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Abstract. We present and apply a new simulation/optimization approach for single- and 
multiple-planning period problems in groundwater remediation. Instead of the traditional 
control locations for contaminant concentrations, \Ve use an LC>O norm as a global measure 
of aquifer contamination (CMAX). We use response-surface constraints to represent 
CMAX within the optimization model. We compare the performance of formal mixed 
integer nonlinear programming and a genetic algorithm for several optimization scenarios. 

I. Introduction 

A common means of containing and/or remediating contam­
inated groundwater aquifers is to extract contaminated water 
and treat it at the surface. This is known as pump and treat 
(P&T). Althm1gh several alternative remediation [echnologies 
have heen utilizeU recently, no technology has proven superior 
to P&T for large plume problems [Macer era/., ll/90; !lt~ffman, 

1993: Aiarq11is and /Jinee11, 199~]. 

P&T systems are usually employed lO control contaminated 
groundwater rnigration ami/or to achieve aquifer cleanup. In 
hoth situations basic design variahks are well locations and 
pumping schedules. 

P&T system design is an important topic hecause well loca­
tions and pumping rate~ can affect system performance signif­
i~:antly. Many studic-. have r~ported coupling optimization 
tcchniqllL'S \Vith groundwater tlow and transport simulation for 
designing P&T systl'fllS [e.g., Gorelick ct a/., 1984; Marryott er 
at., Jl)tJJ: Rogers alii/ I>mda, 1994; l'vfcKinnl!y and Lin, 1995; 
Peralla et at., I Y95; Xiang ct a/., 1995J. 

Early studies used first-order approximation of the ground­
water !low equation to formulate a linear optimization prob­
lem [Atwood aiUI Gordick, 1985; Peralta and IYard, 1991]. 
However, contaminated groundwater management required 
thL' usc (Jf nuntinl'ar tlptimization. Gordick !'I ui. [I lJK4] used a 
contaminant transport simulation model \Vithin a robust non­
linear optimizati()n algorithm. They evaluated the derivatives 
numerically using ft)rwan.! differences in earlier iterations and 
central differences in tater iterations. 

Numerical evaluation of the derivatives requires many com­
putations. For large-scale problems the computational burden 
can be prohibiti\'e. l n order to make the optimization problem 
computationally tractabiL: for large problems, Ah((eld er ai. 
[ 19RKI applit:d sensitivity theOI)' ro the solute transport equa­
tion to evaluate the derivatives more efficiently. 

Nonlinear programming techniques cannot guarantee global 
optimality when applieJ to large nonconvcx groundwater man­
agement problems. For real problems where the time required 
to simulate the groundwater system is significant, nonlinear pro­
gramming methods may need prohibitive amounts of CPU rime. 
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The limitations of mathematical programming have moti­
vated some researchers to use simplified expressions inside the 
optimization model. Several simple functions have been used 
in groundwater simulation/optimization (S/0) models (Alley, 
1986; Lejkoff and Gorelick, 1990; Ejaz and Peralta, 1995; Coo­
per et a/., 1998). 

More recent studies investigated the use of alternative op­
timization techniques such as simulated annealing (Rizzo and 
Dougherly, 1996) and genetic algorithms [McKinney and Lin, 
1994; Ritzel eta/., 1994; Rogers and Dow/a, 1994). In this study 
we combine the response surface method with either mathe­
matical programming or a generic algorithm. 

An attractive feature of the genetic algorithm (GA) is that it 
does not require the continuity or differentiability of the ob­
jective function. Below, we exploit this feature and contrast the 
GA solution to a formal mathematical programming solution. 
The intent is to compare the performance of the GA and math­
ematical programming for groundwater remediation problems. 

The proposed methodology employs flow and transport sim­
ulation models externally to the optimization. As a result, the 
presented techniques are independent of the specific flow and 
transport simulators used. This allows using special-purpose 
codes or newly developed simulation codes for design pur­
poses. Moreover, the presented formulation permits time­
varying management priorities and restrictions. 

Manuscript organization is as follows. In section 2 we for­
mulate the management problem and describe the selected 
functional form used to describe the response surfaces. We 
also describe the robust regression technique used to evaluate 
the coefficients of that function. In section 3 we describe the 
study area and outline tested scenarios. In section 4 we show 
simple cases of the optimization problem and develop the 
response surfaces used in rhe optimization modeL In sections 
5 and 6 we describe the genetic algorithm and the mathemat­
ical programming techniques used to solve the optimization 
problem. Then we contrast results from the two approaches 
and summarize findings. 

2. Optimization Problem Formulation 
Consider an aquifer contaminated with a dissolved contam­

inant. A P&T system is to be designed for a treatment facility 
of specified flow capacity. The goal is to determine the best 
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Table l. Cost Function Coefficienrs, Second Formulation 

(_'o..:fficient 

WTI 
WT1 , WT_1 (3 years, sr~c) 
WT~, \VT1 (2 years. 5~) 
C 11' (installation wst) 
Cl''l (pumping cost) 
('I' (tn.:atment cost) 

LOll 
2.7232 
1.8594 

Value 

II ,900 $/welt 
7.7324E-4 $per foot 4/d year 
3.55 $ per foot·\'(! year 

One foul '.:J = 0.02S3 mJ'd; I foot = 0.3047 m. 

pumping schedules for At~' possible wells at prescribed loca­
tions. 

We approximate the multiple-period planning problem us­
ing a series of singlt.:.period problems. Each single period can 
be simulated using eitlier steady state or transient conditions. 
The results of implementing the optimal strategy of one plan­
ning period arc used as initial conditions for the next planning 
rx;riod. This myopic step\'11ise optimization greatly simplifies 
tht: analysis ami has been Jcmonstrated in other groundwater 
manag~ml'IH studies jAhlfeJd, 1990; Rizzo and Dougherty, 
IY96J. Howt:ver, this approach might produce a less optimal 
solution than a fully dynamic approach, as indicated by Ah/feld 
1 1990J. 

The following optimization problem formulations describe a 
single planning period but they can address multiple-period 
problems. Notice that the objective function and the con­
straints can change from one planning period to another. 

