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ABSTRACT 

 
 

Temperature Increase Effects on Sagebrush Ecosystem  

Forbs: Experimental Evidence and  

Range Manager Perspectives 

 
by 
 
 

Hilary L. Whitcomb, Master of Science 

Utah State University, 2011 

 
Major Professor: Dr. Mark W. Brunson 
Program: Ecology Center 
 

 Sagebrush plant communities are among the most threatened in North America.  

This project had two goals: to test how increased temperature affects native and non-

native forb species common to the Western sagebrush region and to evaluate land 

manager beliefs about changes in their ecosystems, including those affecting forb species.   

 Native forbs Sphaeralcea munroana, Crepis acuminata, Linum lewisii, 

Penstemon palmeri, and Oenothera pallida and non-natives Erodium cicutarium and 

Lactuca serriola were each subjected to two treatments: experimental warming using 

open-top chambers and a control.  Knowing how forbs used in restoration might respond 

to future conditions is both practical and economical information for land managers.  

Responses to an open-top chamber treatment suggest that S. munroana, L. lewisii, and P. 

palmeri may be resilient to predicted increases in temperature, while C. acuminata and O. 

pallida should be used with caution.  As expected, temperature did not affect E. 



 iii 
cicutarium fitness but did lead to earlier germination.  This result supports the concept 

that competitive interactions between non-natives and natives could be compounded by 

increased temperature.  Transplanted L. serriola was negatively affected by warming. 

 Semi-structured phone interviews of range managers in Utah, Idaho, Nevada, 

Wyoming, Oregon, and Montana addressed demographics, local climate and land 

changes, and forb knowledge.  Additionally, local long-term climate data sets were 

compared to responses.  Most states respondents were evenly split about beliefs of 

climate change in their area (half said there were no changes, and have said they thought 

there were some changes). Montana was the exception; Montana’s recent increases in 

climate-related events may explain most of the managers noting changes.  Managers that 

had more years at their job gave more qualified, but also more accurate climate answers.  

Managers saying there was no change tended to base their answers on recent weather 

conditions, while managers that said they did notice changes tended to base their answers 

on long-term patterns.  Forbs typically were not viewed as an important indicator of 

ecosystem health or resilience.  This study indicates restoration organizations might 

benefit from more specified outreach to managers which focuses on local climate, forbs 

(especially those known to be used by Greater sage-grouse), and solutions. 
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CHAPTER I 
 

LITERATURE REVIEW 
 
 

Introduction 
 

Global change processes will have significant effects in the sagebrush-dominated 

rangelands of the western United States.  For example, in the 20th Century, the Great 

Basin has warmed ~0.3-0.6°C and is projected to warm an additional ~5-10°C in the 

coming century (Wagner 2003).  Studies suggest plant community composition changes 

are likely under climate change (Risser 1995).  At the same time, non-native plants 

threaten rangeland ecosystem diversity, function and utility (Sheley and Petroff 1999).  

Several studies have found that invasion resistance on rangelands can be reduced by 

increasing native forb species richness and niche occupation (Jacobs and Sheley 1999; 

Carpinelli et al. 2004; Pokorny et al. 2005).  Therefore it is important to understand how 

climate change and non-native plant invasions can affect forb species in the Great Basin 

and adjacent portions of the western sagebrush region. 

More diverse and abundant forb communities and the associated increase in 

essential arthropods have been found repeatedly to be critical to the survival of Greater 

sage-grouse chicks (Klebenow and Gray 1968; Peterson 1970; Drut et al. 1994; Flinders 

et al. 2000).  In Utah, Greater sage-grouse currently inhabit < 50 % of their historic range 

(Beck et al. 2003).  This seems to suggest that range managers should seek ways to 

increase forb populations, e.g., when reseeding after wildfires or other disturbances.  

However, forb seed is expensive and often in low supply, and managers concerned about 

annual grass invasion understandably want to reseed with any competitive species (often 
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non-natives) as soon as possible.  Consequently native forbs tend to be seeded with 

inadequate diversity (if in the mix at all).   

The long-term resilience to increased temperature of specific plants that may be 

useful in sage-grouse habitat restoration should be reviewed both to help select the most 

appropriate native forbs for sage-grouse success and to avoid retroactive and expensive 

restoration efforts.  How range managers view forb importance in their local field areas 

(and therefore their likelihood to place emphasis on this attribute of restoration) is equally 

crucial to restoration and sage-grouse success.  Forbs often have short growing seasons, 

rarely dominate a range site, and typically are not a significant part of management 

strategies aimed at increasing forage for native and domestic herbivores and/or improving 

habitat structure.  Therefore, forbs may not be regularly monitored or considered by 

managers due to the accumulation of their attributes.  This paper consequently reviews 

both ecological and social dimensions of how temperature increases could affect 

restoration efforts in sagebrush ecosystems.  While applicable region wide, this study 

focuses primarily on the Great Basin, the heart of the western sagebrush region. 

 
Previous Research: Ecological Context 
 
            Climate and Global Change in the Western Sagebrush Region.  The Fourth 

Assessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC) 

found climate change to be highly correlated to anthropogenic impacts (Backlund et al. 

2008a; Rosenzweig et al. 2008).  However, confounding global change variables such as 

land use, land management, urban development and species invasion (Lodge et al. 2006), 

in addition to the current limitations of climate modeling, can complicate the causal 
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relationships of predicted climate and ecosystem change.  While models are continually 

improving our current lack of direct predictability creates some difficulty when defining 

appropriate mitigation strategies (Thuiller et al. 2008).   

Climate change is already shown to be significantly influencing ecosystems both 

nationally and globally (Rosenzweig et al. 2008).  In the Executive Summary of the US 

Climate Change Science Program Report (Backlund et al. 2008a), the authors state that 

60% of peer-reviewed papers studying 1598 species “species exhibited shifts in their 

distributions and/or phenologies over the 20- and 140-year time frame.”  These shifts are 

predicted to accelerate in occurrence and severity in the future.   

