EVALUATION AND ACCESSING OF DATA FOR A WATER RESOURCES SIMULATOR

Richard C. Peralta Roberto Arce and Timothy Skergan

Agricultural Engineering Dept. University of Arkansas

Publication No. 91 March, 1983

Research Project Technical Completion Report A-060-ARK

Arkansas Water Resources Research Center University of Arkansas Fayetteville, Arkansas 72701

Arkansas Water Resources Research Center

Prepared for United States Department of the Interior

EVALUATION AND ACCESSING OF DATA FOR A WATER RESOURCES SIMULATOR

Richard C. Peralta
Roberto Arce, and Timothy Skergan
Agricultural Engineering Department, University of Arkansas
Fayetteville, Arkansas 72701

Research Project Technical Completion Report

Project A-060-ARK

The work upon which this report is based was supported in part by federal funds provided by the U. S. Department of the Interior, as authorized under the Water Research and Development Act of 1978, (P. L. 95-467).

Arkansas Water Resources Research Center
University of Arkansas
223 Ozark Hall
Fayetteville, Arkansas 72701

Publication No. 91

March, 1983

Contents of this publication do not necessarily reflect the views and policies of the U. S. Department of the Interior, nor does mention of trade names or commercial products constitute their endorsement or recommendation for use by the United States Government.

The University of Arkansas, in compliance with federal and state laws and regulations governing affirmative action and non-discrimination, does not discriminate in the recruitment, admission and employment of students, faculty and staff in the operation of any of it's educational programs and activities as defined by law. Accordingly, nothing in this publication should be viewed as directly or indirectly expressing any limitation, specification or discrimination as to race, religion, color or nation origin; or to handicap, age, sex or status as a disabled Vietnam-era veteran, except as provided by law. Inquiries concerning this policy may be directed to the Affirmative Action Officer.

ABSTRACT

EVALUATION AND ACCESSING OF DATA FOR A WATER RESOURCES SIMULATOR

This report evaluates the availability of data needed to use a groundwater simulation model for real time conjunctive water management in the Arkansas Grand Prairie. It is assumed that the goal of such management is to protect existing groundwater rights by maintaining water levels so that wells do not go dry, even in time of drought.

Sufficient hydrogeologic data exists to use the simulation model to predict the effect of known pumping rates on groundwater levels. Developing an optimal set of "target" levels and annually managing pumping to achieve those levels requires additional data: fall groundwater levels, degree of connection between aquifer and recharge streams, and annual cell by cell prediction of aquaculture and irrigated agriculture acreages. Successful management also requires continuous monitoring in the critical area where saturated thicknesses are small.

Peralta, Richard C., Roberto Arce and Timothy Skergan EVALUATION AND ACCESSING OF DATA FOR A WATER RESOURCES SIMULATOR Consultant's Report to Office of Water Planning, U. S. Department of the Interior, March 1983. Washington, D. C., 32 p. KEYWORDS--data collections/ monitoring/ data acquisition/ well data/ groundwater management

TABLE OF CONTENTS

Introduction & O	ojectives	• • •		• •	• •	•	• •	•	•	٠	٠	•	1
Procedure and Re	sults		• •	٠.			•				•		2
Determination	n of Data N	leeds		• •		•			•	•	•	•	2
Evaluation of Developme	f Available ent of Soft					liz	ati	on		•	•	•	4
Conclusion and Re	ecommendati	ions .	a é	• •		•	• (•	•		•	٠	7
Appendices							•		•			•	11
Appendix A:	Procedure Pumping in										•	•	12
Appendix B:	Sample App Permit .								•		•	•	13
Appendix C:	Program Wh Water Need						•			•	•	•	14
Appendix D:	Sample Rep Constructi							s e	•	•		•	25

INTRODUCTION AND OBJECTIVES

Arkansas established a Water Code Commission to make recommendations for legislation and rules concerning how Arkansas' water resources should be managed. An option which gained considerable support is the establishment of sub-state water management districts. The Grand Prairie of Arkansas represents a possible prototype water management district. The Arkansas Soil and Water Conservation Commission funded the calibration of a groundwater simulation model for the Quaternary aquifer underlying the Grand Prairie (13). This report supplements that effort by determining data needs appropriate for using the simulator for management.

In this report groundwater management refers to those acts which are necessary: to protect existing water rights by preventing water levels from dropping so much that wells go dry, or to assure the long-term adequacy of the water supply, even in times of drought. The authors assume that the water users themselves should decide if the latter goal is appropriate or desirable. With this in mind, the objectives of this study are to:

- 1) Determine data needs for the effective utilization of a groundwater simulation model for the Grand Prairie Quaternary aquifer.
- 2) Develop appropriate procedures to access available data bases.
- Make recommendations for additional data needs.

The approach is first to report what data is needed for the effective use of the simulation model. Available data and data

bases are subsequently evaluated concerning suitability in meeting data needs. Software and/or procedures to retrieve appropriate data are presented. Finally, recommendations for additional data needs are made.

PROCEDURE

Determination of Data Needs

It is judged desirable to make groundwater management as administratively simple as can be successful. Probably, the period of pumping which a water agency can most readily manage is one year. In other words the agency can, using the simulator, determine how much water can be pumped out of each part of the Prairie in one year's time to meet the area-wide goals of the water users. In practice, the agency will regularly determine whether actual resulting water levels do indeed agree with predictions. Adjustments in permitted pumping may be made as the resources, goals, or needs of the users change.

The user-related data needed for this purpose are estimates of the water requirements in each 3 mile by 3 mile cell of the study area, as affected by climatological conditions. The necessary hydrogeologic information includes:

- effective porosity and hydraulic conductivity of the aquifer (including spatial variations, if significant).
- elevations of the top and bottom of the aquifer material.

