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OPTIMAL IN-SITU BIORMEDIATION SYSTEM

DESIGN USING SIMULATED ANNEALING

H.-J. Shieh,  R. C. Peralta

ABSTRACT. The presented procedure combines continuous simulated annealing (CSA) heuristic optimization with
BIOPLUME II simulation for optimizing in-situ bioremediation system design. The design goal is to minimize the total cost
of facility installation and operation needed to achieve contaminant plume containment and cleanup. System design elements
include pumping rates and well locations. During optimization, pumping rates are treated as continuous variables, differing
from previously reported simulated annealing combinatorial optimization for groundwater management. To improve
computation efficiency, CSA annealing schedules employing four different temperature update functions (TUF) are
contrasted. Each yields somewhat different optimal designs and requires different computation effort. An adaptive TUF used
almost 4,000 simulations to develop the lowest-cost design. A geometric TUF used 5% fewer simulations to create a design
costing about 3% more. Site characteristics significantly affect optimal system design features. For a specific design,
bioremediation improves with increasing hydraulic conductivity, longitudinal dispersivity, and remediation period and with
decreasing retardation factor.

Keywords. Aerobic biodegradation, Continuous simulated annealing, Groundwater remediation, In-situ bioremediation,
Optimization.

n-situ bioremediation of contaminated groundwater is
employed because of its cost-effective ability to
achieve satisfactory cleanup. Major advantages can
include lower capital cost and permanent contaminant

elimination (Cookson, 1995). An in-situ bioremediation
system consists of subsurface water delivery systems
(injection wells or trenches) and extraction wells. The
recharge water provides nutrients and terminal electron
acceptors to stimulate microbial growth. The micro-
organisms transform contaminants to less harmful chemicals
or mineral end products, such as carbon dioxide and water.
Oxygen is the most common in-situ bioremediation electron
acceptor. Downgradient wells extract contaminated ground-
water to contain the plume and to enhance movement of
electron acceptors and nutrients. Contaminated groundwater
from the extraction wells is treated by air stripping or
activated carbon. Downgradient monitoring wells are used to
verify plume containment.

Desired is a cost-effective remediation system for
removing sufficient contaminants to meet regulator require-
ments. In designing a system, modelers commonly use
simulation models to predict remediation effectiveness and
the cost of alternative system designs. Because of the
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countless number of feasible designs, a trial-and-error
simulation approach might never identify a truly optimal
remediation system design. Design can be enhanced by
combining simulation models with optimization techniques.

Coupled groundwater simulation model and optimization
techniques have been reported for hydraulically managing
groundwater, with or without surface waters, and for
capturing contaminated groundwater. A simulation/optimi-
zation (S/O) management model directly incorporates a
physical system simulation model with or within an
optimization program that identifies the best management
strategy. Such an optimal strategy maximizes (or minimizes)
management  objectives while satisfying constraints on
hydraulics (pumping rates, hydraulic heads, hydraulic
gradient, or velocities), concentration (maximum contami-
nant levels), and other variables.

S/O models that primarily optimize flows and heads
usually employ traditional optimization methods, such as
linear programming, nonlinear programming, dynamic
programming, quadratic programming, and mixed-integer
programming. However, some researchers have also
addressed contaminant transport via traditional optimizers.
For example, Cooper et al. (1998) optimized light
nonaqueous phase liquid recovery using nonlinear
programming.

S/O models explicitly addressing contaminant concentra-
tions have been presented for remediation efforts, such as
pump-and-treat operation, soil vapor extraction (Sun et al.,
1996), and in-situ bioremediation (Minsker and Shoemaker,
1996). Minsker and Shoemaker (1998) coupled their successive
approximation linear quadratic regulator (SALQR) with the
Bio2D finite element biodegradation simulator. Their cost
function considered pumping operation, maintenance, oxygen
addition, and treatment costs. It did not include well installation
and facilities capital costs.

I
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S/O models that incorporate contaminant transport
simulators and constrain concentrations are termed transport
optimizers.  Most transport optimizers employ heuristic
optimization (HO) techniques, such as simulated annealing
(Dougherty and Marryott, 1991; Kuo et al., 1992; Marryott
et al., 1993; Marryott, 1996; Rizzo and Dougherty, 1996;
Wang and Zheng, 1998), genetic algorithm (McKinney and
Lin, 1994; Aly and Peralta, 1999; Reed et al., 2000; Smalley
et al., 2000; Gopalakrishnan et al., 2003; Chan-Hilton and
Culver, 2005), and hybrid algorithms that might or might not
include neural networks (Rogers and Dowla, 1994; Espinoza
et al., 2005). HO methods are advantageous because they do
not need to compute derivatives with respect to decision
variables. Derivatives are sometimes difficult to estimate
analytically  or numerically in highly nonlinear and
non-convex groundwater remediation problems.

Yoon and Shoemaker (1999) contrasted eight
optimization methods for minimizing pumping costs for
in-situ bioremediation of contaminated groundwater. These
included variants of GA, direct search, and derivative-based
techniques. The de-randomized evolutionary algorithm
performed best. Smalley et al. (2000) used a noisy GA to
minimize in-situ bioremediation cost (including monitoring
cost, remediation well capital and operating costs). Yoon and
Shoemaker (2001) used both binary-coded GA and
real-coded GA with directive recombination and screened
replacement  for minimizing total pumping cost of in-situ
groundwater bioremediation system.

