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INTRODUCT I ON

In the past, there has been considerable reluctance on the
part of planners and dasign engineers to use stochastic methods
in groundwater management models. However, the presence of
uncertainties in eestimating aquifer parameters has long been
recognized. Fortunately. there have been rscent developments in
stochastic subsurface flow theory and its practical applications
(Gelhar, 1986 and Tung, 1986). Thus., the current trend is to
include the natural heterogeneity of aguifers in the governing
flow equation by probabilistic in addition to deterministic
approaches,.

This paper presents a methedology that axplicitly
incorporates the stochasticity of an aguifer parameter in a
chance—constrained formulation of a steady-state -groundwater
model. The metheodology falls under the broad cataegory of
explicitly stochastic optimization. It has two partm:
a) regional process identification. and b) chance-congtrained
cptimization. The regional process identification establishes and
describes the random nature of the agquifer parameter. Thia is
accomplished by a statistical proecedure called block kriging.
The gtatigtical information obtained from kriging ism then
utilized ag input to an optimization model. Thie oaptimizatiaon
model includes the finite-difference approximation of the steady-
state flow equation expressed in probabilistic terms.

The method is applied to a hypothetical area. Results show
the applicability of ths methodology. Computational aspects of
the methodology are discussed. The practical gignificance of

alternative formulations =re also included,

FREVIQUS WORK

The need to systematically relate the hydraulic behavior of
groundwater flow sysiem= to the optimal use of water supplies has
been done by coupling the physical principles of grounduater flow

and optimization theory. The "embedding" approach involvesz
inclusion. 0of flow eguations as constraints in an optimization
model (e.g.. Gorelick. 1983, and Peralta., 1285, among many

others).



Repregentation of thé randem nature of the system components
has been attempted and reported in groundwater literature only

recently. The need to represent the random nature of agquifer
parameters has been recognized by groundwater researchers. A
number of methods have been proposed in water regources
literature. However, regearchers have yet to agree on which

method ig best (Carrera and Neuman, 1986). Finding the proper
raprasentation of the random process has been posed =2 an
identification problem. It involvea finding the solution of the
inverse problem. Numerous approaches to the inverse problem have
bean propogsed. Ponzini and Lozej (1882) reported excellent
resulis using a comparison model to compute interblock
transmisgivities. Dagan (138%5) pregented a3 methodology of
solving the problem of determining the random distribution of
transmissivity through unconditional and conditional
probabilities. More recently., Carrera and Neuman (1S86)
published methods of esmtimating the parameters of steady and
unsteady groundwater flow by a maximum likelihood method.
Gutjahr and Gelhar (198l) considersed hydraulic conductivity as a
spatial variable. They shaowed that variogram analysis yielded
consistent regults with analytical approximations such as first-
order analysis and covariance differential squations. This 1is
significant because it indirectly underscores the importance of
kriging =3 a method of describing the spatial random nature and
distribution of aguifer parameters.

Kriging ig in itself a well-established method ocf egstimation
of random distributions. Marx and Thompson (1887) provide an
excellant and concise discussion of the Kkriging procedure and its
practical applications. The block kriging procedure that resultis
in smaller esgtimation variance when average valuesg of parameters
are of interest is adegquately discussed by Burgess and Webster
(1588).

Researchers have also scrutinized the randomness of systenm
components other than aquifer paramsters. Maddock (1974)
presented a methodology for finding strategies or rules for a
siream—aquifer system. He asgumed that the demand for water is a
random event. His work is based on the premise that the water
resource system operates under stochastic water needs or demands.

Of the numsrous stochastic modeling techniques that are
available, chance-constrained programming includes random
variation as an integral part of the constraint set of an
optimization model. More importantly. specified probability
limits on constraint viglations may be established. From the



modeling perspective: chance—-constrained formulations ars useful
because they properly represent the random components of the
system. IMoreover, water resource modeling and optimum solution
computation is facilitated by the ability to develop the
determiniatic aquivalent of an originally stated chance-
conetrained problem.

Charnes and Cooper (18963) published the first comprehensive
presentation of chance—constrained programming. Since then, the
technigque has been extensively implemented in surfzce water
system studies. In groundwater literature, Tung (1986) reported
the applicability of chance—-constrained programming with response
function groundwater modeling. He included random aquifer
paramseters in a compliance constraint to realistically restrain
the model’s performance in a probabiligtic situation.