Not only is it likely that climate change will have profound effects on larger 

ecosystem states, but the traditional species relationships that make up those states will 

consequently be affected as well, either as the catalysts for that change or the recipients 

of it (Risser 1995; Walther et al. 2002; Root et al. 2003; Thuiller et al. 2008).  For 

example, entire food-webs could be altered from any of the following: effects on a single 

keystone species, predator-prey interactions and balances, or trophic level niche 

differentiation that result in plant community composition changes.  In the Great Basin, 

as well as in many other ecosystems, changes in any one of these compositional 

structures could have profound effects on the ecosystem stability and resiliency 

(Gunderson 2000; Schwinning et al. 2008; Mooney et al. 2009) 

Two of the most significant climate variables are precipitation and temperature 

(Backlund et al. 2008b).  Shifts in either precipitation or temperature alone can 

dramatically change species’ distributions (Bradley 2009).   The IPCC-AR4 report found 

that the global average surface temperature increased by about 0.6°C and global land 
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precipitation increased about 2% during the 20th century (Backlund et al. 2008b).  The 

same report predicts 1.1°-5.4°C global average temperature increase over the next 100 

years (the variation depending on greenhouse gas output and deforestation levels).  

Global precipitation over land is predicted to increase as well, due to increased rates of 

evapotranspiration elevating atmospheric water vapor (while simultaneously increasing 

drying rates).  Precipitation rates are also likely to be coupled with changes in timing and 

patterns of snow and rainfall that may result in overall decreases in available water. 

According to the National Biological Information Infrastructure (2010), the Great 

Basin region can be defined hydrologically or ecologically.  Hydrographically, the term 

refers to a basin and range geological region of the interior western United States that has 

no outlets to the sea (internal drainage alone).  The Great Basin also includes shrub-

steppes in eastern Washington and Oregon, southern Idaho, northern Nevada and Utah, 

and portions of northeastern California that fit the floristic definition, yet are just outside 

the hydrographic boundaries.  The Great Basin is about 182,088 km2.  The Sierra Nevada 

Mountains border the Great Basin’s western edge, the Wasatch Front, Rocky Mountains 

and Colorado Plateau border the east, the Mojave Desert borders the south and the 

Columbia Plateau borders the north.  The Great Basin supports abundant plant and animal 

life (200 birds, 70 mammals, 20 amphibians) and many sensitive and endangered 

endemic species as well.  Three major plant communities thrive in the Great Basin: salt 

desert shrub (low, dry elevations), sagebrush steppe (most common - some moisture, 

slightly alkaline and sandy soils) and pinyon-juniper woodlands (base of mountains).  

Perennial grasses, forbs, and shrubs generally comprise the sagebrush steppe community.  

While sagebrush may be most abundant in the Great Basin, rangelands dominated by 
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Artemisia tridentata can be found throughout semi-arid region of western North America 

from British Columbia to Baja, California and from southern California to the badlands 

of western North and South Dakota. 

A 5-10°C increase over the next 100 years in the cold deserts of the Great Basin 

(Wagner 2003) would be quite a drastic change for these already arid landscapes.  

Precipitation records have shown a 6-16% increase with more increases projected for the 

future (Baldwin et al. 2003).  However, the increase in precipitation will likely be 

partially offset by the decline in snowpack (Mote et al. 2005) coupled with snowmelt 

occurring earlier in the season and increased evapotranspiration.  Rainstorm intensity 

(measure of force) and severity (measure of landscape response) are predicted to rise, and 

to occur twice as often (Kharin et al. 2007).  Nevertheless, substantial annual runoff 

declines are predicted for the Great Basin (Backlund et al. 2008a), despite anticipated 

precipitation increases.  The conundrum is explained by higher temperatures increasing 

evapotranspiration losses in soils and surface waters and water running off the surface 

instead of infiltrating.  Soil water loss can occur from two ways, evaporation and 

transpiration.  Changes in evaporation have been shown to mostly affect the upper 

portion of a soil profile while transpiration generally affects the lower portion of a soil 

profile (Coronato and Bertiller 1996).  

Indeed, more precipitation in the Great Basin will probably not translate into more 

available water for ecological processes (Backlund et al. 2008b).  Due to the water 

limitations that Great Basin ecosystems already experience, forbs in the Great Basin have 

evolved physiologically to specific precipitation patterns in the winter/early spring 

(Svejcar et al. 2003).   Available soil moisture (> -1.5 Mpa) is one of the main limiting 
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factors in sagebrush steppe communities (Briones et al. 1998).  Thus, changes in the 

timing alone of rainfall have been found to at least equal the changes in floristic 

composition caused by a 30% reduction in rainfall (Hatfield et al. 2008). “A warmer 

climate will likely be characterized by more rapid evaporation and transpiration, and an 

increase in frequency of extreme events like heavy rains and droughts” (Hatfield et al. 

2008).   

When trying to predict climatic patterns for specific regions, complexities are 

introduced that can further complicate simulation modeling.  Soils, disturbance regimes, 

dispersal across fragmented landscapes, and more all add to model complexity (Hatfield 

et al. 2008).  Nevertheless, a few trends relevant to the Great Basin have started to 

emerge.  Water availability is thought to result in the most consistent shifts in species 

composition (Polley et al. 1999; Morgan et al. 2004).  Species compositional change due 

to CO2 enrichment will be greatest in disturbed communities and successional change 

may be accelerated (Polley et al. 2003) as non-native plants often possess traits that favor 

larger growth responses to CO2 compared to natives (Smith et al. 2000; Morgan et al. 

2007).  The responses of plants to temperature and CO2 must take into account the 

indirect effects on water and other soil resources that are causing the more predictable 

results (Chapin et al. 1995).  For example, nutrient pulses in arid to semi-arid ecosystems 

are typically associated with the availability of water (Bilbrough and Caldwell 1997; 

Austin et al. 2004).  The water dissolves ions in solution and makes previously 

unavailable nutrients accessible for plant uptake.  In a shifting temperature and 

evaporative regime, water pulses may be increasingly rare and the water deposited by 

those pulses may not be available as deep or for as long.   
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The Great Basin is a cold desert, which means it receives very little precipitation, 

mostly in the form of winter snow, and experiences periodic droughts (Wagner 2003).  

Temperature regimes often result in evaporative losses exceeding precipitation inputs.  

