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ABSTRACT 

The relative reduction in potential ground-water 

contamination due to pesticides at several sites in Utah was 

determined by comparing alternative irrigation system designs, 

water management practices and pesticides. 

Alternative sprinkler irrigation distribution coefficients 

were used to estimate infiltration depths. The movement of 

pesticides through soils following sprinkler irrigations was 

simulated with one-dimensional model. 

Pesticide contamination of ground water can be reduced by 

careful selection of pesticides, properly designed irrigation 

systems and improved water management techniques. Procedures for 

selecting an appropriate sprinkler design and pesticide are 

presented. 

Key words: pesticides, sprinkler irrigation, partition 
coefficient, half life, relative amount, 
irrigation schedule, uniformity coefficient, 
fraction of area adequately irrigated, 
distribution coefficient, soil textures, 
infiltrated water depths. 



INTRODUCTION 

Pesticides minimize crop losses by insects, pathogens, weeds 

and other pests but can contaminate ground water. Potential 

contamination is of particular concern in areas where ground 

water is the source of culinary water. 

There are more than 45,000 registered pesticides (USEPA, 

1987). Almost 500 million kg of pesticides are used in the U.S. 

each year (Pimentel and Levitan, 1986). Of these, approximately 

60 percent are herbicides, 24 percent are insecticides and 16 

percent are fungicides. About 68 percent of these are used on 

agricultural land, where every dollar spent on pesticides returns 

about 4 dollars in agricultural production. 

Zaki et al. (1982) found aldicarb, a carbamate pesticide, in 

ground water in Suffolk County, New York. More than 8,000 wells 

were tested. Aldicarb levels exceeded the state-recommended 

safety limits in 13 percent of these wells. According to Sum 

(1986) the USEPA reported that 17 pesticides were detected in the 

ground water of 23 states. Pesticide concentrations ranged from a 

trace to several hundred parts per million. In Oahu, Hawaii, 

pumping was discontinued at several essential wells due to 

ground-water contamination by pesticides used in pineapple 

production (Lau and Mink, 1987), probably nematicides (Oki and 

Giambelluca, 1987). In the Mahantango Creek watershed, 

Pennsylvania, atrazine was detected in 14 of 20 wells that were 

tested (Pionke et al., 1988). 

About 50 percent of the u.s. population obtains drinking 
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water from ground water {Leonard et al., 1988). This percentage 

is 63 percent in Utah {Waddell, 1987). Most rural residents 

totally rely on ground water for domestic needs. 

Ground-water contamination by pesticides depends on such 

factors as agricultural practices, soils, plant uptake, geology, 

hydrology, climate, topography and pesticide properties. 

This study examined how appropriate management (sprinkler 

irrigation system design and pesticide selection) affected 

potential pesticide contamination of ground water. 
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METHODOLOGY 

Identification of study Sites 

Sites in the 29 counties of Utah that may be subject to 

ground-water contamination were identified and ranked (Eisele et 

al., 1989). First, a rapid screening procedure, DRASTIC (Aller et 

al., 1985), was used to identify sites with a high risk. 

Subsequently, a one-dimensional simulation model, CMLS (Nofziger 

and Hornsby, 1986, 1988), was used to simulate the movement of 

pesticides in unsaturated soils at locations where the risk of 

contamination was higher (Eisele et al. (1989). DRASTIC and CMLS 

rankings were compared by Ehteshami et al. {1991). 

We identified six agricultural areas with a relatively high 

potential for ground-water contamination, based on the findings 

of Eisele et al. (1989) and Ehteshami et al. {1991). These study 

sites were located in Cache, Davis, Sevier, Utah, Washington and 

Weber counties of Utah. 

