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Abstract.

We present and apply 4 new simulation/optimization approach for single- and

multiple-planning period problems in groundwater remediation. Instead of the traditional
control locations for contaminant concentrations, we use an L. norm as a global measure
of aquifer contamination (CMAX). We use response-surface constraints to represent
CMAX within the optimization model. We compare the performance of formal mixed
_integer nonlinear programming and a genetic algorithm for several optimization scenarios.

1. Introduction

A common means of containing and/or remediating contam-
inated groundwater aquifers is to extract contaminated water
and treat it at the surface. This is known as pump and treat
(P&T). Although several abternative remediation technologies
have been utitized recently, no technology has proven superior
0 P&T for large plume problems [Mercer er al., 1990; Hoffiman,
1993; Marquis and {Xneen, 1993].

P&T systems are usually employed to control contaminated
proundwater migration andfor to achieve aquifer cleanup. In
both situations basic design variables are well locations and
pumping schedules.

P&T system design is an important topic because well loca-
tions and pumping rates can affect svstem performance signif-
icantly. Many sindics have reported coupling optimization
techniques with groundwater flow and transport simulation for
designing P&T systems [e.g., Gorelick et al., 1984; Marmyort er
al., 1993 Rogers and Dowla, 1994, McKinney and Lin, 1995,
Peralta et al., 1993; Xiung et al., 1993]. -

Early studivs used first-order approximation of the ground-

- water flow equation to formulate a linear optimization prob-
lem [Afwvood and Gorelick, 1983; Peraita and Ward, 1991].
However, contaminated groundwater management required
the use of nonlinear optimization. Gorelick et al. [1984] used a
contaminant transport simulation model within a robust non-
lincar optimization algorithm. They evaluated the derivatives
numerically using forward differences in earlier iterations and
central differences in later iterations.

Numerical evaluation of the derivatives requires many com-
putations. For large-scale problems the computationai burden
can be prohibitive. In order to make the optimization problem
computationally tractable for large problems, Ahlfeld et al.
[1988] applied sensitivity theory to the solule transport equa-
tion to evaluate the derivatives more eificiently.

Nuonlincar programming techniques cannot guarantee global
optimality when applied to large nonconvex groundwater man-
agement problems. For real problems where the time required
to simulate the groundwater system is significant, nonlinear pro-
gramming methods may need prohibitive amounts of CPU time.
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The limitations of mathematical programming have moti-
vated some researchers to use simplified expressions inside the
optimization model. Several simple functions have been used
in groundwater simulation/optimization (S/0) models [Afey,
1986; Lefkoff and Gorelick, 1990; Fjaz and Peralta, 1995; Coo-
per et al., 1998}

More recent studies investigated the use of alternative op-
timization techniques such as simulated annealing [Rizzo and
Douigherty, 1996} and genetic algorithms [McKinney and Lin,
1994; Ritzel er al., 1994, Rogers and Dowla, 1994]. In this study
we combine the response surface method with either mathe-
matical programming or a genetic algorithm. '

An attractive feature of the genetic algorithm (GA) is that it
does not require the continuity or differentiability of the ob-
jective function. Below, we exploit this feature and contrast the
GA solution to a formal mathematical programming solution.
The intent is to compare the performance of the GA and math-
ematical programming for groundwater remediation problems,

The proposed methodology employs flow and transport sim-
ulation models externally to the optimization. As a result, the
presented techniques are independent of the specific flow and
transport simulators used. This allows using special-purpose
codes or newly developed simulation codes for design pur-
poses. Moreover, the presented formulation permits time-
varying management priorities and restrictions.

Manuscript organization is as follows. In section 2 we for-
mulate the management problem and describe the selected
functional form used to describe the response surfaces. We
also describe the robust regression technigue used to evaluate
the coefficients of that function. In section 3 we describe the
study area and outline tested scenarios. In section 4 we show
simple cases of the optimization problem and develop the
response surfaces used in the optimization model. In sections
5 and 6 we describe the genetic algorithm and the mathemat-
ical programming techniques used to solve the optimization
problem. Then we contrast results from the two approaches
and summarize findings. :

2. Optimization Problem Formulation

Consider an aquifer contaminated with a dissolved contam-
inant. A P&T system is to be designed for a treatment facility
of specified flow capacity, The goal is to determine the best
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Table t. Cost Function Coefficients, Second Formulation

Coceflicient Value
WwT, .00
WT,, WTy (3 years, 3%) 27232
WT,, WT; (2 years, 5%} 1.8594

O (installation cost)
C*¥ (pumping cost)
C? (treatment cost)