Often, melting snow runs off the soil without being absorbed by still frozen soil and when 

rain finally does fall, it comes in large, brief storms, again running off without the soil 

retaining much.  Predicted changes for these ecosystems are for higher temperatures that 

increase evapotranspiration and an increase in intense thunderstorms that increases runoff 

(Seager et al. 2007).  These combined effects would leave much less available water, 

despite an increase in precipitation. 

Global change is another component that must be acknowledged and accounted 

for in almost all ecosystems today.  Global change is broader than, but includes climate 

change.  The U.S. Global Change Research Act of 1990 defined global change as 

“…including alterations in climate, land productivity, oceans or other water resources, 

atmospheric chemistry, and ecological systems.”  Perhaps the three most striking 

examples of global change are ecological habitat fragmentation, biological invasions and 

the effects of anthropogenic climate change.  The United States’ annual cost of plant 

invader damage and control has been estimated in billions of dollars (Pimentel et al. 

2000). Invasive plants frequently threaten native species and change ecosystem function 

by altering properties such as water availability or fire frequency (D’Antonio and 

Vitousek 1992). Understanding and predicting the effects of climate and ecosystem 

changes on invasive and native species have become predominant challenges for land 

managers throughout the world.    

Plant Invasion Theory.  The movement of species into new habitats has been a 
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major driving force in the evolution and distribution of organisms’ worldwide (Elton 

1958; Vitousek et al. 1996).  Introduced species, as defined by Carlton (2001), are those 

species that have been intentionally or unintentionally transported by humans into a 

region where they could not have found themselves otherwise, and are now reproducing 

in the new environment.  Invasive species are those whose presence in the new 

environment imposes significant harm on the previous natural habitat (Perrings et al. 

2002).  Some introduced species may enter a new habitat and only utilize resources that 

were previously unused, and thus not affect native populations (Berman et al. 1991).  

However, this is typically not the case.  In reality, resources are often competed for at 

higher levels and the new species may even be more successful due to enemy release.  

The enemy release hypothesis (ERH) (Keane and Crawley 2002), suggests that in a novel 

environment there are no natural predators, parasites, competitors or pathogens due to 

lack of co-evolution of this species with its new neighbors.  Many studies have shown 

support for ERH although some authors caution that enemy release is only one of several 

hypotheses that can explain abundance of non-native invasive species (e.g., Colautti et al. 

2004).   

Plant invasions currently constitute one of the most serious threats to community 

biodiversity (Heywood 1989; Schmitz et al. 1997) and have been shown to drastically 

and permanently change both ecosystem structure and function (Hobbs and Mooney 

1986; Cronk and Fuller 1995).  To successfully invade, an organism requires the ability to 

disperse, establish and survive long enough to healthily reproduce (Hobbs 1989).  More 

often than not, all the conditions are not met and an introduced species fails to establish 

and become invasive (Williamson 1996).  Other factors can also contribute to invasion 
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success.  One example is the degree of disturbance of a region.  Disturbance frees up 

space and resources, allowing reduced competition with mature communities for 

introduced species (Crawley 1986; Hobbs 1989).  Another factor that may influence 

invasion success is the degree of an ecosystem’s resistance to invasion (Williamson 1996; 

Lonsdale 1999).  Resistance attributes are unique to each system and each introduction 

(e.g. extent of propagule pressure) but can broadly be defined as community structure 

health and organization and inter-trophic level interaction strength.  In summary, invasion 

success is likely determined by disturbance, the inherent competitive and resistance 

abilities of natives and how the native community is assembled. 

Invasions represent a natural process that has long been a part of evolutionary 

history (Elton 1958; Vitousek et al. 1996).  The influence of humans, however, has 

drastically accelerated the global invasion rate.  As many invasions are problematic, 

researchers and the public have often sought out means of removing and preventing their 

occurrence.  Socially, Vitousek et al. (1996) contends that we need the public to be 

convinced of the importance of maintaining our ecosystems.  To a large degree, human 

behavior controls the success of an invasive species (Perrings et al. 2002).  Societies 

typically have two choices: mitigation or adaptation.  Mitigation involves eradication or 

attempted thinning and action to control effects and prevent spreading and introduction.  

Meanwhile adaptation is some change in the behavior of humans to reduce the impact of 

invasion.   

 Effects of Plant Invasion on Ecosystem Dynamics.  Many plants and animals in 

arid lands already live near their physiological limits, so even slight changes in resource 

availability can drastically change compositional structure and distribution. The vertical 
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distribution of soil water can be highly affected by timing and evapotranspiration, thus 

selecting for plants at specific root depths and often excluding plants with shallower root 

systems (Ehleringer et al. 1991).  According to Ryan et al. (2008), observed and predicted 

increases in minimum temperatures and shorter winters will alter both plant species 

ranges and the current Great Basin geographic and elevational boundaries.  Overall, new 

climatic conditions may favor the spread of invasives into arid lands (Lonsdale 1999), 

unless management can successfully prevent them. 

 An understanding of the complex relationships between soil, topography, 

hydrology, and plant response is necessary for predictions of vegetative response (Ryan et 

al. 2008).  These factors and many others strongly interact with precipitation and 

temperature to limit plant production and control species composition. Factors such as 

grazing, fires, or soil type may reinforce climate effects, while others such as CO2 

enrichment may mediate them (Ryan et al. 2008).  Taking into account the unpredictable 

effects of extreme climatic events, simple generalizations regarding climate effects, while 

still valuable, should be viewed with caution.  While climate predictions can be complex 

and confusing at the local scale, it is clear that ecosystems will nonetheless be changing 

rapidly. Managing the Great Basin ecosystem to enhance resilience to warmer 

temperatures and less available water will likely be one of the most successful strategies.   

 Climate change presents new and challenging issues for managers.  Meanwhile, 

they also have to cope with pre-existing issues.  One notorious example is that of 

cheatgrass, Bromus tectorum.  European settlement of the Great Basin brought with it 

widespread overgrazing and sagebrush removal (Knapp 1996).  Simultaneously, non-

native species such as cheatgrass were introduced into the disturbed system causing 
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drastic changes in the fire regime. The understory of disturbed sagebrush-steppe 

ecosystems, once comprising perennial bunchgrasses and native forbs, has increasingly 

become dominated by this invasive annual (Knapp 1996).  Today, many other annuals 

and perennials (both grasses and forbs) have been introduced and successfully 

established, thus changing the ecological structure of disturbed sagebrush sites (Leonard 

et al. 2008).  Temperature increases and precipitation timing and distribution in cold 

deserts (Wagner 2003) are likely to have a dramatic effect on the dominant vegetation.  