Ground-water contamination potential from pesticides depends 

on agricultural practices, pesticide characteristics, time of 

pesticide application, and soil profile characteristics. For 

each of the selected sites, the data concerning these factors 

were obtained and the effects of alternative water management 

practices, pesticides and crops were simulated. Steps involed in 

the simulation procedure are illustrated in Figure 1. The 

infiltration was estimated using a distribution coefficient (Ha) 

approach (Hart and Reynolds, 1965). Estimated infiltration values 

were then used in CMLS to predict pesticide movement. The 
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relative potential for ground-water contamination was determined 

and relative importance of each factor on ground-water 

contamination was assessed. 

simulation of Pesticide Movement Using CMLS 

Based on the study of Eisele et al. (1989), we selected 

CMLS as the most appropriate pesticide transport model for this 

study. The following assumptions are used in CMLS (Nofziger and 

Hornsby, 1986, 1988): 

1. All soil water residing in pore spaces participates in 
the transportation process. If this assumption is not 
valid and a preferential flow is present, a portion of 
the soil water will be bypassed during flow, and the 
model will underestimate the depth of the chemical 
front. 

2. Water entering the soil redistributes 
instantaneously to field capacity. This 
assumption is more accurate for coarse-textured 
soils. 

3. Water is removed by evapotranspiration from each 
layer in the root zone in proportion to the 
relative amount of water available in that layer. 
A uniform root distribution is assumed. This 
assumption is not strictly valid for many 
situations. More precise schemes for dealing with 
evapotranspiration would require information about 
the root distribution and the soil hydraulic 
properties. 

4. Upward movement of soil water does not occur anywhere 
in the soil profile. Water is lost from the root zone 
by evapotranspiration and is not replenished from 
below. 

5. The adsorption process can be described by a linear, 
reversible equilibrium model. If the sorption 
coefficient is described by non-linear isotherm, the 
partition coefficient decreases with increasing 
concentration of the chemical. Thus the depth to which 
the chemical will be leached will depend upon the 
concentration. This aspect is probably not significant 
for the concentration range of interest in most 
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agricultural applications. When adsorption equilibrium 
is not instantaneous, the chemical will be leached to a 
greater depth than predicted here. Irreversible 
sorption would result in less leaching. 

6. The half-life time for biological degradation of the 
chemical is constant with time and soil depth. 
Degradation rate coefficients are dependent upon a 
variety of environmental factors, primarily temperature 
and soil-water content. Hence, seasonal changes in 
rate coefficients can be expected. Also, with 
decreasing microbial activity at greater soil depths, 
the degradation rate coefficient may decrease with 
depth. Sufficient data are not available to formulate 
mathematical relationships to describe these effects. 

CMLS simulates: (a) the movement of the chemical and (b) 

the degradation of the chemical. Chemicals move only with soil-

water movement. A volume balance approach is used to calculate 

water movement. At the beginning of the simulation, each layer in 

the soil profile is assumed to be at field capacity. Water is 

available for plants if the water content of any layer of the 

root zone exceeds the permanent wilting point, as expressed by 

the following relationship: 

- a _pwp> 
J 

[1] 

where wj• is the available water in the layer j (mm), tj is the 

thickness of the layer j (mm), aj is the volumetric water content 

of layer j and ajpwp is the volumetric water content at permanent 

wilting point of layer j. Total available water, Wtot • in the 

root zone is the sum of available water of all the root zone 

layers. If Wtot • exceeds the evapotranspiration (ETcrop> for a day, 

the depletion in each root zone layer is in proportion to 
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available water amount in that layer as shown in the following 

equation: 

where 8'i is the volumetric water content of layer j prior to 

adjustment. If the total available water is less than the 

evapotranspiration demand, water content in all layers of the 

root zone is assumed equal to: 

8 = 8 _pwp 
j J 

In equation 3, no effect of soil water content on ET when 

the volumetric water content of the soil is nearing wilting 

[2] 

[3] 

point is assumed. In the field, ET may actually decrease due to 

stress long before 8pwp level is reached. 

After an irrigation and/or rain occurs, the water content of 

each layer is adjusted, starting with the upper soil layer (j=l). 

