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ABSTRACT 

A methodology for including chance-constraints in 
models for maximizing regional sustained-yield 

groundwater extraction is presented. The procedure 
utilizes the spatially distributed mean and variance of 
saturated thickness in a confined aquifer. This data is 
derivable from kriging, a geostatistical technique. The 
technique is applied to a scenario of somewhat 
egalitarian agricultural development dependent on 
groundwater. Decision makers in this situation know 
that groundwater availability is insufficient to supply all 
potential demand. They plan to implement a sustained 
yield groundwater extraction strategy. They know that 
because of uncertain knowledge of aquifer parameters, 
at some point in the future, available groundwater in 
some locations will exceed the initially allocated amount. 
They also realize that some locales will probably have less 
available groundwater than was expected, based on 
initial knowledge of the aquifer. To avoid future social 
and political unrest, they prefer that the spatial 
availability of groundwater remain somewhat consistent 
with time. Thus, they develop a groundwater extraction 
strategy using a predetermined confidence level. They 
are then relatively certain that actual sustainable 
extraction does not exceed the allocated groundwater use 
rate for locales in which allocated pumping is at a 
specified upper limit. 

INTRODUCTION 

In the past, there has been considerable reluctance on 
the part of planners and design engineers to use 
stochastic methods in groundwater management models. 
However, the presence of uncertainties in estimating 
aquifer parameters has long been recognized. 
Fortunately, there have been recent developments in 
stochastic subsurface flow theory and its practical 
applications (Gelhar, 1986 and Tung, 1986). Thus, the 
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current trend is to include the natural heterogeneity of 
aquifers in the governing flow equation by probabilistic 
in addition to deterministic approaches. 

This article presents a methodology that explicitly 
incorporates the stochasticity of an aquifer parameter in 
a chance-constrained formulation of a groundwater 
management model that maximizes steady-state 
(sustainable) groundwater extraction. The methodology 
falls under the broad category of expliCity stochastic 
optimization. It has two parts: (a) regional process 
identification, and (b) chance-constrained optimization. 
The regional process identification establishes and 
describes the random nature of the aquifer parameter. 
This is accomplished by a statistical procedure known as 
block kriging. The statistical information obtained from 
kriging is then utilized as input to an optimization 
model. This optimization model includes the finite
difference approximation of the .steady-state flow 
equation expressed in probabilistic terms. 

The method is applied to a hypothetical agricultural 
area administered by a governmental agency. Results 
show the applicability of the methodology. 
Computational aspects of the methodology are 
discussed. The practical significance of alternative 
formulations are also included. 

PREVIOUS WORK 

The need to systematically relate the hydraulic 
behavior of groundwater flow systems to the optimal use 
of water supplies bas been accomplished by coupling the 
physical principles of groundwater flow and optimization 
theory. The "embedding" approach involves inclusion of 
flow equations as constraints in an optimization model 
(e.g. Gorelick, 1983 and Peralta, 1985, among many 
others). 

Representation of the random nature of the system 
components has been attempted and reported in 
groundwater literature only recently. The need to 
represent the random nature of aquifer parameters has 
been recognized by groundwater researchers. A number 
of methods have been proposed in water resources 
literature. However, researchers have yet to agree on 
which method is best (Carrera and Neuman, 1985). 
Finding the proper representation of the random process 
has been posed as an identification problem. It involves 
finding the solution of the inverse problem. Numerous 
approaches to the inverse problem have been proposed. 
Ponzini and Lozej (1982) reported excellent results using 
a comparison model to compute interblock 
transmissivities. Dagan (1985) presented a methodology 
for solving the problem of determining the random 
distribution of transmissivity through unconditional and 
conditional probabilities. More recently, Carrerra and 
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Neuman (1986) published methods of estimating the 
parameters of steady and unsteady groundwater flow by 
a maximum likelihood method. Gutjahr and Gelhar 
(1981) considered hydraulic conductivity as a spatial 
variable. They showed that variogram analysis (as a part 
of kriging) yielded consistent results with analytical 
approximations such as first·order analysis and 
covariance differential equations. This is significant 
because it indirectly underscores the importance of 
kriging as a method of describing the spatial random 
nature and distribution of aquifer parameters. 