Some studies have also shown that high CO2 concentrations have increased the biomass 

of introduced grasses and forbs (Huxman and Smith 2001; Ziska 2003; Nagel et al. 

2004).     

 Sheley and Petroff (1999) argue that in rangelands, invasive plants threaten the 

overall ecosystem function and therefore utility.  Some of the physical effects of a 

community compositional shift to annual grasses and invasive forbs might be loss of soil 

nutrients, siltation of streams and rivers and increased vulnerability to flooding (Knapp 

1996).  A general objective for invasive plant management, according to Sheley et al. 

(1996), should be to establish a healthy plant community that is weed resistant and meets 

other land-use objectives.  Rangelands dominated by invasive plants often lack native 

competitive species.  However, several studies have found that invasion resistance on 

rangelands can be improved by increasing native forb species richness and niche 

occupation (Jacobs and Sheley 1999; Carpinelli et al. 2004; Pokorny et al. 2005).  Indeed, 

Chambers et al. (2008) show that invasibility by B. tectorum in sagebrush steppe 

ecosystems is lowest at sites with high cover of herbaceous perennial species.  Others 

have observed that an inverse relationship exists between B. tectorum and perennial cover 
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after disturbance from grazing and wildfire (Anderson and Inouye 2001; West and York 

2002).  Sheley and Half (2006) found that using a seed mixture of native forbs could 

greatly increase likelihood of forb establishment in restoration efforts.  However, the use 

of native forbs in revegetation has been limited (McArthur and Young 1999).  While it 

has been shown that forbs help increase biodiversity, may aid in resisting the spread of 

weeds, and improve habitat for wildlife by increasing  forage  quality  and  season  of  

availability (Shaw and Monsen 1983; Stevens et al.  1985; Connelly et al. 2000), the high 

cost and risk of failure (germination and emergence) associated with native revegetation 

efforts has often been prohibitive (Jacobs et al. 1998). 

 The forb component of sagebrush steppe is not only essential for ecosystem 

function, but it is vitally important to populations of Greater sage-grouse (Centrocercus 

urophasianus) chicks (Klebenow and Gray 1968; Peterson 1970; Drut et al. 1994; 

Flinders et al. 2000) and the nutrition of pre-laying hens (Barnett and Crawford 1994).  

Particularly important for chicks in the first few weeks are forbs, grasshoppers, ants, and 

beetles (Klebenow and Gray 1968; Peterson 1970).  Insects have been shown to occupy 

up to 75% of juvenile sage-grouse diet.  In feeding trials (Johnson and Boyce 1991), 

chicks depended on insects until they were at least 3 weeks old.  After 3 weeks, chicks 

could survive, but their growth rates were significantly lowered.  As the number of 

insects in the diet increased, survival and growth rates also increased.  Sage-grouse 

brooding sites are characterized by abundant and species rich forb and insect 

communities (Dunn and Braun 1986; Klott and Lindzey 1990; Drut et al. 1994; Apa 

1998). 

 Sage-grouse are currently listed as an imminent candidate for “Threatened 
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Species” status by the U.S. Fish and Wildlife Service (November 12, 2010).  Breeding 

populations of greater sage-grouse have declined 17% in the past 50 years (Connelly and 

Braun 1997).  These population declines have been largely attributed to sagebrush habitat 

loss, degradation and fragmentation (Connelly and Braun 1997; Braun 1998) and 

invasive species (Klebenow and Gray 1968).  In Utah, Greater sage-grouse currently 

inhabit < 50 % of their historic range (Beck et al. 2003).   

 At one lek site Flinders et al. (2000) studied, forb diversity and percent cover 

were well within the recommended guidelines in publication at the time.  However, they 

found significant results that sage-grouse were picking other more diverse and abundant 

sites, suggesting that the minimum guidelines for brood habitat may not be the optimum 

for brood rearing sage-grouse habitat.  Additionally, Flinders et al. (2000) did not find 

any specific forb species as being a significant predictor of brooding sage-grouse site 

selection, suggesting sage-grouse selected habitat based on the overall abundance and 

diversity of sites and not on any one particular forb species.   

 As previously discussed, invasive annual forbs can reduce the diversity and 

functionality of rangelands.   However, the loss of the native forb community to climate 

and global change effects (as well as land manager decisions) will not only affect 

rangeland functionality.  It is clear that such a community compositional switch would 

drastically affect sage-grouse brooding success as well.   

 Summary: Ecological Context.  In summation, human disturbance has opened 

up sagebrush ecosystems to annual and perennial invasion.  These disturbed systems are 

drastically changed in ecological structure and are expensive to restore (Leonard et al. 

2008).  Rangeland managers in the Great Basin are informed about sage-grouse concerns, 
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yet primary focus for most restoration efforts at this time does not take into account the 

native forb diversity necessary for sage-grouse specific forage.  Additionally, it is 

unknown if managers perceive forb species as a valuable and worthwhile aspect of their 

restoration efforts outside of sage-grouse specific projects.  The long-term resiliency of 

rangeland forbs to increased temperature and water pulses (predicted effects of climate 

change in the Great Basin) should be reviewed now for two reasons: to help select the 

most appropriate forbs for sage-grouse success and to avoid retro-active and costly 

restoration efforts. 

 
Previous Research: Social Context 
 
 Range Managers.  The western sagebrush ecosystem is considered to be one of 

the most threatened in the United States (Noss et al. 1995).  A rapidly expanding human 

population, interacting with factors such as climate change, urbanization, changing land 

use, limited water resources, altered fire regimes, invasive species, insects, disease and 

more, all collide to putting the Great Basin at great risk (Chambers et al. 2008).    