In summary. gtochagticity of gystem paramsters is of
increasing importance in groundwater modeling. Furthermore. well-
eatablished methode like kriging and chance—constrained
formulation are avallable for adequate represaentation of

groundwater gystem optimization problsms.

THEORY AND MODEL FORMULATION

Governing Eqguatioson

Consider a hypothetical area that is underlain by an aguifer
with large saturated thicknesa. Agssume that the change in
gaturated thickness WwWith time is insignificant. Furthermore.,
sssume a spatially unchanging hydravlic conductivity and a
gpatially random saturated thickness.

The aquifer in the study asrea ig assumed to be completely
surrounded by a larger area. Thus the surrounding aguifer is a
source of recharge through the boundary cells of the hypothetical
area. The sole vertical discharge from the area’s internal cells
ig groundwater pumping through wells. No other hydraulic stimuli



or 3Stresses occcur at internal cells. All other recharge ts or

discharge from the system occur st constant head cells along the
area’s boundary.

The Boussinesqg equation and Darcy's law govern the aquifer

recharge to or discharge from the =tudy area. The Boussinesqg
eguation ig commonly used to descrike two-dimensional flow
through porous media. The equation is expressed in terms of

continuous partial derivatives in Equation 1.
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where T is the transmissivity of the aguifer material, S is ths
storage coefficient of the agquifer, H iz the head and t ie time.
Under steady—-state conditions the right-hand side of Equation 1
vanishes. The resulting eqguation describes two—dimensional flow
where @ is the net volumetric flow into and out of the aquifer if
there i= no change in head with time. Egquation 1 can be written
in a finite—-difference form to describhe flow in a heterogeneous
isotropic aquifer. Using block—-centered two—dimensional cslls to
represent the systems Egquation 1 becomes:

DTU(i,j) H(i+1.3j) + DTUCi=1,9) H(i~1,3)
+ DTR(i»j—1) H(i»j=1) + DTR(i,j) H(i»j+1)

- TT(i.j) H(i,3?» = GP(i.j) + RCH(i,J)? cea2

whare

GP(i.»j) is the amount of groundwater pumping in cell (i,j?) in
units of L**3/T,

ACH(i,j) is the recharge in cell {(i,j) in units of L#*3/T,

H(i»j) is the potentiometric head in cell (i,j}) in units of L,



DTR(i-j) is the transmissivity between cell {(i,j) and cell
(i.3j+1) in units of L¥x2/T.,

DTU(i,»j? is the tranamiggivity betwsen cell (i,j) and cell
(i+1,3j) in units of L*¥%*2/T,

and TT(i,j! is defined below.

TT(isj) = DTU(i»j)} + DTU(i-1,3j)

+ DTR(i,j)» + DTR{i,j—-1) cead

in Egquation 2 the convention adopted is for flow to be positive
if the flow diregtion is cut of the cell. Flow is negative if
the flow direction is into the cell. The DTU and DTR. term& in
Equation 2 are usually substituted by either the geometric mean
or the harmonic mean of the transmissivities of adjacent cellas.
The choice depends on the expectad accuracy of the resulting
transmissivities of the midpoint of adjacent cells. Assume that
hydraulic conductivity is constant for the whole area of
intereast. Agsume further that the 8saturated thickness is
governed by a random process. With these assumptions., Equation 2
can be rewritten as:

k/2 # [ b(ivj) Hti+1,3) + b(i+l,3j) H(i+1.,3)
+ b(i-1,3) H(i-1,3) + b(i,j) H{i—-1,3)

+ bisj—1) HCi,j=1) + Dbli,j) H(i,j—-1)

+ Db(i»j) H(ir»j+1) + Db(i,j+1) H(i,j+1)

- 4% b(i,j) Hti,j) = b(i+l,j) H(i,j)
- B(i-1.3) H(i»j) = Dbli,j+1) HCi,3})
- Db(i,j=1) H{(i»j) 1 = GP(i,j) + RCH(i»j) .4

where k i® the hydraulic conductivity that is assumed constant in
unitg of L/T:

b{(i,j) iz the saturated thickness that is governed hy a
random proceEs in units of L.



Equation 4 is derived from Egquation 2 under the simplifying
aggumption that the transmissivity between two adjacent cells can
be adequately representad by the simple average o0f the cells’
block—centersed transmissivities. This assumption 18 necessary to
maintain linear terms on the l1eft hand side of the equation. It
ie alsoc consistent with the independent random distribution
nature of the process that describes the saturated thickness of
the aquifer. Thus, the absence of spatial correlation is also
implied by arithmetic averaging. One should note that arithmetic
averaging 1s appropriate for internal cells but not for cells
adjacent to impermeable boundaries.

