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ABSTRACT 

A stochastic analysis is made for a previously described groundwater 

contaminant management model {Peralta and Ward 1 1988) . Th . .=. stochastic model is 

based on incorporating uncertainty of the aquifer parameters transmissivity and 

effective porosity into the model. This is accomplished by finding the partial 

derivative of drawdown with respect to each of these parameters using a Taylor 

series expansion approximation of the Theis equation. Input that is required for 

the stochastic version is the mean of the transmissivity and effective porosity, 

the coefficient of variation of the transmissivity and effective porosity, and 

a reliability level (0%-100%) . The reliability is a measure of the user's 

required confidence in the model solution. The user wants to be confident, at 

some probability, that the actual changes in head at pumping wells do not exceed 

the values calculated by the model, while 1 at the same time, he wants to be 

confident that actual changes in head at observation wells are at least as great 

as the calculated values. Thus, equations that are affected by heads at the 

observation wells are treated differently than equations that are affected by 

heads at the pumping wells. 

Optimal strategies are presented to demonstrate sensitivity to changes in 

standard deviation of aquifer parameters and to changes in reliability level. 

Tests show that uncertainty of transmissivity affects the optimal pumping more 

and the final gradient and objective function less than uncertainty of effective 

porosity. In general, as uncertainty of aquifer parameters increases, optimal 

pumping values decrease, resulting in a poorer final hydraulic gradient. As the 

reliability level is increased optimal pumping decreases, again resulting in a 

poorer final gradient. 

Introduction 

Typically, some of the parameters of conceptual hydrologic models are 

calibrated using limited hydrologic information. The purpose of this paper is 

to describe how uncertain knowledge of aquifer parameters can be incorporated 
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into an optimization program. The optimization program used as the basis for 

this paper has been described in detail (Peralta and Ward, 1988). 

* The mathematical description of groundwater flow requires specific 

assumptions in order to fit the physical events into a set of equations for which 

a solution exists. The expression of the physical events by mathematical 

equations, the estimation of the aquifer parameters, and the approximation of 

complex analytical expressions by their discrete analog are important sources of 

error. Because these errors introduce uncertainty into groundwater modeling, 

future projections cannot be made with absolute certainty. The validity of these 

mathematical equations and the errors introduced by numerical methods have been 

discussed elsewhere. This work is only concerned with errors introduced by 

inaccuracies in aquifer parameters. In the practical simulation of real dynamic 

systems we are immediately faced with uncertainty as to exact physical 

parameters. The investigator must establish tolerances within which the 

parameters of the physical system may vary without appreciably affecting the 

model results. 

In light of the inherent randomness of subsurface flow and the existence 

of uncertainties in aquifer parameters, the groundwater flow system should be 

treated as a stochastic process and aquifer parameters be considered random 

variables. To carry this argument further, groundwater management models shouldr 

if possible, be able to consider the random nature of the subsurface flow system 

and derive management decisions accordingly. 

In this paper, the development of a multi-period stochastic groundwater 

contaminant management model is illustrated using the Theis equation. The model 

considers explicitly the random characteristics of transmissivity and effective 

porosity in a confined aquifer. The stochastic management model is formulated 

by transforming the objective function and constraint equations containing random 

aquifer properties into a chance constrained expression which specifies the 

reliability requirements of the system performance (i.e. the user's confidence 

in the system r~sults} . 
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PREVIOUS WORK 

There have been very few studies that have used stochastic concepts at the 

macroscopic scale in subsurface flow models. The work that has been done can be 

placed into one of the three possible categories of uncertainty that have been 

investigated in model solutions. The three possible categories of uncertainty 

are: (l) those caused by measurement errors in the input parameters, {2} those 

caused by spatial averaging of the input parameters, and (3) those associated 

with the inherent stochastic description of nonhomogeneous or heterogenous porous 

media. 

The error propagation study of Sagar and Kisiel (1972) falls into the first 

category. They investigated the influence of errors in initial head, 

transmissivity and effective porosity on the drawdown patterns predicted by the 

Theis equation for pumpage from a homogeneous isotropic confined aquifer. They 

utilized uniform frequency distributions for the input parameters, noting this 

is the usual Bayesian 'know nothing 1 prior distribution. They produced plots 

that show the growth through time of the percent error in hydraulic head at 

various radial distances form a pumping well with various input errors. They 

also concluded that a far more general and better method (yet mathematically 

complicated) of investigating error would be to consider the parameters as 

stochastic processes. 

McElwee and Yukler (l978) looked at the sensitivity of groundwater models 

with respect to variations in transmissivity and effective porosity. They 

obtained sensitivity coefficients by finding the partial derivatives of the Theis 

equation with respect to each of these parameters. In general/ they discovered 

that a 20% deviation in transmissivity or effective porosity can be handled 

adequately (error of less than 5% of drawdown) by the first order formulation 

which is used in our paper. 

The work of Bibby and Sunada (l97l) combines aspects of approaches l 

and 2. In their analysis they used a numerical simulation model of transient 

flow to a well in a confined aquifer. They utilized Monte Carlo simulation to 
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investigate the effect on the solutions of normally distributed measurement 

errors in initial head, boundary heads, pumping rate, aquifer thickness, 

hydraulic conductivity and storage coefficient. In addition they analyzed the 

uncertainties introduced into the solutions by choosing spatially averaged 

parameter values at each grid point in the nodal m8sh used in the numerical 

method. They assumed that within each nodal block, each input parameter 

(hydraulic conductivity, for example) 

function that fully describes the 

can be represented by a general linear 

spatial trends within the block. The 

uncertainties in the values of the coefficients of this general linear function 

(which are related to the number of available measurements) lead to uncertainty 

in the spatially averaged value used at each node in the simulation. This type 

of analysis leads to the normal distribution for the hydraulic conductivity 

values. This normal distribution identifies the approach as having more in 

common with the analysis of measurement errors (category 1) than with 

stochastically defined media (category 3) where hydraulic conductivity is usually 

recognized as being log-normally distributed. 

A paper by Free:&e (~975) falls into category 3. He concluded that the most 

realistic representation of a nonuniform homogeneous porous media is a stochastic 

set of macroscopic elements in which the two basic hydrogeologic parameters 

(hydraulic conductivity and porosity) within these elements are assumed to come 

from frequency distributions. 

Tung (1.986) has developed a multi-period stochastic groundwater management 

model utilizing the Cooper-Jacob equation and the concept of unit response 

func€ions. His general conclusions were that effort should be given the better 

evaluate transmissivity and its variability. The effective porosity in a 

modeling process can be treated as deterministic and its accuracy is not 

critical. However, when the uncertainty of transmissivity is large the normality 

assumption for random drawdown may not be appropriate. Furthermore, the 

assessment of statistical properties of drawdown using first order analysis may 

not be appropriate. There have been some investigations regarding the 

appropriateness of first order analysis applied to situations where variation of 
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system components is large. 