11,900 S/well
7.7324E-4 § per foot*d year
3.55 $ per foot¥d year

One foot®d = 0.0283 m'al; | foor = 0.3047 m.

pumping schedules for A/ possible wells at prescribed loca-
tions, '

We approximate the muliiple-period planning problem us-
ing a series of single-period problems. Each single period can
he simulated using eithHer steady state or transient conditions.
The results of implementing the optimal strategy of one plan-
ning period are used as initial conditions for the next planning

- period. This myopic stepwise optimization greatly simplifies

the analysis and has been demonstrated in other groundwater
management studics [Akdfeld, 1990, Rizzo and Dougherty,
1996]. However, this appreach might produce a less optimal
solution than a fully dynamic approach, as indicated by Ahlfeld
[1990]. i

The following optimization problem formulations describe a
single planning pertod but they can address multiple-period
problems. Notice that the objective function and the con-
straints can change from une planning period to another.

Formulation 12 The goal is to minimize the largest concen-
tration remaining in the aquifer at the end of a single planning
peried (CMAX) while satistying system and/or budget con-
straints. One constraint is used to prevent total pumping from
exceeding the treatment facility’s flow capacity (PM4%). An-
other consteaint forees total exiraction 10 equad otz injection.
Because extraction and injection have different signs, forcing
total extraction to equal total injection is equivalent to rein-
jecting all extracted water (after treatment). This constraint is
only used when injection rates are computed by the optimiza-
tion model:

Minimize CMAX subject to

}?Llé}s-'p{é)&’p"(é; é=1,2,---,M" (1

ATO
> lprey] = phax 2
s
Ry
Y per=0 3
el
CMAX = fptlh pi2i - ptM) (4)

where CMAX s the maximum concentration in the aquifer at
the end of the planning period |M L “F M is the number of
extraction wells; i) iy the steady pumping rate at location é
PLEE Y ph ey and ptié) are lower and upper bounds on
pumping rate at location é [L* T7']; and P is the maxi-
mum allowed pumping from all exeraction wells, usually equal
to the treatment facility’s flow capacity {L* T7'].
Formulation 2: The gout is to find the pumping strategy that
has the lowest cost while achieving aquifer cleanup by the end
of the planning period. Aquiter cleanup is achieved by speci-
fying a target CMAX vidue at the end of each planning period.

The total cost objective function. is mixed-integer nonlinear
(equation (5)). .

The first objective function component is the well installa-
tion cost. This cost is incurred once at most and only if a well
is used for pumping. This is a discrete operation and requires
the use of binary variables in the optimization model. The
installation cost is zero for any well that has pumped in any
-previous period. '

The second component in the cost function is the pumping
cost. This cost is a function of the pumping rate and hydraulic
lift. This term is quadratic becavse the head at the well is
represented as a linear function of pumping rates (as explained
in the next section). The third component is the treatment cost.
For a specific treatment facility, treatment cost is considered
linearly proportional to pumping volume. This term is linear in
the pumping rates.

Minimize

Me
PW = WT, D, C'(2}IP(¢)

A=t
M :
+ WT, 2, C™(2)p(2)(TELEV - h(2))  (5)
&=1
e
+ WT; 2 CHe)p(e)
é=1
subject to _
h(@) = filp(1), p(2), - -+, p(M")) (6)
iPEr=1 |p@>0
N
IPE)=0 |p(é)) =0
CMAX = ¢’ ' 8)
CMAX = f(p(1), p(2), - - -, p(M")) %
pPrE)=p@)y=pYe) é=1,2,---, M (10)
Ager .
2 Ip(é)] = prax (11)
=1
A
Spey=0 (12)
é=1

where PW is total present worth of the P&T operation includ-
ing well instaltation, pumping, and treatment costs [$]; WT,,
WT,, and WT; are factors used to convert the well instalation,
operiational pumping, and treatment costs, respectively, into
present values [$ per $] (usually WT, = 1}; IP(é) is an indi-
cator variuble for pumping at location é;: C'P(é) is cost of
installing a well at location & [$ per well|; C¥Y(8) is cost of
pumping water from the aquifer using the extraction well at
location é [§ per L* T ¥); €7(é) Is cost of treating contami-
nated groundwater from well at location € [$ per L T7']; 4 (&)
is groundwater head at location é [L]; TELEV is inlet elevation
of the treatment facility [L]; C7 is target contaminant concen-
tration at end of planning period (usually MCL). Cost coeffi-
cient values are listed in Table 1.