- spring and fall elevations of the groundwater level.
- degree of connection between the aquifer and streams which serve as recharge or discharge sites.

At the very least, groundwater levels must be measured annually (in the spring) over the entire area. The USGS has historically made annual measurements in the spring (8,16). Continuity of records must be preserved. It is preferable, however, to make the area-wide measurements on a semi-annual basis (spring and fall). The most important reason for this is that almost all the water is pumped during the summer. Simulation verified every spring and fall could provide more accurate information on the next year's permitted pumping than simulation verified only in the spring. That information would also be available six months earlier. A third reason is that recharge into the study area from its periphery depends largely on the hydraulic gradient from the recharge source towards the area interior. The only estimates of the gradient currently available are those in the spring. At that time the rivers which border and recharge the area are at their highest stage and the aguifer has recovered, as much as it will have opportunity to, from the previous summer's pumping. It is important to know also what the gradient is like in the fall, when recharge streams are at low stage and aquifer water levels have not recovered much from the summer's pumping. Estimates of the degree of connection between the aquifer and penetrating streams are needed to permit approximation of the maximum feasible recharge to or discharge from the aquifer.

Measurements more frequent than semi-annual, over the entire area, would provide little useful information, since the effect of pumping wells during the summer distorts the water levels in their proximity. The process of compensating for that effect to estimate average water levels in the summer would be too time consuming to be justified.

The preceding paragraphs have addressed the necessary data for determining annual permitted pumping volumes. This volume/year flowrate, since it is simple, is necessarily fairly "crude." The temporal distribution of pumping during the summer by independent users can only be estimated. Therefore, resulting summertime saturated thicknesses in some parts of the area could be less than anticipated. For this reason more frequent observations should be made in that part of the study area where saturated thicknesses are critically small. Weekly, daily, or possibly continuous observation and subsequent management action may be necessary to prevent the litigation which can result when wells go dry. Such monitoring also provides a check on the simulation model. This check is needed since no model of an area the size of the Grand Prairie is a perfect predictor.

Evaluation of Available Data Bases and Development of Software for Data Utilization

Predicted water needs for an upcoming year (on a cell by cell basis) are not available in any existing data base. They may,

nowever, be estimated. The water need for irrigable crops and given climatological conditions (7) can be approximated using a daily simulated water balance. Appendix A contains a procedure which uses the resulting crop water needs, the USGS's 1972 RIDS data base (2,11,12,14) and projected crop acreages to estimate annual water needs for each cell.

The Crop Reporting Service is the most likely source of anticipated acreages (1). An additional source of general information on water use is the excellent periodic water use summary prepared by the USGS (17,18). A more accurate means of estimating the acreages of irrigated crops in each cell is desirable.

Adequate estimates of municipal use of Quaternary groundwater can be made from data in the Arkansas State Water Plan (4). Estimates of aquacultural acreage in each cell can be made from the State Water Plan (3), and records of the Arkansas Fish and Wildlife Service (see Appendix B). It is a common opinion among extension agents that there are thousands of acres of unreported aquaculture. The annual water needs of aquacultural activities range from 3-8 acre-ft/acre. Accordingly, accurate knowledge of aquacultural water needs are important for any management effort.

A simple program was written which sums agricultural, aquacultural and municipal water needs and estimates the pumping from the Quaternary aquifer on a cell by cell basis (Appendix C). Probably, water needs are greater than permissible pumping under

most desirable management strategies. Therefore, an alternative source of water will probably be needed. The physical availability of divertable surface water from the Arkansas or White Rivers can be determined using USGS streamflow records (19).

Several USGS reports (6,10,14) cite estimates of effective porosity or hydraulic conductivity. A review of these is found in a recent report by Peralta, et al. (13). Estimates of the top and bottom of the Quaternary aquifer are found in existing maps (5,9). They may also be created using data from Reports of Water Well Construction (Appendix D) which are filed with the state. These reports contain useful information on the formation, type of water user, well characteristics, etc. The Soil Conservation Service also has a comprehensive listing of wells and surface water diversions. Spring elevations of the piezometric surface are available from USGS reports (8,16). Fall elevations are not available. Standard programs are available on most computer mainframes to grid random three-dimensional observations. Sample procedures include polynominal fitting, spline fitting, and universal kriging. Such programs are used to prepare gridded estimates of the saturated thickness of the aguifer from the data discussed above.

It would aid groundwater protection and management in the state if information concerning <u>all</u> strata and their <u>color</u>, and the quarter section in which the well is located were included in all such reports.

Until recently, one well in the Grand Prairie's Quaternary aquifer was continuously monitored. Encrustation of the well ended its usefulness. A new monitoring station has not yet been established (possibly for economic reasons). Continuous monitoring site(s) need to exist in that part of the Prairie where saturated thicknesses are smallest. Preferably, data from the site(s) would be retrieved weekly or as collected (by telemetry). Determination of the number of continuous monitoring sites requires prediction of the effect of future pumping strategies and is beyond the scope of this report.

Estimates of the degree of connection between aquifer and penetrating stream are not available.

CONCLUSIONS AND RECOMMENDATIONS

A program has been written which estimates cell by cell water needs based on available data bases. However, no data base accurately reflects the acreage of irrigated cropland or aquaculture which will probably exist in each cell in the next year. This is an important need. The availability of such information would enable the water management agency better to fill water needs with available groundwater and diverted surface water resources.

Sufficient data is available to estimate the effect of different pumping strategies on future Quaternary groundwater availability in the Grand Prairie. Thus regional pumping strategies can be developed using a calibrated simulation model (13) and existing data bases. Optimizing or successfully using such strategies will require some additional information.