Loaiciga and Marino (1987) develop a methodology for estimating the 

elements of parameter matrices in the governing equation of flow in a confined 

aquifer. The estimation: techniques for the distributed parameters inverse 

problem include linear leaSt squares and generalized least squares methods. 

Secondly, 

problem 

a nonlinear maximum likelihood estimation approach to the inverse 

is presented. The statistical properties of maximum likelihood 

estimators are derived, and a procedure to construct confidence intervals and do 

hypothesis testing is presented. 

Model Development 

The Theis well function is the basic groundwater flow equation used by the 

simulation component of the management model. The deterministic version of the 

groundwater contaminant plume management model is used as the starting point for 

development of the stochastic management model. Some of the equations referred 

to are from the previous paper describing the deterministic model {Peralta and 

Ward, 1988). The new equations introduced in this paper are numbered as a 

continuation of this previous paper (i.e. there is only one equation no. 1). 

The goal is to determine the optimal pumping rates for a specified planning 

horizon such that undesirable consequences do not occur. The stochastic approach 

allows the incorporation of uncertainty of aquifer parameters within the model. 

The model can utilize a probability distribution for each aquifer parameter. The 

model then will generate optimal pumping values that will produce no undesirable 

results for a specified reliability (confidence limit) . 

(1) Stochastic unit response function 

The deterministic unit response function, 0, can be obtained from a 

distributed parameter groundwater simulation model (Peralta and Ward, 1988). 

However, when hydrogeologic information of an aquifei system is lacking or 

unavailable, a closed form analytical solution to an idealized condition can be 
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utilized to derive a stochastic unit response function. 

Since the unit response function characterizes an aquifer pumping-drawdown 

relationship, a groundwater management model can be very easily formulated once 

the response functions are defined. The deterministic management model does not 

consider the random nature of aquifer parameters. The stochastic model presented 

below has the same objectives, but incorporates probability in all equations that 

use unit response functions. Probability is considered via information 

concerning the probability density function (pdf) of transmissivity (T) and 

effective porosity (0) . 

Values for transmissivity and effective porosity are normally derived from 

a pump well test. Such a test provides in situ values of aquifer parameters 

averaged over a large and representative aquifer volume. Therefore, T and 0 

should be treated as random variables. Because the response function 6 is 

computed using the random variables T and 0, it too is random in nature. 

The deterministic objective function equation (eq. l), drawdown constraint 

equation (eq. 3) and the observation well potentiometric head constraint (eq. 4) 

are all functions of the probabilistic response function. Therefore, it is more 

appropriate and realistic to examine both objective function and constraints 

probabilistically; particularly when aquifer information is scarce. 

In a stochastic environment, one wishes to specify limitations on allowable 

risk or required reliability of constraint performance. The necessary 

reliability for attaining the objective and satisfying the constraints can be 

represented by a confidence limit. This reliability states the models' 

confidence in the resulting potentiometric surface. The reliability can be 

determined based on the confidence of the model user in his estimates of aquifer 

parameters. 

The following development is based on the procedure proposed by Tung (1986) 

for the drawdown constraint. The restriction that actual drawdown (positive or 

negative change in head) in the field at any point j at the end of the period t 

resulting from pumping over the entire well field cannot exceed (or has to 

exceed) a specified value is the basis for the analysis. In this case the 
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specified value is that calculated by the model. The drawdown is based on a 

specified reliability, p. In other words, we want to be p% sure that the 

computed value of the model will (or will not) be exceeded in the field. The 

computed drawdowns are themselves bounded so that within the model they will not 

exceed predetermined values. 

For the drawdown constraint at pumping wells, there is a p confidence that 

the actual drawdown at a pumping well will not exceed the sj,t drawdown value 

calculated by the stochastic model. Representing the actual drawdown using the 

relationship between drawdown and pumping (eq. 5) yields eq. l3a below. Rigorous 

testing of the validity of this constraint would be accomplished by: 

{1) using a random number generator to create a large set of possible 

combinations of transmissivities and porosities 1 

(2) creating one set of 6 for each combination developed in the previous 

step, and finally, 

(3) using a eq.S to compute the drawdowns that would result from using 

the optimal pumping strategy developed by the stochastic model. 

If the sampling is large enough, p% of the drawdowns computed in this step should 

be less than the s;.c computed by the stochastic model. 

I 

Pr { L 61 'j 'kqt-k+l :o;sj't kp 
i=l 

for all j t ....... ( 13 a ) 

The calculated value, sj,tl is limited by the drawdown constraint, eq. 3. All 

such calculated drawdowns at pumping wells will be less than that specified by 

the drawdown constraint except for the drawdowns at the tightly constrained 

pumping wells. At such wells the stochastic drawdown will equal the constraint 

value. At the tightly constrained wells there is a p probability that an actual 

drawdown is less than the stochastically created drawdown. At all other pumping 

wells the probability will be greater than p. 

Heads at observation wells affect the objective function and constraint 

equation 4. There must be p confidence that the actual drawdown at an 
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observation well will be greater than the value, sj,t' calculated by the 

stochastic model. However, to express this in the same form as eq. 13a, it is 

stated that there is a 1-p confidence that the actual drawdown will be less than 

that calculated by che stochastic model. This is expressed as: 

f~I t 

Pr~~ for all j t . ( 13b) 

In equations 13a and 13b the sequence of summation and notation for the 

increments t and t-k+l have been reversed from that in eq. 5. This provides a 

more clear derivation of the stochastic coefficients. This reversal has no 

effect on the final results. 

A probabilistic statement of the drawdown constraint {or any statement 

where drawdown is used, such as the objective function) like eq. 13, is not 

mathematically operational, so further modification is needed. To make eq. 13 

operational, it is necessary to assess statistical properties in random terms in 

this chance-constrained expression. 

There have been a number of field investigations and laboratory experiments 

assessing the probability distribution of aquifer transmissivity and hydraulic 

conductivity. Most findings indicate that the hydraulic conductivity has a log 

normal distribution. Because the response function, 0, computed by the Theis 

equation, is a nonlinear function of transmissivity and effective porosity 1 the 
A 

probability function of 0 as well as drawdown at any observation point cannot 

easily be determined. Therefore, a first-order analysis is used to estimate the 

statistical properties of the unit response function and drawdown at each 

observation point. 