Gorelick [1983] describes two techniques for defining the

functions f, (equation (6)) and f. (cquations (4) and {9))
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within an optimization model. According to Gorelick [1983), in
the “embedding method,” finite difference or finite clement
approximations of the governing groundwater flow equations
are treated as part of the constraint set of a lincar program-
ming model [Gorelick et al., 1984, Peralta et al., 1995; Gharbi
and Peralta, 1994, Takahashi and Perafa, 1995]. This definition
can be extended to include oprimization models that use tull
simulation models w evaluate the state variables fe.g., McKin-
ney and Lin, 1995].

The other technique described by Gorelick [1983] is the

“response matrix” approach. In this approach an external.

groundwater simulation model is used to develop unit re-
sponses. This definition can also be extended to include using
simulations o fit approximation functions. These approxima-
tion functions cun be derived using either Tuylor series or
curve fitting methods, When a first-order Taylor series is used,
this approuch is known as the response matrix method. More
generally, this approzch can be considered a response surface
(RS) method.

The embedding method can sometimes be more accurate
and provides more potential for controlling the physical system
[Peralta ¢t al., 1991]. However, an optimization problem for-
mulated using this method 1s noanlinear, nonconvex, and very
large. For such problems the computational effort required ro
find un optimal selution can be prohibitive. A promising rem-
edy for this problem s to use algorithms that can take advan-
tage of parallel processors [MeKinney and Lin, 1994]. Rogers
and Dowla [1994] supgested another remedy, They used an
artificial neural network in conjunction with a GA to reduce the
computational effort for a groundwater remediatiom problem,

The RS method generally vields a faicly simple optimization
problem. Usually, little effort is required to incorporate the
constraints within optimization algorithms. Anather RS advan-
tage is that the flow and ransport simulations can be recycled.
For example, if more accuracy is desired in a given solution
space neighborhood, moere simulations can be performed in
thut neighborhood and the results can be used along with
earlier simulitions. A third RS advantage is the ease of run-
ning needed simulations in parallel or even on separate CPUs.
Together, these advantapes can result in significant CPU and
real time savings. In this study, using the RS approach made it
easy to find the best set of control parameters for the GA
(crossover and mutation probabilities and population size).
The response surface must be found for each planning period.
In other words, the RS for the second planning period s
constructed using the optimal results from the first planning
period as initial conditions.

Few forms have been suggested in the literature for repre-
senting contaminant concentrations as a function of pumping
rates. Aley [1986] found that simple linear regression provided
sufficient accuracy for predicting solute concentrations for the
tested problem. However, in our study, simple linear regres-
sion was inadequate for representing CMAX as u function of
pumping rates.

Lefkofl and Gorefick [199 used regression o approximate
salt mass transport and found that this has greatly simplified
the anaiysis. However, they did not show the functional form
used. Cooper et al. [1998] represented light nonagueous phase
liquid mass via regression in their groundwater S/0 model. In
this study we found that a polynomial function with second-
order interaction terms accurately approximuted CMAX,

In the following sections we construct the tuncuion f,. using
a robust estimation technique (summarized. later) and £, using,

a first-order Taylor series, We generate data for the regression
from numerous groundwater Aow and transport simulations,

2,1. The Approximation Function

Desirable properties for the approximation function are the
following: (1) It must be adequately accurate in the decision
space neighborhood of interest, (2) it should be easy to use,
and (3) it should have continuous derivatives. The last property
is desirable for gradient-based mathematical programming al-
gorithms.

We used polynomial functions with two-way interaction
terms to represent the response variable (CMAX). The gen-
eral form of the polynomial function is

MEMY

CMAX =By + 2, 30 Bolph|* Il (13)

Higher-order interaction terms were not needed for all tested
scenarios. .

The exponents in the above pulynomial are vsually different
from unity. This means that this polynomial is not simply a
quadratic approximation. Rather, the approximation function
can represent nonlinear gradients accurately.

To determine the coefficients and exponents for the poly-
nonial function, we used # two-step regression approach, First,
we solve a nonlinear regression problem using iteratively re-
weighted least squares (FRWLS; described in the following
section) to determine both the coefficients and exponents. in
the second step we fix the exponents and solve a linear regres-
sion problem using [RWLS 1o find the coefficients. In essence,
the first step finds the best polynomtal transformation of the
explanatory variables (pumping rates) and two-way interaction
lerms. The second step uses that transformation and solves u
linear regression problem.

2.2. Robust Regression

Regression anulysis is often used to find coeflicients of ap-
proximating functions, Unfortunately, outliers that appear te
conflict with the model can arise and control the computed
regression coefficients [Draper, 1981]. A robust regression
technique will change the compurational scheme adaptively to
prevent cutliers from controlling the computed regression
equation. We used IRWLS, which can be summarized as fol-
lows:

1. Fit an initial regression equation using a robust regres-
sion algorithm such as minimizing the maximum absolute de-
viation,

2. Compute the residuals {defined as observed minus pre-

dicted values of the response variable). Use the residuals to

compute weights for the data set. Generally, weights are in-
versely proportional to the magnitude of the residuals.