Using the following equation, the soil-water deficit for that 

layer is determined: 

[4] 

where swdi is the soil-water deficit of layer j (mm) and 8/c is 

the volumetric water content of the layer at field capacity. If 

the infiltrating amount (irrigation and/or rain), Ii, is greater 

than swdi, then: 
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8. = 8 _fc 
J J 

Ii+1 = Ii - swdi 

If Ii is less than swdl' then 

8i=8'i+Ii/ti 

[5] 

[6] 

[7] 

[8] 

Due to adsorption processes, chemicals advance less far in 

depth than water. A reversible equilibrium and linear adsorption 

model simulates the retardation of the chemical movement. The 

following equations predict chemical movement: 

if wP > o, 

ds - drs = 0 

RF 

= oc 

[9] 

[ 10] 

[11] 

[12] 

where 

WP is the amount of water passing the depth d 8 (rom), d 8 is solute 

front depth (rom), d 18 is the solute front depth prior to the 

adjustment (rom), RF is the retardation factor, 8fc is the soil-

water content on a volume basis at field capacity, BD is soil 

bulk density (g/cm3), Kd is the partition coefficient of the 

chemical in soil (mljg soil), K
0
c is the organic carbon partition 

coefficient (ml/g OC) and oc is the organic carbon content of the 

soil (OC fraction). 

In the soil, chemicals are continuously exposed to 
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degradation processes. Relative amount (RA), the fraction of the 

applied chemical remaining in a soil profile, is predicted by 

CMLS: 

-tr ln (2) I t 112 
RA = e 

[13) 

where tr is the travel time since the chemical was applied (days) 

and t 112 is the biological degradation half-life of the chemical 

(days). 

In CMLS, the following parameters are used as input: 

- soil properties (bulk density, water content at field 

capacity and permanent wilting point and soil organic 

carbon content) 

- chemical properties of the pesticide (partition 

coefficient and degradation half-life) 

- climatic and cultural factors (plant root depth, daily 

rainfall + irrigation and daily evapotranspiration 

amounts) 

The outputs given by CMLS, among others, include, travel 

time (tr) for chemicals to move to selected depths and relative 

amount (RA) of pesticides remaining at those times in the soil 

profile. 

The average sprinkler irrigation depth infiltrated over a 

field was estimated using the distribution coefficient (Ha) 

approach (Hart and Reynolds, 1965). Their approach recognizes 

that the average infiltration depth is a function of both 

uniformity coefficient (UC) and the percent of area that is at 
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least adequately irrigated (F). 

They assumed that the distribution of infiltrated water 

depths in an overlapped sprinkler pattern approximates the normal 

distribution. Then the average infiltrated or applied depth of 

water, Vi (mm) can be determined by: 

vi = zreqjHa (14) 

where zreq is the required irrigation depth (mm) at a given date 

and Ha is the distribution coefficient ( a fraction of the mean 

applied or infiltrated depth). 

They reported Ha values for a range of uc values (60 to 99.9 

%) for an assumed range of fractions of the field area ,F (50 to 

100 %) that can be adequately irrigated. The UC is given by the 

following empirical relationship: 

UC = 100 (1.0 - I lz-ml I Iz> (15) 

where uc is uniformity coefficient(%), z is the individual depth 

(mm) of catch observations from uniformity test, and m is the 

mean depth (mm) of observations. 

In this study, Ha values reported by Hart and Reynolds 

(1965) were used to estimate average depth of water infiltrated 

in the soil profile. we assumed table combination of F (60, 70, 

80, 90, and 100 percent) and uc (60, 80, and 96 percent). The uc 

values over 96 percent were omitted because irrigation uniformity 

higher than this is economically nonfeasible. It requires 

excessively close spacing of sprinklers. 

For all combinations, the irrigation amount required in the 
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soil profile was assumed 45 mm. The average infiltrated depth of 

irrigation (Vi) for each combination was computed by dividing 

Zreq (45 mm) by the appropriate Ha. For example, for uc value of 

96 % and F of 100 %, the Ha value reported by Hart and Reynolds 

(1965) was 0.85. Therefore, the average infiltrated depth of 

irrigation (Vi) for a Zreq of 45 mm is 53 mm (45 mm I 0.85 = 53 

mm). These infiltrated irrigation depths were used in CMLS to 

predict the relative amounts (RA) of pesticides for a known site, 

crop, irrigation schedule and system. 

out of many analyses performed for each of the 6 selected 

areas, only representative results are presented here. These 

illustrate the two methodologies presented in this paper. The 

first methodology illustrates the selection of a sprinkler 

irrigation system design for a range of pesticide RA values for 

a given site, crop and irrigation schedule. The second 

methodology illustrates the selection of a pesticide for a given 

irrigation system, schedule, site, crop, and desired RA. These 

methodologies can be used with other simulation models if the 

models more accurately represent preferential flow. 

