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Conjunctive Water Use/Sustained Ground-Water 
Yield Planning : Case History* .. 
Ahmad Y. Ranjha', Richard C. Peralta2 and Am in Yazdanian3 

Abstract: A methodology for computing perennial ground-water yield and conjunctive water 
use strategies is presented, using the Arkansas Grand Prairie as a case study. This includes 
development and use of an optimiz.ation model for computing sustainable ground-water 
pumping strategies and a post-processor for allocating ground-water and surface water 
supplies in time and space. The optimization model utilizes embedded finite difference flow 
equations as constraints and bounds on pumping, recharge and potentiometric head. 
Computed conjunctive use ~rategies will maintain, as much as possible, the existing 
stressed potentiometric surface. They will also assure at least 6 meters of saturated thickness 
in all locations to provide protection from drought. 

Resume: A partir de J'8tudede cas Grande Prairie d'Arkansas, !'article presente une m9thodologie 
destinee a calculer les rendements en eau souterraine et formuler des strategies d'utilisation 
coh9rente des eaux. Cette methqdologie comprend le d9veloppement et !'usage d'un modele 
d'optimisation qui calcule les strategies de porn page d'eau souterraine et d'un modele affectant 
l'eau souterraine et l'eau de surface dans le temps et dans l'espace. Le modele d'optimisation 
utilise des equations aux differences finies d'Elcoulement com me contraintes et limites pour le 
pompcige, Ia recharge et Ia charge potentioml!trique. Les strategies d'utifisation calcult~es 
maintiendront, autant que possible,·l'organisation des ecoulements existante. Elles assureront 
egalement une epaisseur saturee d'au mains 6 metres a tout endroit, afin de procurer une 
protection centre Ia s9cheresse. 

* Utilis~tion coherente des eauxjPianlfication du rendement de l'eau souterraine: Etude 
de cas 
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Introduction 

In the Arkansas Grand Prairie (Figure 1), ground water has long been used to 
irrigate rice and soybeans. Ground-water levels in the initially confined, but 
currently unconfined aquifer have declined with time and are now significantly 
depressed (Figure 2). Probably more than 50 years without pumping would be 
required for the potentiometric surface to appear unstressed. In some 
locations saturated" thickness is so small that wells become inoperable in time 
of drought. Peralta et. al. {3) predict decreasing saturated thickness in some 
portions of the area. Obvious results, if current water management is not 
improved, will be economic hardship and a lack of water in time ot"drought. The 
potential for litigation, Invoked to halt declining water levels, will increase. 

A goal of local state and federal agencies is to prevent further decline in the 
potentiometric surface. To achieve this, and maximum agricultural production, 
the conjunctive use of water is necessary. Planners desire estimates of how 
much river water could potentially be required for diversion to the area. This 
paper describes part of a feasibility study conducted to determine a 
conjunctive water use strategy for the area. The strategy is a pattern of spatially 
and temporally varying ground-water and surface water use. • 

The main objective of this paper is to describe a method for computing a 
conjunctive water use and sust<tined ground-water yield strategy that can 
satisfy maximum potential irrigation water demand in the study area, for 
climatically average growing seasons, while maintaining the existing poten-
tiometric surface as much as possible. It includes use of a model for optimizing 
sustained yield ground-water withdrawal rates and a post processor for 
allocating time-varyin_g water use in compliance with the sustained yield 
strategy. 

The process includes determining, on a monthly and seasonal basis, the 
potential irrigation demand in each ofthe5 km x5 km cells for average climatic 
conditions. It is assumed that the potential demand will be satisfied using a 
combi.nation of sustainable ground-water withdrawals and surface water diver­
sions. Thus, a sustained ground-water withdrawal strategy tbat will approxi­
mately maintain current ground-water levels is presented. This strategy 
consists of a set of sustainable annual ground-water withdrawal volumes which 
will maintain at least 6 m of saturated thickness in all cells. 