3. Fit aweighted least squares regression cquation with the
weights computed in step 2.

4. I the difference berween the estimates of the regression
coefficicnts is larger than desired, go to step 2. Otherwise, stop.

Staudte and Sheather [ 19%)] show that the computed regres-
sion coetficients depend on the initial estimator (used in step
1). Therefore it is desirable 10 use a robust technique for that
step. In this study we used a minimum maximum absolute
residual criterion (instead of the ordinary least squares criterion).

For optimization problem formulation 1 fequations (1)-(4))
we are minimizing the CMAX resulting after a specified time
period. Therefore the solution is generutly to pump o total of
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I no-fiow boundary

I constant head boundary

A exiraction well

¥ injaction well

@ contaminant source (Scenario £)

s e — Do feet)

MNorton Air Force Base

Note: 1 ft = 0.3048 m.

Figure 1. Base boundary, finite difference grid, boundary conditions, well locations, and initial TCE con-

centrations in parts per billion.

PMAX from all wells. In other words, the solution space is
limited to sets of pumping values whose sum is PMA%, There-
fore when the data ure generated for the regression, we can
limit pumping valuc sets o those whose sum is PM** This
restriction improved the regression fit for all rested scenarios.

3. Site and Scenarios Description

Norton Air Force Base {(NAFB) is located in the San Ber-
nardino Valley, part of the California Peninsular Range geo-
morphic province. Near NAFB, several groundwater-bearing
zones exist. The top layer contains dissolved trichloroethylene
(TCE), which is moving with the groundwater. To speed TCE
plume cleanup, NAFB has installed a P&T system. This 200-
gallons/min (gpm; 760 Limin) P&T system is to be augmented
to extract more contaminated groundwater. In the following
sections we consider capacities up to 2000 gpm (7600 1/min) in
order to achieve aquifer cleanup to maximum contamination
timit (MCL). The MCL for TCE is 5 ppb.

The MODFLOW groundwater flow simulation model [Me-

Donald and Harbaugh, 1988] has heen calibrated to the study
area [EA Engineering, Science and Technology, 1994]. MT3D
[Zheng, 1990] is used to simulate plume migration for ulterna-
tive preliminary well locations and pumping strategies. The
finite difference grid has 60 rows and 55 columns. The ground-
water aquifer is modeled as o confined aquifer with transmis-
sivittes Tanging between (K009 and (L014 m*s, a longitudinal
dispersivity of 30.50 m, and a transverse dispersivity of 3.05 m,

Injection well tocations have been specified along pipelines.
In the following sections we consider five potential extraction
weils. One of the extraction wells js already operating (EX1 in
Figure 1). Therefore, while the optimal pumping rate for this
well is computed, the cost coefticient (C'") for installing this
well is zero. '

We develop optimal pumping strategies for five scenario
families (A-E). In each family, the first scenario (Al, BI, etc.)
uses optimization formulation 1 and the second scenario (A2,
B2, etc.) uses optimization formulation 2. Each optimization
problem is solved using mathematical programming and a GA.

Table 2. Scenario Families Considered for Mathematical Programming and the Genetic

Algorithm Comparison

Scenario Family

B C D E

A
Treatment facility size (7™ in gpm} s0U 200 . 2000 2000 20{H)
Number of considered wells (M) 2 . 3 5 9 5
Extraction wells used (Figure 1) EX1,EX2 EXI-EX3 EXI-EX5 EXI1-EX5 EXI-EXS
Compute optimal injection rates no no no yes no
Number of planning periods 1 1 1 1 2
Number of simulations - 153 150 279 350 249, 244

One 1 gpm = 54304 m*d. The number of simulations is that required to estimate the cocfficients of
the response surface for each scenario. The target concentration is 5 ppb (MCL tor TCE}.

Y. W Y.
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800 1 1 1

700

. 6001

—_ o - Values from Polynomial Function
+ GA solution
o NLP soltion 5
Nate; 1 gpm= 5.4054 md

Values from Simulafions

P2 (gpm)

P1 (gpm)
Figure 2. Contours of CMAX for scenario Al,

Table 2 summarizes scenurio assumptions and the number
of simulations required to construct the RS, Inthe A, B, C, and
E scenurio families, extraction rates are computed and injec-

In the E scenarios we consider two planning periods. n the
first 2-year period, continuous leaching of contaminant from
the vadose zone to the aquifer is present. Leachate concentra-
tions and amounts are based on field data [EA Engineering,
Science and Technology, 1994]. In the second I-year period, no
contaminant leaching ts present. Although we use the same
management goals for both periods, the presented methodol-
ogy also permits changing management requirements for dif-
ferent planning periods.