A desirable attribute of simulated annealing (SA)
optimizers (Corana et al., 1987) is that convergence to a
globally optimally solution has been proven for the functions
minimization  of continuous variables. For dewatering,
Dougherty and Marryott (1991) assumed five wells and six
discrete pumping rates (solution space of 65 = 7776 possible
states) and used SA to minimize the pumping plus well
installation cost. Rizzo and Dougherty (1996) applied SA to
determine time-varying remediation well locations that
minimize construction, operation, and maintenance costs of
achieving volatile organic chemical cleanup within 30 years.
In these SA applications, the decision variables are restricted
to discrete values such as a specified number of pumping
rates and well locations (Dougherty and Marryott, 1991;
Rizzo and Dougherty, 1996). Wang and Zheng (1998)
compared nonlinear programming, GA, and SA to maximize
extracted groundwater while minimizing pumping cost. Well
cost versus capacity was assumed to be a continuous function
and hence suitable for nonlinear programming. Pumping
decision variables were treated as discrete values both in SA
and GA. The precision of decision variables depends on the
number of decimal points used for the generated random
number. The SA performed significantly better than the GA
for the maximum yield water supply problem.

By contrast with previous work, we here: (1) extend SA
application to treat pumping rates as continuous decision
variables and use Corana's neighborhood function,
(2)�compare four SA algorithms with different annealing
schedules for optimal in-situ bioremediation system design,
and (3) design an in-situ bioremediation system that
minimizes total system installation plus operation cost.
Continuous simulated annealing (CSA) can address such a
stepwise system cost function for which derivatives are
difficult to estimate analytically or numerically. Decision
variables include pumping well locations and pumping

(extraction and injection) rates. The designed system must
satisfy constraints on pumping rates, hydraulic heads, and
contaminant  concentration at the plume source and at
downstream monitoring wells. Subsequent discussion
contrasts the effect of CSA annealing schedule (AS)
parameter set selection on optimal solution qualities and
required computational time and discusses optimal system
design sensitivity to site and contaminant properties.

IN-SITU BIOREMEDIATION OPTIMIZATION

PROBLEM FORMULATION
Here, the objective function is to minimize total cost of

extraction and injection well installation, facility capital
costs, and operation costs. This is more realistic for new
system designs than an objective function that includes only
operation cost (Ren and Minsker, 2005). Historically, most
groundwater optimization research has involved optimizing
operation only (Culver and Shoemaker, 1997; Johnson and
Rogers, 2000). However, capital facility installation costs
can be significant, especially when optimizing for short (such
as five year) groundwater remediation efforts, (Culver and
Shoemaker, 1997; Kalwij and Peralta, 2006). The desirability
of optimizing capital costs and operation costs together is
recognized (Peralta et al., 2008).
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where
Z = total cost of in-situ bioremediation

system
e = index denoting a candidate injection or

extraction location
p(e) = injection or extraction rate at location e

(L3/T)
Cp(e) = cost coefficient for injection (including

oxygen, nutrient, and pumping costs) or
extraction (including treatment and
pumping operation costs) ($ per L3/T)

Mp = total number of injection and extraction
wells

CIP(e) = injection or extraction well installation
cost at location e ($ per well)

IP(e) = zero-one integer for injection or
extraction well existence at location e
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Me = total number of extraction wells
Mp = Mi + Me.
The stepwise functions of injection and treatment

facilities capital costs are discontinuous because of specific
sizes of pipes, pumps, and facilities. Capital cost of injection
facility D can be expressed as:
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where Dq is the capital cost of the injection facility when total
injection rate is between design injection capacity CDq-1 and
CDq, and MQ is the total number of alternative design
injection capacities. Injection capacity CD0 equals 0.
Equation 3, defining treatment facility E capital cost, is
analogous to equation 2 and obtained by substituting:
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, Me for Mi, Eq for Dq, CEq

for CDq, and MR for MQ, where Eq is the treatment facility
capital cost when total extraction rate is between design
treatment capacity CEq-1 and CEq, and MR is the total
number of alternative design treatment capacities. Treatment
capacity CE0 is 0. The equation of treatment facility E capital
cost is expressed as:
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Management model constraints include the following:
� Upper and lower bounds on injection and extraction

rates.
� Bounds on aquifer hydraulic head at injection and

extraction wells.
� Upper bound on final contaminant concentration to

achieve a cleanup standard:

��∀� kCC clk, Te (4)

where Ck,Te is the contaminant concentration at node k
in the end of remediation time Te (M/L3), Ccl is the
contaminant  concentration of cleanup standard
(M/L3), and Ψ is a set of locations where cleanup
standard concentration are enforced. In this study,
Ψ includes all study area nodes.

� Upper bound on concentration at specific locations to
assure plume containment (prevent unacceptable
concentration migration):

��∀� oCC cao, Te (5)

where Co,Te is the allowable contaminant concentration
at node o in the end of remediation time Te (M/L3), Cca
is the allowable contaminant concentration (M/L3),
and Ω is a set of monitoring wells.