For most of the Grand Prairie, only spring water levels are currently being measured. This means that a management agency can determine the effect of its management strategy only after every spring. This provides inadequate lead time for determining the subsequent summer's groundwater withdrawal strategy. Thus it is recommended that observations be made in the fall as well as in the spring for all sites currently being annually monitored. It is also suggested that continuous monitoring be used in areas where saturated thicknesses are critically small. The resulting data should be retrieved and analyzed regularly to protect against unexpected dewatering.

The degree of connection between penetrating streams and the aquifer is currently unknown. This should be determined to permit estimation of maximum feasible recharge and the effect of ground-water pumping on the downstream availability of surface water.

BIBLIOGRAPHY

- 1) Agricultural Statistics for Arkansas, 1972-1981. Little Kock, Arkansas. Report Series 262. Crop Report Service, Economics, Statistics, and Cooperatives Service, USDA in Cooperation with the University of Arkansas Agricultural Experiment Station, 1981.
- 2) Arkansas County Profile. Little Rock, AR: Arkansas Department of Local Services, 1977.
- 3) Arkansas State Water Plan, Appendix A, Existing Water and Related Land Resource Development, Little Rock, Arkansas.

 Arkansas Soil and Water Conservation Commission.
- 4) Arkansas State Water Plan, Appendix B, Public Water Supply Inventory, Little Rock, AR. Arkansas Soil and Water Conservation Commission. 1978.
- 5) "Bottom of Pleistocene, Grand Prairie Rice Region." Confidential Map, Federal Land Bank of St. Louis, MO, 1936.
- 6) Alluvial Aquifer of the Cache and St. Francis River Basins, Northeastern Arkansas. Open-File Report 81-476, USGS, 1981.
- 7) Climatological Data for Arkansas, 1972-1981. Asheville, NC: National Oceanic and Atmospheric Administration. Environmental Data Service, National Climatic Center. 1972-1981.
- 8) Edds, J. Groundwater Levels in Arkansas, Spring 1981. Little Rock, AR. U.S. Geological Survey Open-File Report 81-1114. Arkansas Geologic Commission. 1981.
- 9) "Elevations of Top of Water Bearing Sand (Shallow Wells)", Unpublished Map, Agricultural Engineering Department, University of Arkansas, Fayetteville.
- 10) Engler, K., D. Thompson, R. Kazmann. Groundwater Supplies for Rice Irrigation in the Grand Prairie Region, Arkansas. Fayetteville, AR. Bulletin No. 457, University of Arkansas Agricultural Experiment Station. 1945.
- 11) Monroe County Profile. Little Rock, AR: Arkansas Department of Local Services. 1977.
- 12) Lonoke County Profile. Little Rock, AR: Arkansas Department of Local Services. 1977.

BIBLIOGRAPHY (con't)

- 13) Peralta, R. C., R. Arce and T. Skergan. Grand Prairie Water Supply Project, Phase I, Project Completion Report, October, 1982.
- 14) Prairie County Profile. Little Rock, AR: Arkansas Department of Local Services. 1977.
- 15) Sniegocki, R. T. Hydrogeology of a Part of the Grand Prairie Region. Geological Survey Water Supply Paper 1615-B, 1964.
- 16) Water Levels in Wells that Tap Deposits of Quaternary Age--Shallow Wells. Little Rock, AR. Soil and Water Conservation Commission. 1972-1981.
- 17) Halberg, H. N. Water Use in Arkansas, 1975. Arkansas Geological Commission, Water Resources Summary Number 9. Little Rock, AR. 1977.
- 18) Holland, T. W., and G. Ludwig. Use of Water in Arkansas, 1980. Arkansas Geological Commission, Water Resources Summary Number 14. Little Rock, AR. 1981.
- 19) Water Resources Data for Arkansas Water Year 1977 (and other years). USGS Water-Data Report AR-77-1. Little Rock, AR.

APPENDICES

APPENDIX A

Procedure to Estimate 1983 Agricultural Pumping in Cell M, County A

ACRE (M) = the agricultu	ral acreage in	n cell M i	n 1972 (ac)
--------------------------	----------------	------------	-------------

$$Z (A,83) = RAGA (A,83) \times RIR (83) + SAGA (A,83) \times SIR (83)$$

= total expected water need for rice and soybean irrigation in county A in 1983 (ac-ft)

AGPUMP (M,83) = Z (A,83)
$$\times \frac{ACRE}{TAGAC} \frac{(M)}{(A)} \times QUAT$$
 (A)

= the volume of water need expected for rice and soybean irrigation in cell M in 1983 (ac-ft) which is pumped from the Quaternary aquifer