Formulation I: The goal is to minimize the largest concen­
tration remaining in the aquifer at the end of a single planning 
period (CrvtAX) while satisfying system and/or budget con­
straints. One constraint is used to prevent total pumping from 
exceeding the trt'ottment facility's flow caracity (P"1Ax). An­
olhn constraint fon:c" tuwl Lxtraction to ClJUaltotal.injection. 
Because extraction and injection have different signs, forcing 
total extraction to equal total injection is equivalent to rein­
jecting all extracted water (after treatment). This constraint is 
only used w·hen injel.·tion rates are computed by the optimiza­
tion model: 

Minimize CMAX suhje.ct to 

e = 1, 2 •. · ·• MP (I) 

II" 

I IPtet[ s p>~Ax (2) 
,. I 

\I' 

Ipti!i=O (3) 
e-l 

CMAX=/,Iplli.pl21. ···.ptM1'il (4) 

when.:- Cf\/IAX is the maximum L'Oncentration in the aquifer at 
the end uf !ilL' planning pcriud IM L 3 J: Mn. is the numher of 
\.".\traction wdls; Jl(d is the steady pumring rate at location e 
II.' T 1 1- 1/ k J <tnd f! 

1 
( t~ J an: ltlWL'r and upper hounds on 

pumping rate at locarion i' jL \ T- 1J; and p.\tA:-:.. is the maxi­
inum allowed pumping from all extraction we Us, usually equal 
to the treatment facility's flow capacity [L 3 T-. 1 J. 

Formulation 2: The goal is to find the pumping strate!,')' that 
has the lowest cnst whik achieving aquifer dean up by the end 
of the planning pcrind. A.quifer ~.:lcanup is achieved hy speci­
fying a target Ct\·-IA'\ \·;due at the end nf each planning period. 

The total cost objective function is mixed-integer nonlinear 
(equation (5)). 

The first objective function component is the well installa­
tion cost. This cost is incurred once at most and only if a well 
is used for pumping. This is a discrete operation and requires 
the use of binary variables in the optimization modeL The 
installation cost is zero for any well that has pumped in any 
previous period. 

The second component in the cost function is the pumping 
cost. This cost is a function of the pumping rate and hydraulic 
lift. This term is quadratic because the head at the well is 
represented as a linear function of pumping rates (as explained 
in the next section). The third component is the treatment cost 
For a specific treatment facility, treatment cost is considered 
linearly proportional to pumping volume. This term is linear in 
the pumping rates. 

Minimize 

Me 

rw = WT, I C"(i'JIP(eJ 

+ WT, I C'~(e)p(e)(TELEV- h(e)J (5) 
;~J 

.,.. 
+ WT, I C'(e)p(e) 

t'~l 

subject to 

h(e) = f,(p(JJ,p(2J, · · · ,p(M'JJ (6) 

IP(eJ = 1 [p(ell > o 
(7) 

IP(e) = 0 lp(eJ[ = o 
CMAX s C 1 (8) 

CMAX = fc(p(l), p(2), · · ·, p(M')) (9) 

e= 1, 2, ··· ,MP (!OJ 

M•·• 

I [p(eJI s pMAx (II) 
t'=l 

MP 

I p(e) = o (12) 
.. =1 

where PW is total present worth of the P&T operation includ­
ing well installation, pumping, and treatment costs [$J; WT1, 

wr ~·and WT~ arc factors used to convert the well installation, 
operational pumping, and treatment costs, respectively, into 
present values [$per $J (usually WT1 = 1); IP(e) is an indi­
cator variahlc for pumping at location e; C 1p(e) is COSt of 
installing a well at location e [$ per well]; C~-''1 (e) is cost of 
pumping water from the aquifer using the extraction well at 
location i! J$ per L -1 T 1J; C1'(C) is cost of treating contami­
nated groundwater from well at location e [$per L;' r- l J; h (i') 
is groundwater head at location e [L]; TELEV is inlet elevation 
of the treatment facility [LJ; cr is target contaminant concen­
tration at end of planning period (usually MCL). Cost coeffi­
cient values are listed in Table I. 

Gorelick [1983} describes two techniques for defining the 
functions/, (equotion (6)) and fc (equations (4) and (Q)) 
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within an optimization model. According to Gorelick [1983], in 
the "embedding method.'' finite difference or finite clement 
approximations of the governing groundwater flow equations 
are treated as pan of the constraint set of a linear program­
ming model [Gorelick era/., 1984; Peralta et al., 1995; Glwrhi 
and Peralta, !994; Tukalunlzi and Perafw. !995]. This definition 
can he extended to include optimization models rhat usc full 
simulation models ro evaluate the state variables [e.g., McKin­
ney and Lin, 1995]. 

The other technique described by Gorelick [ 1983] is the 
"response matrix" approach. In this approach an external 
groundwuter simulation model is used to develop unit re­
sponses. This definition can also be extended to include using 
simulations to fit approximation functions. These approxima­
tion functions em bt: dt:rivcd using t:ithcr Taylor series or 
curve fitting mctho~s. When a first-order Taylor series is used, 
this approach i~ known as the response matrix method. More 
generally, this approach can he considered a response surface 
(RS) method. 

The t:mbedJing methoJ can sometimes be more accurate 
and provides more potential for controlling the physical system 
{Pertllw et a!., Jl)l) 1]. Hmvever, an optimization problem for­
mulated using this method is nonlinear, nonconvex, and very 
large. For such problems the computational effort required to 

find an optimal solution can be prohibitive. A promising rem­
edy for this problem is to usc algorithms that can take advan­
tage of parallel processors [McKinney and Un, 1994]. Rogers 
ami Dvwla [199-tj suggested another remedy. They used an 
artificial neural n~twork in conjunction with a GA to reduce the 
cumpwational effort for a groundwater remediation problem. 

The RS method generally yields a fairly simple optimization 
problem. Usually, litrle effort is required ro incorporate the 
constraints within optimization algorithms. Another RS advan­
tage is that the flow and transpon simulations can be recycled. 
For example, if more accuracy is desired in a given solution 
spacc neighhl)rhood, mme sinllllations can hL' performed in 
that neighborhood and the results can he used along with 
earlier simulations. A third RS advantage is the case of run­
ning nt:cdcd simulations in parallel or even on sepamtc CPUs. 
Together, these advantages can result in significant CPU and 
real time savings. In this study, using the RS approach made it 
easy to find the best set of control parameters for the GA 
(crossover and mutation probabilities and population size). 
The response surface must be found for each planning period. 
In other words, the RS for the second planning period is 
constructed using the optimal results from the first planning 
period as initial conditions. 

Few forms have been suggested in the literature for repre­
senting contaminant concentrations as a function of pumping 
rates. Alley [ l 986 J found that simple linear regression provided 
sufficient accuracy for predicting solute concentrations for the 
tested problem. However, in our study, simple linear regres­
sion was inadcquclle for representing Cl\.·tAX as a function of 
pumping rates. 

