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Abstract. A simulation/optimization model is developed for maximizing irrigated crop 
yield while avoiding unacceptable pesticide leaching. The optimization model is 
designed to help managers prevent non-point source contamination of shaHow 
groundwater aquifers. It computes optimal irrigation amounts for given soil, crop, 
chemical, and weather data and irrigation frequencies. It directly computes the 
minimurn irrigated crop yield reduction needed to prevent groundwater contamination. 
Constraint equations used in the model maintain a layered soil moisture volume 
balance; describe percolation, downward unsaturated zone solute transport and 
pesticide degradation; and limit the amount of pesticide reaching groundwater. 
Constraints are linear, piecewise linear, nonlinear, and exponential. The problem is 
solved using nonlinear programming optimization. The model is tested for different 
scenarios of irrigating corn. The modeling approach is promising as a tool to aid in the 
development of environmentally sound agricultural production practices. It allows 
direct estimation of trade-offs between crop production and groundwater protection for 
different management approaches. More frequent irrigation tends to give better crop 
yield and reduce solute movement. Trade-offs decrease with increasing irrigation 
frequency. More frequent irrigation reduces yield loss due to moisture stress and 
requires less water to fill the root zone to field capacity. This prevents the solute from 
moving to deeper soil layers. Yield-environmental quality trade-offs are smaller for 
deeper groundwater tables because deeper groundwater allows more time for chemical 
degradation. 

1. Introduction 

Approximately 2.6 billion pounds (1.2 billion kg) of pesti­
cides are used in the United States each year [U.S. Environ­
mental Protection Agency (USEPA), 1986], of which over 
60% is used in agriculture [USEPA, 1986]. In high doses 
many pesticides can harm humans, causing cancer, birth 
defects, genetic mutations, nerve damage, and other prob­
lems. Pesticide migration from agricultural fields can stress 
receiving streams or contaminate groundwater, an important 
water source for rural America [Mott and Snyder, 1987]. At 
least 73 pesticides that cause cancer and other harmful 
effects have been found in groundwater in at least 34 states 
[Parsons and Witt, 1988; Hind and Evans, 1988]. 

Efforts to protect surface water and groundwater from 
pesticide contamination have increased. Researchers have 
developed computer models that simulate pesticide leaching 
under irrigation. After making many simulations, an irriga­
tion plan that minimizes contamination can be identified. 
However, this repetitive trial and error approach is tedious 
and may not yield the irrigation plan that gives the greatest 
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possible crop yield for the situation. It does not readily 
provides information concerning trade-offs between yield 
enhancement and pesticide leaching prevention. 

In contrast, optimization models identify the best opera­
tional policies for specified objectives and constraints. As a 
by-product of the optimization process, trade-offs between 
objectives and constraints can be evaluated. Here, we refer 
to such a model, which contains simulation equations and 
operations research style optimization abilities, as a simula­
tion/optimization (s/o) model. 

Researchers have developed s/o models for optimizing 
crop production, economic benefit, or water resources man­
agement. Willis and Yeh [1987] and Ahlfeld et al. [1986] cite 
s/o models addressing saturated zone groundwater and con­
taminant management. Recent works having explicit expres­
sions of solute transport in the saturated zone within the 
optimization model include those by Gorelick et al. [1984], 
Alley [1986], Ah/feld et al. [1986, 1988a, b), Ahlfeld [1990), 
Datta and Peralta [1986], Peralta et al. [l988b], Andricevic 
and Kitanidis [1990], Chang [1990], Lefkoff and Gorelick 
[1990], Dougherty andMarryott [1991], Gharbi and Peralta 
[1994], Lee and Kitanidis [1991), Culver and Shoemaker 
[1992], and Wagner and Gorelick [1987). 

Simulation/optimization models maximizing irrigation wa-
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ter delivery or crop yield or economic return resulting from 
irrigation include those described or cited by Malanga and 
Marino [1979). Yaron and Harpinist [1980], Khan [1982], 
Bowen and Young [1985], Howitt [1987], Peralta et al. 
[1988a], Lejkoff and Gorelick [1990). Gates and Grismer 
[1989], and Peralta et al. [1990]. In these models, crop yields 
or net returns are generally functions of supplied water. In 
the works by Howitt [1987], Yaron and Harpinist [1980], 
Gates and Grismer [ 1989], and Lejkoff and Gorelick [ 1990], 
crop yield is also affected by salinity in a single-layer root 
zone. Except for Yaron and Harpinist [1980] these models 
used two-dimensional planar simulations. 

Yaron and Harpinist [1980] presented a dynamic program­
ming optimization model for optimizing irrigation scheduling 
using water of varying salinity levels. Their model updated 
soil moisture and salinity of the soil solution on a daily basis 
for a one-layer root zone. They considered phenologic 
sorghum growth stages while determining whether or not to 
irrigate. Gates and Grismer [ 1989] developed economically 
optimal irrigation and drainage strategies for long-term re­
gional management. Their model is based on selecting an 
optimal combination of irrigation and drainage efficiency for 
shallow water tables in a saline medium. 

Our literature review did not identify any s/o models that 
simulate leaching through the unsaturated zone in detail. 
Although some identified models used a simple root zone 
volume balance to estimate the amount of leachate percolat­
ing below the root zone, these models did not track the depth 
of percolation or solute movement. A one-dimensional s/o 
model that optimizes irrigation amounts while constraining 
both depth and amount of pesticide leaching through a 
layered soil is presented here. 

The model uses new forms of constraint equations not 
reported previously in water management s/o models to 
evaluate optimal irrigation practices. The model develops 
optimal water management strategies that maximize crop 
yield without violating imposed management and environ­
mental constraints. Thus the model determines the crop 
yield trade-offs involved in protecting shallow groundwater. 