^{*} The irrigation water used for rice and soybean irrigation was computed by daily water balance simulation.

```
AD 01930
                                                                                                                              01940
č
           COMPUTATIONS
                                                                                                                              01950
                                                                                                                          AD 01960
AD 01970
     DO 400 N=1.10
10 375 L=1.4
PAX(N.L)=BAGA(N.L)*PIP(N)
PAX(N.L)=BAGA(N.L)*SIP(N)*0.2915
THE FACTOR U.2915 WAS ADDED TO REDUCED THE ASSUMED
SOYREAN ACREAGE TRIGATED.
CASBY(N.L)=(((RAX(N.L)*RBY(N.L))/TAGAC(L))/12.0)*1.00
THE FACTOR '1.00' IN THE AHOVE LINE IS FOR THE CONVEYANCE LOSS
                                                                                                                          AD
AD
                                                                                                                              01980
                                                                                                                               01990
                                                                                                                              02000
                                                                                                                              02030
С
                                                                                                                              02040
 375
           CONTINUE
                                                                                                                              02050
 400
            CONTINUE
                                                                                                                              02060
           CONTINUE
DO SOO N=1-10
DO SOO N=1-10
TI =NJLFF!(I) +1
TI =NJLFF!(I) +1
TI =NJLFI!(I) +1
TO 480 J=1L+IR
TO 480 J=1L+IR
                                                                                                                               02070
                                                                                                                              02080
                                                                                                                              02090
                                                                                                                              02120
             L=1COUN(1.J)
P(N.I.J)=((ACRE(I.J)*(247.11)*CAXBY(N.L)*SHWE(L)+RMWA(I.J)
      * +FACUA((1))-(0.03*640.*9.)+(ADAQUA(N.1.J)))*43560.)

DO XFOIT: CA -(EMPREC(1.J))

TO THE ABOVE COMPUTATION IF EMPRICAL RECHARGE IS WANTED.
                                                                                                                          ΑD
                                                                                                                              02150
02160
                                                                                                                          ÃĎ
                                                                                                                              02170
                                                                                                                              02180
          P3(N.I.J) 15 THE PUMPING IN **** ACRE FEET ***** P3(N,I.J) = (N.I.J) /43560.
                                                                                                                          ΑD
                                                                                                                              02190
Č
                                                                                                                              űŽŽOÒ
                                                                                                                          AD
AD
                                                                                                                              .02220
ç
          P4(N,I.J) IS THE PUMPING IN **** FFET PER CELL ***** P4(N.I.J) = ^{1}3(N,I.J)/640./9.
                                                                                                                              02230
02240
                                                                                                                          AD
c
          P2(N+1+J) IS THE AGRICULTURAL PUMPING IN ***** ACRE FEET ***** P2(N+1+J) = (ACRE(I+J) * 247, 11*CAXHY(N+L)*SHWE(L))
                                                                                                                          AD
AD
                                                                                                                              02250
02260
Ċ
                                                                                                                          ΑĐ
                                                                                                                              02270
ç
          RICE TOTAL IS P5
P5(N.L)=(AURE(I.J)*247.1]*RAX(N.L)/TAGAC(L)/12.0)*SHWE(L)+ P5(N.L)AD
                                                                                                                              02280
                                                                                                                              02300
                                                                                                                          ΑD
č
                                                                                                                              02310
                                                                                                                          ΑĎ
          COYPEAN TULAL IS PA
          P6(N-L)=(ACRE(1.J) #247.11*RBY(N.L)*SHWE(L)/TAGAC(L)/12.0)+P6(N.L)
                                                                                                                         AD
                                                                                                                          ΑD
C
C
C
                                                                                                                              02330
          AQUACULTURAL PUMPING (INITIAL INPUT) IS TAQI(Not.)
                                                                                                                          ΑD
                                                                                                                              02340
                                                                                                                          ΑD
                                                                                                                              02350
                                                                                                                          ΑĐ
                                                                                                                              02360
          TAGI(N.L) =KAQUA(I.J) +TAGI(N.L)
                                                                                                                          AD 02370
AD 02380
ç
          AQUACULTURAL PUMPING (ADDITIONAL INPUT) IS TAGII(N.L) TAGII(N.L)-ADAQUA(N.I.J)+TAGII(N.L)
                                                                                                                          AD
                                                                                                                              02390
C
                                                                                                                          AD 02400
```