/.ejkojf wul Gorelick lJ990] useli rcgrc~sion to approximate 
sah mass transport and found that this has greatly simplified 
the analysis. llowevcr, they did nut show the functional form 
used. Cooper et a!. [ 1998 J represented light nonaqueous phase 
liquid mass via regression in their groundwater S/0 model. In 
this study we found that a polynomial function w·ith second­
order interaction terms accurately appmximutcJ CMAX. 

In the follo\ving sections \VL' construct the funcrion fc using 
a rohu-.,r c'>tim:tLiun technique (wmrnarized later) and.f";, using: 

a first-order Taylor series. \Ve generate data for the regression 
from numerous groundwater fiow and transport simul<.ttions. 

2.1. The Approximation Function 

Desirable properties for the approximation function .arc the 
following: (I) It must be adequately nccurate in the deci~ion 
space neighborhood of intere~t, (2) it ~houlJ be easy to use, 
and (3) it should have continuous derivatives. The la~r property 
is desirable for gradient-based mathematical programming al­
gorithms. 

We used polynomial functions with two-way interaction 
terms to represent the response varinble (CMAX). The gen­
eral form of the polynomial function is 

CMAX ~ f3., + L L f3,Jp(il[""[p(jl[' (13) 

Higher-order interaction terms were not needed for all tested 
scenarios. 

The exponents in the above polynomial arc usually different 
from unity. This means that this polynomial is not simply a 
quadratic approximation. Rather, the approximation function 
can represent nonlinear gradients accurately. 

To determine the coefficients and exponents for the poly­
nomial function, we used a two-step regression approach. First, 
we solve a nonlinear regressin'n problem using iteratively re­
weighted least squares (IRWLS; described in the following 
section) to determine both the coefficients and exponents. In 
the second step we tix the exponents and solve a linear regres­
sion problem using IR\VLS to find the coefficients. In essence, 
the first step finds the best polynomial transformation of the 
explanatory variables (pumping rates) and two-way interaction 
terms. The seconJ step uses that transformation anJ solves a 
linear regression problem. 

2.2. Robust Regression 

Regression analysis is often usr:U to find coeflicicnls of <tp­
proximating functions. UnfOrtunately, outliers that appear to 

conflict with the model can ari'lc and control the compukd 
regression coefficients (Draper, 1981]. A robust regression 
technique will change the computational scheme adaptively to 
prevent outliers from controlling the computed regression 
equation. We used IRWLS, which can be summarized as fol­
lows: 

1. Fit an initial regression equation using a robust regres­
sion algorithm such as minimizing the maximum absolute de­
viation. 

2. Compute the residuals (defined as observed minus pre­
dicted values of the rcsponse variable). Use the residuals to 
compute weights for the data set. Generally, weights are in­
versely proportional to the magnitude of the residuals. 

3. Fit a weighted least squnres regression equation with the 
weights computed in step 2. 

4. If the difference between the estimates of th~ regression 
coefficients is larger than desired, go to step 2. Othcrv.:isl', stop. 

Stmulte and Sheather f1990].show that the computed regres­
sion coefficients depend on the initial estimator (used in step 
1 ). Therefore it is desirable to usc a robust technique for that 
step. In this study we used a minimum maximum absolute 
residual criterion (instead of the ordinary least squares criterion). 

For optimization problem formulation I (equations (I)-( 4 )) 
we are minimizing the CMAX resulting after a spcciticd time 
period. Therefore the solution is generally to pump a total of 
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0 S &iJ •lM J.&iJ a.doo(feetl Note: 1 ft = 0.3048 m. 

Figure I. Base boundary, finite difference grid, boundary conditions, well locations, and initial TCE con­
centrations in pans per billion. 

pMAX from all wells. In other words, the solution space is 
limited to sets of pumping values whose sum is pMAX. There­
fore when the data are generated fur the regression. we can 
limit pumping value sets to those whose sum is pMAx. Th1s 
restriction improved the regression fit for all rested scenarios. 

3. Site and Scenarios Description 
Norton Air Force Base (NAFB) is located in the San Ber­

nardino Valley, part of the California Peninsular Range geo­
morphic province. Near NAFB. several groundwater-bearing 
zones exist. The top layr.:r contains dissolved trichloroethylene 
(TCE), which is moving with the groundwater. To speed TCE 
plume cleanup, NAFB has instatlcd a P&T system. This 200-
galluns/min (gpm; 760 L/minJ P&T system is to he augmented 
to extract more contaminated groundwater. In the following 
sections we consider capacities up to 2000 gpm (7600 L;min) in 
order to achieve aquifer cleanup to maximum contamination 
limit (MCL). The MCL for TCE is 5 ppb. 

The MOD FLOW groundwater flow simulation model [Me-

Donald and Harha11gh, 1988] has hcen calibrated to the study 
area [£4 Engineering, Sch·nce and Technology, 1994]. MT3D 
[Zlu·ng, 1990] is used to simulate plume migration for alterna­
tive preliminary wcH locations and pumping strategies. The 
finite difference grid has 60 rows and 55 columns. The ground­
water aquifer is modeled as a confined aquifer with transmis­
sivities ranging between O.OOQ and 0.014 m~/s. a longitudinal 
dispersivity of 30.50 m, and a transverse dispersivity of 3.05 m. 

Injection well locations have heen spt:cificd along pipelines. 
ln the following sections \Ve consider five potential extraction 
wells. One of the extraction wells is already operating (EX I in 
Figure 1). Therefore, while the optimal pumping rate for this 
well is computed, the co'>t coefticient ( Cw) for installing this 
well is zero. 

We develop optimal pumping strategies for five scenario 
families (A-E). In each family, the first scenario (AI, 81, etc.) 
uses optimization formulation 1 and the second scenario (A2, 
B2, etc.) uses optimization formulation 2. Each optimization 
problem is solved using mathematical programming and a GA. 

Table 2. Scenario Families Considered for Mathematical Programming and the Genetic 
Algorilhm Comparison 

Scenario Family 

A B c D E 

Treatment facility size (PMAX in gpm) 800 2000 20(XJ 2000 2000 
Number of considered wells (M") 2 3 5 9 5 
Extraction wells used (Figure I) EX!, EX2 EXI-EX3 EX!-EXS EX!-EX5 EXI-EX5 
Compute optimal injection rates no no no yes no 
Number of planning periods I I I I 2 
Number of simulations !53 !50 279 350 249,249 

One I gpm = 5.-1.504 m 1 'd. The number nf :-.imulations is that required h' eqimate the coefficients of 
thL' re-..;pml'><.' ..,urfaCl' fur each '>l'enario. The wrg<:t conCl'ntratinn is 5 pph (MCL !ur TCE). 
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80,~~--~----~~----~----~----~----~----~------t 

Vaues frool SimJatioos 
_ _ _ ValLeS from Polynorrial Function 

+ GA. solution 

~ IV' sdliion 

Note: 1 gpm = 5.4054 rril!d 

0 100 200 300 400 500 700 BOO 

P1 (gpm) 

Figure 2. Contours of CMAX for scenario A 1. 