Originally used in mining and geology, kriging is a 
well-established statistical technique for calculating 
minimum variance unbiased estimators of spatially 
dependent data. Most commonly, it is used to compute 
the best estimate of an unknown value of a parameter at 
a specified location. 'Punctual' kriging is used in 
interpolation to estimate the values of aquifer 
parameters at points (locations) other than those points 
at which field observation has been made. Marx and 
Thompson (1987) provide an excellent and concise 
discussion of the punctual kriging procedure and 1ts 
practical applications. 'Block' kriging is used to estimate 
average values of aquifer parameters in the center of a 
block or cell. Burgess and Webster (1980) describe the 
block kriging procedure, which results in smaller 
estimation variance values than does punctual kriging, 
since it is an 'average' estimate for an area or volume. 

Researchers have also scrutinized the randomness of 
system components other than aquifer parameters. 
Maddock (1974) presented a methodology for finding 
strategies or rules for a stream-aquifer system. He 
assumed that the demand for water is a random event. 
His work is based on the premise that the wakr resource 
system operates under stochastic water needs or 
demands. 

Of the numerous stochastic modeling techniques that 
are available, chance-contrained programming includes 
random variation as an integral part of the constraint set 
of an optimization model. More importantly, specified 
probability limits on constraint violations may be 
established. From the modeling perspective, chance
constrained formulations are useful because they 
properly represent the random component of the system. 
Moreover, water resource modeling and optimal solution 
computation is facilitated by the ability to develop the 
deterministic equivalent of an originally stated chance
constrained problem. 

Charnes and Cooper (1963) published the first 
comprehensive presentation of chance-constrained 
programming. Since then, the technique has been 
extensively implemented in surface water system studies. 
In groundwater literature, Tung (1986) reported the 
applicability of chance-constrained programming with 
response function groundwater modeling. He included 
random aquifer parameters in a compliance constraint to 
realistically restrain the model's performance in a 
probabilistic situation. 

In summary, stochasticity of system parameters is of 
importance in groundwater modeling. Furthermore, 
well-established methods like kriging and chance
constrained formulations are available for adequate 
representation of groundwater system optimization 
problems. 
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THEORY AND MODEL FORMULATION 

Governing Equation 
Consider a hypothetical area that is underlain by an 

aquifer with large saturated thickness. Assume that the 
aquifer is confined, or that the change in saturated 
thickness, resulting from any of the pumping strategies 
discussed later, is small. Furthermore, assume a 
spatially unchanging hydraulic conductivity and a 
spatially correlated saturated thickness. 

The aquifer in the study area is assumed to be 
completely surrounded by a larger area. Thus, the 
surrounding aquifer is a source of recharge through the 
boundary cells of the hypothetical area. The sole vertical 
discharge from the area's internal cells is groundwater 
pumping through wells. No other hydraulic stimuli or 
stresses occur at internal cells. All other recharge to or 
discharge from the system occurs at constant head cells 
along the area's boundary. 

The Boussinesq equation and Darcy's law govern the 
aquifer recharge to or discharge from the study area. The 
Boussinesq equation is commonly used to describe two~ 
dimensional flow through porous media. The equation is 
expressed in terms of continuous partial derivatives: 

a aH a aH aH 
-(T -) + - (T -) - Q = S --
ax ax ay ay at 

........... [1] 

where 
T 
s 
H 
t 
Q 

transmissivity of the aquifer n~aterial, (L2T- 1) 

storage coefficient of the aquifer 
the head, (L) 
time, (T) 
net volumetric flow into (-) or out of ( +) the 
aquifer, (L'T- 1). 