THE CELL NUMBERS FOR PEADING IN THE MUNICIPAL WATER USE ARE THE I AND J VALUES AD 01450 AD 01460 01470 AD 01480 DO 350 NUMB=1.9 AD 01490 AD 01500 PFAD(5.8)1.J RFAD(5.8) RMWA(I.J) AD 015100 AD 015100 AD 015540 AD 015560 350 CONTINUE 000000 01570 01580 AD ΑĎ 01590 01610 AD 01620 360 CONTINUE 01630 01640 01650 01660 01670 01640 01690 01700 01710 ΑD ADDITIONAL INPUT (RECHARGE & AQUACULTURE) ΑD ÃĎ ADDITIONAL AGUACULTURAL PUMPING (AC.-FT.)
K IS THE YEAR ΑD 01720 ΑD 01730 EMPIRICAL RECHARGE CONSTANT (CUBIC FT.)/YEAR X (10 TO THE 7TH.) ŏ1750 01760 D0 365 NUM2=1.13 READ(5.*)I.J.FEMP(I.J) EMPREC(I.J)=FEMP(I.J)*(10**7) AD AD AD 01780 01790 345 C ΑĎ 01810 AD DO 36 | NUM3=1.17 RFAD(5.*) I.J. ADAQUA(6.I.J) ADAQUA(6.I.J) = ADAQUA(6.I.J) + 1.00 DO 366 NY=7.10 ADAQUA(NY.I.J) = ADAQUA(6.I.J) CONTINUE 01830 01840 01850 01860 01870 01880 01890 01900 01910 366 367 C AD AD AD AD 01920

```
AD 00970
  000
            READ IN THE INRIGATION REQUIREMENTS FOR RICE FOR EACH YEAR (IN.)
                                                                                                       00950
                                                                                                   AD
                                                                                                       00990
                                                                                                  AD 01010
AD 01020
           DO 180 N=1.10
READ(5.#)KIR(N)
CONTINUE
180
C
C
C
                                                                                                      01030
01040
01050
                                                                                                   ΑĎ
                                                                                                   AD
DA
DA
            RFAD IN THE IRRIGATION REQUIREMENTS FOR SOYBEANS PER YEAR (IN.)
            DO 190 N=1.10
READ (5.4) SIR (N)
                                                                                                       01070
                                                                                                       01080
            CONTINUE
                                                                                                       01090
    190
            PEAD IN THE COUNTY THAT EACH CELL IS IN
           DO 200 I=2.21
IL=JLEFT(1)+1
č
Suu
            PFAD (5.4) (ICOUN(I.J) ,J=IL,IR)
                                                                                                       01550
           DO 210 I=4.21
WRITE (6.710) (ICOUN(I.J).J=1.17)
CONTINUE
                                                                                                       01230
                                                                                                      01250
01250
01260
  C 210 CONTINUE
                                                                                                       .01270
  C
            READ IN THE AGRICULTURAL AREA IN EACH CELL (SQUARE KM.)
                                                                                                       01280
                                                                                                  ADD ADD ADD ADD
            DO 300 I=2.21
IL=JLEFT(1)+1
IR=JRIGHI(1)+1
            READ (5.#) (ACRE (I.J) .J=IL.IR)
            CONTINUE
    300
                                                                                                  AD 01350
AD 01360
AD 01370
AD 01380
  00000
            READ IN THE PERCENTAGE OF AGRICULTURAL WATER COMING FROM PUMPING UP THE GUATEPNARY AQUIFER
                                                                                                   AD 01390
                                                                                                  AD 01400
AD 01410
AD 01420
            PEAD (5.4) (SHWE (L) .L=1.4)
            READ IN THE MUNICIPAL WATER USE BY LOCATION (AC.-FT.)
                                                                                                   AD 01430
                                                                                                   AD 01440
```

```
DATA EMPHEC/468#0./
                                                                                                   AD 00490
                                                                                                   AD 00500
            AD 00510
AD 00520
            PEAD STATEMENTS
                                                                                                   AĎ ŎÖŠBÖ
                                                                                                   AD 00540
                                                                                                   AD 00550
            ROUNDARIES -- FOR ENTIRE MODEL -- ,
                                                                                                      00570
  HEAD(5.0) JÜEFT(I) +JRIGHT(I)

INO CONTINUE
C. BOUNDARIES FOR SUBSET MODEL
C. FIRST PERFORM A NULL READ ON ADSIMPUM DATA
C. C. FIRST PERFORM A NULL READ ON ADSIMPUM DATA
            PO 100 I=<,21
READ(5,4) JLEFT(I), JRIGHT(I)
                                                                                                   AD 00580
                                                                                                      00590
                                                                                                      00600
                       DU 110 I=1.22
HEAD(5.*) NLL(I) ,NRR(I)
CUNTINUE
                                                                                                      00650
C 110
C C C
                                                                                                       00660
                                                                                                       00680
           NOW PEAD THE LIMITS OF THE SUBSET OF THE GRAND PRAIRIE FOR THE CALIBRATION RUN TO BE PERFORMED BY ADDISTM
                                                                                                   AD 00690
AD 00700
     00 112 I=1.22
READ(9.*)NULEFT(I),NURIT(I)
112 CONTINUE
                                                                                                   AD 00740
                                                                                                      00750
00760
   C READ IN THE TOTAL AG. ACREAGE FOR EACH COUNTY (AC.)
                                                                                                       00770
            READ IN THE TOTAL AG. ACREAGE FOR EACH COUNTY (AC.)
                                                                                                       00780
                                                                                                       00790
            READ(5.0) (TAGAC(L),L=1.4)
CONTINUE
                                                                                                       00800
                                                                                                       00810
            READ IN THE ACREAGE OF IRRIGATED RICE (AC.)
                                                                                                       00840
            DO 160 N=1.10
PEAD(5.0) (RAGA(N.L),L=1.4)
CONTINUE
                                                                                                       00850
                                                                                                   ΑD
                                                                                                      00860
160
C
C
C
                                                                                                      00870
                                                                                                       00880
            READ IN AUREAGE OF IRRIGATED SOYBEAN (AC.)
                                                                                                   AD 00920
            DO 170 N=1.10
READ(5.4) (SAGA(N.L).L=1.4)
CONTINUE
                                                                                                   AD 00930
  c<sup>170</sup>
                                                                                                      00940
                                                                                                   AN 00950
                                                                                                   AD 00960
```