SIMULATED ANNEALING
INTRODUCTION TO SIMULATED ANNEALING

Simulated annealing is an algorithmic approach for
combinatorial  optimization problems (Kirkpatrick et al.,
1983; van Laarhoven and Aarts, 1987; Aarts and Korst, 1989;
Otten and van Ginneken, 1989). SA is also known as
statistical cooling (Aarts and van Laarhoven, 1985),
probabilistic hill climbing (Romeo and Sangiovanni-
Vincentelli,  1985), and stochastic relaxation (Geman and
Geman, 1984). SA uses ”hill climbing” moves under a certain
probability distribution (Cerny, 1985; Kirkpatrick et al.,
1983) to escape from a local optimum and obtain a globally
optimal solution. SA convergence to globally optimal
solutions has been proven using homogeneous and
inhomogeneous Markov chain theory (Geman and Geman,
1984; Hajek, 1988; Romeo and Sangiovanni-Vincentelli,
1991).

Key SA algorithm elements (fig. 1) include: (1)�neighbor-
hood function, (2) accepting function, (3)�annealing
schedule, and (4) cost function. Cost function depends upon
optimization problem objectives. The other three elements
control the efficiency and quality of optimal solutions. The
neighborhood function generates the new system configura-
tion based on random movements. An annealing schedule
includes initial temperature, temperature update function
(TUF), inner-loop criterion, and outer-loop criterion. We
specify the initial temperature such that 80% to 90% of new
configurations will be accepted by the accepting function.
The temperature update function controls temperature
decrement.  It reduces the temperature slowly to ensure
convergence to optimality in the continuous solution space.
For each selected temperature, a number of optimal solutions
are evaluated in the inner-loop procedure. For the SA
algorithm to reach equilibrium at a fixed temperature, a
number of inner-loop movements are necessary. The outer
loop terminates when the stopping criterion is satisfied,
recognizing that the algorithm has reached a good optimal
solution and further temperature decrease cannot improve
the solution. Below is a detailed discussion of these elements
based on theoretical results and numerical experiments.

NEIGHBORHOOD FUNCTION
The major difference between continuous simulated

annealing and discrete simulated annealing (DSA) is the
configuration space of decision variables. In the combina-
torial optimization problem, the configuration space is
discrete. The number of system configurations is fixed. In
CSA, the number of states in the configuration space is not
fixed. This makes searching for the optimal solution in
continuous space more difficult than in discrete space. The
neighborhood function, which randomly produces new
configurations derived from an initial configuration, affects
the efficiency of the search for optimal solutions in
continuous space.

Many researchers have proposed different neighborhood
functions for CSA (Vanderbilt and Louie, 1984; Bo-
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 initialize T, X, C;   /* T = temperature, X = optimal solutions, C = cost */

    while (stopping criterion is not satisfied)

    { while (inner-loop criterion is not satisfied)

{ Cnew = cost function(Xnew);

�C = Cnew - Cold;

if ( accepting function(�C, T) )

accept  Xnew  new optimal solutions;

else

reject  Xnew  new optimal solutions; }

update temperature T; }

Figure 1. Pseudo code of continuous simulated annealing algorithm.

hachevsky et al., 1986; Corana et al., 1987; Dekkers and
Aarts, 1991; Wang and Chen, 1996). Applying such functions
to many test problems and numerical experiments has shown
their ability to obtain global optimal solutions. In this article,
we employ a neighborhood function approach proposed by
Corana et al. (1987). The step size of this neighborhood
function varies with the SA algorithm accepting ratio. The
intent is to maintain a 0.5 accepting ratio (half of the new
configurations are accepted and half are rejected at any
temperature).  These procedures are:

Step 1. Specify initial point Xi or select it randomly from
the configuration space.

Step 2. Generate a random number rn from the uniform 
distribution in the range [-1, 1].

Step 3. Xi� = Xi + rnwi
n+1:

wi
n+1 = wi

n[1 + Cu(Ra - 0.6)/0.4] if accepting ratio
Ra > 0.6,

wi
n+1 = wi

n if accepting ratio 0.4 < Ra < 0.6,

wi
n+1 = wi

n / [1 + Cu(0.4 - Ra)/0.4 ] if accepting 
ratio Ra < 0.4,

where n is the temperature step, wi
0 is the initial

step size, and Cu is the parameter controlling the
step size variation.

ACCEPTING FUNCTION

The Metropolis algorithm is a well-known stochastic
accepting function (Metropolis et al., 1953). An alternative
to the Metropolis algorithm is a threshold accepting function
that reduces SA computational cost or avoids using random
numbers and exponential functions (Dueck and Scheuer,
1990; Moscato and Fontanari, 1990; Stiles, 1994; Lin et al.,
1995). Althofer and Koschnick (1991) presented conver-
gence results for a SA threshold accepting function. A
threshold accepting function accepts or rejects a new
configuration based on T. If ΔC > 0 (indicating the new
configuration does not reduce the cost), the new
configuration can still be accepted if ΔC < T. This allows an
uphill move to escape a local optimum. However, decreasing

temperature makes it more difficult to accept a new
configuration that increases cost. Here we employ a threshold
accepting function. It uses a deterministic rule to accept or
reject a new configuration. Advantages are a reduction in
number of simulations and a screening-out of expensive
system designs.