10 



RESULTS AND DISCUSSION 

Irrigation system Design and Pesticide A1ternatives 

Irrigation system design is a very important factor in 

estimating pesticide leaching in irrigated areas. Pesticide 

leaching can be significantly reduced by an efficient irrigation 

system design. Figure 2 illustrates how Ha and RA are affected by 

selecting the fraction (F) of area to be adequately irrigated for 

several ucs. For example, note that each of three combinations of 

uc and F (60%, 60%), (80%, 70%), and (96%, 100%), can yield the 

same RA (0.15) of hexazinone remaining at 2 m soil depth. 

Pesticide travel time to that depth was the same for all these 

combinations. 

one can choose any one of these uc and F combinations to 

achieve the target RA of hexazinone. If one combination of uc and 

F does not yield an acceptable RA of hexazinone, a different 

might. The third combination of UC (96%) and F (100%) is 

environmentally relatively inoffensive although it might be 

expensive requiring much sprinkler hardware. This sprinkler 

irrigation system design was used for all subsequently discussed 

CMLS simulations. 

A second situation exists when the irrigation system and 

schedule are in place and farmers must select an appropriate 

pesticide. Farmers usually have several pesticides to choose 

from. Each has different values of K
0
c and t 112 • To develop 

decision support nomograms, many simulations were performed in 

which K
0
c varied from 1 to 100 mljg OC and t 112 ranged from 10 to 
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100,000 days. We assumed alfalfa was irrigated using a 1986 

irrigation schedule in Cache county, Utah. RA remaining when the 

pesticide reaches to soil depths of 0.5 m and 2.0 m were 

predicted (Figures 3 and 4 respectively). 

Figure 3 illustrates that for low K
0
c values, as the t 112 

decreases, the RA remaining at 0.5 m soil depth also decreases. 

For a given t 112 , as the K
0
c increases, the RA remaining at 0. 5 m 

soil depth decreases. For higher K~ values (greater than 75 ml/g 

OC) , the predicted RA is o. 00 regardless of t 112 • This shows that 

all alfalfa pesticides having K
0

c > 75 mljg OC are safe to use in 

this situation even if t 112 is 100,000 days. 

Figure 4 shows similar results for RA values for pesticides 

reaching a 2m soil depth (below the alfalfa root zone). No 

pesticide with t 112 of 10 days or less percolates to 2 m. Short 

half life pesticides biodegrade long before they can percolate 

deeply at that site. The 2 m soil depth adsorbs more pesticides 

than the 0.5 m depth. In summary, only the pesticides with lower 

K
0
c values (15 mljg OC or less) and longer t 112 ( >10 days) will 

leach below the alfalfa root zone. Ground-water contamination is 

more likely to occur from such pesticides. 

sensitivity Analyses 

Soil physical properties were varied in a sensitivity 

analysis presented below. Also evaluated is the effect of 

assuming an average deep percolation value despite the fact that 

even the best sprinkler system applies significantly different 
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amounts of water to different parts of a field. 

soil 

The greater the clay and organic carbon content, the greater 

a soil's tendency to adsorb pesticides and the smaller the risk 

of ground-water contamination. Pesticides require more travel 

time when moving through heavy soils e.g. clay soils, than 

through lighter soils e.g. sand. The travel time, in turn, 

determines the time available for pesticide degradation via 

chemical and biological processes. Figure 5 illustrates how soil 

texture affects aldicarb RA values. Much more aldicarb reaches 2 

m depth in sand than in the heavier soils. 

Sprinkler Irrigation 

In the preceding section, we have used the (Zreq j Ha) 

approach to determine a field average infiltrated depth of water. 