First-order analysis is a useful method to estimate statistical 

characteristics such as the mean and variance of_ a function involving random 

variables. In first order analysis, the function containing random variables is 
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expanded in Taylor series about the mean values of random variables 1 i.e. 

f(x) f(u) + f 1(u) [x-x(u)] + 
f 11 (u) 
-=-~"- [x-x( u) ] 2 

2 ! 

fn ( U) 
+ [x-x(u)]n ••••••• (14) 

n ! 0 

in which f(x) is a function involving a random variable x, f(u) is the mean value 

of f(x) and x(u) is the value of the random variable at the mean, f(u). 

Derivations of statistical of drawdown at each observation point 1 assuming 

independency of transmissivity and effective porosity, are given in Appendix I. 

Results are as follow: 

Bi'j'k qt-k+t • • • • • • · (15) 

A 

where B is the same as 0 in the deterministic model; 

[ 

I t 

~~ 

[ 

I t 

+~~ pi'j'kqt-k+lsdsr .••••••• (16) 

in which E (sj,t) and var (sLt) are the mean and variance respectively of drawdown 

at observation point j at the end of the t period; sdt and sds are the standard 

deviations of the transmissivity and effective porosity respectfully and B, A 

and P are coefficients that are functions of the mean transmissivity and mean 

effective porosity. As can be seen in eq. 15 1 the mean drawdo~ is a linear 

function of pumping and represents the deterministic solution (50 percent 
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reliability) but the variance (eq.l6) is a quadratic function of pumping. 

Derivation of eqs. 15 and 16 enables the development of a deterministic 

equivalent for eqs. 13a and 13b. As shown in the next section, the equivalent 

is mathematically operational and permits explicit incorporation of random 

characteristics of the aquifer properties in the management model. 

The total drawdown at any control point is the sum of the drawdown created 

by many individual pumps. Since drawdown is a random variable the central limit 

theorem applies. That theorem states that, if n is large, a set of random 

variables has approximately a standard normal distribution. Therefore, the total 

drawdown at each observation point can be assumed to have a normal distribution 

with a mean and variance given by equations 15 and 16, respectively. Under the 

normality assumption the original chance constrained eqs. 13a and 13b can be 

expressed as: 

(17a) 

for the drawdown constraint eq. 3 and 

Pr {z s ( 17b) 

for the objective function and constraint eq. 4. z is a standard normal random 

variate with mean zero and unit variance. By substituting eq. 15 in to 17a and 

17b, and since F-1 [p] = -F-1 [1-p], an equivalent expression can be written as: 

I t 

L L Bi'j'k qt-k+l ± Jvar(sj't) F-'[p] s sj't ; 
i=l k=l 

for all j and t . (l8) 

in which F·1 [p] a standard normal deviate corresponding to the normal 
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cumulative distribution function of p. The plus sign on the left side of the 

equation produces the equation stating that there is a p probability that the 

actual drawdowns at pumping wells are less than the calculated value, sj,t· The 

minus sign produces the equation stating that there is a l-p p.·obability that the 

actual drawdowns at observation wells are less than the calculated value. 

Note that the second term in eq. 18 involves a square root of the variance 

of drawdown at each observation point which, in turn, is a quadratic function of 

unknown decision variables q. The deterministic equivalent of a chance-

constrained equation in nonlinear. Standard linear programming codes cannot 

solve problems with nonlinear constraint equation. However, as suggested by Tung 

(1986), quasi-linearization can be employed to linearize the nonlinear term in 

eq. lB. 

This linearization is actually a trial and error method using an 11 estimate 11 

of the optimal pumping to determine the stochastic coefficients. The iterative 

process is shown as a flow chart called Figure 1 in Tung (1986) . In the process 

of linearization, the nonlinear term in eq. 18 is expanded as a Taylor series 

(i.e. eq. 13) about this estimate of optimal pumping 1 Qot-k-+l· 

I t 

f(q) = Jvar(sj'tl = f(Qo) + L L 
i=l k=l 

t-k+l - Qot-k+d} + HOT • (1 

in which HOT are the higher order terms. After neglecting the higher order terms 

and some algebraic manipulations 1 the first-order linear approximation of the 

nonlinear terms (derived in Appendix II) can be expressed as: 

1 t 

I: I: Di'j'k qt-k+l • 
i=l k=l 

where: 
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1 
f(Qo) 

f(Qo) ~ ../ft (Qo) 2 + fs(Qo) 2 

I t 

ft (Qo) ~ L L [A1,j'kQot-k+l] sdt 
i=l k=l 

I t 

fs (Qo) ~ L L [P1, 1 ,kQot-k+1 ] sds 
i=l k=l 

sdt is the standard deviation of transmissivity 

sds is the standard deviation of effective porosity 

A and P are defined by equations 28 and 30 respectively. 

Finally, substituting eq. 20 into eqs. lBa and 18b results in a linear 

approximation for the stochastic equivalent to the original deterministic 

constraint on drawdown: 

I 1 

L L Ei,j,kqt-k+l"' sj,t • • • • • • • • • • ••• • • • • • ••• (22) 
i=l k:=l 

where: 

for drawdown constraint equation 3 and 
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1 -

F~ [P] Di'j'k 

for the objective function and constraint equation 4. 

Checking the signs for theE and D coefficients reveals that the stochastic unit 

influence coefficient {E) responds the same whether showing the influence of an 

injection wells both Band Dare negative values. Therefore E is larger in 

absolute magnitude than the deterministic unit influence coefficient for the 

drawdow.n constraint. E is smaller than the deterministic coefficient for the 

objective function and constraint eq. 4. At extraction wells both-Band-Dare 

positive; producing a larger absolute value forE in·the drawdown constraint and 

a smaller value for the objective function and constraint eq. 4. 

To convert the original deterministic model into a stochastic model replace 

the drawdown constraint eq. 3 with eq. 22 and use Ei,j,k for "'o . . k in the 
l., J' 

objective function. Clearly, Ei,j,k can be considered as a stochastic unit 

response function derived from the Theis equation. And it should be noted that 

the deterministic model actually represents a reliability of .so 

(when F-1 [.50] ~ 0). 

(2) Reliability determination 

There are drawdown terms (for observation wells) in the objective function 

and constraint eq. 4 as well as in drawdown constraint eq. 3 {for pumping wells) . 

Reliability is treated differently in the two cases. Refer to Figure 1 during 

the following discussion. 

Let's assume a reliability level of 0.95. In a drawdown constraint one 

wishes to be 95 percent sure that the change in water level does not exceed the 

prespecified maximum change {i.e. does not violate predetermined bounds on head) . 

One used the standard normal deviate {F-1 [p]) corresponding to a reliability of 

0.95 for the drawdown constraint (i.e. F-1 [.95] ~ 1.64). The procedure described 
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previously computes a stochastic unit response coefficient for the 95 percent 

confidence level. The coefficient is larger than a deterministic coefficient 

{which corresponds to a 50 percent confidence level) . Since a unit pumping 

influence coefficient less pumping is feasible before drawdown constraints become 

tight. 