4. The Response Surface

Rather than including detailed simulation expressions within

. mixed-integer nonlinear {MINLP) or GA problems. we repre-

sent system response 16 pumping using simple approximation
(respunse surface) functions. Iy this section we investigate the
shape of the RS, We also show how close the approximating
function s w the aetual surface in the neighborhood of inter-
ust.

We first investigate the case of two extraction wells and four
injection wells. Injection rates are fixed. We study only the
effect of changing the extraction rates on CMAX {scenario
Al). For cach combination of the two extraction rates we use
the flow and transport simulation medels to compute CMAX
at the end of the planning period. Figure 2 shows the results
and the contours ol the best polynomial approximating func-

tion (found using robust regressivn). The solid lines in Figure
2 are based on 133 simulations. The pumping rates tfor these
simulations are selected at random in the solution space.

In Figure 2 the minimum CMAX occurs when total extrac- -
tion from the two wells equals PM** (along the diagonal line
in figure 2). If extraction wells are near areas of high concen-
tration, we would expect concentrations to drop as total ex-
traction increases. This intuitive result is important because it
implies that for subsequent cases (with more potential wells)
we only need to consider combinations of pumping rates that -
total PMX This will greatly reduce the number of simutations
required to construct the RSs. It will also make the approxi-
mating functions more accurate since we will consider a much
smaller subspace of the decision space. If this assumption is not
used, we expect the number of simulations required to fit the
polynomials to grow by a factor of ar least 2.

Another fearure is more casily observed by examining Fig-
ure 3, which shows the results for the combinations of extrac-
tinn rates for which total extruction equals P There is only
one global minimum (at P1 = 600) and one local minimum (at
P1 = ). Also, the approximating function is at its minimum at
almost exactly the same location as the RS.

For the case of 3 extraction wells and 4 injection wells (with
fixed injection rates) we study the effect on CMAX of changing
the extraction rates (scenario Bl). To be able to visualize the
results, we consider only pumping sets that total PM**, Figure
4 shows the CMAX resulting from simulations and contours’of
the best polynomial approximating function,

In Figure 4 the approximating function does not it the data
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CMAX {ppb)

204

15

+ Value from Simulation

€ Value from Polynomial Function
-Note: 1 gpm = 5.4054 nid

o+

¢ R 2

*tt . -!-°

o

2o abo 400 500 600 700 sbo

P1 {gpm)

Figure 3. Observed and predicted CMAX versus P1 (P1 + P2 = 800 gpm, or 3000 L/min). .

as well as Figure 2. However, the fit is still acceptable. Notice 5, The Genetic Algorithm

the obvious global minimum and the flat area on the response

surface around the minimum point. This shows that there is a GAs are heuristic rules for searching a solution space to
large region of nearly optimal solutions. Any solution in that  identify the best solution. A solution determined using a GA s
region will tesult in a CMAX value that is very close to the not necessarily optimal. It is merely the best solution identified.
smallest achievable CMAX. Table 3 shows the polynomial The use of GAs was first suggested by Holland [1975], who
coefficients and exponents for scenarios A and B. based his search on a survival-of-the-fittest rule. Since then,

2,000

P#+P2+P3 = 2,000 gpm
Values from Simulations
— — . Values from Polynomial Function

+ GA solution _ 3
0 NLP soluticn

Note: 1 gpm = 5.4054 m/d i

1600 1400

P1 {gpm)

1200 1400 2000

Figure 4. Contours of CMAX for scenario Bl.
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GAs have been used in many disciplines [Davis, 1991; Gold-
berg, 1989).

In groundwater management, GAs have been used by MeX-
inney and Lin [1994], Ritzel et al. [1994), Rogers and Dowla
(1994), Cieniawski et al. [1995}, and others. In this paper we focus
on how the GA is implemented to address the problem at hand,

The major advantage of GAs is that they are independent of
the particular problem being analyzed. The only requirement is
an pbjective (fitness) function indicating system performance,
This function can be nonlinear, nondifferentiable, or discon-
tinuous. A GA requires only that system performance can be
evaluated for any set of the decision variables. In formulation
I the fitness value is the reciprocal of CMAX. Therefore the
GA tries to find the pumping rates that will result in the
smallest CMAX., In formulation 2 the fitness is the reciprocal
of total cost.