Here we examine how that value compares with a more detailed 

approach. We compare this field average infiltrated depth with 

the average of 10 normally distributed infiltrated depths. To do 

this, the field is divided into 10 incremental subareas of equal 

size. Using a normal distribution approach for the entire field, 

the appropriate infiltrated depth was determined for each subarea 

under a normal curve. Then these 10 infiltrated depths were 

averaged. Assumed were a uniformity coefficient (UC) of 60 

percent, and 80 percent of the field area (F) adequately 

irrigated. A poor uniformity coefficient of 60 percent was 

selected because it demonstrates the greatest variations among 

infiltrated water depths. This combination of UC and F gives a 
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distribution coefficient (Ha) of 0.578. The average infiltrated 

depth (Vi) for the entire field is computed by dividing Zreq (45 

mm) by Ha (0.578). Thus Vi is estimated as 78 mm (Vi= 45 mm 1 

0.578 = 78 mm). This average infiltrated depth is used to develop 

a normal curve and then to compute each individual infiltrated 

depth cumulatively for each of the 10 subareas of the field. 

These depths were then input into 10 different CMLS 

simulations. Aldicarb, one of the most mobile and commonly found 

pesticides in ground water was used (Table 1). The results of 

these simulations are shown in the first 10 rows of Table 1. The 

next row shows the average of the 10 detailed simulations. The 

final row shows the values computed by a single simulation using 

a 78 mm average infiltrated depth (the approach used in previous 

discussion). By comparing the last two rows, we are comparing the 

average of 10 detailed simulations with the value computed by a 

single simulation. 

The results are very similar down to a depth of 1.5 m but 

are obviously different below that depth. This occurs because 

applied depth of water in each subarea is not uniform (16 to 140 

mm). This nonuniformity produces some subareas with practically 

no deep percolation and pesticide movement and others with deep 

percolation and pesticide movement. Clearly, using the single 

average approach can give misleading results with increasing 

depth, if the uniformity coefficient is low. Underestimation can 

also become more important if preferential flow, not accounted 

for in the model, is present, and a portion of the soil water is 
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bypassed during flow. The single depth approach is more accurate 

with higher irrigation uniformity (higher uniformity 

coefficients). 

Figure 6 shows the influence of the different subarea 

percolation depths (Table l) upon aldicarb movement. Clearly, 

pesticide will be much more prone to reach a water table at 2 m 

depth in some parts of a homogeneous field than in others. 
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SUMMARY 

Procedures were developed for aiding environmentally safe 

pesticide/irrigation management. These required simulation of 

effects of sprinkler irrigation design, pesticide characteristics 

(partition coefficient and half life), and soil type on pesticide 

leaching. First is design of a sprinkler irrigation system for a 

particular site and pesticide. This enables discrimination of the 

uniformity coefficient - percent area adequately watered combos 

that avoid excessive pesticide movement. Second is selection of 

appropriate pesticides for a particular site, crop and sprinkler 

design. This permits determining the threshold partition 

coefficients or half lives for environmental safety in a 

particular site. 

Analysis also revealed that using field average 

infiltration predicts inaccurate pesticide RA values at higher 

soil depths. However, for shallow soil depths or irrigation 

system of good uniformity, the field average approach is 

acceptable. 

A combination of BMPs (best management practices) such 

as efficient sprinkler system design and management, and 

selection of less leachable pesticides will yield results with 

minimum potential for ground-water contamination and 

environmental hazards. 

This research was supported by the Utah Agricultural 
Experiment Station, Utah state University, Logan, Utah 84322-
4810. Approved as journal paper No. 4160. 
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TABLE 1: Pesticide Movement Comparison Under Sprinkler 
Irrigation. 