After computing the sustained yield ground-water withdrawals, the annual 
diverted volume of surface water required for each cell is computed. Finally, the 
potentially required annual volumes of ground water and diverted river water 
are appropriately apportioned for each month of the irrigation season. This 
is accomplished in such a way as to minimize river water requirements 
during months of low flow. The resulting set of monthly cell-by-cell ground-
water and river water use volumes is a conjunctive water use strategy. •. 
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Figure 1. The Arkansas Grand Prairie and finite difference discretization 
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Figure 2. Current potentiometric surface elevation contours in the Grand 
Prairie, in meters above sea level 
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Methodology 

Data Development 

The Grand Prairie study area is underlain by an alluvial sand and gravel 
Quarternary aquifer. The aquifer is overlain by 8 to 15 m of silt and clay and is 
underlain by a thick confining bed in the Jackson Group. The average thickness 
and hydraulic conductivity of the aquifer are respectively 27m and 82 m per day 

A permeability of 81 to 82 ~per day was reported by Sniegocki {8), Griffis 
{2), and Peralta et. al. {3). They concluded that deep percolation from the ground 
surface into the aquifer was negligible because of the clay cap overlying the 
aquifer. 

Both Griffis {2)and Peraltaet. al. (3) calibrated two-dimensional finite difference 
ground-waterflow simulation models of the Grand Prairie. The latter used the 
same discretization, 204 (5 km x 5 km) cells, as this study (Figure 1 ). Here, 
all peripheral cells were treated as constant-head restrained flux cells 
Ground-water flow through these constant-head cells was constrained so as 
not to exceed prespecified values. In the 152 internal cells, heads are permitted 
to vary in response to pumping. 

Crops considered to require irrigation water in the internal cells are soybeans, 
rice, and wheat. The maximum potential acreage of each crop in each cell was 
estimated using Soil Conservation Service crop recommendations for the 
existing predominant soils {9). This had already been accomplished for some 
parts of the region {5,6, 7). 

The first step involved identifying soil texture. In the second step a crop orland 
use was assigned to each soil texture. -Based on the county soil surveys {9), 
out of the three most water intensive crops (soybeans, rice and wheat) the one 
that was appropriate for a particular soil texture was assigned to that texture. 
Land that is only appropriate for or was already assigned to pastures, wood­
lands, urban use, water {bayou, reservoir, stream, etc.), levees, mines, quarries, 
borrow pits or wildlife habitat was not considered available for agricultural 
production. Nor were non usable lands (unmapped, intermittent, rocky, or 
cobbly) considered appropriate for agriculture. 

Finally, the potential acreage appropriate for each crop in each cell was 
computed for all the cells. The total areas of land judged to be appropriate for 
three crops are; soybeans {50,484 ha), rice {219,871 ha), and wheat {11,606 ha). 

In estimating the potential water needs for each cell, the potential rice land is 
assumed to be planted half in rice and half in soybeans and wheat in a given 
season. The potential soybeans land is assumed double cropped with wheat, 

ICID BULLETIN 1990, VOL.39 NO. 1 5 



------.,....,--~------------------------------------- -11 

and the potential wheat land is planted to wheat only. This results in assuming 
actual areas of 109,936 ha for rice, 160,420 ha for soybeans and 172,026 ha for 
wheat in the tested cropping pattern. Potential water requirements for a 
particular crop were estimated using irrigation scheduling models by Peralta 
and Outram (7). These programs compute daily water balances by considering 
precipitation, irrigation, evapotranspiration, runoff, seepage and either flood 
level (for rice) or soil moisture (for soybean and wheat). Using 15 years of 
climatic data and representative system efficiencies, average irrigation water 
need for each crop. was computed (rice, 60.5 em; soybeans, 17.8 em; wheat, 
7.4 em). These values correspond well with those commonly a~sumed for the 
Grand Prairie (7). Finally the potential irrigation water needsfor eaciTcell were 
calculated for a climatically average season(Figure 3). 

Maximum annual recharge or minimum annual discharge rates that occurred 
acrossthestudyareaboundaries during ten recent years were computed. This 
was done by: assuming ground-water levels measured in wells by the U.S. 
Geological Survey, using kriging to estimate head values that exist in the center 
of cells, and solving a system of stready-state two-dimensional finite difference 
flow equations to compute the boundary fluxes (recharge at constant-head 
cells) needed to maintain those heads. The steady-state flow equations 
used the same aquifer parameters and grid system as a calibrated simulation 
model. 

This recharge comes either from surface water resources in connection with 
the aquifer, or from extensions of the aquifer system outside the study area. The 
historic recharge values were subsequently used as limits on acceptable 
recharge rates in the optimization model. 