We used a GA with the basic reproduction, crossover, and
mutation operators. The GA used is very similar to the simple
genetic algorithm (SGA) of Goldberg [1989]. The only differ-
ence is that we use tournament selection [Goldberg, 1990]
instead of the roulette-wheel selection of the SGA.

One problem with GAs is that they do not provide an explicit
method 16 handle constraints. Instead of explicitly considering
constraints, penalty terms are added to the objective (fitness)
function. In formulation 1 a single constraint limits total pump-
ing. A simple method to handle such a constraint in a GA is to
assign a very low fitness value for any set of pumping rates
whose sum exceeds the upper bound on total pumping. In all
tested problems, after few iterations the GA hardly tries to
evaluate the fitness value for any set of pumping rates whose

_sum exceeds PMAX

In formulation 2 we added an adaptwe penalty term to the
total cost to handle the more complex constraint on CMAX.
This adaptive penalty term adds a large cost to any set of
pumping rates that result in CMAX greater than the pre-
scribed cleanup value (Figure 5). Each unit of CMAX greater
than cleanup value has a cost that is 2 orders of magnitude
larper than total economic cost. This makes a pumping strategy
with less total cost more favorable than another with a larger
total cost even if neither achieves the required cleanup by the
same amount. This method was very effective and gave better
answers than the nonstationary penalty function of Joines and
Honck [1994], which increases the penalty function as thie gen-
eration number increases. The number of pumping rate sets
that do not achieve acceptable CMAX values was very small
after 10-25 gencrations.

The methodology proposed herein differs from that of McK-
inney and Lin {1994] in that we use an RS approach inside the

Table 3. Polynomial Coefficients and Exponents for
Scenarios A and B

- Polynomial Coelficients

{Equation (13)) Scenario A Scenario B

B, 38.886

Byale . va) —{.790 {1,064, 0.000)
B s(ers 7, ¥21) —1.000 {1.036, 0.000)
Baglans ¥a3) e
ﬁt,z(“n.z» 'Y|,2)
Bialen s va)
Baalas s v23)

0.2757
9.174 (01035, 0.000)
0.345 (0.590, 0.000)

~0.232 (6.5021, 0.000)

- 4.030 (0.248, 0.009)
0.001 (0.000, 2.776)

-0.001 {0.406, 2.481)

~0.004 {0.811, 2.450)

Pumping rates in the polvnomial equation are scaled by dividing
their magnitude by 10U
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Fitness Function

Input; pumping rates

Qutput: filness value

if{(sum of pumping rates > size) return (1.0}

CMAX= fe(pumping rates)

PW = present worth of installation, pumping, and treatment costs

{in millions of dollars)
IHCMAX > C°*") P = P (1+1007(CMAX-Co2")
return{1000.0/PW)
Note: PW ranges between 0.5 and 50.0.

Figure 5. Evaluation of fitness for second formulation.

optimization model while McKinney and Lin used an embed-
ding approach. Using the RS approach reduced the computa-
tional burden significantly. It also allowed us to find the best
set of controb parameters for the GA (population size, cross-
over probability, and mutation probability). McKinney and Lin
[1994] implemented their GA on CM3 parallel computers with
various numbers of processors. They used different crossover
and mutation probabilities for the different problems addréssed
but offercd no guidelines for selecting these probabilities.

We used binary coding wherein the pumping rate from each
well 1s represented by L digits of the chromosome. For exam-
ple, when we tried to optimize the pumping rates from five
extraction wells, the chromosome length was SL. The chromo- -
some length, L, is determined from the desired representation
accuracy. For example if the pumping rate from one welt can
range between P- and Y and the desired accuracy is ¢, then

PP
log {1+ —

L= log 2

(14)

where the logarithm is taken to any base. For example, when
PY is 800, PL is 0, and the required accuracy is 0.5, then the
chromosome length is 11. If we have five such pumping rates,
the final chromosome length is 33. Notice that different pump-
ing rates can have different accuracy values if desired. Longer
chromosomes can be used to the desired accuracy at the ex-
pense of more run time for the GA. We used & = 0.5 gpm (1.9
L/min) for all scenarios. The pumping rates ranged between 0
and 800 for scenarios C, D, and E and between 0 and 1200 for
scenarios A and B. Therefore L had a value of 11 for the
former scenarios and 12 for the latter scenarios.