ANNEALING SCHEDULES

An annealing schedule is a key SA element, and includes (1)
initial temperature, (2) temperature update function (TUF), (3)
inner-loop criterion (finite length of Markov chain), and (4)
outer-loop criterion. Annealing schedules control algorithm
convergence toward optimal solutions. Annealing schedules
can be classified as either static schedules or adaptive schedules
(Kirkpatrick et al., 1983; Aarts and van Laarhoven, 1985;
Romeo and Sangiovanni-Vincentelli, 1985; Huang et al., 1986;
Szu and Hartley, 1987; Ingber, 1989). A static schedule has
parameters fixed before the algorithm is started. An adaptive
schedule uses a feedback control to change parameters during
algorithm operation. The temperature decrement is adjusted by
measuring the rate of change of the objective function or the rate
at which the solution space is being searched. Annealing
schedule selection helps speed SA convergence and reduces
computational cost. Romeo and Sangiovanni-Vincentelli
(1991) concluded that static and adaptive schedules efficiency
can only be determined experimentally.

Initial Temperature
The initial temperature must be high enough to guarantee

a high accepting probability for the solution space search. In
a static annealing schedule, the initial temperature should be
specified such that 80% to 90% of new configurations will be
accepted by the accepting function. The initial temperature
is related to the optimization problem cost function, the
neighborhood function, and the accepting function. Deter-
mining a suitable initial temperature is a trial-and-error
effort.

Temperature Update Function
Here we consider four temperature update functions

(TUFs) for CSA application. The following two TUFs are
classified as static annealing schedules. First is a geometric
temperature update function expressed as:
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nn TT �=+1 (6)

where α is the parameter controlling rate of temperature
cooling. The range of α is between 0.80 and 0.99. Second is
the fast SA TUF:

+n

T
Tn+ 1

0
1 = (7)

The temperature update is inversely linear to a function of
time n given a sufficiently high initial temperature T0.

In an adaptive annealing schedule, the rate of decreasing
temperature is neither fixed nor linear (as is the TUF in a
static annealing schedule). Aarts and van Laahhoven (1985)
presented the first of the two adaptive TUFs we apply. When
implemented into a CSA, the adaptive TUFs successfully
obtained the global minimum of several test functions
(Dekkers and Aarts, 1991).This TUF is expressed as:
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where σc represents the standard deviation of cost at
temperature Tn, and the constant δ denotes the distance
parameter, which determines the speed of temperature
decrement.  The second adaptive TUF is expressed by Huang
et al. (1986) as:
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where λ is the control parameter of temperature decrement
(λ< 1). In the application of equation 9, the decreasing rate
of Tn+1/Tn is lower bounded by 0.5 to prevent premature
convergence. Dougherty and Marryott (1991) applied this
TUF to optimize groundwater management.

Inner-Loop Criterion
The CSA algorithm is described by a sequence of

homogeneous Markov chains. Each Markov chain is
generated at a fixed temperature. The length of a Markov
chain is equivalent to the number of movements performed
by the neighborhood function in the CSA inner-loop. The
theoretical  proof of the CSA algorithm states that an infinite
length Markov chain is a necessary condition for reaching a
stationary probability distribution. This means that an
infinite number of movements in the inner loop is a necessary
condition for the CSA algorithm to reach equilibrium at a
fixed temperature. As T approaches 0 (via temperature
update function), the optimal solution generated by the
algorithm converges to a global optimum. In practical
application,  one should use a fixed length of Markov chain
that is sufficiently large for a continuous SA algorithm to
explore the solution space. Basing this length on the size of
optimization problem yields:

L = L0m (10)

where L0 is a constant called the standard length, and m is the
number of decision variables. Dekkers and Aarts (1991)
recommended L0 = 10 for finding the global minimum of
several test functions via CSA algorithm. Marryott et al.
(1993) determined that standard length L0 should be between
10 and 100 for groundwater remediation problems.

Outer-Loop Criterion
The final annealing schedule component is the outer-loop

criterion, also called a stopping criterion. The stopping criterion
is used to recognize that the algorithm has reached a good
optimal solution and further temperature decrease cannot
improve the optimal solution (Kirkpatrick et al., 1983; Aarts and
van Laarhoven, 1985; Huang et al., 1986). Commonly, when
average cost does not change significantly for several
successive temperature decrements, the algorithm stops and the
system is considered ”frozen” at the optimal solution
(Kirkpatrick et al., 1983). In this study, two stopping criteria are
employed. The first stopping criterion is a pre-specified final
temperature. The CSA algorithm terminates when T reaches or
passes the final temperature. This avoids an infinite loop of CSA
runs. The second stopping criterion terminates CSA runs when
the average cost does not change after ten successive
temperature decrements.

CONSTRAINTS HANDLING
There are two methods for handling constraints in SA

applications.  The first, a death penalty heuristic, involves
restricting the solution space to solutions that conform to the
constraints. If a system design does not satisfy all the
constraints, it is automatically rejected. The second employs
a suitably defined penalty function for the constraints. The
penalty cost will be added to the total cost for the violated
constraints. For constrained engineering problems, the
penalty function method is more flexible than a death penalty
heuristic. Moreover, the system design can reach the optimal
solution easier if the search is allowed to cross an infeasible
region. Bennage and Dhingra (1995) concluded that a penalty
function incorporating design constraints yielded the best
results for structural engineering optimization.