When considering the objective of raising water levels to prevent 

contaminant movement one wishes to be 95 percent confident that head changes 

equal or exceed calculated values. Therefore 1 with the objective function and 

constraint 10 one uses the standard normal deviate corresponding to a reliability 

of .05. This produces stochastic influence coefficients that are numerically 

smaller than 95% of all deterministic influence coefficients. For identical 

pumping values the 95% probability change in water levels needed to achieve a 

horizontal gradient is much greater than that needed using deterministic 

coefficients. This guarantees that pumping values calculated by the model are 

equal to or greater than those required by the deterministic model to produce a 

horizontal gradient. 

However~ this guarantee also allows constraint eq. 4 (which specifies that 

final heads at down-gradient observation wells are greater than final head at 

source) to force the objective function value to be larger than an objective 

function value resulting from only trying to minimize the head differences 

between the contaminant source and all observation wells. Greater pumping values 

may actually cause the heads at the down-gradient observation wells to 

'overshoot 1 the head at the source and produce a reverse gradient. This is 

demonstrated in the Application Section where the objective function and reverse 

gradient increase as aquifer parameter uncertainty increases. The 1 tight' down

gradient observation well is the one whose final head is equal to the final head 

at the source. All other down-gradient observation well heads are higher than 

the source head, therefore 1 producing a larger objective function value. 

(3) Determination of aquifer parameters 

Estimation of transmissivity and effective porosity has received much 
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attention in the literature in recent years and was discussed in the Review of 

Literature Section. From eqs. lS and 16 it is seen that the mean and variance 

of transmissivity and effective porosity are needed in the stochastic version of 

the optimization model. MaLy methods for determining these statistics are 

described in the literature. Here a Bayesian approach is used to derive the mean 

and variance for transmissivity and effective porosity. 

The Bayesian approach uses a prior (also called unconditional) probability 

distribution function (pdf) and a likelihood pdf to determine the mean and 

variance for the aquifer parameters. This mean and variance describe the 

posterior or conditional pdf used within the stochastic model. The prior pdf is 

based on knowledge of the aquifer obtained from past experience. This study 

suggests using aquifer material (soil type) as the basis for the prior pdf. The 

likelihood pdf is developed from current information (field or lab data) about 

the aquifer in question. 

In the stochastic analysis portion of this study the standard deviation of 

transmissivity and effectie porosity are varied to determine how these changes 

affect the objective function value. However 1 in a real situation 1 one would 

estimate a mean and variance for these aquifer parameters from a prior pdf and 

a 'likelihood' pdf. The user would select a description of the soil type from 

a given list. Based on a range of values of transmissivity and effective 

porosity associated with each soil type (derived from numerous references) 1 a 

prior pdf mean {io} and variance (Vo} are determined. This determination is made 

by assuming that the range of values spans three standard deviations each side 

of the mean (99% confidence interval) . With this assumption and assuming a 

log-normal pdf for transmissivity and a normal pdf for effective porosity one can 

compute the mean and standard deviation. If there are no field data values for 

the problem the prior pdf becomes the posterior pdf. 

If one has field data values/ the mean {X) and variance (V) are determined 

using standard equations for. mean and variance of a data pop~lation. This mean 

and variance for the field data values define the likelihood p[df. The mean and 
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variance for transmissivity are calculated using the natural log of all 

transmissivity values because these values are known to be normally distributed. 

The posterior pdf is related to the prior pdf and likelihood pdf as shown: 

posterior distribution oo prior distribution x likelihood distribution 

The mathematics of multiplying a normally distributed likelihood pdf by a 

normally distributed prior pdf has been previously derived (Lindley, 1970) . 

Assuming the natural log data values for transmissivity and the data values for 

effective porosity are normally distributed, the posterior mean, E { ) , and 

posterior variance, var{ ) for either parameter are calculated from: 

E ( ) 

var ( ) 

1 2- 2-
(vo- xo+v- X] ••••••••••• (23a) 

v-' 

( "o -' + v-') -' V' o o o • o o o o • • o o o • • o o o o o • (23b) 

The expected value, E, and the variance, var, for effective porosity are used as 

the posterior mean and variance. However 1 because natural log values are used 

to determine the expected value and variance for transmissivity, these values 

must be converted back to represent the mean and variance of the actual 

transmissivity values. Standard equations for the mean and variance of a 

population which has a log normal pdf and the expected value and variance of its 

natural log values are known are used (Johnson and Katz, 1970). These are: 

lE + (var)} ••••••••••••••...•••..•• (24a) 

mean - exp 2 

vari(~[=(var) + 2E ]} {exp [(var)]- 1} •••••••••••• (24b) 
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These two equations are used assuming the entire population of values is 

available. Since the prior pdf uses the knowledge of a large amount of data for 

each soil type this assumption is sound. 

Application, Results and Discussion 

The stochastic optimization model was applied to the same hypothetical 

groundwater contamination problem that was used to analyze the deterministic 

version. Aquifer parameters' (transmissivity and effectie porosity) coefficient 

of variation (ratio of standard deviation to mean} and required solution 

reliability were varied in consecutive runs. 

The simulation component and optimization component were run on an IBM AT 

with 640K bytes of RAM, a 30 MEG internal hard disk with a floppy disk drive, and 

math coprocessor. 

Utilized physical parameters for model run ld include a transmissivity of 

1255 m2 /d (13,500 ft 2 /d), and an effective porosity of 0.3. The original 

hydraulic gradient was 0.54%. Maximum and minimum acceptable pumping rates, 

based on available equipment, are l35 L/s and o L/s. This was based on the 

performance curve for a pump that can discharge lSO L/s against 6 m of head at 

80% efficiency. The upper limit on head at all injection wells was the ground 

surface (5.8 m above the initial water table). This should prevent pressurized 

injection (Lefkoff and Gorelick, l986) The lower limit on head at extraction 

wells prevented such changes in tansmissivity that would invalidate the use of 

superposition. In general, if the change in transmissivity is less than lO 

percent, the aquifer can be treated as a confined aquifer system. 

The stochastic model was applied to the same hypothetical system described 

for the deterministic model in the previous paper (Peralta and Ward, l986}. 

Results are shown in Tables 1 and 2 for comparison with the deterministic model 

(run ld) . The coefficients used for this analysis were Wt=l. 0 and c 1 and cH equal 
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to their original values. Therefore, the results shown for this analysis are 

for a strongly hydraulic objective function. 