Tahlc 2 sununarizcs scenario assumptions and the numher 
11fsimulatiims required hl construct the RS. In the A, B. C. and 
E scenario famiJic:-., extraction rates an.• computl'd and injec· 
tion rates nre !lxeJ. 

In the E scenarios we consider two planning periods. ln the 
first 2-year period, continuous leaching of contaminant from 
the vadose zone to the aquifer is prescnr. Leachate concentra­
tions and amounts are hased on field data [EA Engineering, 
Science and Technolo!,_'\', 1904]. In the second 1-year period, no 
contaminant lL"aching is present. Although we use the same 
management goals ftn both periods, the presented methodol­
ogy also permib changing managt:ment requirements fo-r dif­
ferent phmning perioJs. 

4. The Response Surface 
Rather than including detailed simulation expressions within 

mixed-integer nonlinear (tvlJNLP) or GA problems. we repre­
sent systt:m response to pumping using sirnpk- approximation 
(n:spunsc '>urfacc) functions. ln this section we investigate the 
shape of the RS. WL' abo shmv hmv dose the approximating 
fHilL'Litlll i'> In tilL' oKtual surface in the neighhurhnod Df inter­
e'>L 

We tirst investigate the case of two extraction wells and four 
injection wells. Injection rates are fixed. We study only the 
effect of changing tbe extraction rates on CMAX (scenario 
A I). For each combination of the two extraction rates we use 
the tlow and transport simulation models to compute CMAX 
at the ent.l nt the rlanning period. Figme ~ shows the results 
diHl til~.· ltllllllllr" 1lf rh~..· hc'>L p1llynnmial approximating. func~ 

tion (found using robust regression). The solid lines in Figure 
1 arc hast'd on 15:1 simulations. Tht: pumping rates for these 
simulations are selected at random in the solution space. 

In Figure ~ the minimum CMAX occurs when total extrac· 
tion from the two wells equals pMAX (along the diagonal line 
in figure 2). If extraction wells are near areas of high concen­
tration, we would expect concentrations to drop as total ex­
traction increases. This intuitive result is important because it 
implies that for subsequent cases (with more potential wells) 
we only need to consider combinations of pumping rates that 
total p"-V\x. This will greatly reduce the number of simulations 
required to construct the RSs. It will also make the approxi· 
mating functions more a~:curate since we will consider a much 
smaller subspace of the decision space. If this assumption is not 
used, we expect the number of simulations required to fit the 
polynomials to grow by a factor of at least 2. 

Another feature is more easily obse~Ved by examining Fig­
ure 3, which shows the results for the combinations of extrac­
tion rates for \vhich total extraction equals pMAx_ There is only 
one glohal minimum (at PI = 600) and one local minimum (at 
Pl = 0). Also, the approximating function is at its minimum at 
almost exactly the same location as the RS. 

For the case of 3 extraction wells and 4 injection wells (with 
fixed injection rates) we study the effect on CMAX of changing 
the extraction rates (scenario Bl). To he able to visualize the 
results, we consider only pumping sets that total pMAX. Figure 
4 shows the CMAX resulting from simulations and contours· of 
the hcst polynomial approximating function. 

In Figure 4 the approximating funcrion does not fit the data 
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Figure 3. Observed and predicted CMAX versus PI (PI + P2 = 800 gpm. or 3000 Umin). 

as well as Figure 1. However, the fit is still acceptable. Notice 
the obvious glubul minimum and the flat area on the response 
surface around the minimum point. This shows that there is a 
large region of nearly optimal solutions. Any solution in that 
region will result in a CMA.X value that is very close to the 
smallest achievable CMAX. Table 3 shows the polynomial 
coefficients and exponents for scenarios A and B. 

5. The Genetic Algorithm 

GAs are heuristic rules for searching a solution spau;: to 
identify the hest solution. A solution determined using a GA is 
not necessarily optimal. It is merely the best solution identified. 
The use of GAs was first suggested by Holland [1975], who 
based his search on a survival-of-the-fittest rule. Since then, 

P1+P2+P3 = 2,000 gpm 

Values from Simulations 

- _ - Values from Polynomial Function + GA solution 

E 
c. 
~ 
N 
0. 

<) NLP solution 

Note: 1 gpm = 54054 m3/d 

P1 (gpm) 

Figure -'· Contours of CMAX for scenario Bl. 
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GAs have been used in many disciplines [Davis, !99!; Gold­
berg, 1989], 

In groundwater management, GAs have been used by lvfcK­
inney and Lin [1994], Ritzel eta/, [1994], Rogers and Dow/a 
[1994], Cieniawski eta/, [1995], and others, In this paper we focus 
on how the GA is implemented to address the problem at hand. 

The major advantage of GAs is that they are independent of 
the particular problem being analyzed. The only requirement is 
an objective (fitness) function indicating system performance. 
This function can be nonlinear, nondifferentiable, or discon­
tinuous. A GA requires only tbat system performance can be 
evaluated for any set of the decision variables. In formulation 
I the fitness value is the reciprocal of CMAX. Therefore the 
GA tries to find the pumping rates that will result in the 
smallest CMAX. In formulation 2 the fitness is the reciprocal 
of total cost. 

We used a GA ·with the basic reproduction, crossover, and 
mutation operators. The GA used is very similar to the simple 
genetic algorithm (SGA) of Goldherg [ 1989]. The only differ­
ence is that we use tournament selection [Goldherg, 1990} 
instead of the roulette-wheel selection of the SGA. 

One problem with GAs is that they do not provide an explicit 
method tv handle nmstraints. Instead of explicitly considering 
constraints, penalty terms are added to the objective (fitness) 
function. In formulation I a single constraint limits total pump­
ing. A simple method to handle such a constraint in a GA is to 
assign a very low fitness value for any set of pumping rates 
whose sum exceeds the upper hound on total pumping. In all 
testl'd problems, after few iterations the GA hardly tries to 
evaluate the fitness value for any set of pumping rates whose 
sum exceeds pMA .... x. 