To facilitate discumsion, Equation 4 is rewritten in +the
following compact form:

k/2 ¥ % b(i,j) H(isj) = GP(isj) + RCH(i»j) “..5

where the left-hand s8ide of Equation 5 is just an alternative
notation for the sum cof the term= on the left-hand side of
Equation 4.

Probabilistic Constraint and Its Deterministic Equivalent

The net discharge of any cell (ie 3} in the aguifer system
equals the sum of groundwater pumping and recharge in that cell.
In a groundwater management system. each cell also has an
aggociated water need or water demand value. In a management
scanario in which available water iz insufficient to satisfy
potential water demand In each cell, a critical value sxpressed
ag g8 fraction of the water need can be established. Furthermore,

the probability that the allowable net discharge and/or recharge
in each cell does not exceed the critical value can be defined at
a prespecified level of certainty. Thus., the flow equation is
uged in a8 chance-coniraint expression as:@

Pl krs2 =« z:b(i,J) H(i,j) < CR(i.j) } > 1 -4 =B

Egquation 6 impo=ses the probability that the net discharge from
e@ach cell is less than a prespecified critical value., CR(i:.j)» iz
greater than ( 1 - @d ). Assuming that the saturated thickness.



b(isj)s is sufficiently described by a normally distributed
process, with mean m{i.j) and variance var{(i.jl. the
probabilistic constraint (Equation B) can be rewritten as:

-1 2
k/2%{ El’l’l(iwj) H(i.j)> + F (@) ¢ 3 var(isjr H (i,j)r)*%0.51]

<  CR(i»j) R

-1

where F ( @) denote=2 a gtandard normal deviate corresponding
to the normal cumulative distribution function of @ . (Stability
aspects as a consequence of the conversion from Equation & to
Equation 7 are mathematically analyzed by Dupacova (1384). )
All other notationg are consistent with those of Eguation 5.
For the stated agsumptions., the deterministic constraint
{Equation 7 can replace the probabilistic congtraint
{Eguation 5. ’

FProblem Formulation

Congider a steady-state management problem where the
objective iz to maxXimize total groundwater pumping while
satisfying constraints on heads. recharges: and pumpind. The
amount of groundwater pumping in each cell is al=o required to be
less than the cell’s water demand. In addition. the probability
that net discharge in each cell doss not exceed prespecified
critical values is get to (1 - Q). This proklem is applicable
to the scenario described below.

A planning agency for a developing country wishes to compute
an optimal su=stained groundwater yield pumping strategy for an
area. The area 1is to bse an important region for irrigated
agricul tural production. Naturally., the agency wishes to
maximize sgustainable groundwater pumping. The agency also
recognizes that knowledge of spatially variable gaturated
thickness is wuncertain,. Furthermore, agricul tural reform
policies make the asgency -desire to spread irrigated acreage out
in the area. rather than concentrate it in a few cells.



The agenby could simply run max pumping strategies subject
to chance-constraints on drawdown, and absolute upper and lower

limits on pumping. Setting a lower limit of zZero pumping is
always easy. Setting a higher value for a lower limit may be
infeasible if the agquifsr cannot provide enough water. Setting
firm wupper limits i8 easy and wwill not adversely affect

identifying feasible solutions. However, as stated, the agency
wants to achieve a somewhat egalitarian distribution of pumping.
Attempting to achieve arbitrary equality of water rights in a
spatially wvariable system may be hydrologically very unsound
(Peralta et al., 1985). Therefore. the agency may wish to use
chance—constrained upper bounds on pumping to achieve desired
spatial flexibility in developing an optimal strategy. Decision
makers (DMs) in this study chose to develop a range of maximum
pumping =trategies. Each strategy is subject to the constraint
that the DMs are x% =8ure that sllocated sustainable pumping 1in
sach cell does not @xceed certain prespecified wvalues. The
confidence level ims varied systematically. This approach
incorporates uncertain knowledge of aguifer saturated thickness
in the upper bound on groundwater pumping asllocation.