rogram Which

Estimates Cell by

Cell Water

Need

AD 00010

AD 00020 ÃĎ ÖÖÖĞÖ

AD 00040

AD 00060 AD 00070 ΑD

00080 00090

00110

02500 DA

AD 00230 AD 00240 AD 00250

00260 00270 00280

00310 00320

AD 00350 AD 00360 00370 AD 00380

00E00 DA AD 00400 AD 00410 ΑĎ

00420

00430 AD 00440 00450

ΑD

ΑD

ΑD

AD

ΑD AD 00460 00480

0000

```
NAME: ADSIMPUM FORTRAN A
CALCULATES THE AMOUNT OF PUMPING FROM THE QUATFRNARY AQUIFFR IN THE GRAND PRAIRIE REGION. ONLY CONSIDERING RICE AND SOYREAN ACREAGE (REPORTED FOR EACH COUNTY).
                         DATA REQUIRED IS IN:
                                                  --ADSIMPUM DATA A--
                                THE FILE TO EXECUTE THIS PROGRAM IS UNDER THE NAME OF -- ADSIMPUM EXEC A--
                 DIMENSION JLEFT(26), JRIGHT(26), FEMP(26.18)
DIMENSION NJLEFT(26), NJRIT(26)
DIMENSION NLL(26), NRR(26)
DIMENSION TAGGAC(4), SHWE(4)
DIMENSION RAGA(10.4), SAGA(10.4), RIR(10), SIR(10)
DIMENSION ICOUN(26.18), ACRE(26.18), RMWA(26.18)
DIMENSION PAGUA(26.18)
                 DIMENSION PACKIDA (20,18)

OIMFNSION PACKIDA (4), REY(10.4), CAXPY(10.4), SUM(10.4)

DIMENSION SUMT(10), ON(10.240), P5(10.4), P6(10.4)

DIMENSION TAG(10.4), TAGI(10.4), TAGII(10.4)

OIMFNSION ADAGUA(10.26.18)

DIMENSION EMPREC(26.18)
               DATA QN/2400*0./
PATA FEMM/468*0./
DIMENSION TP(10.4)
DIMENSION P(10.26.18). P2(10.26.18), P3(10.26.18)
DIMENSION P4(10.26.18)
DIMENSION A4(10.26.18)
DIMENSION ONEW(10.30.8)
DATA TAGAC/4*0./. SHWE/4*0./
AATA RAGAC/4*0./. SAGA/40*0./. RIP/10*0./. SIR/10*0./
DATA PAX/40*0./. PHY/40*0./. CAXBY/40*0./. SUM/40*0./
DATA P5/40*0./. P6/40*0./. TAQ/40*0./. TAQI/40*0./. TAQII/40*0./.
DATA ACRE/468*0./. RMWA/468*0./, TP/40*0./.
                DATA PAGUA/4680./. RMWA/4680./., IP/40*0./

DATA SUMI/10*0./

DATA P/4080*0./. QNEW/2400*0./., P2/4680*0./

DATA P3/4680*0./. P4/4680*0./

DATA ICOUN/468°2000/

DATA ADAUUA/4680*0./
```

APPENDIX B

* PLEASE ESTIMATE PRODUCTION ACRES SO THAT WE CAN ASSIST YOU IN PLANNING BY ESTABLISHING CHANGING TRENDS IN FISH FARMING. SPECIES OF FISH ACRES - 1978 ACRES PLANNED - 1979 Golden Shinner __ _ _ 25_ _ _ _ 40 Fathead Minnows ____20____ _____20_____ Catfish (Food) (Brood) _ _ _ 25_ _ _ _ _____315_____ Catfish (Fingerling) ____315____ Goldfish Trout Other (Specify) White Am 40 400 *Total Acres 400 Lonoke ENCLOSED IS CHECK OF \$25.00 FOR 1979 RENEWAL OF FISH FARMER CERTIFICATE NUMBER 220 \$25.00 DEC 5 -8 BULLFROG PERMIT NUMBER \$25.00 SIGNATURE OF OWNER OR AGENT..... ADDRESS IF CHANGED (PLEASE PRINT)

```
C
           TOTAL ADDAGULTURAL PUPPING IS TAD(N.L)
                                                                                                                                     AD 02410
                                                                                                                                     AD 02420
AD 02430
           TAQ (N.L)=HARMA(I.J) +ADAQUA(N. I.J) +TAR (N.L)
           TP(N.L) TO THE PUMPING FOR THE COUNTY
                                                                                                                                     AD 02440
AD 02450
ç
          TP(N.L)=P(N.[aJ)
                                                                                                                                     AD 02460
                                                                                                                                     AD 02470
AD 02480
AD 02490
          SUM (N.L) 15 THE TOTAL PUMPING FOR EACH COUNTY SUM (N.L) = SUM (N.L) + TP (N.L) CONTINUE
ç
                                                                                                                                     AD 02500
AD 02510
AD 02520
AD 02530
C
             SUMT(N) 15 THE TOTAL PUMPING FOR THE YEAR (ACRE FEET) SUMT(N)=SUMT(N)+SUM(N,L)
                                                                                                                                    SUMT(N)=SUMT(N)+SUM(N,L)

CONTINUE

THE NEXT THREE STATEMENTS ADDED 3/3/P3.

THEY ADD RECHARGE TO THE THREE CELLS INCLUDED.

THE PECHARGE IS THE AVERAGE OF THE STEADY STATE PUMPING VALUES

FROM THE OUTPUT OF 11/15/82.

P(N:14:11)=P(N:18:11)-61355000.

P(N:14:12)=P(N:19:12)-16103000.

P(N:21:13)=P(N:21:13)-202140000.

CONTINUE
  490
  500
             ********************************
            THIS NEXT PART WAS ADDED TO WRITE OUT THE PHMPING IN A FORMAT WHICH SIMULAT MUST PEAD IT
             DO 590 N=1-10
            TCO=1
DO 570 I=1.22
LL=NJLEF!(I)
            LL=NJLF+'(1)

| R=NJRIT(1)

DO SEO J=LL.R

OB(N-ICO)=D(N-I-J)

WHITE (**907) (ICO,QN(N,ICO))

ICO=ILU+1
                                                                                                                                     AD 02740
AD 02750
AD 02750
AD 02770
AD 02780
C
  550
570
               CONTINUE
               CONTINUE
                                                                                                                                     AD 02790
                                                                                                                                     AD 02810
AD 02810
              CONTINUE
DO 595 N=1.10
ICO=0
  590
                                                                                                                                     AD 02820
                                                                                                                                    AD 02830
AD 02840
AD 02850
               DO 594 1=1.26
               DO 502 J=1.8
                icc=ico + i
                ONE H (N.T.J) = GN (N. 1CO)
                                                                                                                                    AD 02860
AD 02870
                WRITE (0.906) (ICO, QNEW (N. I.J) .QN (N. ICO))
C
  592
                                                                                                                                     AD 02880
                    CONTINUE
```