 Managers across the Great Basin are faced with the ever-daunting task of 

maintaining or improving these landscapes.  Rangeland managers in the Great Basin 

often need to concentrate money and resources on immediate, pressing issues in their area 

such as excess sagebrush canopy cover, invasive grasses and perennials and woodland 

encroachment (Miller et al. 2005).  The Sagebrush Steppe Treatment Evaluation Project 

(2010) notes three primary treatments that are typically used to combat these concerns: 

controlled burning treatments and mechanical treatments to remove fire danger from 

brush or trees, and chemical treatments to cope with undesirable species.  Extensive 
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research has been conducted on the social acceptability of these different treatments 

(Brunson et al. 1996; Brunson and Shindler 2004; Brunson and Evans 2005) further 

highlighting the human dimensions management must account for in their policies and 

treatment plans.   

 In short, the management community focuses on areas that are at the highest risk; 

they rarely have the resources, time or money to restore low or medium risk areas.  As 

managers struggle to catch up with increasing fire cycles and invasives, it becomes so 

much more essential that the work they are doing is successful and lasting.      

 The importance of management effects on the Great Basin landscape deems it 

imperative that research focuses not only on how to establish successful plant community 

structure in future conditions, but also what aspects of the landscape the decision makers 

(managers) believe are imminent and are prepared to focus on.  To fully comprehend 

what climate and global change will mean for the Great Basin, an understanding of how 

rangeland managers consider the ecosystem components is critical.   

 Brunson and Kennedy (1995) suggest that land manager job responsibilities have 

changed throughout the decades.  Initially the managerial role was intended as stewards 

of land resources and production.  Today, managers’ roles typically consist of 

maintaining a relationship between resources and society.  Society, resources, nature and 

climate (Brunson, pers. comm., 2010) are all subject to fluctuations.  Any one of these 

aspects changing directionally results in a de facto change in their relationships.  As 

climate, nature, resources and/or society change, natural resource agencies likewise must 

adjust their policies and on-the-ground attitudes. 

 A societal change of particular note in the past couple of decades has 
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encompassed the term “climate change.”  What was once a topic for scientists and 

environmentalists has become a polarized political debate in America.  Accordingly, 

several studies have been conducted on public perceptions of climate change (Berk and 

Fovell 1999; Leiserowitz 2006; Semenza et al. 2008).  One study of note found that in the 

public sector, value orientation was the most important indicator of climate change 

viewpoint.  Additionally, whites, males, conservatives and registered voters, all tended to 

perceive global warming as a smaller risk than their compatriots did (Leiserowitz 2006).  

While it might be considered by some reasonable to assume that Great Basin range 

managers fit this demographic description, other factors are likely to play into their value 

framework.   

 Norms and values are formed through information and perceived social (work 

colleagues and community members) consensus (Sherif 1935; Asch 1951; Goldberg 

1954; Nilsson et al. 2004).  In Sweden Nilsson et al. (2004) found that environmental 

values were an important predictor of public sector decision makers accepting climate 

change policy, but that these values were significantly mediated by local norms.  In 

England, resource managers and other stakeholders were surveyed on their climate 

change opinions.  The researchers found that where events had occurred that could 

robustly be linked to climate change, managers were more likely to adopt the concept of 

future changes into the general framework of their local ecosystems (Shackley and 

Deanwood 2002).  Across all groups, those with different depths of knowledge about the 

ecosystem processes lent different perspectives on the relative significance of a climatic 

event.  Overall, the results from this study suggest that English land managers’ beliefs in 

anthropogenic climate change were coupled with the experience of how local short-term 
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weather events fit into their framework understanding of the ecosystem.  Indeed, similar 

results have been found in the American public: “...climate change is unlikely to become 

a high-priority national issue until Americans consider themselves personally at risk” 

(Leiserowitz 2006).    Little, if anything, is truly known about American land manager 

opinions on climate and land changes and how those opinions affect restoration decision 

making. 

 Given that there is some information about manager perceptions in other countries 

and some information about the American public’s perceptions, it is logical to identify 

what might distinguish American land managers and the American public.  It is important 

to understand how the managers making on-the-ground decisions may or may not differ 

from their family, friends, and neighbors, especially in a region so greatly at risk.  A small 

body of social theory addresses some complementary phenomena relevant to identifying 

whether or not land managers can be considered a unique demographic from their 

neighbors.  These hypotheses include professional culture, individual bias, and agency 

employee demographic influences on larger decision making. 

 A unique professional culture, according to Kennedy (1985), is one that exists 

within and adapts to broader society.  The criteria he uses to define this culture include 

identifying “unique language,” “unique technology and artifacts,” and “presence of both 

a social structure and a professional value system.”  Kennedy argues that wildlife 

managers’ value systems, as they help to define the management community, may be 

some of the most important to consider in the policy and decision processes.  While the 

broader policies are coming from the top tier in the agencies, the flexibility inherent in 

the job description of land managers requires that they be able to make on-the-ground 
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decisions.  Those decisions, both Brunson (1992) and Kennedy (1985) suggest, arise 

from inescapable individual bias as well as a subculture value orientation.  Kennedy’s 

results argued that the wildlife management community met all of his requirements for a 

professional culture.  For example, with regard to his criterion of  “unique language,” he 

suggested that “if the K.G.B. translated these articles, they would need a Russian wildlife 

biologist to crack the professional code.”     

 Recognizing the independence of the land management subculture carries the 

associated knowledge that values, norms, assumptions, ethics, and beliefs also therefore 

define and actively bind these groups together (Kennedy et al. 2001).  Historically, range 

managers, foresters, and wildlife managers have developed their values from relevant 

rural American culture.  However, professional norms have also changed and there may 

be more influence on values from other sources today.  For example, in addition to the 

opinions of their community, managers are presented with scientific publications, agency 

policies, and practical land concerns.  Kennedy et al. (2001) suggest that natural 

resources management initially consisted of managing the resources solely for human 

consumption in terms of supply and demand harvesting.  Today agency policy reflects the 

evolution of current prevalent thought and ecosystem-based sustainability and resiliency 

concepts are a central theme of policy.  Meanwhile, the tenet of supply and demand has 

taken a secondary role in most natural resource applications (Kennedy et al. 2001).  

Conflict can be readily predicted between this broad policy theme and local rural 

communities.  These communities are dependent upon resources and often resources 

reflect a way of life as well, complete with traditions and shared value-systems (Kennedy 

et al. 2001).  This tendency is well documented in the logging industry and can likely be 
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inferred for range systems as well.  The dependency both economically and socially can 

make localized resource-dependent communities unstable (Kennedy et al. 2001).  