In formulation 2 we added an adaptive penalty term to the 
total cost to hanJk the more complex constraint on CMAX. 
This adaptive penalty term adds a large cost to any set of 
pumping rates that result in CMAX greater than the pre~ 
scribed clc<lnup value (Figure 5). Each unit of CMAX greater 
than cleanup value has a cost that is 2 orders of magnitude 
larger than total economic cost. This makes a pumping strategy 
with less total cost more favorable than another with a larger 
total cost even if neither achieves the required cleanup by the 
same amount. This method was very effective and gave better 
answers than the nonstationary penalty function of Joines and 
Houck (199--lJ, which increases the penalty function as the gen­
eration number increases. The number of pumping rate sets 
that do not achieve acceptable CMAX values was very small 
after 10-25 generations. 

The methodology proposed herein differs from that of McK­
inney and Lin jl994j in that we use an RS approach inside the 

Table 3. Polynomial Coefficients and Exponents for 
Scenarios A and B 

Polynumial CoefliL·ienh 
(Equation ( 13)) 

{3,, 
J3u(au. 'YI.l) 
~,(a,_,,>d 
13u( a:-.J• 'YJ.J) 
J3~,z(a~,z, 1'1.2) 
J3u(al.~• 'Yu) 
131,_1( a1 .. \• 1'2 __ ,) 

Scenario A 

JR_886 
~0,790 ( 1,064, 0,(){)()) 
~ LOOO ( L036, 0_000) 

~0,004 (0,811, 2.450) 

Scenario B 

0.2757 
9,174 (tU135, 0_000) 
0,]45 (0,590, 0_000) 

~0,232 (05021, 0_000) 
~4,030 (0,248, 0,009) 

0,001 (0,000, 2,776) 
~0,001 (0.406, 2.481) 

Pumping rates in the polynomial equation are scaled by dividing 
thdr magnJtulk b~ lli.OilO 

Fitness Function 

Input: pumping rates 

Output: fitness value 

if( sum of pumping rates > size) return (1.0) 

fc(pumping rates) CMAX= 

PW present worth of installation. pumping, and treatment costs 

(in millions of dollars) 

if(CMAX >~~Ill) PW= PW'(1+100•(CMA.X-C:1611n) 

return(1 000.0/PW) 

Note: PW ranges between 0.5 and 50.0. 

Figure 5. Evaluation of fitness for second formulation. 

optimization model while McKinney and Lin used an embed~ 
ding approach. Using the RS approach reduced the computa· 
tiona! burden significantly. It also allowed us to find the best 
set of control parameters for the GA (population size, cross~ 
over probability, and mutation probability). JIIcKinney and Lin 
[1994] implemented their GA on CM5 parallel computers with 
various numbers of processors. They used different crossover 
and mutation probabilities for the different problems addressed 
but offered no guidelines for selecting these probabilities. 

We used binary coding wherein the pumping rate from each 
well is represented by- L digits of the chromosome. For exam~ 
pie, when we tried to optimize the pumping rates from five 
extraction wells, the chromosome length was 5L. The chromo­
some length, L, is determined from the desired representation 
accuracy. For example if the pumping rate from one well can 
range between pL and pu and the desired accuracy is e, then 

( 
IPu- P'i) 

Jog I + '------' 
" L = -'---'--~Jo-g~2--'- (14) 

where the logarithm is taken to any base. For example, when 
pu is 800, pL is 0, and the required accuracy is 0.5, then the 
chromosome length is li. If we have five such pumping rates, 
the final chromosome length is 55. Notice that different pump­
ing rates can have different accuracy values if desired. Longer 
chromosomes can be used to the desired accuracy at the ex­
pense of more run time for the GA. We used e = 0.5 gpm (1.9 
Umin) for all scenarios. The pumping rates ranged between 0 
and 800 for scenarios C, D, and E and between 0 and 1200 for 
scenarios A and B. Therefore L had a value of 11 for the 
former scenarios and 12 for the latter scenarios. 

Control parameters selection greatly affects the answer corn~ 
puted by the GA. However, there are no published general 
guidelines for selecting these parameters. Many studies have 
attempted to evaluate parameter values lhat work \veil under a 
variety of conditions [De long, 1975; Schaffer et a/,, 1989], 
However, their results are problem specific and depend on how 
the GA is implemented. A major advantage of our proposed 
methodology is that the size of the study area affects only the 
time required to evaluate the response functions. Therefore, 
after the response functions are evaluated, the GA lakes very 
little time to find the best set of pumping rates. This allowed us 
to use the GA for a vel)' large number of control parameter 
selections. 
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Table 4. Results for Scenarios A2 and B2 

r\2 

GA NLP GA MINLP 

Optimal pumping rates, gpm 
EXI 620 617 817 837 
EX2 180 183 785 933 
EX3 0 60 

Total pumping, gpm 800 800 1602 1830 
Present worth of costs, we. dollars 1.136 1.141 2.467 3.203 

One gpm = 5.4504 m3:'d. 

At least 60 sets of control parameter~ (population size, 
crossover probability. and mutation probability) were tested 
for each problem. The results indicate that the population size 
should he het\veen lOO' and 200. Our experience is that larger 
population sizes Tt.'quire extra time but Uo not afh .. •ct the solu­
tion. However, if the number of wells is large or if only a 
relatively small subspace provides a feasible solution, then a 
larger population size might he needed. 

In this study the best crosso\'er and mutation probabilities 
are 0.7-1.0 and 0.06-0.0R. resP'.:ctively. Generally. a crossover 
probability less than 0. 7 ahvays provided an inferior anwier. A 
mutation probnbility greater than O.OK increased the number of 
infeasible evaluations without impnn-ing the tlnal answer. The 
GA performed most poorly when the mutation probability was 
zero. Thi~ is expected since mutation pre-vents the GA from 
getting locked at local optima. 

The previous discussion only provides general guidelines for 
selecting control parameters· values. The mentioned values 
should be used as a starting point and should be revised. 
Different values might result in better answers for other prob­
lems. When i.l response surface is used, little effort is needed in 
trying different st:ts of control parameters for a given problem. 

6. Mathematical Programming 
For formulation l the optimization pmblcm has linear 

(equations (2) and (3)) and nonlinear (cqwuion (-f)) con­
straints. This is a nonlinear programming (NLP) problem for 
which several rohust -:.olvers are available fDmd. 19.S5: A-funagh 
and Saunders, 19H71. We used ~HNOS !Murtagh am/ Saundt>J"S, 

1987]. ~HNOS has Ucen used successfully for a wide range of 
groundwater managemcnr problems [e.g., Cunha eta/., 1993; 
Gharbi and Peralw, 1994; Peralta eta!., 1995; Takaha.shi and 
Peralta, 1995~ Jlar.wkawa eta/., 1991; Reichard. l99Sj. 