-19-

```
554
                                                                                                                                                                                                   CONTINUE
CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   00000 DA 0000 DA 00000 DA 00000 DA 00000 DA 0000 DA 00
                                                                                                                                       DO 598 N=1.10
DO 597 1=1.26
WEITE (7.404) (ONFW(N.I.J).J=1.8)
CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        AD 02930
AD 02940
               597
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   AD
AD
AD
                                                                                                                                                                                                        CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     02950
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     02960
0000000
                                                                                                                                                 A D
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       02970
                                                                                                                                                 *******************
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          ΑĎ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        AĐ
AD
                                                                                                                             WRITING OUT THE SUM OF THE PUMPING FOR EACH COUNTY BY YEAR FOR THE TOTAL PUMPING. THE PUMPING FOR PICE IRPIGATION. AND THE PUMPING FOR SOYPEAN IRRIGATION
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        AD
AD
AD
AD
                                                                                                 00 620 K21.6

IYE(K2.F0.b) G(
IF(K2.F0.b) G(
IF(K2.
                                                                                                                                                                                                                                                                                                                         GO TO 608
GO TO 606
GO TO 604
GO TO 602
GO TO 600
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        AD
AD
                                                                                                         GO TO 612
WRITE (6.912)
GO TO 612
WHITE (6.914)
                                                                                                 WHITE (6.914)
GO TO 612
WHITE (6.910)
GO TO 612
WHITE (6.925)
WHITE (6.925)
WHITE (6.925)
MHITE (6.930)
OO 618 N=1.10
IYEAR=IYEAH+)
IF (K2.E0.6) GO TO 617
IF (K2.E0.5) GO TO 615
IF (K2.E0.4) GO TO 615
IF (K2.E0.4) GO TO 614
IF (K2.E0.4) GO TO 613
WHITE (6.900) (IYEAR.(SUM(N.L).L=1.4).SUMT(N))
WHITE (6.900) (IYEAR.(P5(N.L).L=1.4))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                AD 032260
0322600
03222600
03222600
03222600
03222600
03222600
0322260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
032260
0
                                                                                               WRITE (6.900) (IYEAR. (P5(N.L).L=1.4))
60 TO 618
WRITE (6.900) (IYEAR. (P6(N.L).L=1.4))
60 TO 618
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        AD 03360
```

-20-

```
AD 03370
AD 03380
AD 03390
    615 WEITE (6.900) (IYEAP. (TAGI(N.L) -L=1.4))
          co to 618
          WHITE (A.990) (IYEAR+ (TAGII (N.L)+L=1+4))
                                                                                                           AD 03400
AD 03410
         GO TO 618 WPITE (6. 900) (IYEAR. (TAG (N.L).L=1.4))
    617
619
620
                                                                                                           AD 03420
          CONTINUE
                                                                                                           AD 03430
AD 03440
           CONTINUE
             *********************************
                                                                                                           AD 03470
AD 03480
             THE NEXT STATEMENTS ARE ONLY TO CREATE THE SAME DATA INTO A FILE THAT CAN BE USE BY SAS.
                                                                                                           AD 03510
AD 03520
            DO 700 N=1.10
                 00 690 L=1.4
WPITE (6.940) N.L., SUM (N.L.)
,
0
   ۲90
700
                   CONTINUE
             CONTINUE
             AD 03590
AD 03600
           THIS PART ADDED 8/25/82 TO WRITE THE WATER USE IN MAP FORM
                                                                                                           AD 03610
                                                                                                          AD 036450
AD 036650
AD 036660
AD 036680
AD 036680
          AGRICULTURAL LAND, IN ACRES
   A: AGRICULTURAL LAND, IN ACRES
DO 720 I=1+22
DO 720 J=1+18
ACRE(I+J) **ACPE(I+J) **Z47**.]1
720 CONTINUF
WRITE(6*,721)
721 FOPMAT(/*'!**,20X**AGRICULTURAL LAND USE CELL BY CELL**, AC***,/)
DO 722 I=1*22
WRITE(6*,724) (ACRE(I*J)**J=1*18)
722 CONTINUE
724 FOPMAT(X**18F7.0*/)
                                                                                                           AD 03720
AD 03730
    722 CONTINUE
724 FORMAT (2x+18F7.0+/)
 000000
                                                                                                           AD 03770
                                                                                                           AD 03780
AD 03790
      AZ: PUMPING DUE TO AGRICULTURE, ACRE-FT
    727 FORMAT(*1'*20X,*PUMPING DUE TO AGRICULTURE. ACRE-FT*+3X*I5+//)
DD 728 N=1*10
                                                                                                           AD 03800
                                                                                                              03810
          IYFAR=1971+N
WPITE (6.741) IYEAR
                                                                                                           AD 03820
                                                                                                           AD 03830
                                                                                                           ÃĎ Ŏ3840
    791 FORMAT(////////,20X+1YEAR = 1.14,//)
```

-21-

AD 03850 ΔD

AD 03870

0.386.0

```
AD 0389100
AD 0339100
AD 0339120
AD 0339120
AD 0339450
AD 033950
          MUNICIPAL WATER USE. ACRE-FT
  WRITE(6.731)
731 FORMAT(:1':20x.*MUNICIPAL WATER USE, ACRE-FT:,//)
DO 732 I=1:22
WRITE(6.734) (RMWA(I.J).J=1:18)
732 CONTINUE
                                                                                                                        03990
                                                                                                                    AD
AD
   734 FORMAT (2X+18F7.0+/)
                                                                                                                        04030
                                                                                                                    AD
AD
                                                                                                                        04040
                                                                                                                        04050
    C: AQUACULTURAL WATER USE, ACRE-FT
                                                                                                                        04060
                                                                                                                        04070
                                                                                                                    AD
AD
                                                                                                                        04080
  04090
                                                                                                                        04100
                                                                                                                    AD
AD
AD
AD
                                                                                                                        04110
00000
              ADDITIONAL INPUT
               WRITE(6.747)
DO 746 I=1.22
WRITE(6.786)(ADAQUA(6.I.J).J=1.18)
                                                                                                                    AD 04200
AD 04210
AD 04220
 746
                CONTINUE
                                                                                                                    AD 04230
                                                                                                                   AU 04230
AD 04250
AD 04270
AD 04270
AD 04280
AD 04280
AD 0431
Ċ
               WRITE (6.748)

DO 749 I=1.22

WRITE (6.752) (FEMP(I,J).J=1.18)

CONTINUE
```