Decisions made by nonlocal organizations that affect the resources upon which these 

communities depend increase local economic instability and therefore may be met with 

resistance.  Range managers today have to juggle broad agency policy and nonlocal 

ideology with real people and real livelihoods.  Sometimes these policies do not clash, 

but oftentimes they do.  Cramer et al. (1993) suggest that the increasing diversity of 

interests in how public natural resources are managed necessitates that managers make 

difficult choices among policy priorities outlined in a context of multiple-use mandates.  

Not only do they have this complex political and social conflict at the local level, but 

managers must also juggle management options across regional and sometimes national 

scales.  Additionally, they must concern themselves with the interests of the current 

generation and future ones.  Communities and managers that were once isolated and 

buffered from other American values now find themselves immersed in various clashes 

with people from entirely different regions. 

 It is unreasonable to assume that land managers would be unbiased in the context 

of conflict.  In the late 1960s and early 1970s, a management theory conflict arose over 

preserving versus developing resources of areas.  In 1986, the United States Forest 

Service published their core values and then did a survey of their employees to see if they 

endorsed the statement (Cramer et al. 1993).  They found that value orientations and 

management priorities tended to agree with the broader American public, but at the 

expense of many highly vulnerable resource-dependent communities.  Despite official 

agency policy, as Vining and Ebreo (1991) point out, it is unlikely that anyone can make 
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impartial decisions because they are likely to have at least some partiality inherent in 

their own predetermined values.  Managers at the time of Vining and Ebreo’s study 

perceived they were taking a compromising stance between resources and society, but 

they were most closely oriented with the public.  In fact, the public was much more 

oriented with environmentalists than with managers, a conflicting result from the earlier 

USFS study.  Brunson (1992), a former journalist, argues that bias is present in all 

individuals, including range managers.  A partial explanation for self-misconception 

could be explained by manager age demographics: more seasoned professionals may tend 

to be more commodity-oriented and new professionals more environment-oriented.  

Another explanation may lie in what political scientists call “Capture Theory”: long-term 

managers may find themselves to be more attached to the ranching lifestyle than 

ecological priorities, while not realizing that their orientation with the overall public has 

changed.  Whatever the cause of this self-misconception, the most likely predictors of 

changes on local resource production and land uses are land manager values, priorities, 

and their unavoidable bias (Brunson 1992; Cramer et al. 1993).  Knowing where those 

values lie today, and the orientation of bias and priorities, is crucial to predictions about 

future Great Basin land resiliency.   

 Much of agency policy we have today seems likely rooted in the commodity-

focused value systems from the 1910s, but moderated by the “environmental era” of 

1964-80 protection values (Sayre 2010).  Do current agency vision statements match 

manager and public values today?  How do the values of agencies, the broader American 

public, and local resource-dependent communities affect manager values?  This research 

was exploratory in nature and as such did not have any initial hypotheses.  Analyzing the 
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data did not allow us to answer the scope of the question above, but we were able to 

evaluate current Great Basin manager values.  This paper thus attempts to answer: 1) do 

managers view local weather events as indicators of the larger climate debate; 2) are 

managers concerned about the risk of climate changes in their areas; 3) are they actively 

trying to come up with solutions to cope with future predictions; and 4) how do forbs fit 

into the context of ecosystem health and resilience for managers? 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



22 

 

CHAPTER II 
 

 NATIVE AND NON-NATIVE FORB RESPONSE TO AN INCREASE  

IN GROWING-SEASON TEMPERATURE 

 
ABSTRACT 

 
 
 Shifts in temperature and competition with non-natives can each dramatically 

change species distributions.  This study tested whether increases in temperature affect 

the fitness of native and non-native forb species found in the sagebrush ecosystem region 

of the western United States.   

In 2009, natives Sphaeralcea munroana and Crepis acuminata, and non-natives 

Erodium cicutarium and Lactuca serriola were subjected in monocultures to two 

treatments: artificial warming using open-top chambers and a control.  No warming 

effects were found for S. munroana or E. cicutarium.  L. serriola fitness was negatively 

affected by warming.  No C. acuminata seedlings survived past mid-summer.  In 2010, 

natives S. munroana, C. acuminata, Linum lewisii, Penstemon palmeri, and Oenothera 

pallida, and non-native E. cicutarium were planted in two community groups (all natives; 

first four natives and the non-native) and underwent the same two temperature 

treatments.  Plants did not grow large enough to evaluate competition effects; therefore, 

all data were analyzed as monocultures.  Seedlings of L. lewisii showed significantly 

greater fitness under warming conditions.  Warming did not significantly affect fitness for 

S. munroana or P. palmeri although it did alter germination and senescence timing for the 

latter.  Germination and/or survival of O. pallida and C. acuminata were poor in both 

treatments.  Temperature did not affect fitness of E. cicutarium but did seem to speed up 
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germination.  Managers engaged in restoration activities can benefit by knowing how 

species they use are likely to succeed under future environmental conditions.  Results of 

this warming experiment suggest S. munroana, L. lewisii, and P. palmeri may be good 

candidate forbs for continued use.  Data are not sufficient to make recommendations 

about C. acuminata and O. pallida.  Competitive interactions between the natives and the 

non-native E. cicutarium could be further compounded by increases in temperature, 

further underlining the importance of establishing diverse and abundant native forb 

communities.    

 
INTRODUCTION 

 
 

Increasing Temperatures in Sagebrush  
Ecosystems 
 

Climate change is already shown to be significantly impacting ecosystems both 

nationally and globally (Rosenzweig et al. 2008).  In the Executive Summary of the US 

Climate Change Science Program Report, the authors state that 60% of peer-reviewed 

papers studying 1598 species exhibited shifts in distributions and/or phenologies 

(Backlund et al. 2008a).  These shifts are predicted to accelerate in occurrence and 

severity in the future due to changes in climate alone.   