The initial pumping (Qo) used in the iterative solution procedure of the 

stochastic model was th~ optimal pumping from the deterministic model run. It 

was found that two iterations brought acceptable agreement (convergence within 

5 percent) between the 11 estimated 11 pumping values and the final optimal pumping. 

The weight factor in the objective function was adjusted for identical runs as 

was described in the previous paper (Peralta and Wardr 1988), but as was found 

then, all weight factors of 1. o and greater produced the same results. 

Subsequent tests used a weight factor of 1.0. 

In all, ten stochastic optimizations were performed. These utilized a 

range of values for the coefficient of variation (CV) for both transmissivity and 

effective porosity and used two reliabilities (a constant for all wells and all 

time periods for each run) . Figures 2 and 3 graphically depict the pumping 

strategies developed for the five stochastic model runs made at the 95 percent 

reliability level. Figure 2 shows the pumping trends as the uncertainty of 

transmissivity increases from run ls to run 3s as compared to the determinis.tic 

run (ld) . Figure 3 shows the pumping trends as uncertainty of effective porosity 

increases from run ls to runs 4s and Ss. The same general pumping trends are 

evident for the runs made at the 80% reliability level. 

To analyze the predictability of these results we look first at the 

equation for the stochastic influence coefficient E (eq. 22) and reference Figure 

1. From a table of standard normal deviates it is known that, as reliability 

(p = F(z)) increases, z (which equals F-~(p]) increases. Therefore, looking at 

equation 22 we see that, as reliability increases, E for the objective function 

and constraint equation 4 decreases and E for the drawdown constraint increases. 

In addition, as uncertainty of aquifer parameters increases (increasing CV) 1 the 

standard deviation of the parameters increases; thereby increasing the value of 

D (eq. 2l). In summary, an increase in uncertainty of aquifer parameters 

produces the same result as an increase in reli.abi~ity; smaller E for the 

objective function and constraint equation 4 and larger E for the drawdown 
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constraint. 

As stated, for the drawdown constraints, increasing reliability or 

uncertainty of parameters produces a larger influence coefficient. This causes 

a greater reaction of the potentiometric surface to a unit of pumping. 

Therefore, this increase allows for less pumping during a unit of time because 

the upper bound on drawdown is reached more quickly. In the case of a 

reliability of .95 we know the F"' [.95] value (l.64) is equal to or larger than 

95 percent of all p·' [p] values; thus the E value for a reliability of .95 is 

equal to or greater than 95 percent of E values for the same aquifer parameters. 

This confirms the stochastic constraint that in the field the upper bound on 

drawdown will not be exceeded 95 percent of the time. Tables 1 and 2 reflect the 

trend of increasing reliability or increasing uncertainty of parameters and the 

resulting decrease in allowable pumping. 

Why, then, does the pumping increase for the last time period or are there 

more time periods of pumping as reliability or CV increases? While the large 

coefficients are causing large head increases at the injection wells {thus 

restricting the amount of pumping) the small stochastic influence coefficients 

for the objective function and constraint equation 4 cause much smaller reaction 

of the potentiometric surface at the observation wells. Thus, lower pumping 

values caused by increasing the reliability or uncertainty have even a smaller 

effect on drawdown at the observation wells. Yet the goal is still to minimize 

the objective function. To do this, additional pumping periods are needed or 

more pumping is required during the last time period as reliability or 

uncertainty increases. This trend is shown in Tables 1 and 2. The objective 

function uses the large drawdowns at the pumping wells to calculate pumping 

costs; thus producing the highest costs. The objective function uses the small 

drawdowns at the observation wells to determine the differences in head; thus 

producing a large sum of head differences. Thus we are assured that the 

objective function value is the largest expected for the given input and that the 

results in the field will pro)?,ably not exceed the calculated value. 

However, constraint equation 4, because it uses the smaller E values for 
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the observation well head calculations, actually causes the hydraulic gradient 

to "overshoot" horizontal. The smaller E values produced at the .OS reliability 

level for observation well head calculations give us a 95 percent confidence that 

the heads are those calculated (using these E values) or greater; thus causing 

the reverse gradient. Remembering that the final gradients- are always reverse 

gradients 1 Tables 1 and 2 show that as reliability or uncertainty increase the 

final gradient is larger in the reverse direction. The confidence in the final 

gradient is further complicated by the fact that the target elevation (normally 

the head at the contaminant source) is itself stochastic. Therefore, the actual 

reliability of the final gradient will be something less than the specified 

valuei but that reliability cannot be determined with precision. 

Table 3 summarizes the trends that developed as uncertainty of aquifer 

parameters and reliability were systematically varied. Figures 4 and 5 

graphically show the trends in total pumping and the resulting final gradient. 

Figure 4 shows the five stochastic runs using a reliability of 95 percent 

normalized to the deternistic run (ld) . 

reliability of so percent. As the 

Figure 5 shows the five runs using a 

coefficient of variation (CV) for 

transmissivity increases (runs ls, 2s and 3s) the influence coefficients for the 

drawdown constraint increase and those for the objective function decrease. The 

expected result is decreased pumping for each time period {but larger total 

pumping), increased final average gradient and objective function value. 

Runs ls, 4s and Ss show the results of increasing the CV for the effective 

porosity while holding the transmissivity CV constant. The general trend for 

these runs is the same as those for runs ls, 2s and 3s. The resulting gradient 

and objective function for runs 4s and Ss show a sharp increase from run ls. The 

increased CV produces larger influence coefficents for the drawdown constraint 

and smaller coefficients for the objective function just as the increased CV for 

transmissivity does. However 1 the changes in these coefficients are small 

compared to those produced by comparable incrases in transmissivity CV; and cause 

only small differences in pumping between runs ls, 4s and Ss. In comparison, the 
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resulting gradient and objective function are much worse than those resulting 

from comparable transmissivity changes in runs 2s and 3s. 

To explain this dfference we look at the difference in sign between the A 

coefficients (eq. 28) which are affected by changes in transmissiTity CV and the 

P coefficients (eq. 30) which are affected by changes in effective porosity CV. 

The negative sign with the P coefficient indicates it will affect the optimal 

strategy in an opposite manner than that of the~ coefficient. As the CV of 

transmissivity is increased 1 there is a large change in pumping and a small 

change in gradient and objective function. For the same CV increase in effective 

porosity there is a small change in pumping and a large change in gradient and 

objective function. The two parameters (transmissivity and effective porosity) 

cause an opposite relationship between pumping and its effect on the objective 

function and the constraints. 

Table 2 displays results of the same variation in the CV of the twa 

parameters, computed using a reliability level of 0. 80. As expected, the 

reduction in reliability increases the optimal pumping values and improves the 

final gradient and objective function. The smaller reliability produces smaller 

stochastic unit response coefficients. Resulting strategies and water levels are 

more similar to those from the deterministic model (reliability= 0.50) than are 

those developed using a 0.95 reliability. 