The model contains imbedded constraint equations that 
simulate (I) crop yield response to irrigation, (2) deep 
percolation of irrigation water, (3) pesticide decay, and (4) 
pesticide transport through the vadose zone. The optimiza­
tion model objective function and constraints are nonlinear. 
The model includes max/min style functions; linear, nonlin­
ear, and exponential constraints; and some nonsmooth con­
straints having discontinuous derivatives. Some of these 
characteristics have not been previously reported, even in 
saturated zone s/o models. 

As detailed later, crop yield response to irrigation is 
determined using the method of Doorenbos and Kassam 
[1979]. Deep percolation and pesticide movement processes 
follow the method of Nofziger and Hornsby [1986] presented 
in their CMLS (Chemical Movement in Layered Soils) 
model. The s/o model must include simulation equations. 
The water and pesticide simulation approach used in this s/o 
model was selected based on the following. Using field data, 
Pennell et at. [1990] evaluated five pesticide simulation 
models: Chemical Movement in Layered Soils (CMLS) 
[Nofziger and Hornsby, 1986, 1988], Method of Under­
ground Solute Evaluation (MOUSE) [Steenhuis et al., 1987], 
Pesticide Root Zone Model (PRZM) [Carse{ et al., 1984], 
Groundwater Loading Effects of Agriculture Management 

Systems (GLEAMS) [Knisel et al., 1989], and Leaching 
Estimation and Chemistry Model-Pesticides (LEACHMP) 
[Wagenet and Hutson, 1987]. These models considered the 
transport and transformation of aldicarb and bromide in the 
unsaturated zone. CMLS was one of three models that 
provided satisfactory predictions of both solute center of 
mass and pesticide degradation. 

The layered water-volume balance simulation approach of 
CMLS uses readily available soil, chemical, crop, and 
weather data to estimate daily water and solute movement 
and the relative amount of the chemical remaining in the soil 
profile. It does not require the extensive data needed to 
represent the Richards' equation by the finite difference or 
finite element method. Nor does it require one equation per 
time step per cell, which the Richards' equation approach 
would require. 

2. Model Formulation 

For simplicity, the methodology is described here as if 
applied to a 1-year simulation/optimization period. How­
ever, all optimization runs were for 2 years. Indeed, the s/o 
model can be run for as many years as the computer can 
handle. In each case the model will maximize the average 
yield for the number of years in the planning period. Chem­
ical is applied at a specified depth and day each year. Solute 
depth is affected by water infiltration and chemical partition­
ing and retardation. Assumptions used by CMLS, plus 
others, apply here and include the following: 

I. Chemical moves only in the liquid P.hase in response 
to soil water movement. 

2. All soil water residing in pore space participates in all 
the transport process. Soil water initially present is pushed 
ahead of water entering the soil surface. 

3. Water entering the soil surface redistributes instanta­
neously and can potentially fill the root zone to field capac­
ity. Excess water leaves as deep percolation. 

4. Water is removed by evapotranspiration from each 
layer in the root zone in proportion to the relative amount of 
water in that layer. No water will be removed if the root zone 
water content r;eaches the permanent wilting point. 

5. Root distribution is uniform with depth. 
6. Upward movement of water does not occur anywhere 

in the soil profile. The only downward water movement that 
occurs is deep percolation. 

7. The adsorption process can be described by a linear, 
reversible, equilibrium model. 

8. The half-life of the chemical is constant with time and 
depth. 

9. Preferential flow (flow through cracks in the soil) is 
not considered. 

2.1. The Objective Function 

This model computes water application strategies that 
maximize crop yield ( Y) for the optimization period. Crop 
yield is a fraction of the maximum potential crop yield ( yP). 
assuming adequacy of water and all other plant require­
ments. Yield is reduced via two yield reduction factors: (1) 
nms' describing moisture stress (insufficient water) and (2) 
Rdp, describing excessive nutrient teaching from the root 
zone due to deep percolation [Doorenbos and Kassam, 
1979]. 
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(l) 

2.2. Constraints 

Simulation of pesticide fate and movement within the s/o 
model is accomplished via equations describing soil-water­
plant relationships and soil-water-chemical relationships as 
in CMLS (Nofziger and Hornsby, 1988]. Equations for 
preoptimization computations and constraint equations in 
the s/o model are explained from a simulation perspective. 
Later we list those terms which are used as input to the s/o 
model and those which are computed during the optimiza­
tion. 

Constraint equations address water balance relationships, 
processes affecting solute front movement, and soil water 
concentration calculations. 

With respect to water balance relationships, equations 
include those estimating evapotranspiration, deep percola­
tion, and average water content in the root zone and their 
effects on crop yield. 

For processes affecting solute front movement, solute 
depth is the location of the front of the solute. It is assumed 
that the mass of the leached contaminant is centered at that 
depth. Equations estimate the amount of water passing the 
previous day's solute depth (this water contributes to the 
current day's downward movement of the chemical), the 
new solute depth, and the average water content of the soil 
above the solute front (solute depth) when the solute depth is 
less than that of the root zone. 

With respect to soil water concentration calculations, 
equations include those estimating the amount of chemical 
remaining in the soil after biodegradation. A hypothetical 
pesticide concentration resulting in the saturated zone (after 
the pesticide has reached the water table and mixed with a 
prespecified depth of saturated aquifer) is computed and 
compared with the health advisory in parts per billion (ppb) 
set by the U.S. Environmental Protection Agency (USEPA). 

2. 2.1. Constraints involving water balance relation­
ships. Equation (2) [Nofziger and Hornsby, 1986, 1988] 
estimates the available soil moisture (Wf in millimeters) as 
a function of the average water content at the end of the 
previous day (0{_ 1), the permanent wilting moisture content 
(Opw), and the depth of the root zone (D'z in millimeters): 

(2) 

Daily evapotranspiration (£1 in millimeters) is estimated by 
(3) [Hanks, 1986]. It is the minimum of soil moisture avail­
able in the root zone and potential evapotranspiration (Ef). 
Because (3) has discontinuous derivatives, it is termed a 
nonsmooth function. The s/o model solves this type of 
expression using discrete nonlinear programming (DNLP). 
This corresponds within the s/o model to what an "if" 
statement achieves in a normal simulation model. 