 Shifts in either precipitation or temperature alone can dramatically change 

species’ distributions (Bradley 2009).   The Fourth Assessment Report (AR4) of the 

Intergovernmental Panel on Climate Change (IPCC) found that the global average surface 

temperature increased ~0.6°C and global land precipitation increased ~2% during the 

20th century (Backlund et al. 2008b).  The same report predicts 1.1°-5.4°C global 
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average temperature increase over the next 100 years (the variation depending on 

greenhouse gas output and deforestation levels).  Global precipitation over land is 

predicted to increase as well; however, this is likely to be coupled with changes in timing 

and patterns of rainfall.  For example, the West and Southwest are predicted to become 

drier, despite an increase in annual precipitation in those regions. 

 The Great Basin is classified as a cold desert: it receives very little precipitation, 

mostly in the form of winter snow, and experiences periodic droughts (Wagner 2003).  

Temperature regimes in the Great Basin often result in evaporative losses exceeding 

precipitation inputs.  When rain finally does fall, it comes in large, brief storms, running 

off without the soil retaining much.  Additionally, melting snow often runs off the soil 

without being absorbed by still frozen soil.    Predicted changes for these ecosystems are 

for higher temperatures that increase evapotranspiration and an increase in intense 

thunderstorms that increases runoff (Seager et al. 2007).  These combined effects would 

leave much less available water for plants throughout the summer, despite an increase in 

precipitation from thunderstorms. 

 A 5-10°C increase over the next 100 years in the Great Basin (Wagner 2003) 

would be quite a meaningful change for these already arid landscapes.  Records have 

shown a 6-16% increase in precipitation already (Baldwin et al. 2003).  Rainstorm 

intensity (measure of force) and severity (measure of landscape response) are predicted to 

rise, and to occur twice as often (Kharin et al. 2007).  On the other hand, there are also 

likely to be declines in snowpack (Mote et al. 2005) coupled with earlier snowmelt, 

which would effectively decrease annual runoff and affect timing of available water 

(Backlund et al. 2008a).  In addition to increases in evapotranspiration due to increased 
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temperatures, more precipitation in the Great Basin likely may not translate into more 

available water for ecological processes (Backlund et al. 2008b).  Due to the water 

limitations that Great Basin ecosystems already experience, forbs in the Great Basin have 

evolved physiologically to specific precipitation patterns in the winter/early spring 

(Svejcar et al. 2003).  Thus, changes in the timing of rainfall alone, has been found to at 

least equal the changes in composition caused by a 30% reduction in rainfall (Hatfield et 

al. 2008).     

 In addition to climate, other types of land changes occur in almost all ecosystems 

today.  Indeed, a major component of global changes noted by Vitousek et al. (1996) is 

ecosystem conversions by invasive species.  The United States’ annual cost of plant 

invader damage and control has been estimated in billions of dollars (Pimentel et al. 

2000). Invasive plants frequently threaten native species and change ecosystem function 

by altering components like water availability or fire frequency (D’Antonio and Vitousek 

1992). Understanding and predicting the effects of climate and ecosystem changes on 

invasive and native species have become a predominant challenge for land managers 

throughout the world. 

 
Invasions 
 

As previously discussed, plants and animals in arid lands may already live near 

their physiological limits, so even slight changes in their resources drastically change 

compositional structure and distribution. The vertical distribution of soil water can be 

highly affected by precipitation timing and evapotranspiration rate, thus selecting for 

plants at specific root depths and often excluding plants with shallower root systems 
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(Ehleringer et al. 1991).  Decreases in the frequency and length of freezing temperatures 

and increased minimum temperatures may alter many plant species’ ranges within the 

Great Basin (Ryan et al. 2008).  Thus, water availability and overall temperature 

increases will likely favor the spread of invasives into arid lands (Lonsdale 1999).   

 An understanding of the complex relationships between soil, topography, 

hydrology, and plant response is necessary for predictions of overall Great Basin 

vegetative changes (Ryan et al. 2008).  These factors and many others strongly interact 

with precipitation and temperature to regulate plant production and control species 

composition.  In disturbed sagebrush sites, many annuals and perennials (both grasses 

and forbs) have been introduced and successfully established, thus changing ecological 

structure (Leonard et al. 2008).  Temperature increases and precipitation timing and 

distribution in cold deserts (Wagner 2003) are thought to have a dramatic effect on the 

dominant vegetation.  Some studies have also shown that high CO2 concentrations have 

increased the biomass of introduced grasses and forbs (Huxman and Smith 2001; Ziska 

2003; Nagel et al. 2004).     

 Sheley and Petroff (1999) argue that in rangelands, invasive plants threaten the 

overall ecosystem function and therefore utility.  Some of the physical effects of a shift in 

species composition to annual grasses and invasive forbs might be loss of soil nutrients, 

siltation of streams and rivers and increased vulnerability to flooding (Knapp 1996).  A 

general objective suggested by Sheley et al. (1996) for invasive plant management should 

be to establish a healthy plant community that is weed resistant and meets other land-use 

objectives.  Several studies have found that invasion resistance on rangelands can be 

increased by increasing native forb species richness and niche occupation (Jacobs and 
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Sheley 1999; Carpinelli et al. 2004; Pokorny et al. 2005).  Indeed, Chambers et al. (2007, 

2008) show that invasibility by cheatgrass Bromus tectorum in sagebrush steppe 

ecosystems is lowest at sites with high cover of perennial herbaceous species.  Others 

have observed that an inverse relationship exists between B. tectorum and perennial cover 

following disturbance from either grazing or wildfire (Anderson and Inouye 2001; West 

and York 2002).  Sheley and Half (2006) found that using a seed mixture of native forbs 

could greatly increase likelihood of forb establishment in restoration efforts.  

Unfortunately, the high cost and risk of failure (germination and emergence) associated 

with native revegetation efforts has often been prohibitive (Jacobs et al. 1998). 

 
Sage-grouse 
 

The forb component of sagebrush steppe is not only essential for full ecosystem 

function, but it is vitally important to populations of Greater sage-grouse (Centrocercus 

urophasianus) chicks (Klebenow and Gray 1968; Peterson 1970; Drut et al. 1994; 

Flinders et al. 2000) and the nutrition of pre-laying sage-grouse hens (Barnett and 

Crawford 1994).  Particularly important for sage-grouse chicks in their first few weeks 

are forbs, grasshoppers, ants and beetles (Klebenow and Gray 1968; Peterson 1970).  