Strategies for runs 4s at the 95 percent reliability level and Ss at 80 

percent reliability, have no pumping on day 7 and yet require pumping on day 8. 

This is a definite change in the overall pattern of the stochastically optimal 

pumping strategies. Hawever 1 a look at the sensitivity values far the pumping 

during days 7 and 8 gives an indication that it is nat a major change. The 

sensitivity value (amount the objective function would change with a unit 

increase in pumping during that day) associated with each pumping value for days 

7 and a for those two runs are very small. For example, these sensitivities are 

in the range of 1.0~4 to 10~15 as compared to a sensitivity of o. 7 to 1.. 3 for the 

tight pumping value in most other runs. This indicates that the pumping for day 

8 could also be o without any significant change in the objective function. 
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Therefore, the 0 pumping for day 7 and a pumping value for day 8 of these runs 

could be 0 pumping for both days 7 and 8 without a dramatic change in the overall 

pattern of the results. 

Comparisons to Tung's {1986) analysis are difficult to make because his 

objective function was to maximize pumping which is not affected by the 

stochastic influence coefficient. The only constraint was on drawdown. In 

addition, the Cooper-Jacob equation (which is only appropriate for small values 

of the Boltzman variable; u ~ 0.01) used to derive the stochastic unit influence 

coefficient shows Pta be equal to 0 except for the first time period. However, 

the general trends Tung speaks of concerning transmissivity apply to this 

analysis: 1) Pumping increases as reliability or CV decreases and 2) Uncertainty 

of transmissivity causes a larger change in pumping than does a comparable change 

in effective porosity. However, this study indicates effective porosity has an 

effect on the drawdown at the observation wells (something Tung considers 

negligible} and hence has an effect on the objective function value. In 

addition, the daily pumping increases with decreasing effective porosity CV but 1 

at the same time 1 the total pumping decreases. In summary, the trends shown in 

this analysis are found in Table 3. 

Conclusions 

A procedure developed by Tung (1986) was used to incorporate uncertainty 

of aquifer parameters into our model. A stochastic unit response function (E, 

based on the Theis well function) was developed and used in the same manner as 

the unit response function in a deterministic model. This E value is dependent 

upon the uncertainty of aquifer parameters as measured by the coefficient of 

variation and a specified reliability of the solution. 

Drawdown at observation wells (which affect the objective function and 

gradient constraints) must be treated differently than drawdown at the pumping 

wells (which affect the drawdown constraint). For example 1 if a reliability of 

95 percent is specif~_ed for our solution, an E value co~responding to a 

reliability of .95 is used for the drawdown constraint because the user wants to 
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be 95 percent confident that the resulting drawdown produced by the optimal 

pumping at the pumping wells is the value calculated or less. Whereas, the E 

value corresponding to a reliability of .05 is used to determine drawdown at the 

observation wells because the user wants to be 95 percent confident the actual 

drawdown (produced by the optimal pumping) at the observation wells equals or 

exceeds the calculated value. This means E values corresponding to a reliability 

of . 95 are used for the drawdown constraint and those corresponding to a 

reliability of .05 are used with the objective function and constraint equation 

10. 

This theory guarantees the user a 95 percent confidence level for the 

drawdown constraint. However, because the objective function minimizes the head 

differences between the observation wells (whose values are stochastic) and the 

source (whose value is also stochastic) a joint 95 percent confidence level 

cannot be guaranteed. It would be some value slightly less than 95 percent and 

cannot readily be determined. 

The major differences between Tung's analysis and this study are: 

J.) Tung used the Cooper-Jacob equation to derive the stochastic coefficients and 

2) Tung's objective function was to maximize pumping and therefore, the objective 

function did not incorporate stochastic coefficients. 

The study results shown in Tables J. and 2 agree in general with the 

conclusions of Tung. As the reliability level decreases or as aquifer parameter 

uncertainty decreases, the pumping for each time period increases. As a 

consequence the objective function improves. 

The results of changes in uncertainty of effective porosity differ from 

those of Tung. Tung's derivation of the P coefficient (the partial derivative 

of drawdown with respect to effective porosityi equation 30) using the 

Cooper-Jacob equation showed it to have a value of 0 for all time periods except 

the first time period. Therefore, changes in uncertainty of effective porosity 

had almost no effect on the optimal pumping values. This may be due to the fact 

that the Cooper-Jacob equation is only valid for. small values_of the Boltzman 

variable (u ~ .OJ.). Our study shows the Pcoefficient to have values for all 
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time periods. For equal changes in COV, effective porosity produces smaller 

changes in pumping than does transmissivity. However, the resulting final 

gradients produced by these small changes in pumping are much poorer than the. 

final gradient produced by a comparable change in COV of ~ransmissivity. These 

results indicate that uncertainty in effective porosity has little effect on 

allowable pumping as Tung concluded, but the final gradient is affected in an 

adverse way. 

Three general statements can be made from the stochastic analysis of this 

model: 

l. Introducing stochasticity into the optimization model increases the 

value of the objective function. 

2. Lowering the reliability level produces a model which allows more 

pumping (increased 0 & M cost) and produces an improved final 

gradient. 

3. Changes in uncertainty of transmissivity and effective porosity both 

produce the same general changes in optimal daily pumping and final 

gradient. 

4. Changes in uncertainty of transmissivity and effective porosity produce 

opposite effects on the total optimal pumping required. 

24 



References 

1. Bear 1 J. 1979. Hydraulics of Groundwater. McGraw-Hill 1 New York. 

2. Bibby, R., and Sunada, D. K. 1971. Statistical error analysis of a 

numerical model of confined groundwater flow. Stochastic Hydraulics: 

Proceedings First International Symposium on Stochastic Hydraulics 1 edited 

by C. L. Chiu, pp. 591-612. 

3. Dagan, G. 1985. Stochastic modeling of groundwater flow by unconditional 

4. 

and conditional probabilities: the inverse problem. Water Resources 

Research 1 Vol. 21 1 No. 1, January, pp. 65-72. 

Freeze, R. A. 1975. 

groundwater flow in 

A stochastic-conceptual analysis of one dimensional 

nonuniform homogenous media. Water Resources 

Research, Vol. 11 1 No. 5, October, pp. 725-740. 

5. Freeze, R. A. and Cherry, J. A. 1979. Groundwater. Prentice-Hall, Inc., 

Englewood Cliffs, New Jersey. 

6. Greenberg, M.D. 1978. Foundations of Applied Mathematics. Prentice-Hall 

Inc., New Jersey. 

7. Lindley I D. v. 1970. Bayesian Statistics r A Review. 

Industrial and Applied Mathematics. 