For formulation 2 in addition lO the linear and nofllinear 
constraints, the optimization model has binary variables, IP( e) 
(equation (5)). The resulting optimization problem is a mixed­
integer nonlinear (MINLP) optimization problem. Available 
MINLP solvers are not as reliahle as those fnr NLP and other 
mathematical programming problems I Viswanatlum and Gross­
mann, 19YOJ. We used the DICOPT + + solver dcvdoped at 
Carnegie Mellon University !Koci1· a11d Gro.nmrmn. !9.S9; 
Vi.mwratlwn and GrO\'.mwnn. 1990J. The MINLP algorithm 
inside DICOPT+ + is based on the outer-approximation algo­
rithm. DICOPT++ ~ulves a series of NLP subproblems and 
MIP (mixed-integer programming) master problems. To solve 
the subproblems, DICOPT++ uses external optimization al­
gorithms. In this srudy we used MINOS [M11rtagl1 and Saun­
ders, 19R7J to solve the NLP subproblems and OSL [IBM 
Corporation. !991J to -.;nln.'· the l'vl!P master problems. 

To be able to compare the GA. results with those of NLP and 
MINLP, we tried both direct minimization as well as reciprocal 
maximization. We also used the constraints directly and as 
penalti~s added to the objective function (as done in the GA). 
For all tested problems NLP or MINLP found better answers 
by direct minimization when constraints were used directly. 
This is expected because using the reciprocal introduces un­
necessary nonlinearity into the optimization problem. In the 
next section we report only the best answer found by NLP (or 
MINLP). 

7. Results 
Results for scenarios A and Bare shown in Figures 2 and 4. 

For the NLP problem of scenarios AI and B1, both the GA 
and NLP found the gloh<ll minimum solution. However, for the 
MINLP problems of scenarios A2 and 82. the GA. founJ a 
better .solution than MINLP (Table 4). As explained hclow, the 
GA generally performed better than NLP and MINLP for all 
tested scenarios. 

In scenario Cl the GA's minimum CMAX is 1.451 ppb, 
while CMAX for the NLP solution is 1.504 ppb. This indicates 
that the answer found using NLP is a local minimum. Similar 
results were found for .scenarios Di and EI. Tables 5 and 6 
summarize the results for the C and E .scenarios, respectively. 

Figure 6 shows the contaminant concentration contours af­
ter the pumping strategies of scenario CI are implemented. 
The difference hern-·een the two strategies is unclear. Although 
the GA resulted in a strategy with a lower value of CMAX, the 
NLP strategy required one Jess well and resulted in concenrra· 
tions that are almost identical from a practical viewpoint. 

The results shown in Figure 6 reflect a fact noted in the 
discussion of Figure 4. In Figure 4 there is a wide flat ''valley" 
around the optimal solution. Although the pumping rates dif­
fered greatly in that valley, CJ\.·fAX was essentially the same. A 
similar behavior is c.xhihited in Figure 6, where the pumping 
rates are Jiffncnt hut thl! resulting concentr~1tions are very 
similar. However, this is not the case for cost minimization for 
which !vfiNLP and GA produced greatly different results. 

Figure 7 show~ how cmt is accumulated over the planning 
period <lfter the optimal strategies of scenario C2 are imple· 
men ted. Over the entire planning period, the MINLP pumping 
strategy costs ahout 32% more than the GA's strategy. 

In scenarios Dl and D2, where the injection rates were not 
fixed, the answers that were obtained were not hetter than the 
answers for scenarios Cl and C2. This was expected because 

Table S. Results for the C Scenarios 

Cl C2 

GA NLP GA MINLP 

Optimal pumping rate:-., gpm 
EXI "''" 6lJJ 656 1061 
EXZ 5JZ 4B6 485 525 
EX3 651 800 39 27 
EX4 67 21 23 II 
EX5 162 0 0 0 

Total pumping, gpm 2000 2000 1203 1613 
C!v!AX, pph 1.451 1.)04 
Present worth of costs, H¥' dollar:-; 2.307 3.1154 

One gpm = 5..:1504 m·\-J 

' 

' 

., 
I 



• 
• 
• 

• 

• 

ALY AND PERALTA: COMPARISON OF GENETIC ALGORITHM AND PROGRAMMING 2423 

Table 6. Results for the E Scenarios 

Optimal pumping rates, gpm 
EX! 
EX2 
EX3 
EX4 
EX5 

Total pumping, gpm 
CMAX, ppb 
Present worth of costs, 10° dollars 

GA 

1076, 1124 
252,373 
78,210 
12,0 
582,293 
2000,2000 
8.526, 2.6 73 

EI 

NLP 

1199, 1230 
336,456 
465,314 
0,0 
0,0 
2000,2000 
9.459, 3.034 

GA 

685, 730 
272, 382 
0,0 
0,0 
388, 300 
1345, 14I2 

1.628, 0.624 

E2 

MINLP 

1197, 1245 
292,375 
0,0 
0,0 
0,0 
1489, 1620 

1.773, 0.905 

One gpm = 5.4504 m3Jd. Each cdl contains two values, for the first and second planning periods, 
n:spective!y. 

the fixed injection well locatinns are not close enough to 
change groundwater flow near the plume center. 

For the GA the best answer was always obtained before 
generation 250. However, we terminated the GA after at least 
500 generations for all tested prohkms. For a few problems we 
terminated the GA after 10,000 generations. This never im­
pnwcd the solution for mly tested problem. 

8. Summary and Conclusions 
The GA performed as well as or better than mathematical 

programming (in terms of the objective's numerical value) for 
all tested prohkms when response functions were used for 
each. Only for the simplest problem was mathematical pro­
gramming able to find the same answer as the genetic alga-

rithm. Furthermore, since response functions dramatically re­
duce the computational effort compared to aU embedded 
approaches, the GA approach with response functions is rec­
ommended for similar problems. 

Other advantages of the GA include the simplicity of imple­
mentation, speed, and the simple incorporation of integer vari­
ables within the optimization problem. The best set of control 
parameters for the genetic algorithm was found informally by 
using several sets of control parameters. A population size of 
about 150, a crossover probahility of about 0.85, and a muta­
tion probability of about 0.08 resulted in the best answers for 
almost all tested problems within less than 300 generations. 
The use of the re~ponse surface (RS) to represent the simulation 
constraint~ allows selection of the best set of control parameters. 