Equation (4) estimates the resultant water content of the 
root zone ( 0/) after evapotranspiration takes place: 

(3) 

(4) 

The soil water deficit W l (millimeters of water needed to 
fill the root zone to field capacity) after evapotranspiration 

occurs is calculated by (5), where ofc is the moisture content 
at field capacity. If w;1 is greater than the infiltrating water, 
there is no deep percolation below the root zone on that day. 
If the soil water deficit is less than the infiltrating water, 
some of the applied water will fill the root zone to field 
capacity and excess water will be lost as deep percolation 
[Nofziger and Hornsby, 1986, 1988]: 

(5) 

Daily water infiltration (11 in millimeters) is estimated by 
(6). It is the sum of infiltrating precipitation on that day, R~> 
and infiltrating irrigation water, Q 1 , applied to the soil if it is 
an irrigation day [Nofziger and Hornsby, 1986, 1988]: 

II Rl+ Ql (6) 

Final water content of the root zone after irrigation and/or 
rain is calculated by the following nonsmooth function 
(which is piecewise linear): 

o{ =Min (o: + ;~z, ofc) (7) 

Deep percolation (D f in millimeters, the water that leaves 
the root zone and penetrates below) is calculated by piece­
wise linear equation (8). It is the difference between the 
amount of infiltrating water and the amount needed to fill the 
root zone to field capacity. As stated before, if the water 
deficit is greater than infiltrated water, deep percolation is 
zero [Nofziger and Hornsby, 1986, 1988]: 

Df = Max (11 - Wf, 0) (8) 

Yield reduction due to moisture stress and deep percola­
tion is calculated by equations (9)-(ll) (C. Neale, Utah State 
University, personal communication, 1991). Seasonal yield 
reduction due to deep percolation (Rdp dimensionless) is 
calculated using a dimensionless yield reduction deep per­
colation factor, pdp (equation (11)). This factor depends on 
soil characteristics and plant sensitivity to deep percolation. 
To calculate yield reduction due to moisture stress, the plant 
is considered to haveN growth stages. Each growth stage is 
of k days duration. A dimensionless growth factor K~k 
describes the sensitivity of yield to water deficit in growth 
stage n. The proportion of yield reduction r::rs due to 
moisture stress during growth period n is estimated by (9). 
Seasonal yield reduction due to moisture stress R ms is the 
maximum of the reduction in any of the growth periods 
(equation (10)). 

k 
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An implicit assumption is that the maximum water avail­
able for extraction from the root zone is the difference 
between the weighted average moisture content at field 
capacity and wilting point, times the root zone thickness. 
Potential evapotranspiration Ef (L) of the crop (assuming 
water is not limiting) and coefficients K ~k for the growth 
stages of the crop are assumed known. Also assumed known 
are precipitation data and irrigation frequencies reasonable 
for the site's water distribution rules. The root zone is at field 
capacity at the beginning of the first day. 

2.2.2. Constraints involving solute front movement. 
Similar to root zone moisture content calculation, average 
moisture content for the solute depth is also determined. 
Equations (12)-(14) calculate soil water deficit (W1ds in 
millimeters), average soil moisture content (8/·'), and final 
soil moisture content ( 8{') of the solute depth, respectively 
[Nofziger and Hornsby, 1986, 1988]. If infiltrating water / 1 is 
greater than the solute depth water deficit for that day, the 
solute depth will be filled to field capacity. Excess water will 
contribute to leaching and increasing solute depth. 

of,s 
t 

8 l,s = 8f,s - !!..!._ 
I t-1 Dfl 

(12) 

(13) 

(14) 

The resulting solute depth for day t (D f, in millimeters) is 
calculated via ( 15). It is a function of water passing the solute 
depth on that day, the retardation factor R{ (itself a function 
of bulk density and the partition coefficient K f>, and the 
moisture content at field capacity of the soil just below the 
solute depth. The partition coefficient (Kj) equals the prod­
uct of the linear sorption coefficient Koc and the organic 
carbon P fc (percent) of the soil just below the solute front. 
P fc equals P Kc of the horizon containing the solute front as 
a top boundary. The model addresses the challenge of 
knowing which soil the solute is in and selecting the appro­
priate coefficients with a combination of cycling and discrete 
nonlinear constraints. 

D' I 

I - Wds 
Ds + _.! __ t_ 

1-1 (R{ofc) (15) 

Once the solute depth exceeds the depth of the root zone, 
the water content of the solute depth below the root zones 
equals soil moisture content at field capacity. The moisture 
content for the solute depth within the root zone equals that 
of the root zone. Thus any water leaving the root zone (deep 
percolation) will contribute to the movement of the solute. 

2.2.3. Constraints Involving soil water concentration cal­
culations. These constraints are useful if state regulations 
impose limits on how much pesticide or whether any pesti­
cide can reach groundwater. Some states can prohibit fur­
ther pesticide use in an area if any concentration above a 
threshold value is found in the groundwater. Other states are 
trying to determine acceptable best management practices 
and concentrations. In that process they are trying to con­
sider the toxicity of the resulting pesticide-groundwater 
mixture. The most restrictive regulatory approach is to 
prohibit further chemical application if any pesticide is found 

to have reached groundwater. The presented model is useful 
for both cases. We refer to these cases as variants 2 and 3. In 
variant 2 an acceptable concentration is allowed to reach the 
groundwater. In variant 3 the chemical is not allowed to 
reach the groundwater. 