Society for 

8. Loaicigia, H. A. and Marino, M. A. 1987. The inverse problem for confined 

aquifer flow: indentification and estimation with extensions. Water 

Resources Research, Vol. 23, No. 1 1 January/ pp. 92-104. 

25 



9. McElwee, c. D., and Yukler/ M.A. 1978. Sensitivity of groundwater models 

with respect to variations in transmissivity and storage. Water Resources 

Research, Vol. 14, No. 3, June, pp. 451-459. 

10. 

11. 

12. 

McWhorter, D., and Sunada, D. K. 1977. Groundwater Hydrology and 

Hydraulics, Water Resources Publications, Colorado. 

Murtagh, B. A. and Saunders, M. A. 1983. MINOS 5. 0 Users Guide. 

Technical Report SOL 83-20, Stanford Univ., California. 

Peralta, R. C. and Ward, R. L. 1986. Optimal piezometric surface 

management for groundwater contaminant control. Copies may be obtained by 

writing ASAE. 

Chicago, 1986. 

Paper no. 86-2513. Presented at ASAE Winter meeting, 

13. Sagar, B., and Kisiel, C. C. 1972. Limits of deterministic predictability 

14. 

of saturated flow equations. Proceedings of the Second Symposium on 

Fundamentals of Transport Phenomena in Porous Media, Vol. 1, International 

Association of Hydraulic Research, Guelph, Canada, pp. 194-205. 

Todd, D. K. 1980. Groundwater Hydrology, second edition. John Wiley & 

Sons, Inc., New York. 

15. Tung, Y. K., 1986. Groundwater Management Chance-Constrained Model. 

Journal of Water Resources Planning & Management, Vol. 112, No. 1 1 

January, pp. 1-19. 

26 



APPENDIX I - Analysis of uncertainty in drawdown 

Discrete formulation of drawdown at observation point j at the end 

of the nth period is given by eq. 11 as: 

I t 

s. t = \. \. 6. . t k 1qk . . . . . . . . . . . . . . . . . . . ( 5) 1, L.. L.. l,J, - + 
i=1 k=1 

where 6. . t k 1 = the unit response function which can be derived 
1 ,J' - + 

from the Theis equation as: 

" 1 6 . . k = 4.-[W[u .. kl - W[u .. k 1]} 
1 1 Jr ILl 1 1 J 1 l,J, -

where: 

~ u .. k = 4Tk 1 'J, . 

and 

W[u .. k] = [ [ e-v ]dv 
l,J, v 

u 

Since T (transmissivity) and~ (effective porosity) are random 

variables, the unit response function as well as drawdown are 

both random variables because they are functions of random 

variables. 

To estimate statistical properties of random variables, the 

first-order analysis of uncertainty is ewployed. Taylor's 

expansion of drawdown about the mean values of T and ~ can be 

expressed as: 
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s. t 
1. 

I t 

= ~ ~ 8i;j,kqt-k+l 
i=l k=l 

+ iJT 
as. t 

1 • (T-T) 
as. t 

1. + HOT 

T 

. . . . . . . ( 25) 

where B .. k 
} 'J 1 

is computed using mean values T and ~ and HOT 

represents the higher order terms. The time increments of k and t-k+l 

are reversed from those in eq. 5 but they produce the same result. 

First, we compute the middle term on the right hand side. The 

first order partial derivative of s. t with respect to T can be 
1. 

obtained by Leibnitz rule for differentiating an integral (Greenberg, 

1978, page 18): 

r(c) 
• af(x, c) db da 

I (c)= ac dx + f[b(c),c]dc- f[a(c),c]dc ....... (26) 

a(c) 

Performing the mathematics of the differentiation in three parts we 

define: 

I t 

I • (c) = as. t - a [ 'C" 'C" 6 ] T-~ L.. L.. i,j,kqt-k+l 
i=l k=l 

For the first term on the right hand side of (26): 
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=- _1 [ [e-v]dv 
4fl2 v 

u 

Second term: 

db f[b(c),c]dT = 0 because b =constant (~) 

Third term: 

) l da 1 [e-'1du 
f[a(c ,c dT = 4fl uJdT 

,lra1 2 

where du = :.L1lli = -~ = - .!! 
dT dT 4T2k T 

therefore: 

Adding the three terms: 

I t as . t \:"' \:"' -
~ = L- L- Ai,j,kqt-k+l 

i=1 k=1 

. . . . . . . . . . . . . . . . . . . ( 27) 

in w~i ch: 

1 K · e - { -u. f -v } A --- e - · - dv 
i • j, k - 4fl2 [ v ] 

~ 

at k = 1; 
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{ 
-'\ -'\ Iuk-1 -v } 

= 4~2 e - e -
1 

+ [\ ] dv 

uk 

at k > 1 • . . . (28) 

Similarly, the first-order partial derivative of drawdown with 

respect to the effective porosity can be obtained in three parts from 

Leibnitz rule: 

For the first term on the right hand side of (26): 

~(e) [ 
j_ of~~· c) dx = {a[4!-r(e :v)] ta.t>} dv = o 
a(e) u 

Second term: 

db 
f[b(e),e]~ = 0 because b =constant (~) 

Third term: 

-u 
f[a(e),e]~ = 4!-r[eu ]~; 

[~] du r 2 u 
where ~ = d~ = 4Tk. = ~ 

therefore: 

-u 
[ ( ) lda 1 [e ]u 1 -u 

f a e , e ~ = 4-d u 4i = 4-d4i e 

Only term three has a value and: 
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as. t 

~= 
I t 

l: l: Pi,j,kqt-k+1 . . . ( 29) 

i=1 k=1 

where: 

- 1 -'ir_ 
Pi,j,k =- 4~¢ e at k = 1 

1 -uk -'1t-1 
= - 4~,p(e - e ) at k > 1 . . . . . . . . . . (30) 

The partial derivatives of drawdown with respect to transmissivity and 

effective porosity agree with those shown by McElwee and Yukler, 1978. 