6,00,o+---'---'---'---'---'---'---'---'---'---'---+ 

--- TCE contours (GA solution) 

- - - TCE contours {NLP solution) 

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000 5,500 

Figure 6, TCE contours Jfrer implementing optimal strategie~ for scenario CL 
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¢ GA. Solution 

c MINLP Solution 
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Figure 7. Accumulated cost versus time for scenario C2. 

Since L'Otltrol parameter values have a great cffL'ct on the 
( ii\ JK'rfnrm:tnu·. L'~llclul ..._·untrol p;rranll:kr :-.election i:-. more 
imponant if tilL· ( ii\ rli.:L·d-; :-.i~nitkant CPU time to :-.nlve thL' 
lljllirni.ratitlll pn)hlern .. l.hi:-. -..ituatillll ari:-.e:-. in gnntndwakr 
m;tnagcrnent whL·n tilL' ..._·mh .... ·dding method is u ... cd to formuhllc 
the :-.imulation cnn:-.trainh. Therefore control parameter selec­
tion is more important if the embedding method is used. 

The functioned form we usl..'d for the RS is merely one that 
performed \VI..' I! ft)r all tested scenarios. Other functions might 
be h..: Iter for other :-.ittwtions. C'ipecially when the number of 
wells increase:-.. 

For th~.: ca'ies ~."valuated in this study the GA performance 
\Vas cxcclknt. llowevl'r, for more complex problems other 

operator:-. can be investigated to enhance the GA performance. 
Niche methods, which keep solution~ from different regions of 

the l.kcision spaL..:. can be used to g.enerate several .optimal 
solutions and reduce the chance<> of premature convergence to 

]oc;:d minima. Otht . .'r up..:raturs. such ~IS reordering operators, 
'>l'Xual detl'nnin<Jtidn. and elitism. introduce diversity imo the 
pnpulatinn to introdun: a 'iimilar dfl!ct. Other variations of 

tournament selection can he u:-.cful for difkrcnt problems or 
whL"n a brg..._· number uf pute11tial \veils is used in the optimi­
zali<l!l pnlhil'm ftlnntdation. 

Although the rnethnds presented in this paper an:: developed 
for aquikr cleanup problems, the methodology and formula­

tion can hl' applied to other mi.xed integer nonlinear optimi­
zation problcrm. 

Ad.nonlc-dgmenl. Thi~ n:s..:arch \\as supported hy thi.! Ut:dt Agri­
culrurct! E.\pcrim.:nt Stcllit)n. Utah Statc Unil'crsity. Lt•gan. Utah 
X-tJ22--f~lll. ..\rrrtl\"L·d :1~ jPurnal papl'r 7JS..f. 

References 
AhlfdJ. D. P., J. M. Mulwy, n. F. Pimkr. anti E. F. Wnoll, f'ontam­

il~:tk·d gnmndwater remedial itlll using simulation. optimization, 11nd 
sensitivity th..:ory, I. Mm.kl t.lt::vclopnwut, Water Re.wmr. Res., 2./(J), 
-IJI··-41, l()XK. 

AhlkiJ. D. P., Two-stage groundwat..:r rcmeJiatiun design. J. Wma 
Resour. Plann. Manage., 116(4), 517-5:29, 1990. 

Alley, \'I., Regression approximations for transport model constraint 
sets in combined simulation-optimization studies, Water Resour. 
Rn .. 2.?(4). SXJ-SH6, l9.S6. 

Arwood. D. F., and S. M. Gorelick, Hydraulic gradient control for 
groundwater contaminant removal, J. f~nfr(>J., 76, 85- to6, 19S5. 

Cicniawski, S. E., J. W. Ehcart, :md S. R<mjithan. Using genetic algo­
rithms to solw a multiohjectivc groundwater monitoring pmblem, 
H~uer Re!.Dllr. Res., 3!(2), JlJ9-409, llJ95. 

Cooper, G .. R. C. Peralta, and J. 1. Kaluarachchi, Optimizing separate 
phase light hydrocarhon recevery from contaminated unconfined 
aquikrs.Ad1·. Water Resour., .?I, 339-350, llJ9K 

Cunha, M. C. M. 0., P. Hubert, and D. Tyteca, Optimal management 
of groundwatt:r system for !;casonally varying agrieulllrral produc­
tion. Watt'r Uesour. R.e~·., 2Y(7), 2415-:.:~426, 1993. 

Davis. L (Ed.). Handbook of Genetic A~l{orithms, Van Nostrand Re­
inhold. New York, 1991. 

De Jong. K. A., An analysis of tho.: behavinr of a da:-.s nf genetic 
adaptiv..: system:., Ph.D. Jiss..:rtatinn, Univ. of Mich., Ann Arbor, 
1975. 

Drapt:r, N. R., Applied Regression Anu(l'sis, John Wiley, New York, 
19~1. 

Drud. A. S., A GRG code for large sparse dynamic nonlinear nptimi­
zation prohlcms, A1mh. Programm., 31, 153-191, 1985. 

EA Engineering. Science and Technology, Groundwater modeling, 
technical report, USAF Contract F4162.f.-92-D-8005, Lafayette, Cal­
if., 1994. 

Ejaz, M. S., and R. C. Peralta, Modeling for optimal management of 
agricultural and domestic wastewater lo:~ding to str..:ams, Wafer Re­
sour. Rei'., 31(4), 1087-1096, 1995. 

Gharhi, A., and R. C. Pcr:1lta. Integrated cmhcdding optimization 



' 1 
I 
I ·• I 
• ' I 
~ 

• 
I 
I 

~ 
I 

~ 

i 
J 
I 
~ 

1 

1 

ALY AND PERALTA: COMPARISON OF GENETIC ALGORITHM AND PROGRAMMING 2425 

applied to S<Jit Lake valley aquifers, H'arer Resour. Res., 30(3), 817-
832, 1994 . 

Goldh(!rg, D. E., Generic Algorithms in Search, Optimization, and Ma· 
chine Leaming, Addison-Wesley, Reading, Mass., !989. 

Goldherg, D. E., A note on Boltzmann tournament selection for ge· 
netic algorithms and population-oriented simulated annealing, 
Complex .S)·.}t., -J, 445-460, 1990 . 

Gorelick, S. M., A review of distributed parameter groundwater man­
agement methods, IViuer Resuur. Res., 19(2), 305-319, 1983. 

Gorelick, S. M., C. I. Voss, P. E. Gill, \V. Murray, M.A. Saunders, and 
M. H. Wright. Aquifer reclamation de:,ign: The use of contaminant 
transport simulation combined with nonlinear programming, Water 
Resour. Res., 20(4), ..J-15-427, l9R4. 