Ground-water Model Development and Sustained Yield Computations 

A sustained ground-water withdrawal strategy was developed for the study area 
using one of the approaches suggested by Yazdanian and Peralta (10). Based 
on their comparisons and recommendations, a quadratic goal programming 
model was selected. It minimizes the sum of the squares of the deviations 
between the target (current) water levels and the optimized ground-water levels, 
while determining the spatially distributed ground-water withdrawal strategy 
that will maintain the optimized levels. In developing the strategy, the kriged 
top and bottom elevations of the aquifer, current saturated thicknesses and a 
hydraulic conductivity of 82 mjday were assumed. As mentioned previously, 
upper limits were placed on the volume of ground water that could enter the 
study area in any constant-head cell. No limit was placed on the volume of 
groundwaterthatcouldleavethestudy area. In addition, heads were bounded 
so as to leave at least 6 m of saturated thickness in each cell. (This thickness 
is considered adequate for representative wells and drought conditions) 
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· Fig~re 3. Annual potential irrigation water neeqs (Uq) for an average season 
in each 5 km x 5 km cell in the Grand Prairie region 

' . 

The aquifer system is represented by a square finite-difference grid of n cells. 
These Include the m cells located inside the area (internal cells), and n-m cells 
located on the periphery ofthe system (boundary cells). In the boundary cells, 
reacharge from outside the system is treated as a variable. · 
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The objective function value is minimized subject to constraints on pumping 
and recharge and bounds on heads in each finite difference grid square. 
Expressed in quadratic programming matrix notation, the problem is repre­
sented as: 

minimize Z ~ -2(Htw) { H.} + (1 /2) (H,)T [W] { H. } + ( H1,) {H,} (1) 

subject to: 

{ L,} ,;; { Q } ~ [ T ]{ H, } ,;; [ U, } 

{I,}.;; { H,},;;{ Uh} 

(2) 

(3) 

where: 

z 

{ H,} 

(H. )T 

[ W] 

{Q} 

the objective function value, L2 

a 1 X m row vector whose elements are the product of the known 
target heads in the internal cells and the weighting factors, L 

the m X 1 column vector of initially unknown heads in the internal 
cells that are optimized, L 

transpose of column vector { H. }, L 

the m X m diagonal matrix whose diagonal elements are two times 
the weighting factors, dimensionless 

the m X 1 column vector of the known target heads in the 
internal cells, L 

n X 1 and m X 1 column vectors whose elements are the lower 
bounds on pumping (or recharge) in all the cells in the system, 
L3 jT and on optimal steady-state heads in the internal cells, L, 
respectively 

n X 1 and m X 1 column vectors whose elements are the upper 
bounds on pumping (or recharge) in all the cells in the sytem, 
L3 jT, and on optimal steady-state heads in the internal cells,, 
L, respectively 

an nx 1 column vector of net steady-state pumping (or recharge) 
rates for all the cells, L3 jT and 

[ T ] is an (n x n) symmetric banded matrix of finite difference 
transmissivities, L2jT. 
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The first and second terms on the right hand side of equation [1] are linear and 
quadratic, respectively, in terms of the unknown heads. The third term consists 
of constants. 

Problem formulation and optimization was performed using the SSTAR model 
(4). This algorlthm.accepts simple cell and systtJm data, formulates all bound 
and constraint equation~. performs optimization (for a selected objective 
function) and prints output in a map format. The objective function used here 
·is useful for other areas having a greatly stressed potentiometric surface, but 
is not usually appropriate for less developed aquifers. 

The optimal strategy thus computed approximately maintains the target 
(current ground-water levels (Figure 2) while insuring at least 6 m of saturated 
thickness In all cells (if boundary conditions and other assumptions remain 
valid). Ground-water levels computed by the model are the same as those that 
would be computed by a standard simulation model if the optimal pumping 
values were used as input in a steady-state simulation. The difference in 
transmissivity between that assumed in equation [2] and that compatible with 
computed heads Is insignificant, when one considers the accurary of estimated 
water table and aquifer base elevations. 

Figure 4 depicts the annual sustained yield ground-water withdrawals as 
a percentage of the annual crop water needs in each cell. Total optimal ground­
water use is 150,220 dam3 (cubic decameter) per yepr. This value is almost 100 
percent of the total pumping that is computed for this region when using a 
maximum sustainable pumping objective function (although the spatial 
distribution of pumping is different). This similarity occurs because the bounds 
on recharge across the area boundaries are the most restricting conditions. In 
this study, the goal of maintaining existing water levels is achieved, and 
available ground water is well-utilized. 