Ignoring the higher order terms in eq. 25 the expectation 

of drawdown can be approximated by eq. 15: 

I t 

E(sj,t) = l: l: Bi,j,kqt-k+1 · · · · · · · · · · · · · · · · · (15 ) 
i=1 k=l 

Furthermore, assuming independency of T and ,P the variance of 

drawdown can be approximated as eq. 16: 

[as. t] 2 

( ) -- ~ sdt 2 + var aj, t iJT 
ras. t] 2 2 
l~ sds 

I t 

= ( l: l: 'Ai,j,kqt-k+lf sdt2 
i=1 k=l 
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2 sds ........... (16) 

where sdt and sds are the standard deviations of the transmissivity 

and effective porosity respectfully. 
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APPENDIX II - Derivation of equation 20 

Substituting eq. 16 into eq. 19, we can express ..jvar(sj,t) in 

terms of unknown pumping Q'a more explicitly as: 

f(q) 

where: 

ft(q) 

and: 

fs(q) 

= A/var(s. t) 
J • 

I t 

= 

= L L [ 'Ai. j. kqt-k+1] 
i=1 k=1 

I t 

sdt 

= L L [ pi, j, kqt-k+1] sds 
i=1 k=1 

. . . . . . . . . . . ( 31) 

Eq. 19 is a first order Taylor expansion of eq. 31. The first term 

on the right-hand side of eq. 19, f(Qo), is the value of the function 

f(q) calculated (with eq. 31) by using arbitrarily assumed pumping 

values, Qo's, in eq. 31. The partial derivative in the second terms of 

eq. 19 can be found by taking the derivative of eq. 31 with respect to 

q and is expressed as: 

af<q> 1 > = f(Qo) [ft(Qo)Ai,j,k(sdt) + fs(Qo)Pi,j,k(sds)] .... (32 
aqt-k+1 Qo 
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Substituting eq. 32 into eq. 19 and multiplying it with qt-k+l and 

Qot-k+1, respectively we obtain: 

f(q) = f(Qo) (term 1) 

I t 

- f(~o) l: L:(ft(Qo)Ai,j,k(sdt) 
i=1 k=1 

+ fs(Qo)P .. k(sds))Qot-k 1 I,J, + 

(term 2) 
I t 

+ f(~o) L: L: (ft(Qo)Ai ,j,k(sdt) 
i=l k=1 

+ fs(Qo)P .. k(sds))qt-k 1 1 'J' + 

(term-3) 

+ HOT •.••. 

The second term of eq. 33 cancels the first term as shown. 

First, the second term reduces to f(Qo) as shown: 

I t 
1 

f(Qo) \""' \""'(ft(Qo)A .. k(sdt) + fs(Qo)P .. k(sds))Qot-k 1 L.. L.. l,J, l,J, + 
i=l k=1 

:reduces to 

reduces to 

reduces to 

ft(Qo) 
Qo 

and f(~o) o f(Qo)
2 

= f(Qo) 

fs(Qo) 
Qo 

ft(Qo) 2 + fs(Qo) 2 

Therefore, term 1 + term 2 = f(Qo) - f(Qo) = 0 

. . . (33) 

By dropping the higher order terms (HOT) the ihird term of eq. 33 can 

be written as eq. 20. 
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Table 1 Effect of Aquifer Parameter Uncertainty on 95% Reliable Optimal 
Unsteady Pumping Strategy for Hypothetical Problem (run 1d) 

Run 1d 1£ 2s 3s 4s 5s 
-------- -------------------- ------

.Pumping(L/s) 

Day 1 96.1 85.8 70.2 51.4 85.3 83.3 

2 90.1 76.4 63.4 47.1 74.8 70.9 

3 84.9 70.4 59.3 44.7 68.3 63.7 

4 80.2 66.3 56.4 43.0 64.0 59.2 

5 76.9 63.2 54.2 41.7 60.9 56.2 

6 36.9 57.3 52.5 40.7 58.7 54.2 

7 0.0 0.0 28.7 40.0 0.0 52.8 

8 0.0 0.0 0.0 25.6 23.3 0.0 

Avg. Pumping 58.1 52.4 48.1 41.8 54.4 55.0 

Avg. gradient(%) 0.08 0.079 0.085 0.095 0.098 0.14 
gradient SD 0.058 0.043 0.057 0.062 0.061 0.084 

Sum of sqd. 

head diff. (m2) 1.24 1.08 1.30 1. 72 1. 79 4.99 

Obj. 
func. 15.63 13.54 15.66 19.82 21.18 55.53 

0 & M costs 2.31 1. 93 1.65 1.32 1.93 1. 84 

($ X 103) 
----------------------------------------------------
Model Run: 

ld. Deterministic model 

Transmissivity CV Effective porosity CV 

ls. 0.2 0.2 

2s. 0.4 0.2 

3s. 0.8 0.2 

4s. 0.2 0.4 

5s. 0.2 0.8 
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Table 2 Effect of Aquifer Parameter Uncertainty on 80'l> Reliable Optimal 
Unsteady Pumping Strategy for Hypothetical Problem (run 1d) 

Run 1d ls 21 38 48 58 
--------- -------- -------

Pumping(L/s) 

Day1 96.1 94.6 85.7 69.8 93.2 90.6 

2 90.1 86.0 76.7 63.2 85.1 82.0 

3 84.9 78.8 71.1 59.2 77.6 74 .. 7 

4 80.2 73.9 67.1 56.4 72.4 69.3 

5 76.9 70.2 64.1 54.3 68.7 65.6 

6 36.9 21.5 44.9 52.7 36.2 63.0 

7 0.0 0.0 0.0 20.1 0.0 0.0 

8 0.0 0.0 0.0 0.0 0.0 4.9 

Avg. Pumping 58.1 53.1 51.2 47.0 54.1 56.3 

Avg. gradient('l>) 0.08 0.067 0.070 0.076 0.076 0.097 
gradient SD 0.058 0.047 0.048 0.050 0.049 0.060 

Sum of sqd. 

head di ff. (m2) 1.24 .77 .85 1.04 1.01 1. 70 

Obj. 
func. 15.63 10.37 11.03 12.80 12.89 20.36 

0 & M costs 2.31 2.04 1.89 1.62 2.04 2.06 

($ x· 103) 
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Table 3 Summary of Trends Produced by Stochastic Analysis 

(hydraulic objective function) 

Value affected 

!.Influence coef. 

used with: 

objec. fune. 

DD constraint 

2.Daily pumping 

3.Total pumping 

4.Gradient(reverse) 

5.0bj. func. value 

Increased reliability 

decrease 

increase 

decreases 

decreases 

steeper & 

less smooth 

increase 
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Increased uncertainty 

in trans. in eff. por. 

large deer. small deer. 

large incr. small incr. 

large deer. small deer. 

large deer. small incr. 

steeper & less smooth 

small incr. large incr. 
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Compared to the Deterministic Strategy (95% Reliability Level) 
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Daily Pumping strategies for Increasing Uncertainty of Effective Porosity as 
Compared to the Deterministic Strategy (95% Reliability Level) 
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Figure 4. 

Stochastic Runs 

Comparisons of Final Gradient and Total Pumping for the Stochastic Runs at the 

95% Reliability Level 
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Figure 5. Comparisons of Final Gradient and Total Pumping for the Stochastic Runs at the 

80% Reliability Level 