Here we deal with the inequality constraints by expanding
the objective function to include penalty cost for infeasible
solutions. A penalty cost function is defined as:

( ) ( ) ( ) ( )
( ) 00

0
constraintsatisfiedfor
constraintedfor violat

�=
>=

Xg
X gXgjPeXf

j

jjj
(11)

where fj(X) is a penalty cost function for the jth constraint (gj(X)
< 0), and Pe(j) is a penalty coefficient for the jth constraint. The
penalty cost is calculated by the distance from feasibility
multiplied by a penalty cost coefficient for the violated
constraint (i.e., if gj(X) > 0). If the constraint is satisfied (i.e., if
gj(X) < 0), the penalty cost is zero. Specifying penalty
coefficients is challenging. A high penalty coefficient will keep
most of the search in the feasible solution space but can lead to
a costly conservative system design. A low penalty coefficient
permits searching both feasible and infeasible regions, but can
cause convergence to an infeasible system design. Here we
apply a dynamic penalty function, a technique used to solve
nonlinear constrained optimization problems with genetic
algorithms (Joines and Houck, 1994; Michalewicz and Attia,
1994). Penalty coefficients are not fixed, but increase as T
decreases. Initially penalty coefficients are small to promote
searching both feasible and infeasible regions. As T decreases,
penalty coefficients increase, encouraging the CSA to find a
feasible solution.

1

0
1

n+
n+ T

Pe
Pe = (12)
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where Pen+1 is the penalty coefficient at temperature step
n+1, and Pe0 is the initial penalty coefficient.

BIODEGRADATION MODELING
Several computer models incorporate microbial growth

and biodegradable pollutant transport in groundwater. These
are generally based upon a macroscopic conceptual model
that does not assume a particular microorganism distribution
within the pore space. Organic contaminant removal occurs
by Monod or Michaelis-Menten kinetics involving aerobic
degradation and anaerobic degradation (Borden and Bedient,
1986; MacQuarrie et al., 1990; Malone et al., 1993; Essaid et
al., 1995). The BIOPLUME II simulation model employs the
macroscopic concept and assumes that aerobic biodegra-
dation is instantaneous (Rifai et al., 1988; Rifai and Bedient,
1990). It uses oxygen as the electron acceptor.

BIOPLUME II uses a dual-particle mover procedure to
simulate subsurface oxygen and contaminant transport. It
was developed by modifying a two-dimensional method of
characteristics  (MOC) transport model (Konikow and
Bredehoeft,  1978). The contaminant and oxygen transport
equations are solved at every time step to calculate
contaminant  and oxygen distributions (Rifai et al., 1988):
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where C and O are contaminant and oxygen concentrations
(M/L3), respectively; C� and O� are contaminant and oxygen
concentrations in a source or sink fluid (M/L3); ne is the
effective porosity; b is the aquifer saturated thickness (L); t
is time (T); xi and yi are Cartesian coordinates (L); W is the
volume flux per unit area (L/T); Vi is the seepage velocity in
the direction of xi (L/T); Rc is the retardation factor for
contaminant;  and Di,j is the hydrodynamic dispersion
coefficient (L2/T).

Contaminant and oxygen plumes are combined using
superposition to simulate instantaneous reaction between
oxygen and contaminants. Essaid et al. (1995) confirmed the
findings of Rifai and Bedient (1990) that aerobic degradation
can be treated as occurring instantaneously. Contaminant and
oxygen concentration decreases are calculated from:

ΔCRC = O/F; O = 0 where C > O/F (15)

ΔCRO = CF; C = 0 where O > CF (16)

where ΔCRC and ΔCRO are the calculated change in
contaminant  and oxygen concentrations, respectively; and F
is the ratio of oxygen to contaminant consumed.

BIOPLUME II has been applied for simulating
dissolved-phase hydrocarbon transport and aerobic
biodegradation (Chiang et al., 1989; Wiedemeier et al.,
1994). BIOPLUME II accurately predicted the migration and
attenuation of benzene, toluene, ethylbenzene, and xylene
(BTEX) plume at Hill Air Force Base, Utah. The
appropriateness and applicability of BIOPLUME II for

similar sites was evaluated and confirmed in the MADE-2
experiments (Beach et al., 1996). The MADE-2 project had
controlled field experiments involving the injection of
several aromatic hydrocarbons and a non-reactive tracer into
an uncontaminated aquifer. Because of its instantaneous
reaction assumption, BIOPLUME II is not usually used for
simulating very slow aerobic biodegradation. BIOPLUME II
does not simulate anaerobic processes affected by electron
acceptors such as nitrate, ferric iron, sulfate, and inorganic
carbon. However, BIOPLUME II has been popular because
it is relatively easy to calibrate and apply using data such as
hydrogeologic parameters, contaminant chemical and
physical properties, contaminant source concentrations, and
background oxygen concentration. We use BIOPLUME II to
simulate aerobic biodegradation processes and contaminant
transport within our S/O model. BIOPLUME III application
to Site ST-29 at Patrick Air Force Base (Rifai et al., 2000)
demonstrated natural attenuation suitability as a remedy for
a fuel hydrocarbon plume. An intent of this article is to
demonstrate a new optimization method and how it can
employ a biodegradation simulator. The BIOPLUME model
is assumed adequate for the purpose.