Control parameters selection greatly affects the answer com-
puted by the GA. However, there are no published general
guidelines for sclecting these parameters, Many studies have
attempted to evaluate parameter values that work well under a
variety of conditions [De Jong, 1975; Schaffer et al., 1989|.
However, their results are problem specific and depend on how
the GA is implemented. A major advantage of our proposed
methodology is that the size of the study area affects only the
time required to evaluate the response functions. Therefore,
after the respense functions are evaluated, the GA takes very
little time to find the best set of pumping rates. This allowed us
to use the GA for a very large number of control parameter
selections.
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Table 4. Results for Scenarios A2 and B2

AL B2
GA NLP GA MINLP
Optimal pumping rates, gpm
EXI 620 617 817 837
EX2 180 183 783 933
EX3 cen Ves 0 &0
Total pumping, gpm 800 800 1602 1830
Present worth of costs, 10° dollars 1,136 1141 2467  3.203

One gpm = 54504 m?d,

At least 60 sets of control parameters (population size,
crossover probability, and mutation probability) were tested
for each problem. The results indicate that the population size
should he bertween MY and 200. Our experience is that larper
population sizes require extra 1ime but do not affect the solu-
tion. However, if the number of wells is large or if only a
relatively smal subspace provides a feasible solution, then a
larger population size might be needed.

In this study the best crossover and mutation probabilities
are 0.7-1.0r and .06 -0.08_ respectively. Generally, a crossover
probability less than 0.7 abwavs provided an inferior answer, A
multation probability greater than 0,08 increased the number of
infeasible evaluations without improving the fmal answer. The
GA performed most poorly when the mutation probability was
zero. This i3 expected since mutalion prevents the GA from
getting locked at local optima. !

The previous discussion only provides general guidelines for
‘selecting control parameters” values. The mentioned values
should be used as a starting point and should be revised.
Different values might result in better answers {or other prob-
lems. When a response surface is used, little effort is needed in
trying different sets of control parameters for a given problem,

6. Mathematical Pi'ogramming

For formulation | the optimization problem has linear
{equations (2) and (3)} and nonlinear (equation (4)) con-
straints. This is @ nonlinear programming (NLP} problem for
which several eobust solvers are available [Dred. 1985 Muragh
and Sawnders, 1987|. We used MINOS {Murtagh and Satnders,
1987]. MINOS has been used successfully for a wide range of
groundwater management problems [e.g., Cunda eral., 1993;
Gharbi and Peralta, 1994; Peralta et al., 1995; Takahasit and
Perafta, 1995; Marsukawa et al., 1991; Reichard, 1993].

For formulation 2 in addition 1o the linear and nonlinear
constraints, the optimization model has hinary variables, 1P(é)
(equation (3)). The resulting optimization problem is a mixed-
integer nonlinear {MINLP) optimization problem. Available
MINLP solvers ure net as reliable as those for NLP and other
mathematical programming problems |Fiswanathan and Gross-
mann, 1990]. We used the DICOPT+ + solver developed at
Carnegie Mellon University [Kocis and Grossmiann. 1989,
Viswanathan and CGrossmann, 1990). The MINLP algorithm

“inside DICOPT+ + is based on the outer-approximation algo-

rithm. DICOPT++ solves a series of NLP subproblems and
MIP (mixed-integer programming) master problems. To solve
the subproblems, DICOPT ++ uses external optimization al-
gorithms. In this study we used MINOS [Murtagh and Saun-
ders, 1987] to solve the NLP subproblems and OSL [/BM
Corporation, 1991} to solve the MIP master problems,
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To be able to compare the GA results with those of NLP and
MINLP, we tried both direct minimization as well as reciprocal
maximization. We also vsed the constraints directly and as
penalties added to the objective function (as done in the GA).
For all tested problems NLP or MINLP found better answers
by direct minimization when constraints were used directly.
This 15 expected because using the reciprocal introduces un-
necessary nonlinearity into the optimization problem. In the
next section we report only the best answer found by NLP {or
MINLP).

7. Results

Results for scenarios A and B are shown in Figures 2 and 4.
For the NLP problem of scenarios Al and Bl, both the GA
and NLP fuund the global minimum sofution. However, for the
MINLP problems of scenarios A2 and B2, the GA found a
better solution than MINLP (Table 4). As explained below, the
GA generally performed better than NLP and MINLP for all
tested scenarios.

In scenario C1 the GA’s minimum CMAX is 1.451 ppb,
while CMAX for the NLP solution is 1.504 ppb. This indicates
that the answer found using NLP is a local minimum. Similar
results were found for scenarios DI and E1. Tahles 5 and 6
summarize the results for the C and E scenarios, respectively.

Figure 6 shows the contaminant concentration contours af-
ter the pumping strategies of scenario Cl are implemented.
The difference between the two strategies is unclear. Although
the GA resulted in a strategy with a lower value of CMAX, the
NLP strategy required one less well and resulted in concentra-
tions that are almost identical from a practical viewpoint.