For variants 2 and 3 the following apply. 
Given the half-life of the chemical and the time since the 

chemical was applied, the fraction of the applied chemical 
that is remaining in the soil (F1) is defined by a standard 
exponential expression (note that t is time in days and H 1 is 
chemical half-life in days) [Nofziger and Hornsby, 1986, 
1988]: 

(16) 

The following apply only to variant 2. 
Assume that t (in days) is the time until the pesticide 

reaches the water table and that all leaching pesticide 
reaches the water table on the same day. That amount is F 1 

of the amount applied originally in grams per hectare, ph 
(equation (16)). After mixing with a site specific depth of 
groundwater, the resulting concentration is FfPb in parts per 
billion (equation (17)). Ehteshami et al. [1991], Hoag and 
Hornsby [1992], and Rao et al. [1985] illustrate the use of an 
assumed mixing depth to yield relative concentration and 
toxicities. 

(17) 

for variant 2 only. 
The assumed concentration of the chemical in the ground­

water F fPb is divided by the health advisory pEP A {parts per 
billion) set by the USEPA to obtain a dimensionless relative 
health hazard index H: (equation (18)): 

for variant 2 only. 

pPPb 
h I 

HI= pEPA (18) 

In overview, s/o model equations (2)-(8) and (12)-(16), or 
functional equivalents of those equations, are also used by 
Nofziger and Hornsby [1986, 1988] in CMLS. Of these, (2), 
(4)-(6), (13), (15), and (16) are very similar to those of 
CMLS. Other equations, which contain max or min func­
tions, are DNLP surrogates for expressions that are more 
simple to implement in simulation models (which solve 
equations sequentially) than in optimization models (which 
satisfy all constraints simultaneously). 

A simulatjon model containing the equivalents of (2)-(18) 
would be able to estimate crop yield, depth of pesticide 
leaching, pesticide concentration after mixing in groundwa­
ter, and a relative health index. Other expressions needed to 
perform optimization include the objective function (equa­
tion (l)) and variable bounds (equations (19)-(25)). 

2.2.4. Bounds on variables. Irrigation amount is zero on 
nonirrigation days (equation (19)). On an irrigation day, 
upper and lower limits on the amount of irrigation water 
applied depend on legal considerations, water availability, 
and other factors (equation (20)). The assumed irrigation 
application technology assures that all applied water infil­
trates. 
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Ql == 0.0 ( 19) 

(20) 

Evapotranspiration is bounded by zero and potential 
evapotranspiration (equation (21)). Water content of the root 
zone cannot exceed field capacity after infiltration and 
cannot be less than water content at wilting after evapotrans­
piration (equation (22)). The same applies to water content 
related to the solute depth (equation (23)). 

0.0 s E1 sEf (21) 

Root zone 

(JPW :5 0{, (J II :5 (Jfc (22) 

Solute depth 

(J pw :5 o{·'' (J 1·s :5 ofc (23) 

Groundwater having a relative health hazard index ex­
ceeding 1.0 is assumed to be undesirable. Variant 2 uses a 
bound which assures that the pesticide will not reach the 
water table (exceed the depth to groundwater Dgwt) on any 
day in which the resulting H 1h will exceed l. 

H~> 1 (24) 

for variant 2 only. 
The assumed mixing depth and resulting relative health 

hazard index are very site specific. Despite this, the index 
aids comparing pesticides of different toxicities at the same 
location. The presented model is inadequate to constrain the 
concentration reaching a pumping well. That would require 
two-dimensional or three-dimensional saturated flow models 
and consideration of vertically varying concentrations. 

Variant 3 uses a bound that prevents the pesticide from 
reaching the water table: 

(25) 

for variant 3 only. 

3. Model Solution 

Figure 1 illustrates how soil horizon information from field 
data is treated within the s/o modeL As described below, the 
model addresses three layers. 

The average moisture content at field capacity for the root 
zone, rfc (percent volume), is the thickness weighted aver­
age of all horizons in the root zone. The weighted average 
moisture content at permanent wilting for the root zone, fJPw 

(percent volume), is similarly calculated. 
The soil below the root zone is assumed to be at field 

capacity. Evapotranspiration occurs only from the root 
zone, and water is extracted from the entire root zone. The 
average soil moisture content of the solute depth is assumed 
to equal the average moisture content of the root zone at the 
beginning of the simulation of the solute movement. If the 
solute depth is smaller than the depth of the root zone, the 
solute depth provides only a proportion of the total water 
extracted. 

In calculating moisture content of the solute depth layer, 
depth-weighted averages (as calculated for the depth of the 
root zone) are applied. The chemical is applied to the soil at 

Soil surface 

H. 1 

H. 2 Solute Depth 

H. 3 

H, 4 

H. 5 --- Root Zone Depth 

H. 6 

(1) Given soil 

section 

GW Table 

(2) siqnificant 

Elevations 

SD H. 

RZ H. 

RZ to GW H. 

(3) Transformed Soil 

section 

Figure 1. Given soil horizons and soil sections trans­
formed for the optimization model. H denotes soil horizon; 
RZ denotes root zone; SD denotes solute depth (which 
changes with time); and GW denotes the groundwater table. 

a specified day and depth and moves in liquid phase due to 
soil water movement. When the solute depth is less than the 
depth of the root zone, infiltrating water first fills the soil 
profile above the solute front to field capacity. Excess water 
contributes to an increase in the solute depth. If the infiltrat­
ing water is less than that needed to fill the solute depth to 
field capacity, the water is distributed into the soil layer 
above the solute depth and does not cause solute movement. 
Although study of the effects of preferential flow on solute 
movement was beyond the scope of this effort, sensitivity 
analyses based on soil parameters might provide some 
guidance concerning this phenomenon. 

Equations containing variables computed during optimi­
zation are solved simultaneously by the s/o model for all time 
steps. This approach is significantly different from simula­
tion models in which system response to input stimuli is 
computed sequentially, one time step at a time. 

Before optimization the site's soil and crop maximum 
possible root depth nrz (L) is assumed. Figure 1 depicts the 
situation when the bottom of the root zone is not coincident 
with the bottom of a soil layer. In this case, one real horizon 
is split into two horizons (each having the same properties). 
Thus the bottom of the upper new horizon corresponds to 
the bottom of the root zone. 