STUDY CASE
Figure 2 illustrates the hypothetical study area, initial

contaminant  plume, and candidate well locations considered
by the optimization. Table 1 presents BIOPLUME II input
parameters for the 510 × 690 m study area. The homogeneous
aquifer has a hydraulic conductivity 6 × 10-5 m/s and 15 m
aquifer thickness. To the west and east are fixed head
boundaries: 30.5 and 27.7 m, respectively. Groundwater flow
is from west to east. The initial hydraulic gradient is 0.004.
To the north and south are no-flow boundaries. Groundwater
flow simulation is steady state. The contaminant retardation
factor is assumed to be 1. The organic contaminant resembles
phenol in having high water solubility and a low soil sorption
coefficient (Montgomery, 1996). Biodegradation occurs
aerobically, and anaerobic decay is not considered. Figure 3
shows that if no action is taken, after 5 years the
contamination  has reached monitoring wells. Natural aerobic
decay only reduces the total contaminant mass by 16%. An
in-situ bioremediation system should be installed to contain
the contaminant plume and enhance the biodegradation of
contaminant.

To design an in-situ bioremediation system here, the
optimization considers seven candidate injection wells and
six candidate extraction wells. The S/O model will select
from those while developing a least-cost design and pumping
strategy. Injection wells within the plume can potentially
inject oxygen and nutrient-laden water at rates between 0 and
1.26 L/s (20 gpm) per well. Upper and lower bounds of
hydraulic head for the injection wells are 33.5 and 27.7 m,
respectively. The initial oxygen concentration is 5 ppm
except in the contaminant plume area. The background
groundwater oxygen concentration is 5 ppm. Vertical oxygen
exchange with the unsaturated zone is assumed to be
insignificant.  The injected oxygen concentration is 8 ppm.
Downgradient wells can potentially extract contaminated
groundwater at rates between 0 and 1.26 L/s (20 gpm). The
upper and lower bounds of hydraulic head for the extraction
wells are 30.5 and 24.4 m, respectively. The cleanup standard
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Figure 2. Proposed in-situ bioremediation system and initial contaminant plume.

Table 1. Input parameters of BIOPLUME II simulation model.

Input Parameter Value

Grid size 19 × 25
Cell size 30 × 30 m
Hydraulic conductivity 6 × 10 -5 m/s
Aquifer thickness 15 m
Hydraulic gradient 0.004
Longitudinal dispersivity 10 m
Transverse dispersivity 2 m
Effective porosity 0.3
Retardation factor 1.0
Anisotropy factor 1.0
Injected oxygen concentration 8 ppm
Background oxygen concentration 5 ppm
Remediation time 3 years

(Ccl) is 3 ppm for the entire study area. Eight monitoring
wells are used to observe whether the plume is captured for
a 3-year remediation period. The maximum contaminant
concentration permitted to reach monitoring wells (Cca) is
1�ppm.

Table 2 lists cost coefficients used to estimate system
costs. The injection coefficient is based on the nutrients,
oxygen, and pumping operation costs. The extraction
coefficient considers the treatment and pumping cost for the
contaminated groundwater. The treatment method combines
air stripping and granular activated carbon. The capital cost
of injection and treatment facilities is based on their
capacities.

Figure 3. Unmanaged scenario: contaminant plume after 5 years of transport.
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Table 2. Cost function coefficients.

Coefficient Value

Cp for injection cost (oxygen, nutrient,
and pumping operation)

4,755 ($ per L/s-year)

Cp for extraction cost (treatment and
pumping operation)

15,850 ($ per L/s-year)

CIP (well installation cost) 12,000 ($ per well)

D (injection facility capital cost) D1.26 L/s (20 gpm) = $20,000
D2.52 L/s (40 gpm) = $24,000
D3.79 L/s (60 gpm) = $28,000
D5.05 L/s (80 gpm) = $32,000

D6.31 L/s (100 gpm) = $36,000
D7.57 L/s (120 gpm) = $40,000
D8.83 L/s (140 gpm) = $44,000

E (treatment facility capital cost) E1.26 L/s (20 gpm) = $30,000
E2.52 L/s (40 gpm) = $38,000
E3.79 L/s (60 gpm) = $46,000
E5.05 L/s (80 gpm) = $54,000

E6.31 L/s (100 gpm) = $62,000
E7.57 L/s (120 gpm) = $70,000

Table 3. Optimal system cost comparison of four annealing schedules.

Temperature
Update

Functions

Initial
Annealing

Temp.

Final
Annealing

Temp.

Optimal
System
Cost ($)

No. of
Simulations

Equation 6
α = 0.99

20,000 1000 241,400 9,495

Equation 6
α = 0.98

20,000 1000 243,600 3,729

Equation 7 200,000 1000 280,900 3,109

Equation 8
δ = 0.06

20,000 1000 244,000 4,505

Equation 9
λ = 0.02

20,000 1000 235,100 3,926

ANALYSIS OF ANNEALING SCHEDULES
The most important CSA component is the annealing

schedule (AS), which controls convergence to optimal
solutions. This is the first article to compare the performance

of ASs for SA application to groundwater management
problems. We contrast four ASs that differ primarily in the
employed TUF, but one AS also uses a different initial
temperature.  Utilized are two static TUFs (eqs. 6 and 7) and
two adaptive TUFs (eqs. 8 and 9). Employed AS parameters
(table 3) were selected based on preliminary simulations, to
balance between desirable convergence and computational
cost (table 3). The AS using TUF equation 7 employs an
initially high 200,000 annealing temperature to permit a fast
temperature decrease. The number of movements in the inner
loop is 130. This numerical experiment employs Corana's NF
to generate new system configurations, and while annealing
temperature is decreasing, system configuration changes are
controlled by threshold accepting function.