Hoffman, F., Gwundw::..ter remediation using "'sman pump and treat," 
Growulwuter, 31( 1 ), 98-106, 1993. 

Holland, J. II., Adaptivn in Nat11raland Arrijicial Systems, Univ. of 
Mich. Press, Ann Arbor, 1975. 

lRtvt Corporation, Op1imiza1ion Sofrware Libra!)·, Guide and Reference, 
release 2, 3n1 eli., Kingston, N.Y., 1991. 

Joines, J. A., ami C. R. Houck, On the use of non-stationary penalty 
functions tn su1ve nonlinear constrained optimization problems with 
GAs, paper presented at First IEEE Conference on Evolutionary 
Computation, Inst. of Elcctr. and Electron. Eng. Neural Network 
Counc., Orlando, Fla., June 27-29, 1994. 

Kocis, G. R., and I. E. Grossmann, Computational experience with 
DICOPT solving MINLP problems in process systems engineering, 
Comptll. Chem. Eng., 13, JL)7-315, 1989. 

Lcfkoff, J. J., and S. ~1. Ciorelick, Simulating physical processes and 
economic behavior in saline, irrigated agriculture: Model develop-­
ment, IV!l/er Resour. Res., 26(7), 1359-1369, 1990. 

tvlarquis, S. A, and D. Dineen, Comparison between pump and treat, 
hiorestoration, and biorestoratinn/pump and treat coffibined: Les­
sons from l'Omputer modeling, Ground Water Monil. Rev., spring, 
105-119, !994. 

Marryott, R. A., Optimal groundwater remediation design using mul­
tiple control tel'hnolOgies, Groundwater, 31(1), 98-106, 1996. 

Marryolt, R. A, D. E. Dougherty, and R. L. S101lar, Optimal ground­
water management, 2, Application of simulated annealing to a field­
scale contamination site, Water Resour. Res., 29(4), 847-860, 1993. 

Matsukawa, J., B. A. Finney, and R. Willis, Conjunctive-use planning 
in Mad River basin, California, J. Water Resow. Plann. Manage., 
Jl8{2), 115-J:\2, 1991. 

McDllll;tld, M. (J., and A W. I larhaugh, A thn:c-Jimcnsional linite­
diffcrcncc groundwater model, U.S. Gt'ol. S11n•. Opm File Rep. 83-
875, 19XH. 

McKinney, D. C., and M.-D. Lin, Genetic algorithm solution of 
groundwater management models, Water Resour. Res., 30(6), 3775-
3789. !994. 

McKjnney, D. C., and M.-D. Lin, Approximate mixed-integer nonlin­
ear programming methods for optimal aquifer remediation design, 
Wmer Resour. Res., 31(2), 847-860, 1995. 

Mercer, J. W., D. C. Skipp, and D. Griffin, Basics of pump-and-treat 
groundwater remediation technology, Rep. EPA/600!8-90!003, U.S. 
Environ. Prot. Agency, Washington, D. C., 1990. 

Murtagll, B. A, and M. A Saunders, A'/JNOS 5.1 U.va's Guhlt•, Ut•p. 
SOL 83-20R, Stanford Univ., Stanford, Calif., l9H7. 

Peralta, R. C., and R. Ward, Short-term plume containment: Muhi­
objective comparison, Grmmdrvater, 29(4), 526-~535, 1991. 

Peralta, R. C., H. Azarmnia, and S. Takahashi, Emhedding and re­
sponse matrix techniques for maximizing steady-state ground-water 
extraction: Computational comparison, J. Grmmd lVater, 29(3 ), 357-
364, 1991. 

Peralta, R. C., J. Solaimanian, and G. R. Musharratlah, Optimal dis­
persed groundwater contaminant management: MODCON method, 
J. Water Resour. Plann. J\4anage., 121(6), 490-498, ltJ95. 

Reichard, E. G., Groundwater-surface wat..::r management with stn­
chastic surface water supplies: i\ simulation optimization approach, 
Jliuer Resour. Res., 31 ( ll ), 2485-2865, 1 tJ95. 

Ritzel, B. J., 1. W. Eheart, and S. Rajithan, Using genetic algorithms to 
solve a multiple objective gwunJwatcr pollution containment proh­
lem, Water Resour. Res., 30(5), 15!-19-1603, 1994. 

Rizzo, D. M., and D. E. Dougherty, Design optimization fnr multiple 
manag~ment period groundwater remediation, Wtlter Remur. Res., 
32(8), 2549-2561, 1996. 

Rogers, L L, and F. U. Dowla, Optimization of groundwater reme­
diation using artificial neural networks with par:J!Id sohtte transport 
modeling, Water Resour. Res., 30(2), >l57-481, 199-l. 

Schaffer, J.D., R. A. Caruana, L. J. Eshelman, and R. Das, A stuJy of 
control parameters affecting online performance of genetic algo­
rithms for function optimization, in Schaffer, J. D. ( ed.), Proceeding!i 
of rhe 71tird 1ntematianal Conference on Gene lie Algorlfhms, edited 
hy J. D. Schaffer, Morgan Kaufmann, San Francisco, Calif., 1989. 

Staudte, R. G., and S. J. Sheather, Robust E~·fimafion and Te~·ting, John 
Wiley, New York, 1990. 

Takahashi, S., and R. C. Peralta, Optimal perennial yich.l planning for 
complex nonlinear aquifers: Methods and examples, Adv. Water 
Resoltr., 18, 49-62, 1995. 

Viswanathan, J., and I. E. Grossmann, A combined penalty function 
and outer approximation method for MINLP optimization, Compttt. 
Chem. Eng., 14, 769-782, 1990. 

Xiang, Y., J. F. Sykes, and N. R. Thomson, Alternative formulations 
for optimal groundwater remediation design, J. Water Resour. Plann. 
Manage., 121(2), 171-181, 1995. 

Zheng, C., A modular three-dimensional transport model for simula­
tion of advection, dispersion and chemical reactions of contaminants 
in groundwater systems, Rohert S. Kerr Environ. Res. Lah., U.S. 
Environ. Pro!. Agency, Ada, Oklahnnw, J9lJO. 

A. II. Aly, Department of Biological ami lrrigatinn Engineering, 
Utah State University, Logan, UT 84322-4105. (alaa(glssol.agirrig. 
usu.edu) 

R. C. Peralta, Department of Biological and Irrigatiun Engineering, 
Utah State University, Logan, UT 84322-4105. (pcralta@cc.usu.edu) 

(Received March 19, 1998"; revised Decemher 22, 1998; 
accepted December 23, 1998.) 