Under steady-state conditions the right-hand side of 
equation [1] vanishes. The resulting equation describes 
two~dimensional flow where there is no change in head 
with time. Equation [I] can be written in a finite
difference form to describe flow in a heterogeneous 
isotropic aquifer. Using block~centered two~ dimensional 
cells to represent the system, equation [1] becomes: 

tL hi+l,j + tLlJ hi-l,j + ~.j-1 hi,j-1 + {j hi,j+l 

h ij - + - .. ". - g. . r· . 
lJ l.,j lJ l,J 

................ [2] 

where 

h 
'·l 

ti. 
'·' 

steady groundwater pumping ( +) and 
recharge (-) in cell i,j that will maintain 
h,,J• (L'T-') 
steady potentiometric head that will 
ultimately evolve at each internal cell i,j if 
each is stressed by rate g,,1 + r,,1, (L) 
mean transmissivity between cells i,j and 
i+ 1 ,j, (L'T- 1) 

mean transmissivity between cells i,j and i, 
j+I, (L'T- 1). 

ij ; ; . i i 
t· . = t· . + t· 1 . + t:! . + L, . 1 lJ lJ 1- ,J l,J l,J- . """" .. [3] 

The t' and ti terms in equation [2] are usually represented 
by either the geometric mean or the harmonic mean of 
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the transmissivities of adjacent cells. The choice depends 
on the expected accuracy of the resulting transmissivities 
of the midpoint of adjacent cells. 

Assume for this paper that, as described below, the 
arithmetic mean is used for the ti and ti terms. Assume 
further that hydraulic conductivity is constant for the 
whole area of interest and that the saturated thickness 
within each cell is governed by a random process. With 
these assumptions, equation [21 can be rewritten as: 

0.5 k [bi,j hi+1j + bi+1,j hi+1j + bi-1j hi-1,j 

+b-. h 1 . +b-. 1 h-. 1 +b-. h- ·-·1 
I,J 1- ,j 11J- lJ- l,J 11J 

-b .. 1 h- 1 = g· · + r· · l,j- l,J l,j IJ 
................ [41 

where 
k 

b 
>.j 

hydraulic conductivity that is assumed 
constant, (LT-') 
saturated thickness that is governed by a 
random process, (L). 

Equation [41 is derived from equation [21 under the 
simplifying assumption that the transmissivity between 
two adjacent cells can be adquately represented by the 
simple average of the cells' block-centered 
transmissitivies. This assumption is necessary to 
maintain linear terms on the left hand side of the 
equation. It is also consistent with the independent 
random distribution nature of the process that describes 
the saturated thickness within a cell. One should note 
that arithmetic averaging is appropriate for internal cells 
but not for cells adjacent to impermeable boundaries. 

To facilitate discussion, equation [41 is rewritten in the 
following compact form: 

0.5 k [~ ~ij ~ij 1 = g;j + 'ij .............. [51 

where the left-hand side of equation [51 is merely an 
alternative notation for the sum of the terms on the left
hand side of equation [41. 

Probabilistic Constraint and Its Deterministic 
Equivalent 

The net discharge of any cell (i,j) in the aquifer system 
equals the sum of groundwater pumping and recharge in 
that cell. The g value on the right-hand side of equation 
[51 represents groundwater allocation calculated by 
computer management model. Because of uncertain 
knowledge of the aquifer, the actual sustainable (steady) 
groundwater yield in a cell may differ from this allocated 
value. If total water available in an aquifer system is 
insufficient to satisfy potential water demand in all cells, 
it might be desirable to limit allocated groundwater 
pumping in each cell to be less than some critical value. 
Let this critical value, gc, be expressed as a fraction of 
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potential demand. To assure, with a known probability, 
that the actual sustainable value does not exceed the 
computed (allocated) value at cells in which the allocated 
value equals gc, the flow equation used in a chance
constraint expression is: 

P )o.5k [~~.j~i,j 1 =g;j +r;j <gi,i( >1-" ... [61 

Equation [61 assures, with a probability equalling or 
exceeding (1 - a), that the net sustainable discharge 
from each cell is less than a prespecified critical value. 
Assuming that the saturated thickness in a cell, b;,i• is 
sufficiently described by a normally distributed process, 
with mean mi,j and variance vi,i• the probabilisitic 
constraint (equation [6]) can be rewritten as: 