AD 04310 FORMAL(+1++10x++ADDITIONAL AQUACULTURAL PUMPING 1977-1981 ACREAD 04320

DO 728 [=1.22 WPI H (6.76°) (P2(N.1.d).d=1.1H)

728 CONTINUE

749 ç

747

729 FORMAT (2X+18F7.0./)

-22-

(Continue

```
FT. 1./// FORMALLINION. EMPIRICAL RECHARGE CONSTANT EVERY YEAR 55X, 11NAD 04350
        * (CUPIC F!+) X (10 TO THE 7TH. 1.//)
                                                                                                                        AD 04350
                                                                                                                        AD 04360
                                                                                                                        AD 04380
    D: TOTAL PUMPING CELL BY CELL. ACRE-FT
                                                                                                                            04390
                                                                                                                            04400
                                                                                                                            04410
 753 FORMAT (1)'. 20x. 'TOTAL PUMPING CELL BY CELL'./)

10 751 N=1.10

11 YEAR=1971+A

WRITE (6.750) 1YEAR

00 750 1=1.22

WRITE (6.750) (P3(N·I,J)·J=1.18)
                                                                                                                             04420
                                                                                                                             04430
                                                                                                                            04440
                                                                                                                             04470
   750 CONTINUE
                                                                                                                             04480
   751
         CONTINUE
                                                                                                                             04490
   755 FÖRMAT(2x,18F7.0./)
756 FORMAT(*1**15X.*TOTAL PUMPING CELL BY CELL IN (AC FT)*,3X,16,//)
                                                                                                                            04500
                                                                                                                        AD 04510
                                                                                                                        AD 04520
AD 04530
00000
                                                                                                                             04530
                                                                                                                             04540
                                                                                                                             04550
  DO 785 N=1+10 (
IYEAP=1971+N
WPITE (6,787) (IYEAR).
787 FORMAT (11:55x, TOTAL PUMPING IN FT. PER CELL YEAR = 1,14,7/)
DO 785 I=1:22
                                                                                                                             04570
                                                                                                                            04600
                                                                                                                             04610
  00 /85 1=1:27

MPITE (6.840) (P4(N,I.J),J=1.18)

886 FORMAT(2X:18F7.3./)

786 FORMAT(2X:18F7.0./)

752 FORMAT(2X:18F7.2./)
                                                                                                                             04630
                                                                                                                        AD 04640
                                                                                                                             04650
 752
   785 CONTINUE
                                                                                                                             04660
                                                                                                                             04670
CCC
                                                                                                                            04680
           FORMAT STATEMENTS
                                                                                                                        AD 04690
AD 04700
            900
 904
                                                                                                                        AD 04720
 907
                                                                                                                            04730
 908
 902
                                                                                                                        AD 04740
C 901
                                                                                                        AD 04760
AD 04770
              FORMAT(2x,2013)
FORMAT(1:,2013)
FORMAT(1:,19x, RICE IRRIGATION PUMPING IN ACRE-FT. ',////) AD 04770
FORMAT(1:,19x, SOYBEAN IRRIGATION PUMPING IN ACRE-FT.',///) AD 04780
FORMAT(1:,19x, INITIAL AQUACULTURAL PUMPING IN ACRE-FT.',//) AD 04790
FORMAT(1:,19x, ADDITIONAL AGUACULTURAL PUMPING IN ACRE-FT.',/) AD 04800
   911
   912
```

APPENDIX D

ST-1054

STATE OF ARKANSAS

REPORT OF WITTER WELL CONSTRUCTION

Owner of Weil J. J. Jones	CountyArkansas
Well Contractor Layne Arkonsas Company Contractor License No. C-1099 Driller Name and No. Harvey Bullock - D-2204 Date Well was Completed May 9, 1979	Well is near Road Section 5 Township 25 Range 5W Directions for Reaching Well: On North side of his form tops permanent languages about 3 miles North of town
1. Total Depth of Well 636' Ft. 2. Water Producing Formation: From 556 Ft. To 636 Ft.	Description and Color of Formation Depths in feet (sand, shale, sandstone, etc.) from to
Water Level Below Land Surface134* Gallons per Hour78000	"See Attached Sheet"
5. Well Disinfected with HTH. 6. Casing to 542 Ft. 7. Cased with 12" Diameter 250 Casing	
8. Cemented from 0 Ft. 10 542 Ft. 19. Use of Well: Domestic Irrigation Municipal Other	
This well is guaranteed against defective material or workman- ship for a period of Yeor	Signed: 1/6 / Signed: 5/16/79 May 10: Committee on Water Well Construction, 2015 Sc. Pine Street.

Geology Copy

TOTAL DEFIN	THICYNESS EACH STRATUM	FORMATION
35 70 100 136 235 236 244 245 280 295 369 445 522 547 633 648 670	35 30 36 99 1 8 1 35 15 74 76 77 25 86 15 22	Red Sandy Clay Red Clay Fine Sand Coarse Sand&Gravel Gumbo Rock Gumbo Rock Gumbo Fine Sand & Siks. of Shale Gumbo Sandy Shale Gumbo Fine Sand Medium Sand Gumbo Sandy Shale