MINOS [Murtagh and Saunders, 1983] is used to perform 
the optimization computations. The s/o model is written in 
GAMS, a high-level language [Brooke et al., 1988] that is 
designed to solve large-scale optimization problems. GAMS/ 
MINOS uses different approaches to solve optimization 
problems of different types. Here the nonlinear programming 
with discontinuous derivatives (DNLP) option is used. 

The model has a nonlinear objective equation and con­
straints and contains nonsmooth functions. In nonlinear 
optimization, global optimality of the optimal solution can­
not generally be assumed. If the nonlinear objective and 
constraint functions are convex, the optimal solution ob-
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~Irrigation Amount 

Unknown 
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No 
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Figure 2. Flow chart of the cyclical optimization process. 

tained will be a global optimaL Otherwise, there might be 
several local optima, all but one of which might not be close 
to the global optimum. The chance of getting a global 
optimum is increased by choosing a starting point close to it 
[Brooke et al., 1988]. 

The cyclical optimization modeling methodology used 
here permits solving the very nonlinear problem using linear 
equations and approximately equivalent, but simpler, non­
linear equations. It includes the following steps (Figure 2). 

I. The model is run in simulation mode using soil, 
chemical, plant, and precipitation data. Simulation mode 
refers to optimizing a problem having only one solution (that 
is, by constraining Q to a predetermined value). In this mode 
an assumed irrigation strategy is specified as input. This step 
is executed to generate initial guesses for subsequent runs in 
which optimal values of Q 1 are determined by the s/o modeL 
A parameter is a value in the model that does not change 
during model execution (that is, during a single optimiza­
tion). A variable is a value that changes during the execution 
of the modeL Parameters used in the model include Dgwt, 
Dm, D'z, dn, Ef, FEPA, Fdp, H, HI, Koc, k;k, k, K, n, 
N, P'ic' pgc' Ph, Ru S 1' t. T, yP' efc' and 6P"'. Variables 
used in the model include Df, Df, Eu F 11 FfPb, H;, ! 1 , 

Kf, Qt> R{, r;:'•, Rm•, RdP, Wf, Wf, Wf', Y, 6}, 6{, 
6/·•, 6{•, and 6{c. 

2. The optimization model is run using the output of the 
simulation as initial guesses for all variables. This results in 
a strategy that the solution algorithm claims is optimal. 
However, the strategy may or may not really be a valid 
solution depending on the consistency between initial guess 
values and those that would result from the optimal strategy 
(explained below). Output variables that are checked for 
consistency include Q 0 layer containing the solute depth 
(Df), water content (6{), and others. 

3. Steps are taken to assure convergence to an optimal 
strategy. If the parameters and variables resulting from the 
optimization model differ from the assumed values, the 

model solution is considered not to have converged. In this 
case the simulation model is rerun using the Q 1 values from 
the optimization model. Parameters are recalculated based 
on that new irrigation strategy. Then, the optimization model 
is run again using the simulation output as initial guess 
values for variables. This is repeated until the optimization 
output is the same as the input. This means that the irrigation 
amounts computed by the optimization model are the same 
as those entered as an initial guess. 

4. If the output of the optimization model is the same as 
the initial guess (after an optimal strategy is obtained), the 
model has converged and the solution is examined. 

5. All computed strategies are locally optimal and might 
or might not be close to a global optimum. To see if a better 
optimal solution can be obtained, the procedure is repeated 
using a radically different irrigation strategy as an initial 
guess. The different optimal strategies obtained from several 
different initial guesses are compared. The strategy giving 
the best objective value is assumed to be nearest to the 
global optimum, or might be the global optimum. Other 
strategies are locally optimal solutions to the nonlinear 
problem. 

In summary, the cycling approach is used because the 
model becomes extremely nonlinear if all of the involved 
parameters are used as variables; the numbers of variables 
and equations, model size, computer memory, and CPU 
time requirements increase dramatically. All these factors 
would make convergence difficult. 

4. Application, Results, and Discussion 
4.1. Application 

The model is run using representative data from Utah 
County for the assumed 2-year period. Different scenarios 
are evaluated. Scenarios differ in the assumed depth to 
groundwater, assumed irrigation frequencies, and numbers 
of different irrigation amounts that are permitted during the 
season. Groundwater depths of 1.3, 1.5, and 1.8 m are 
assumed. Irrigation frequencies tested (the number of days 
between irrigations) are 5 (5 days between irrigations), 8, and 
12 days. Four irrigation application schemes were used. 
These are distinguished by the degree to which irrigation 
amount was permitted to vary during the season (Figure 3). 
Scheme A permitted no variation. Only a single optimal 
irrigation amount was allowed to be computed. This is used 
on all irrigation days throughout the entire irrigation season. 
Scheme B permitted applying a different amount before June 
9 than afterward. Scheme C allows one amount before June 
9 and August 25 and a different amount from June 9 to 
August 25. SchemeD allows three different amounts. These 
schemes represent feasible water management practices for 
Utah irrigation. 

Daily time steps and Vineyard soil data from Utah 
County, Utah, are used. Table 1 shows number of soil 
layers, percent organic carbon, bulk density, and other 
characteristics for each layer. Atrazine, the pesticide used 
for the study, has a 100 mg/g organic carbon (OC) partition 
.coefficient, a 60-day half-life and a 3-ppb health advisory. An 
assumed mixing depth value of 100 mm is used for variant 2. 

Daily precipitation for Utah County and potential evapo­
transpiration data for maize are used. A 90 em maximum 
rooting depth was assumed. Assumed growth stages are 
vegetative (0-75 days), flowering (7&-80 days), yield forma-
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tion (81-117 days), and ripening (118-135 days). Growth 
factors Kl'/ are 0.4, 1.5, 0.5, and 0.2, respectively. 