For the four TUFs, table 3 shows the minimum system
costs and the numbers of simulations required to achieve
those costs. Adaptive TUF equation 9 required 3,926
simulations to obtain the lowest cost of all. The design
produced by TUF equation 6 with α = 0.98 was slightly more
costly, but required fewer simulations. Model simulations
usually consume 99% of computational cost in this S/O
model. The fewer simulations, the less computation time.

Figure 4 shows how total bioremediation system cost
evolves with decreasing CSA temperature. Optimal system
cost is achieved after annealing temperature drops below
1,000. The static AS of equation 7 has the fastest temperature
decrease, and uses the fewest simulations, but freezes its
optimal solution prematurely, yielding the highest system
design cost: $280,900. Equation 9 yields the lowest system
costs of $235,100. Figure 5 shows system cost improvement
with increasing number of BIOPLUME II simulations.
Equations 6, 8, and 9 yield similar system costs ($244,000 to
$235,100), but equation 6 with α = 0.98 requires the least
number of BIOPLUME II model simulations. Because of its
satisfactory CPU computational requirement, and optimal
solution quality, the annealing schedule of equation 6 with
α�=0.98 was chosen for use in ten different in-situ
bioremediation  design scenarios in the next section.

Figure 4. Comparison of average system cost vs. annealing temperature using four temperature update functions (eq. 6 with � = 0.98).
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Figure 5. Comparison of average system cost vs. number of BIOPLUME II simulations using four temperature update functions (eq. 6 with  = 0.98).

OPTIMAL IN-SITU BIOREMEDIATION SYSTEM DESIGN FOR
TEN SCENARIOS

Ten scenarios demonstrate how computed optimal
bioremediation strategies differ depending on assumed injected
oxygen concentration, hydraulic conductivity, longitudinal
dispersivity, retardation factor, and remediation time. Table 4
shows assumptions and results. All optimal results are obtained
by CSA using AS equation 6 and Corana's NF.

Scenario 1: Base Case
The base scenario is the same as in the previous section for

comparing the performance of the four ASs. The annealing
schedule of equation 6 with α = 0.98 is applied in the CSA for
the optimal system design of the base scenario. Table 1 shows
BIOPLUME II input parameters. This base case optimal system
design requires four injection wells and three extraction wells
(fig. 6). The maximum contaminant concentration is reduced to
3 ppm, and no contamination reaches the monitoring wells.
Approximately 90% of the initial contaminant mass is
eliminated. Injection and extraction totaled 2.65 L/s (42.0 gpm)
and 1.14 L/s (18.1 gpm), respectively. Figure 7 illustrates the
resulting steady-state hydraulic head distribution. The injection

wells recharged nutrients and oxygen to stimulate contaminant
biodegradation, but also caused localized hydraulic head rise
and induced contaminant spread. Extraction wells created
gradient barriers, preventing downstream contaminant plume
migration, and extracted contaminants for further in-situ
treatment. The total system cost is $234,000, including
extraction, injection, and treatment, and facilities capital costs.

Scenario 2: Effects of High Injected Oxygen
Concentration on System Design

In this scenario, we increase oxygen delivery by
employing pure oxygen (40 mg/L oxygen concentration) at
a cost of $17,435 per L/s-year ($1,100 per gpm-year).
Although hydrogen peroxide (H2O2) can provide a higher
oxygen concentration, it is not used here because it is toxic
to some microorganisms at concentrations of 100 to 200 mg/
L3, and delivery is inefficient (Ritter and Scarborough, 1995;
Alexander, 1999). The result is less injection but more
extraction and total cost. The high oxygen concentration
reduces the injection rate. The total system cost is $278,200,
which is higher than the base scenario 1 because of increasing
extraction wells installation and operation costs.

Table 4. Optimal system design of in-situ bioremediation for ten scenarios.

Scenario
No. of Injection

Wells
No. of Extraction

Wells
Total Injection

Rate (L/s)
Total Extraction

Rate (L/s)
Total System

Cost ($)

1: Base case[a] 4 3 2.65 1.14 234,000
2: Injected oxygen concentration = 40 mg/L 4 4 0.97 1.55 278,200
3: Hydraulic conductivity = 1 × 10-4 m/s 5 3 2.17 1.17 236,400
4: Hydraulic conductivity = 1 × 10-5 m/s 6 3 3.46 1.70 304,300
5: Longitudinal dispersivity = 3 m 5 2 2.13 1.89 265,900
6: Longitudinal dispersivity = 30 m 6 0 3.27 0.0 146,700
7: Retardation factor = 1.5 7 2 5.51 0.28 265,800
8: Retardation factor = 2.0 6 2 10.24 0.14 330,600
9: Remediation time = 2 years 6 3 3.90 2.13 282,500
10: Remediation time = 4 years 7 0 5.32 0.0 221,300
[a] Base case: injected oxygen concentration = 8 ppm, hydraulic conductivity = 6 × 10-5 m/s, longitudinal dispersivity = 10 m, retardation factor = 1.0, and

remediation time = 3 years.
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Figure 6. Contaminant plume of base scenario after 3 years of in-situ bioremediation.