0.5 k [ (L m . h- . ) + p-1 (0<) y(Lv- . h 2 )1 _lJ _lJ J,j _lJ 

=gij+ri,j::;,;;gi,j · · · · · · · · · · · · · · · · · · · · · .[7] 

where p-•(a) denotes a standard normal deviate 
corresponding to the normal cumulative distribution 
function of a. (Stability aspects as a consequence of the 
conversion from equation [61 to equation [71 are 
mathematically analyzed by Dupacova (1984)). All other 
notations are consistent with those of equation [61. For 
the stated assumptions, the deterministic constraint 
(equation [7]) can replace the probabilistic constraint 
(equation [6]). As written; equation [7] assumes spatial 
independence and is a conservative estimate if spatial 
dependency occurs. If written to assume spatial 
dependence (using covariance functions) the top line of 
equation [71 would be smaller in magnitude for a given 
set of heads. Thus, more pumping would be possible 
than is computed using equation [71. 

Problem Formulation 
Consider a sustained groundwater yield (steady-state) 

management problem in which the objective is to 
maximize total groundwater pumping while satisfying 
constraints on heads, recharges, and pumping. The 
amount of groundwater pumping in each cell is required 
to be less than the cell's water demand. In addition, the 
probability that actual net sustainable discharge in each 
cell does not exceed prespecified critical values is set to (1 
- a). This problem is applicable to the scenario 
described below. 

A planning agency for a developing country wishes to 
compute an optimal sustained groundwater yield 
pumping strategy for an area. The area is to be an 
important region for irrigated agricultural production. 
Naturally, the agency wishes to maximize sustainable 
groundwater pumping. The agency also recognizes that 
knowledge of spatially variable saturated thickness is 
uncertain. Furthermore, agricultural reform policies 
make the agency desire to spread irrigated acreage out in 
the area, rather than concentrate it in a few cells. 

Possibly, the agency could compute maximum 
pumping strategies subject to chance~constraints on 
drawdown, and absolute upper and lower limits on 
pumping. Setting a lower limit of zero pumping is always 
easy. Setting a higher value for a lower limit may be 
infeasible if the aquifer cannot provide enough water. 
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Setting firm upper limits is easy and will not adversely 
affect identifying feasible solutions. However, as stated, 
the agency wants to achieve a somewhat egalitarian 
distribution of pumping. 

Decision makers (DMs) know that since knowledge of 
the aquifer is uncertain, the actual sustainable 
groundwater pumping in a cell will differ from the 
sustained yield computed by a groundwater model-in 
some cells more water will be sustainably available, in 
some cells less. They known that this difference will not 
be obvious immediately, but that it will eventually be 
discernable from potentiometric surface response to 
pumping. For example, annual pumping in compliance 
with the rates allocated by the management model 
should ultimately cause the evolution of a relatively 
steady potentiometric surface. This surface consists of 
the potentiometric heads in the steady-state flow 
equation. If head in a cell remains higher than expected, 
one might surmise that physically feasible sustainable 
groundwater extraction at that cell is larger than the 
existing withdrawal rates. 

For social and political reasons, the DMs hope to 
avoid having to significantly adjust annual groundwater 
allocations in the future. Realizing that all optimal heads 
and allocated pumping rates are computed 
simultaneously by management model, DMs might wish 
to use chance-constrained upper bounds on pumping for 
all cells. 

Decision makers (DMs) in this study choose to develop 
a range of maximum pumping strategies. Each strategy 
is subject to the constraints (equation [7]) that the DMs 
must be x'fo sure that actual sustainable pumping in 
each cell does not exceed prespecified critical values. The 
confidence level is varied systematically. This approach 
incorporates uncertain knowledge of aquifer saturated 
thickness in the upper bound on groundwater pumping 
allocation. 

The problem is mathematically formulated as: 

Maximize L L 
iel j E] 

gij .................... [8] 

h~- ~h-. ~h~-
l,J lJ l,J 

for iel,jeJ ............... [9] 

for iei,jeJ . . . . . . . . . [10] 

for iel, jeJ ....... [ 11] 

gi,j <;; wij for iei,jeJ .............. [12] 

and the two probability constraints of equation [6], 
where 

h\i and h~i = known lower and upper limits on the 
potentiometric head in cell (i,j), (L) 

rtJ, r~i• 
gb andg~i 

w .. 
>,J 
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known lower and upper limits on 
groundwater recharge and pumping, 
respectively, (UT-') 
potential water demand based on soil 
and likely crops, (U). 