One group of optimizations is performed for each of the 
three developed model variants. In variant I, pesticide 
leaching is not prohibited in any manner. Optimal strategies 
address only maximizing yield. In variant 2, a more restric­
tive case, the concentration resulting from mixing of the 
leached pesticide in groundwater is constrained by compar­
ison with a health advisory index that includes consideration 
of toxicity. In variant 3, the most restrictive case, pesticide 
is prevented from leaching to a prescribed depth (that is, 
depth to the groundwater). 

Variants differ in the constraints they include. Variant I 
includes equations that maintain the water balance relation­
ship and those that predict solute depth. However, the solute 
movement is only computed. It is not restricted. Variant 2 
includes additional equations describing the assumed mixing 
depth, concentration computation, and restrictive compari­
son with a health advisory index. Variant 2 allows some of 
the chemical to reach the groundwater in quantities that are 
acceptable after assumed mixing occurs. Variant 3 includes 
equations used in variant I, plus a bound preventing any 
pesticide from reaching the water table. 

The variant 1 model maximizes crop yield subject to 
constraints describing water flow and solute movement 
without pesticide restrictions (equations (1)-(16) and (19}­
(23)). The variant 2 model adds constraint equations (17), 
(18), and (24) to prevent pesticide from reaching groundwa­
ter in such an amount that the relative health index (RHI) 
will exceed I. Variant 3 uses the equations of variant l plus 
(25) to prevent any pesticide from reaching the groundwater. 

Scheme A 

Scheme B 
Q 

Scheme C 

Scheme D 

---'-----~-----------~-----l...-
May 10 June 9 Aug 25 Sep 25 

Time (t) 

Figure 3. Irrigation schemes. C, C 1 , C 2 , and C 3 are 
constant values determined by the optimization modeL 
During the blocked time periods the computed Q values are 
applied based on assumed frequencies. 

Table 1. Soil Properties Used in the Model 

Depth 
Below Percent Soil Moisture at 

Ground Organic ----------------
Soil Surface, Carbon, Bulk 

Layer m % Density fc pw Saturation 
-------·---

I 0.18 0.81 1.7 17 9 40 
2 0.33 0.47 1.7 17 9 40 
3 0.61 0.31 1.7 l7 9 40 
4 0.89 0.21 1.7 17 9 40 
5 1.07 0.21 1.7 17 9 40 
6 1.52 0.12 1.7 17 9 40 

--------------
Here fc denotes field capacity; pw, permanent wilting point. 

Table 2 shows run numbers for the three optimization 
model variants. Runs are divided vertically according to 
variant. The first variant includes runs not employing chem­
ical constraints (maximize yield, no water quality con­
straint). A run number indicates the utilized irrigation fre­
quency and scheme. In essence, for variant I runs, the s/o 
model minimizes the loss of yield due to water insufficiency 
plus the loss due to excessive leaching (irrigation excess). 
This is valuable because fixed irrigation frequencies and 
amounts are common practice. This model can make that 
practice as good as possible. 

The model solves about 2900 equations simultaneously to 
compute values for 2600 variables. It was run on a VAX 6250 
under virtual memory system (VMS) and a CRA Y Y-MP/ 
832. On either, it takes five to 15 cycles to converge. From 
one to several hours is needed for convergence depending on 
the computer and initial guess. 

Results are evaluated to discuss the effect of the depth to 
groundwater, irrigation frequency, number of periods into 
which the season is subdivided, and level of application on 
yield and solute depth. Trade-offs (effect of restricting 
groundwater contamination on crop yield) are estimated. 

An optimization model can function as a simulation model 
if it is so constrained that there is only one solution possible. 
For example, specifying equal upper and lower bounds on 
Q 1 causes the model to simulate pesticide movement for the 
assumed Q 1 values. The simulation ability of the optimiza­
tion model was verified by comparison with CMLS. The s/o 
and CMLS models were run using the same input data from 
Utah County for a 6-year period (198~1986) to compare 
their results. The results from CMLS and those of the s/o 
model in simulation mode differed insignificantly. After 
simulating 2 years there was about I% error in a predicted 
solute depth of 2.7 m. The difference is caused by the 
reduction in the number of soil layers and the averaging of 
soil characteristics that are necessary to reduce the size of 
the problem and make convergence feasible. 

4.2. Results and Discussion 

Results are shown in Table 3 and Figure 4 for optimization 
runs of variant 1 and in Table 4 for variants 2 and 3. General 
trends applying to variant I scenarios are that as irrigation 
frequency or freedom to change irrigation amount increases, 
crop yield increases while solute depth and seasonal water 
use decrease. This is because less water is applied in each 
irrigation, resulting in little solute movement and reducing 
yield loss due to moisture stress. These trends were not 
completely uniform with change in frequency because pre-



3190 PERALTA ET AL.: OPTIMAL IRRIGATION WITH CONSTRAINED PESTICIDE LEACHING 

Table 2. Summary of Optimization Run Identification Numbers 

Variant 2,t by Depth to Variant 3.:f: by Depth to 
Irrigation Frequency in Variant I,* by Irrigation Scheme Water Table, m Water Table, m 

Decreasing Order, 
days A B c D 1.3 1.5 1.8 1.3 1.5 1.8 

5 5A 58 5C 50 5E 5F 50 5H 51 51 
8 8A S8 8C SD 8E SF SG SH 81 8J 

12 12A 12B 12C 120 12E 12F 120 l2H 121 121 

*Maximize yield, no water quality constraint. 
tMaximize yield, health hazard index constraint. All runs performed utilizing irrigation scheme A. 
:f:Maximize yield, solute depth constraint. All runs performed utilizing irrigation scheme A. 

cipitation and potential evapotranspiration are not uniform 
in time. Thus, changing the frequency changed the optimi­
zation problem being solved by the s/o model. For each 
irrigation frequency, scheme D is best, followed by schemes 
C, B, and A in that order. 