The probhlem is mathematically formulated a=m:

Maximize ) Y GP(i.j) , .. 8

subject to:

HMIN (i, ) ;_ H(isj) i HMAX (i,3) for i€1, j€J -
RCHMIN (i»j) iHCH(i,j) i RCHMAX(i,j) for i€1, jE€J .10
GPMIN(i,j) iGP(i.j) < GPMAX(i,j) for i€ 1, 3:€J Co11

GP(ir»j) < WAD(i,j) for i€1, jE€J .12

and the probability constraint in Egquation B.



Where

HMIN(i:;j) is a known lower limit on the potentiometric head in
cell (i»,Jj) in units of L.

HMAX(i.j) i=2 a Kknown upper limit on the potentiometric head in
cell {(i»j) in units of L.

RACHMIN(i.j) iz a8 Known lowar limit on recharge in cell (i.j>
in units of L**x3/T,

RCHMAX({i,j) i®s =a Xnown upper limit on recharge in gell (i,j)
in units of L*%3/T,

GPMIN(i.j) is a known lover limit on groundwater pumping in
cell (isj) in units of L***3/T,

GPMAX(i.j?) i a known upper limit on groundwater pumping in
cell (i»3) in units of L##3/T,

and WAD(i.,j? is the known water need or water demand gquantity in
units of L#x3/T.

All other notations have been defined previously. Equations 8.
9, 19, 11, 12, and & consist of a chance~constrained problem
where the decision variables are GP(i.j)s RCH(i,j) and H{i.,jl.,
that iss» groundwater pumping:. recharge. and potentiometric head:
respectively. The formulation implies that the dietribution
process that governs the random aquifer parameter (in this paper,
the sa=maturated thickness) ig also known. Assuming that this isg
the case and that the distribution is noermal or can be converted
to a normal distribution, Egquation 7 can substitute for Eguation
G.

The programming problem that includes Equationas 8. 9, 13,
11, 12, and 7 (Model A) is a nonlinear programming problem due to
the nonlinear term® introduced by Equation T Nonlinear
programming algorithms are currently available to solve
programming problem=s of this structure. The GAMS/MINOS software
package was selected for thi= paper. It consists of a General
Algebraic Modeling System (GAMS) developed by the World Bank
(Kendrick and Meeraus. 1885) and a Modular In~Core Nonlinear
Optimization System (Murtagh and Saunders., 1383).



NUMERICAL EXPERIMENTS

The formulated problem has been applied to a hypothsetical
area (Figure 1). The same area was used previously by FPeralta
and Kowalski (1986). The area consists of 65 cells. 49 of which
are internal cells. Head. is constant in all peripheral cells.
A @patially constant hydraulic conductivity value of 82 wm/day
(27@ ft/day) is assumed. The hypothetical area is a small
portion of the Bayou Bartholomew Basin in Arkansas, shown as the
irregularly shaped area in Figure 2. The relative position of the
hypothetical area is shown ag area XYZD in Figure 2.

A standard block kriging procedure was implemented to
compute the statistical properties of the random distribution
that governs the saturated thickness in the study ares.
Comparative results of the kriging study are shown in Table I.
Results show that the larger the area the greater the variance
calculated by block kriging. Results for area ABCD (smee Figure 2)
differs from that of area EFGH by about 50%. Note that area ABCD
includes  cells that are outside the basin. Results show that
smaller wvariance and smaller mean estimate are obtained whan the
regctangular area uged in kriging includes celles within the basin.
Block kriging estimatss are applicable to the center of
rectangular study area. More accurate resultis are possible when
block kriging is applied to each of the cells of the hypothetical
area. Block kriging done on a c¢ell by cell basi= is essentially
eqguivalent to application of punctual kriging. This implies
spatial independence of the distribution of the random process oif
the aquifer parameter for each cell. WVhen a regionalized mean and
variance o0f the aguifer parameter for the entire study area - can
be justified, block kriging defines the randem process just as
well as punctual kriging.

Optimal solutions for Model A as formulated above have been
systematically calculated for different confidence levels.
gpecified as (1 - g ). Critical wvalues in the deterministic
aquivalent of the chance—-constraint are also varied to provide a
comparative study of the methodology*s application. In the
numerical experiments» the critical value CH{(i,j) iz computed asg
& fraction (FRAC) of the cell’'s water demand volume, Table 11
shows result2 from two groupsE of computer runs. These are
results when a) FRAC = 9.5, and b) FRAC = 6.9 at varying
levels of confidence. The slight (possibly ingignificant) trend
observed here ig +that as the confidence level { 1 - a?
decreases, total optimal pumping also decreases. On the other
hand» one expectis the number of cells exceeding CR(i.j) to

10



increase with decreasing ( §{ - @ ). It is also important to point

out that total pumping increased slightly (about 1%) for
FRAC=3.9 as opposed to FRAC=8.5. In this case. when constraining
the probability that fluxes not exceed a criticasl valus,

ingreasing the critical value causes insignificant increase in
total pumping.