'l 

0 variable-head cell 

1m constant-head cell 

Fig. 1-Hypothctical study area. 

AU other notations have been defined previously. 
Equations [8], [9], [10], [11], [12] and [6] consist of a 
chance-constrained problem where the decision variables 
are gi,j• ri.i and hi.i• that is, groundwater pumping, 
recharge and potentiometric head, respectively. The 
formulation implies that the distribution process that 
governs the random aquifer parameter (in this paper, the 
saturated thickness) is also known. Assuming that this is 
the case and that the distribution is normal or can be 
converted to a normal distribution, equation [7] can 
substitute for equation [6]. 

The programming problem that includes equations 
[8], [9], [10], [11], [12] and [7] (Model A) is a nonlinear 
programming problem due to the nonlinear terms 
introduced by equation [7]. Nonlinear programming 
algorithms are currently available to solve programming 
problems of this structure. The GAMS/MINOS software 
package was selected for this paper. It consists of a 
General Algebraic Modeling System (GAMS) developed 
by the World Bank (Kendrick and Meeraus, 1985) and a 
Modulat· In-Core Nonlinear Optimization System 
(Murtagh and Saunders, 1983). Because of the nonlinear 
constraints, global optimality of the computed strategies 
cannot be assured. 

NUMERICAL EXPERIMENTS 

The formulated problem has been applied to a 
hypothetical area (Fig. 1). The same area was used 
previously by Peralta and Kowalski (1986). The area 
consists of 65 cells, 40 of which are internal cells. Head is 
constant in all peripheral cells. A spatially constant 
hydraulic conductivity value of 82 m/ day (270 ft/ day) is 
assumed. The hypothetical area, a small portion of the 
Bayou Bartholomew Basin in Arkansas, is shown as the 
irregularly shaped area in Fig. 2. The relative position of 
the hypothetical area is shown as area XYZD in Fig. 2. 
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Fig. 2-Block kriging areas. 

A standard block kriging procedure was implemented 
to compute the standard error of the estimated saturated 
thickness in each cell. Comparative results of the kriging 
study are shown in Table 1. Results show that the larger 
the area the greater the variance calculated by block 
kriging. Results for area ABCD (see Fig. 2) differs from 
that of area EFGH by about 50o/o. Note that area ABCD 
includes cells that are outside the basin. Results show 
that smaiier variance and mean estimates are obtained 
when the rectangular area used in kriging includes only 
cells within the basin. Block kriging estimates are 
applicable to the center of the rectangular study area. 
Mar~ accurate results are possible when block kriging is 
applied to each of the cells of the hypothetical area. 
Block kriging done on a cell by cell basis is similar to 
application of punctual kriging. When a regionalized 
mean and variance of the aquifer parameter for the 
entire study area can be justified, block kriging defines 
the random process just as well as punctual kriging. 

Optimal solutions for Model A as formulated above 
have been systematically calculated for different 
confidence levels, specified as (1 - a). Critical values in 
the deterministic equivalent of the chance-constraint are 

TABLE 1. Comparison of Block 
Kriging Results 

Area 

ABCD 
EFGH 
XYZD 
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Mean 
(ft) 

148.03 
105.62 

97.91 

Standard 
Deviation 

(ft) 

17.91 
13.73 

3.51 

1-<> 
0.95 
0.90 
0.80 
0.60 

TABLE 2. Chance-Constrained 
Modeling Results 

FRAC=0.5 FRAC=0.9 

OP* OP* 
18.44 20.18 
18.03 19.74 
17.52 19.21 
16.84 18.50 

*OP:::: Optimal Total Groundwater Pumping 

Total Water Need 

X 100 

also varied to provide a comparative study of the 
methodology's application. In the numerical 
experiments, the critical value g~. is computed as a 
fraction (FRAC) of the cell's wat~r demand volume. 
Table 2 shows results from two groups of computer runs. 
These are results when (a) FRAC = 0.5, and (b) FRAC 
= 0.9 at varying levels of confidence. 