PESTICIDE AREA d RELATIVE AMOUNT REMAINING AT 
No NAME % (mm) 1.0m 1.5m 2.0 m 3.0 m 

1 ALDICARB 10 16 0.0000 0.0000 o.oooo 0.0000 
2 ALDICARB 10 37 0.0000 0.0000 0.0000 0.0000 
3 ALDICARB 10 51 0.0001 0.0000 0.0000 0.0000 
4 ALDICARB 10 63 0.0905 0.0001 0.0000 0.0000 
5 ALDICARB 10 73 0.1649 0.0001 0.0001 0.0000 
6 ALDICARB 10 83 0.1984 0.0905 0.0001 0.0000 
7 ALDICARB 10 93 0.1984 0.1371 0.0686 0.0001 
8 ALDICARB 10 104 0.2679 0.1649 0.1114 0.0001 
9 ALDICARB 10 118 0.2679 0.1984 0.1371 0.0686 

10 ALDICARB 10 140 0.3455 0.1984 0.1649 0.1114 

SUBAREAS 
AVERAGE 78 0.1534 0.0790 0.0482 0.0180 

ALDICARB 100 78 0.1649 0.0686 0.0001 0.0000 



CROP DATA 

PESTICIDE DAT. 

iETcrop DATA 7 

CMLS 

AVERAGE INFILTRATED 

WATER DEPTH 

z51ME WINDOW 7 

RELATIVE AMOUNT OF PESTICIDE 

REMAINING IN THE SOIL 

Figure 1: Schematic Representation of the Procedure to 
Estimate Relative.Amount (RA) of Pesticides 
Remaining in the Soil. · 



0.7 0.2 
.s:::. RELATIVE AMOUNT .... 
0. 0.3 
(J) 0.6 DISTRIBUTION COEFF. 
0 

·o o.s 0.4 -(/) <II 
0.5 :::c Soli: Kidman (sandy loam) 

E 0.4 - Crop: Alfalfa ...: C\1 
0.6 - County: Cache 

(J) Pesticide: Hexazinone .... 
0 <II 0.3 0 

Cl 0.7 Irrigation Schedule: c c 
C0.2 0 5/15/86 to 9/15/86 

~ 0.8 += Irrigation System: ::I 
E .0 (sprinkler Irrigation) & 0.1 ... 

0.9 .... 
Cl) 

~ a a: 0 1.0 
100 90 80 70 60 50 

Fraction of Area Adequately Irrigated, % 

Figure 2: Effects of Un~formity Coefficient (UC) and Percent 
of Area Adeqliately Irrigated on Distribution 
Coefficient (Ha) and on the Relative Amount (RA) 
of Hexazinone Remaining at 2 m Soil Depth Under 
Alfalfa Irrigation Schedule. 



1i 1~~==~~:::::-~r-----------l 
Cl,) 

0 
·0 o.8 
(/) 

E 
100.6 

0 

1U 
010.4 
.E 
c ·a 
Eo.2 
Q) 

0:: 

~ 0~----~~~~\--.~~ 
1 6 15 20 60 76 80 100 

1112 • 10 daya 

-+- 11/2 • 50 daya 

+ 11/2 • 100 daya 

-8- 11/2 • 500 daya 

""*" 11/2 • 100,000 daya 

Sol~ Kidman 
(sandy loam) 

Crop: Alfalfa 
County: Cache 
Irrigation Schedule: 
6/15/86 to 9/16/86 
Sprinkler Irrigation: 
uc. 96% 
Fraction of Area Adeq. 
Irrigated • 100 % 

Partition Coefficient, Koc (mllg OC) 

Figure 3: Effects of Pesticide Parameters on the Relative 
Amount (RA) Remaining when a Pesticide Reaches 
0.5 m Soil Depth for Known site, System and 
Irrigation Schedule. 
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Figure 4: Effects of Pesticide Parameters on the Relative 
Amount (RA) Remaining when a Pesticide Reaches 
2 m Soil Depth for Known Site, System and 
Irrigation Schedule. 
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Figure 5: Effects of various Soil Textu~es on Relative 
Amount (RA) of Aldicarb Remaining in the Soil when 
It Reaches to a Depth of 2 m. 
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Figure 6. Effect of Various Infiltrated Water Depths on 
Relative Amount (RA) of Aldicarb Remaining in the 
Soil when It Reaches to a Depth of 2 m. 