The results shown in Figure 6 reflect a fact noted in the
discussion of Figure 4. In Figure 4 there is a wide flat “valley”
around the optimal solution. Although the pumping rates dif-
fered greatly in that valley, CMAX was essentially the same. A
similar behavior is exhibited in Figure 6, where the pumping
rates are different but the resulting concentrations are very
similar. However, this is not the case for cost minimization for
which MINLP and GA produced greatly ditferent results.

Figure 7 shows how cost is accumulated over the planning
period after the optimal strategies of scenario C2 are imple-
mented. Over the entire planning period, the MINLP pumping
strategy costs about 32% more than the GA’s strategy.

In scenarios D1 and D2, where the injection rates were not
fixed, the answers that were obtained were not better than the
answers for scenarios Cl and C2. This was expected because

Table 5. Results for the C Scenarios
Cl c2
GA NLP GA  MINLP

Optimal pumping rates, gpm

EX! 6y 63 636 106

EX2 512 186 483 523

EX3 051 S0{ 39 27

EX4 67 2 23 0

EX5 162 0 0 0
Total pumping, gpm 2000 2000 1203 1613
CMAX, ppb 1.451 1.504 e ves
Present worth of costs, H® dellars - --- -e- 2307 34054

One gpm = 34304 miid.
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Table 6. Results for the E Scenarios

El E2
GA NLP GA MINLP

Optimal pumping rates, gpm

EX1 1076, 1124 1199, 1230 685, 730 1197, 1245

EX2 _ 252,373 336, 456 272,382 292,375

EX3 - 78, 210 465, 314 0,0 0,0

EX4 12,0 0,0 0,0 0,0

EX5 582,293 0,0 388, 300 0,0
Total pumping, gpm 2000, 2000 2004, 2000 1345, 1412 1489, 1620
CMAX, ppb 8.526, 2.673 9.459, 3.034 e e
Present worth of costs, 10* dallars - ree 1.628, 0.624 1.773, 0.905

One gpm = 54504 m*d. Each cell contains two
respectively.

the fixed injection well locations are not close enough to
change groundwater flow near the plume center.

For the GA the best answer was always obtained before
generation 250, However, we terminated the GA after at least
500 generations for all tested problems. For a few problems we
terminated the GA after 10,000 generations. This never im-
proved the solution for any tested problem.

8. Summary and Conclusions

The GA performed as well as or better than mathematical
programming (in terms of the objective’s numerical value) for
all tested problems when response functions were used for
each. Only for the simplest problem was malhematical pro-
gramming able to find the same answer as the genetic algo-

6.000 L 1 L 1 L

values, for the first and second planning periods,

rithm. Furthermore, since response functions dramatically re-
duce the computational effort compared to all embedded
approaches, the GA approach with response functions is rec-
ommended for similar problems.

Other advantages of the GA include the simplicity of imple-
mentation, speed, and the simple incorporation of integer vari-
ables within the optimizdtion problem. The best set of control
parameters for the genetic algorithm was found informally by
using several sets of control parameters. A population size of
about 150, a crossover probability of about 0.85, and a multa-
tion probability of about 0.08 resultéd in the best answers for
almost all tested problems within less than 300 generations,
The use of the response surface (RS) to represent the simulation
constraints allows selection of the best set of control parameters.
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Figure 6. TCE contours after implementing optimal strategies for scenario C1.
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Since control parameter values have o great effect on the
GA performance, caretul control parameter seleetion is more
important if the GA needs signiticant CPU tme 1o solve 1he
aplintization problem. ‘Fhis situation arises in groundwader
management when the embedding miethod is used to formulate
the simulation consiraints. Therefore control parameter selec-
tion is more important it the embedding method is used.

The functionul form we used for the RS is merely one that
pertormed well for all tested seenarios. Other functions might
- be better for uther situations. especially when the number of
wells increases,

For the cases evaluated in this study the GA performance
was exeellent. However, for. more complex problems other
operators can be investigated 1o enhance the GA performance.
Niche methods, which keep solutions from different regions of
the decision space, can be used to generai¢ several optimal
solutions and reduee the chances of premature CONYCTEEnCe 10
local minima. Other uperators. such us reordering operators,
sexuul determination. and elitism. introduce diversity into the
populition 1w introduce o similar offect. Other variations of
tournament selection can be uselful for difterent problems or
whea 4 large number of potential wells is used in the optimi-
zation prohlem formulation.

Although the methods presented in this paper are developed
for aquifer cleanup problems, the methodology and formula-
tion can be applicd to other mised integer nonlinear optimi-
zation problems,
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