The slight trend observed in Table 2 is that as the 
confidence level (1 - a) decreases, total optimal 
allocated pumping also decreases. This results because 
F-1 in Equation [7] decreases from 1.645, for (1 - a) = 
0.95, to 0.255 for (1 - a) = 0.60. 

For FRAC = 0.5, as reliability and total allocated 
pumping decreases, there is a slight decrease in the 
~umber of _cells having optimal pumping values that are 
l!ghtat the1r upper bounds. There is insignificant change 
m th1s respect for FRAC = 0.9. On the other hand, one 
expects the number of cells in which actual sustainable 
pumping exceeds gf.; to increase with decreasing (1 - a). 

It is also important to point out that total allocated 
pumping increases slightly for FRAC = 0.9 as opposed 
to FR~ ~ = 0.5. In this case, when constraining the 
probab1hty that fluxes not exceed a critical value 
increasing the critical value causes a small increase i~ 
total pumping. 

Computer runs for the small hypothetical area are 
accomplished using the University of Arkansas IBM/370 
in the CMS environment. A typical run required about 5 
s of CPU time while using the GAMS 2.04 nonlinear 
optimization package option. It is important to point out 
that providing reasonable initial values for the decision 
variables results in shorter CPU times. Computer runs 
may terminate before finding the optimal solution. In 
these cases, changing the initial values is necessary. 
There were also cases where the initial values supplied 
resulted in infeasibility. Multiple optimal solutions 
existed in some cases. Based on these observations 
application of the methodology to areas with a larg~ 
number of cells may pose problems due to system size 
and nonlinearity of the deterministic equivalent of the 
chance-constrained formulation. 

ALTERNATIVE FORMULATIONS 

Although the problem formulated as Model A in this 
paper may have definite practical importance in 
situations of water scarcity, two alternative formulations 
are worthy of mention. Changing equation [6] to: 

P) O.Sk (2:~i,j~ij )>gL! >1-" ......... [13] 
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is appropriate for an entirely different management 
problem. This formulation, Model B, is more applicable 
in situations where available resources are not as 
limiting. The model seeks to guarantee at least the 
critical amount at a particular level of reliability. 
However, there is no assurance that all problems of 
model B structure would result in feasible strategies. As 
Peralta et al. (1985) determined in developing an 
egalitarian groundwater allocation strategy for the 
correlative rights doctrine based on historic water use, 
the system may be physically unable to provide the 
prespecified critical value due to its hydraulics and 
physical properties. Another formulation improves this 
weakness. Permit the critical level in each cell to vary by 
stating the chance-constraint as: 

P ) 0.5 k ( E ~i.j !:i,j ) ;;. fi,j wi,j ( ;;. 1 - " ...... [ 14] 

where fi,i is a decision variable. It is the fraction of the 
water demand that can at least be satisfied at confidence 
level of (1 - a) at each cell. Equation [14] is a chance· 
constraint similar in purpose to that described by Peralta 
et al. (1985). The range of possible values for f,.i is: 

0.0 < fij < 1.0 ......... [15] 

The following constraint is also added: 

f..;;. d ............................. [16] 
l,J 

Equation [16] restricts the cell by cell fractional levels to 
be greater than a particular dummy variable d. Now, 
changing the objective function to equation [17] 
completes Model C. 

Maximize d ..... . . ....... [17] 

Model C, a model that consists of equations [17], [9] 
through [12] and [14] through [16], is in the form of a 
max min problem. The problem seeks the best possible 
set of fractional levels that will provide water needs at a 
prespecif1ed level of certainty. 

SUMMARY AND CONCLUSIONS 

Results of numerical experiments show that chance· 
constrained formulation is possible and useful in 
developing groundwater sustained yield extraction 
strategies. Computational aspects of the methodology 
and its practical implication are also discussed. 
Alternative formulations for several management 
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scenarios are presented. Applicability of the presented 
models depends on validity of assumptions. Being able to 
quantitatively describe the random process is crucial to 
converting the chance-constraint to its deterministic 
equivalent. 
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