Computation of Surface Water Requirements 

. The potential annual surface (river) water required for diversion to a given cell 
was estimated by subtracting the optimal annual ground-water withdrawals of 
'that cell from its total crop water needs. To estimate potential monthly surface 
(river) water requirements, it was assumed that as much of the annual allotment 
of ground water as possible would be used in August. If annual ground-water 
availability exceeded the August water requirements of a cell, the remaining 
available ground water was utilized consecutively in July, June, May, April, and 
lastly in September. The process was followed backwards in time to minimize 
the need for surface water during periods of low flow. For average climatic 
conditions, total annual potential crop waterrequirementsforthestudyarea 

. were 1,064,690 dam3 with surface water requirements of 914,470 dam3 and 
ground-water pumpage of 150,220 dam3 (Table 1). Also displayed are monthly 
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Figure 4. Annual withdrawals as a percentage of the total crop water needs 
based on the strategy that maintains at least 6 m saturated 
thickness and the current potentiometric surface 

potential crop water requiremenis and surface and ground-water requirements 
based on the strategy presented above. Surface water and ground water satisfy 
86 and 14 percent of the total crop water needs respectively, Illustrating the 
crucial need for surface water to achieve production goals while maintaining the 
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Table 1. Monthly potential crop water needs and surface and ground-water 
use based on the strategy that maintains at least 6 m saturated 
thickness. 

Month Total water Surface water Ground water %of monthly 
needs (dam)3 use (dam)3 use (dam)3 water needs provided by 
(monthly% of (monthly % of (monthly% of 
annual water annual surface annual ground Surface Ground 
needs) water) water) water water 

Aug. 345,018 219,808 125,210 63.7 36.3 
(32.4) (24.0) (83.4) 

July 263,840 247,160 16,680 93.7 6.3 
(24.8) (27.0) (11.1) 

June 307,963 301,434 6,529 97.9 2.1 
(28.9) (33.0) (4.3) 

May 78,361 77,415 946 98.8 1.2 
(7.4) (8.5) (0.6) 

April 48,110 47,531 579 98.8 1.2 
(4.5) (5.2) (0.4) 

Sept. 21,398 21,122 276 98.7 1.3 
(2.0) (2.3) (0.2) 

Total annual 1064,690 914,470 150,220 

Surface water will satisfy 85.9% of the total crop water needs. 
Ground water will satisfy 14.1% of the total crop water needs. 

existing stressed water levels. Eighty-three percent of the annual optimal 
pumpage would be utilized in August and 17 percent would be distributed over 
the other five months of the irrigation season. 

Surface water diverted to the area would need to come from the White and 
Arkansas (via the Bayou Meto) Rivers. Generally, there is enough available water 
In these rivers to satisfy the computed need for surface water. Dixon and Peralta 
(1) analyzed flows in August (the low-flow month) and compared these with the 
flows necessary to maintain stream water quality standards, navigational 
requirements, and legal obligations. Under average climatic conditions and 
assuming a steady diversion rate, more than enough water Is available. 
However, under dry conditio,ns water need would increase, river flow would 

decrease and not enough surface water would be available. 

As requested by the U.S. Army Corps of Engineers, this reconnaissance 
study used the most dense irrigated cropping pattern practicably conceivable 
for available soils. In reality, crop areas and average water need would probably 
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be less than computed. In that case, the procedure could be performed anew, 
using revised data. 

Summary 

A reconnaissance level conjunctive (surface and ground) water resources 
management strategy was developed that can satisfy maximum potential 
irrigation water demand in the Grand Prairie region of Arkansas for climatically 
average growing seasons. It was assumed that the water demand will be 
satisfied using a combination of ground-water withdrawals and river water 
diversions. The developed strategy assures perennially sustainable ground­
water withdrawals and adequate saturated thickness for the time of drought. 
It satisfies the socially important objective of mai11taining the existing 
potentiometric surface, while making good use of available ground water. The 
presented methodology is applicable to other regions havingahighlystressed 
potentiometric surface and the need to achieve high agricultural production 
levels. 
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