the total regional
groundwater withdrawal under the optimum strategy.

The results of the formal optimization are used as
input to an interactive computer program and the set of
noninferior solutions is generated. At any feasible
solution, the tradeoff’ function between competing
objectives is given to aid in locating a compromise
solution. The procedure also provides information on the
response of the regional objectives to a change in any
local decision variable. This information is used for
modifying the compromise solution with respect to local
concerns,

The interactive modification method may be applied
for any change in a bound on a decision variable, when
the change increases the size of the feasible region, For
the given example of 152 decision variables and 204
inequality constraints, if a change in the bound on a
decision variable is less than the maximum feasible
deviation, the optimal solution is calculated with a few
additional iterations. If the change in the bound causes a
re-partitioning of the system variables, it may take more
than a hundred iterations and considerably more
processing time to arrive at an optimum.

When a change in a bound decreases the size of the
feasible region, the change is limited by the feasible
deviation determined by utilizing constrained
derivatives. The interactive procedure is not appropriate
if a desired change decreases the size of the feasible
region in excess of the feasible deviation. In such a case
the problem must be re-submitted and solved by a
standard optimization process.

In conclusion, although the decision support program
is demonstrated by application with a particular
optimization model, it can be used to refine strategies
developed by other models having quadratic or linear
functions and linear constraints.
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NOMENCLATURE

b(i.j) the second partial derivative of the unconstrained objective
function with respect to variable i and variable j

e, (i) the cu:t per unit volume of alternative water supplied in cell
i, $/L:

g,(i) the cost associated with 4 unit volume of groundwater
pumped, $/1
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the cost associated with raisin‘g a unit volume of
groundwater one unit distance, $/L

the first partial derivative of state variable k with respect to
decision variable i

a linear function of drawdown describing the total dynamic
head at cell i, L

the total number of objective constraints

an index defining & specific objective constraint

2 general index

a general index

the total number of finite difference cells in the region, also
the total number of inequality constraints

an index defining a spec fic state variable

the limiting value of objevdve constraint h

the minimum allowable total groundwater annually
withdrawn from the aquifer uiderlying the region, L'/year
the total number of constant head cells in the region

an index defining a specific constant head cell

the total number of finite difference cells in which pumping
and drawdown are variable

the annual volume of groundwater pumped from cell i,
L /year

the annual volume of alternative water use at cell i, L/year
the lower limit on annual groundwater pumping in cell i,
L/year

the upper limit on annual groundwater pumping in cell |,
L'/year

the annual recharge in constant head cell m, L/year

the lower limit on annual recharge in constant head cell m,
L/year

the upper limit on annual recharge in constant head cell m,
L/year

the lower limit on drawdown in cell i, L

the upper limit on drawdown in cell i, L

the average transmissivity between finite difference cell i and
cell j, for i = j, L¥/year

the first partial derivative of the unconstrained objective
function with respect to variable j

the annual water requirements in cell i, LY/year

the old value of decision variable i

the new value of decision variable i

the value of objective constraint h

the value of the principal objective function

the total annual cost of water supply, $/year

the total volume of groundwater annually withdrawn from
the region, L/year

the change in the value of constrained derivative j.

the change in decision variable i

the change in state variable k

the change in the value of the principal objective function.
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