Installed Injection Wells

Installed Extraction Wells

Monitoring Wells

Figure 7. Hydraulic head distribution of base scenario after 3 years of in-situ bioremediation.

Scenarios 3 and 4: Effects of Hydraulic Conductivity on
System Design

The more homogeneous and isotropic the aquifer, the
better for successful in-situ bioremediation (Rittmann et al.,
1994). Ideal hydraulic conductivity should range from 10-6

to 10-4 m/s or greater (Rittmann et al., 1994; Norris et al.,
1996). Table 4 shows that increasing hydraulic conductivity
reduces total pumping and system cost, and decreasing
hydraulic conductivity increases cost. The higher the
hydraulic conductivity, the more efficient the oxygen
delivery.

Scenarios 5 and 6: Effects of Longitudinal Dispersivity on
System Design

Mass transport by advection and dispersion affects
contaminant  distribution and substrate/electron acceptor
availability  to microorganisms (Sturman et al., 1995).
Scenarios 5 and 6 employ longitudinal dispersivities of 3 m
and 30 m, respectively, which are in the reliable range of
field-scale data described by (Gelhar et al., 1992). Reducing
longitudinal dispersivity caused increased system cost.
Increasing longitudinal dispersivity permits reduced cost.
The optimal design for the 30 m dispersivity only requires
injection wells and facility, and costs only $146,700, i.e.,
45% less than the system designed for the longitudinal
dispersivity of 3 m (table 4). Figure 8 compares final oxygen
concentration distributions for the two scenarios and optimal
designs. The greater the longitudinal dispersivity, the greater
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Longitudinal Disepersivity = 3 m
(a)

x

Longitudinal Dispersivity = 30 m
(b)

Figure 8. Oxygen concentration distribution after 3 years of in-situ
bioremediation: (a) longitudinal dispersivity = 3 m, and (b) longitudinal
dispersivity = 30 m.

the oxygen mixing with contaminants and the greater the
biodegradation.

Scenarios 7 and 8: Effects of Retardation Factor on
System Design

In groundwater modeling, sorption is approximated by
retarding contaminant movement relative to the
groundwater. A retardation factor is modeled as a function of
partition coefficient, soil bulk density, and porosity. A
retardation factor of 2 implies that the contaminant moves at
half the groundwater velocity. Most retardation models
assume linear adsorption isotherms between solute and solid
phase concentrations. This is usually true only in
homogeneous aquifers. The base scenario retardation factor
of 1 permits the contaminant to have the same velocity as the
groundwater. In scenarios 7 and 8, as retardation factor
increases, extraction decreases, but injection and total cost
increase. Extraction wells cannot easily remove adsorbed
contaminant,  sometimes causing cleanup failure.

Scenarios 9 and 10: Effects of Remediation Time on
System Design

Remediation period duration is often determined by
budgetary constraint, priority, and legal deadlines. Table 4
illustrates the effect on strategy design of remediation time:
2 years (scenario 9), 3 years (scenario 1), and 4 years
(scenario 10). The shorter the remediation period, the higher
the total system cost. The short 2-year remediation requires
large injection and extraction rates to enhance
biodegradation.  The optimal system design for a 4-year
remediation period does not require extraction, but employs
a high 5.32 L/s (84.4 gpm) oxygen injection rate. The longer

remediation period provides time for slow oxygen mixing
and transport.

CONCLUSION
The presented continuous simulated annealing-

BIOPLUME II model optimizes in-situ bioremediation
system design. This new S/O model determines the pumping
(extraction/injection)  strategy that minimizes total system
cost, reduces contaminant concentration to cleanup standard,
and prevents contaminant plume migration. It is the first
bioremediation S/O model to use a continuous simulated
annealing for optimal system design. Here the pumping rates
are treated as continuous variables by implementing
neighborhood functions to generate new system configura-
tions. Corana's neighborhood function effectively searches
the continuous solution space. Contrasting optimal designs
developed by four simulated annealing temperature update
functions (TUFs) showed that an adaptive TUF developed
the best strategy. However, a geometric TUF provided nearly
as good as a strategy, and a good compromise between solu-
tion optimality and computational effort.

Site properties significantly affect optimal in-situ bio-
remediation system design. Bioremediation improves with
increasing hydraulic conductivity, longitudinal dispersivity,
and remediation period and with decreasing retardation
factor. Increasing longitudinal dispersivity aids bioreme-
diation and reduces system cost by 45%. Increasing retar-
dation factor requires greater injection rates and increases
system costs. Increasing injected oxygen concentration
reduces necessary injection rate but increases total system
cost by increasing well installation and extraction costs.

The presented CSA and CSA-based S/O model are
valuable tools for designing in-situ bioremediation system.
CSA can readily consider all installation, operation, and
maintenance  costs to yield optimal site-specific system
designs. Such a design includes optimal well locations,
pumping rates, and facility capacities.
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