Computer runs for the small hypothetical area are
accomplished using the University of Arkansas [BM/37% in the CHS
environment. A typical run required about 5 seconds of CPU time

while wus=ing the GAMS 2.04 nonlinear optimization package option,
It is important to point cut though that providing reasonable
initial wvalues for the decigion variables regults in shorter CPU
time. Computer runs may terminate before finding the ocptimal
solution. In these cases, changing the initial wvalues isg
necessary. There were also cases where supplied initial wvalues
regulted in infeasibility, Multiple optimal solutions existed in
sSome cages. Baged on these cobservations., application o0of the
methodology ¢to areas with a large number of cells may pose
problems due to system Size and nonlinearity of the deterministic
equivalent of the chance-constrained formulation.

ALTERNATIVE FORMULATIONS

Although the problem formulated as Model A in this paper may
have definite practical importance jin situations of water
scarcity, two alisrnative formulation® are worthy of mention.
Changing Equation 6 toi

P{ k/2 % 2 b(i,j)H(i,j) > CR(i«j>) 3} > 1 - @ S

iz appropriate for an entirely different management problem. This

formulation is now labelled as Model B. Model B is more
appligable in s=situations where available resource is not as
limiting a factor. The model =sesks to guarantee at least the
critical amount at a particular level of reliability. However.,
there 1is8 no assurance that all problems ¢f model B structure
would result in feasible strategies. A= Peralta et al. (1985)

determined in developing an egalitarian grounduwater allocation
strategy for correlative rights doctrine ba=sed on historic water
use., the gsystem may be physically unable {o provide ths
prespecified critical value due to its hydraulics and physical

11



properties. Another formulation improves this weakness. Permit
the critical 1level in each cell to vary by stating the chance-
constraint as:

P{ kr/72 % 2: b(i,j)H(isj) > fli.jr=2wAaD(i»3) 3 > 1 — @ P

where £(i,j) is a decision variable. It is the fraction of the
water demand that c¢an at least be satisfied at confidence laevel
of (1 - @ ) at sach cell. Equation !4 is a chance-conatraint
gimilar in purpose to that described by Peralta st al. (1985).,
The range of possible values for £(i,3) is:

2.0 < f£(isj) < 1.0 ... 15

The following constraint is also added:

£¢inf) > d -.. 1B

Equation 16 restricts the cell by cell fractional lavgls to be
greater than a particular dummy variable d. Now. changing the
objective function to Equation 17 completes Model C.

Maximize d aea 17

Model €, a model that consists of Egquations 17, 9 through 12, and
14 through 16+ iz a max min problem. The proklem s=esks the best
possible set of fractional levels that will provide water needs
at a prespecified level of certainty.

SUMMARY AND CONCLUSIONS

Results of numerical experiments showed that chance-—
constrained formulation iz possible and useful in devseloping

12



groundwater sustained yield extraction strategies. Computational
aspects of the methodology snd its practical implications were
also discussed. Alternative formulations for several management
scenarios are presented. Applicability of the pre=senisd models
depends on validity of assumptions. Being able to guantitatively

describe the random process is crucial to converting the chance—
constraint to its deterministic eguivalent.

13



constant-head cell

variable-head cell

Hypothetical Study Area

Figure 1.
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AREA SIZE AND
bLOCK KRIGING PARAMETERS

e e

Figure 2. Block Kriging Areas
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Tabhie I.

Comparison of Block Kriging Results

BLOCK KRIGING .'HESU'LTS

AREA MEAN STANDARD INOEX
DEVIATION

ABCD 148 .03 17 .91 3

EFGH. 105.62 13.73 3

XYZD 97.91 3.51 19

18



Table 11.

—cx
0.95
0.80
0.80
0.60

QF* =

Chance-Constrained Modeling Results

COMPARATIVE RESULTS.

FRAC=0.5

”»

P
20.08
19.70
19.21
18.56

FRAC=0.8

»

OP
21.29
20 .86
20.32
19.60

OPTIMAL TOTAL GROUNDWATER PUMPING

x 100

TOTAL WATER NEED
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