One verification of the s/o model can be easily demon­
strated by the following. Figure 5 contains the results of a 
single optimization run and many runs in simulation mode 
for the most simple case, scheme A (constant Q, constant 
irrigation frequency). This illustrates how the optimization 
model directly calculates the optimal irrigation amount for 
that scenario (59.1 mm). Many simulations are needed to 
plot the curve and get close to the same answer. Because of 
the single application rate, scheme A is the only scheme that 
can be clearly graphed. The number of simulations required 
to address the other schemes would be large. Furthermore, 
a simulation model alone could not compute strategies that 
would simultaneously satisfy the water quality constraints as 
discussed below. 

For variant 2 the closer the water table is to the ground 
surface, the more frequent the irrigation necessary to protect 
the groundwater from pesticide contamination. If the water 
table is close to the ground surface, and irrigation is infre­
quent, very low crop yield will result. Since the solute depth 
is less than the root zone depth, less frequent irrigation 
forces the application of more water to fill the root zone to 
field capacity. This water will pass the solute depth and 
contribute to the solute movement that will reach the shal­
low groundwater before degradation. If the water table is 
deep, the chemical degrades before reaching the water table. 

Table 3. Output for the Optimization Runs Not Using 
Pesticide Constraints (Variant l) 

-~-~--~~---------~-~ 

Solute 
Q, QJ, Qz, Q3, Yield, Depth, L:Q, 

Run mm mm mm mm % m mm 

5A 25.6 95.75 1.38 717.64 
58 9.14 28.57 97.56 1.07 664.05 
5C 3.62 27.43 99.23 O.S4 45S.41 
5D 0.23 26.S7 4.45 99.60 O.S2 431.36 
SA 45.0 94.49 1.64 810.00 
SB 19.9 44.97 96.92 l.l4 659.02 
sc S.21 44.97 9S.52 0.90 478.58 
SD 0.03 44.97 8.14 9S.9S 0.87 42S.3l 

12A 72.4 87.74 I.SS S6S.32 
128 25.1 72.00 92.67 1.16 676.1S 
12C 23.6 72.00 93.Sl 0.97 622.17 
120 O.IS 72.00 24.42 94.72 0.90 433.98 

Values for solute depth are at end of2-year period. L:Q is seasonal 
irrigation amount (average of the 2·year period). 

As distance to the water table increases, irrigation fre­
quency can decrease without reducing crop yield. As fre­
quency increases, the health hazard index constraint be­
comes less binding (that is, unnecessary) because the 
optimal strategy does not cause the solute to reach the water 
table. A binding constraint is one which prevents the value 
of the objective function from improving further during 
solution. In this case a binding water quality constraint 
prevents yield from being as good as it would be had the 
constraint not been imposed. 

In variant 3 runs, pesticide was not allowed to reach the 
water table. These runs avoid the need for the mixing depth 
assumption made in variant 2. For frequent irrigations and 
large depth to the water table, yields for variant 3 are the 
same as for variant 2. For the least frequent irrigation and 
smallest depth to groundwater, yield was up to 3% less than 
for variant 2. Of course, both variants 2 and 3 produced less 
yield than variant l. 

Figure 6 illustrates how results of variant 2 optimizations 
can be summarized to show the trade-offs between maximiz­
ing crop yield and protecting shallow groundwater from 
pesticide contamination. This quantifies how crop yield must 
be reduced by reducing irrigation to prevent contamination. 
Trade-offs (reduction in yield) increase as depth to the water 
table decreases and irrigation frequency decreases. 

S. Sensitivity Analysis 
Sensitivity analysis was conducted to evaluate how error 

in assumed parameters would affect the solute movement 
and crop yield that would result from implementing a com-
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Figure 4. Infiltrating water (optimal application plus pre-
cipitation) and solute depth for scenario 5A (5-day frequency 
and constant irrigation application). 
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Table 4. Output for the Maximized Yield Runs Which 
Use Irrigation Scheme A and Assure Acceptable 
Concentration (Variant 2, Runs 5E-l2G) or Prevent 
Pesticide From Reaching Groundwater (Variant 3, Runs 
5H-l2J) 
----

Seasonal 
Depth to Solute Water 

Q, Yield, Water Table, Depth, Use, 
Run mm % m m mm 

Variant 2 
5E 24.68 91.53 1.30 1.30 691.04 
5F 25.63 95.75 1.50 1.38 717.64 
5G 25.63 95.75 1.80 1.38 717.64 
8E 38.56 71.18 1.30 1.30 694.08 
8F 41.69 84.57 1.50 1.50 750.42 
80 45.00 94.49 1.80 1.64 810.00 

12E 57.17 57.70 1.30 1.30 686.04 
12F 62.29 68.37 1.50 1.50 747.48 
120 69.75 85.75 1.80 1.80 837.00 

Variant 3 
51-1 24.56 90.88 1.30 . <1.30* 687.04 
51 25.63 95.75 1.50 1.38 717.64 
51 25.63 95.75 1.80 1.38 717.64 
81-1 38.3 70.01 1.30 <1.30* 689.40 
81 41.54 84.13 !.50 <1.50* 747.72 
8J 45.00 94.49 1.80 1.64 810.00 

121-1 55.88 55.79 1.30 1.279 670.56 
121 62.00 67.73 1.50 <1.50* 744.00 
l2J 69.54 85.61 1.80 <1.80* 834.48 

*Binding solute depth constraint. For variant 3 the solute depth 
was constrained to be at least 0.006 m less than the water table depth 
to insure that chemical does not reach the water table. 

puted optimal irrigation strategy. Evaluated were the effects 
of using the optimal strategy for the 5-day irrigation fre­
quency, fixed irrigation scheme (scenario 5F). Increasing 
bulk density (by 10-20%), potential evapotranspiration (by 
10-20%), water content at field capacity (by 10-20%), parti­
tion coefficient (by 10-20%), and organic carbon (by 10-
20%), decreased solute depth by 13-27% (for bulk density), 
7-14% (for potential evapotranspiration), 3-6% (for field 
capacity), 13-27% (for the partition coefficient), and 13-27% 
(for the organic carbon), respectively. Decreases in the 
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Figure 5. Yield as a function of irrigation for scenario lOA 
(10-day frequency and constant irrigation application). The 
asterisk indicates the result from the use of the optimization 
model. All other values are from direct simulation. 
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Figure 6. Minimum reduction in yield (percent) from opti­
mal solution required to satisfactorily protect groundwater 
quality, for known depths to groundwater and irrigation 
frequencies. Results are for variant 2. 

above parameters showed opposite trends of approximately 
the same magnitudes. Solute depth increased by 6-14% with 
increases in water application of I0-20%. The soil moisture 
content at permanent wilting point (a soil parameter) insig­
nificantly affected solute movement. 

Crop yield increased by I% with increased water content 
at field capacity of 10-20%. Decreasing field capacity by lO 
and 20% decreased yield by 40 and 17%, respectively. 
Increasing precipitation by 10-20% had little effect on crop 
yield. Increasing maximum root depth by 10-20% increased 
yield only by 1%, while decreasing maximum rooting depth 
by 10 and 20% decreased yield by 2 and 5%, respectively. 
Crop yield increased by I% as the soil moisture content at 
the permanent wilting point decreased (reflecting different 
soils) by 10-20%. As soil water content at permanent wilting 
was increased by 10-20%, crop yield decreased by 2-5%. 
Yield also decreased with increasing deep percolation factor, 
indicating yield reduction due to nutrient leaching (Figure 7). 
Figure 7 shows that the optimal strategy (irrigation applica­
tion) does not change significantly with change in the factor, 
although yield changes significantly. This suggests that for 
comparative purposes the values of some parameters are not 

APPUCA TION Q (mm) 

Figure 7. Effect of change in deep percolation factor on 
estimated yield for scenario 5A (5-day frequency and con­
stant irrigation application). 
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90 75 proportional to the mixing depth (equation (17)). The larger 
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Hgure 8. Percent yield and optimal Q 1 versus mixing 
depth values for 12-day irrigation interval, fixed irrigation 
amount, and 1.3 m depth to water table. 

very important. However, for reliable application in the 
field, good parameter estimates are important. 

Even if a simulation model is perfectly accurate for a 
perfectly characterized site, error in assumed parameters 
will cause field results to differ from those predicted by the 
model. The same is true for an s/o modeL The above analysis 
indicates that crop yield and solute depth are sensitive to 
some input parameters. Uncertain parameter knowledge 
causes uncertainty in reliability of predicted results. Here, a 
0--20% change in some parameters produced a 0--13% change 
in yield and solute depth. Since the utilized simulation 
approach does not perfectly represent what happens in the 
field, actual uncertainty will not be less than that due to 
parameter uncertainty alone. This is true for any model 
simulating unsaturated water flow and transport. However, 
recall that the presented s/o model is as accurate as the pure 
simulation model. 

Sensitivity analysis was also conducted to evaluate the 
effect of the assumed mixing depth value on optimal Q, 
solute depth, and crop yield. A 12-day irrigation frequency, 
fixed irrigation scheme, and 1.3 m water table depth are 
used. This was the most sensitive strategy to mixing depth 
we could identify. The choice of irrigation frequency and 
scheme is arbitrary. A 1.3 m water table depth (rather than 
1.5 or 1.8 m) is selected because the optimal strategy is more 
sensitive to mixing depth value for shallow water tables. The 
pesticide will reach this depth early in the season and before 
much degradation. Sensitivity to mixing depth decreases as 
depth to the water table increases. 

Mixing depths evaluated are 10,000, 1000, 800, 500, 300, 
and 50 mm. Results shown in Figure 8 are yield and irrigation 
amount versus assumed mixing depth. Mixing depths of 800 
mm and greater produced the same yield (87%). For very 
large assumed mixing depths (that is, large dilution factor), 
the yield is the same as for variant 1 (concentrations are too 
small to be important). Within the 50--500 mm mixing depth 
range, the optimal strategy is significantly affected by the 
assumed value. 

Examination of (16)-( 18) and (24) explains these results. 
Constraint equation (24) becomes restrictive if the health 
hazard index (HHI) is greater than I. The HHI is inversely 

the mixing depth, the smaller the HHI on a given day. 
Mixing depths of 800 mm and larger yielded an HHI less 

than I early in the season. Constraint equation (24) became 
nonrestrictive, and the model applied as much water as 
needed to maximize yield. For lower mixing depths, (24) 
remained restrictive longer during the irrigation season (de­
pending on the mixing depth value), and the model applied 
less water to satisfy the constraint. 

6. Summary 

An optimization model was developed that explicitly 
describes the relationship between irrigation management 
and pesticide leaching through the unsaturated zone. The 
model maximizes crop yield subject to constraints. Con­
straints are linear, piecewise linear, nonlinear, or exponen­
tial. They include water volume balance and solute move­
ment equations, and an upper limit on the concentration of 
the chemical after it mixes with groundwater. 

Previous work addressing pesticide leaching has involved 
empirical methodologies or simulation models. Those simu­
lation models predict the response of the system to known 
management stimuli (that is, irrigation amount). In contrast, 
the optimization model developed here directly computes 
the optimal irrigation amount that maximizes crop yield 
while satisfying all imposed restrictions for each tested 
scenario. 

The s/o addresses the need to optimize irrigation while 
preventing non-point source contamination of shallow 
groundwater aquifers. The model computes the optimal 
irrigation amount for a given irrigation frequency and soil, 
crop, chemical, and weather data. It permits the comparison 
of optimal strategies computed for different scenarios and 
directly calculates the minimum crop yield reductions 
needed to protect groundwater. 
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