Several studies have shown that high plant species richness combined with abundant 

forbs and abundant/diverse insects characterize sage-grouse brooding sites (Dunn and 

Braun 1986; Klott and Lindzey 1990; Drut et al. 1994; Apa 1998; Flinders et al. 2000). 

Both sage-grouse species, Greater and Gunnisons, are currently listed as 

“warranted” for listing as a threatened species under the Endangered Species Act “but 

precluded by higher priority listing actions” (U.S. Fish and Wildlife Service 2010).  
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Breeding populations of Greater sage-grouse have declined 17% in the past 50 years 

(Connelly and Braun 1997).  These population declines have been largely attributed to 

sagebrush habitat loss, degradation, and fragmentation (Connelly and Braun 1997; Braun 

1998), and invasive species (Klebenow and Gray 1968).  In Utah, Greater sage-grouse 

currently inhabit < 50 % of their historic range (Beck et al. 2003).   

As previously discussed, invasive annual forbs reduce the diversity and 

functionality of rangelands.   However, the loss of native forb communities will not only 

affect rangeland functionality.  It is clear that such a community compositional switch 

would drastically affect sage-grouse brood rearing success as well.   

 
MATERIALS AND METHODS 

 
 

Site Description 
 

Utah State University’s Green Canyon Ecology Center is a 12-ha research 

compound located in North Logan, Utah, at the mouth of Green Canyon.  The site is on 

an alluvial fan and is ~1478 m in elevation.  Precipitation is ~40-46 cm/year, primarily in 

the form of snow.  The field site has been described as representative of Great Basin plant 

communities and having comparable soil to Great Basin calcareous soils (Cui and 

Caldwell 1997).  Soils in the field site are very calcareous loamy-skeletal Typic 

Haploxerolls (Southard et al. 1978); pH is ~8 and nutrient concentrations are generally 

low. Soil organic content is 3.5% and C/N ratio is 31 (Bilbrough and Caldwell 1997).  

The plot used for this study is 27 m x 9 m, largely bare except for a few small, patchy 

sagebrush (Artemisia tridentata) plants.  A 9 x 9 m rainout shelter on the south end of the 

plot, with rails that border the east and west of about half of the quadrats, was designed to 
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move from north to south along track rails.  During this study the shelter was at its 

southernmost position with quadrats confined to the northern two-thirds, but rails 

bordered about half of the quadrats to the east and west.  In 2009 there were a few early 

spring native forbs adjacent to the plot; however, these were absent in 2010.   

 
Summer 2009 
 

During the spring and summer of 2009, seedling survival and growth of native 

and non-native forbs from the Utah Great Basin were investigated under an increase in 

temperature.  A 4 species by 2 temperature treatments (control vs. elevated) factorial 

design resulted in eight treatment combinations.  Ten replicates yielded 80 total quadrats.  

Treatment combinations were randomly assigned to quadrat locations.     

To increase temperature, passive warming conical open-top chambers (OTCs) 

were constructed from Sun-LiteHP (0.10cm thick) fiberglass for solar applications, 

following the protocol from Post and Pederson (2008).  The OTCs have an 82.16 cm 

basal diameter, are 24.28 cm tall and have a top diameter of 54.16 cm.  In personal 

communication with the International Tundra Experiment Station, if the top diameter to 

height ratio is less than 4:1, and sides are 60°, temperature effects should be quite similar 

to each other.  OTCs have been shown to increase temperature by 1.5-5.2˚ C without 

affecting humidity (Marion et al. 1997; Post and Pederson 2008;). This procedure has 

been replicated by Rick Gill of BYU on the Wasatch Plateau with similar temperature 

increases (pers. comm., 2009).  Soil and air temperature and soil moisture were measured 

with probes in OTC quadrats and control quadrats weekly.  The probes were always 

inserted north of the plants and shaded during readings.    
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The species studied were chosen based on sage-grouse dietary needs, plant 

characteristics compatible with the ecological site, and ability to purchase seed.  The first 

native perennial forb was Munro’s globemallow, Sphaeralcea munroana.  In a Wyoming 

seeding restoration brochure, this forb is listed as a recommended forb for sage-grouse 

restoration seeding (WY USGS 2008).  The second native perennial forb was tapertip 

hawksbeard, Crepis acuminata.  Sage-grouse consume C. acuminata readily in their diet 

(Klebenow and Gray 1968; Barnett and Crawford 1994; Drut et al. 1994).  The first non-

native used was stork’s bill, Erodium cicutarium. Sage-grouse consumption of E. 

cicutarium is undocumented.  According to the USDA, NRCS (2010),  E. cicutarium is a 

nationwide generalist annual weed, and according to the California Invasive Plant 

Council it is an “invasive.” though of “limited” ecological impact.  It has also been noted 

that  E. cicutarium appears to suppress the diversity and abundance of native species in 

southeastern Arizona (Schutzenhofer and Valone 2006).  Therefore, although E. 

cicutarium status as an “invasive” is unclear, it can reasonably represent introduced 

competitive annual effects in increased temperature regimes (Dukes and Mooney 1999) 

and it was commercially available.  Finally, prickly lettuce (Lactuca serriola), another 

generalist annual weed in the Great Basin, is known to be consumed by sage-grouse 

(Klebenow and Gray 1968; Peterson 1970) and was chosen primarily for this reason, in 

addition to it being available commercially. 

For each species, 90 control seedlings and 90 ‘temperature increase’ seedlings 

were desired.  This resulted in 180 seedlings plus 10% extra for error, or 198 seedlings 

desired.  Two more seedlings were added for checking when stratification would be 

complete and other potential losses.  The final plant number of each species was 200.    
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In March, 400 peat pellets were soaked for expansion to full volume (42mm x 

42mm).  The seed available had not been tested and so the lot could have had as little as 

1% germination success or as high as 75% (Scott Jensen, pers comm., 2009).  It was 

recommended by the parties donating the seed to plant at least five seeds in each pellet.  

Six C. acuminata seeds were placed in each of 200 peat pellets, totaling 1200 seeds.  The 

seeds were planted vertically into the soil with tweezers; the tip was pointed down and 

the pappus of the seed was flush to the soil surface (Matt Fisk, pers. comm., 2009).  Peat 

pellets were placed in germination trays which were covered and sealed with black 

plastic bags and placed in the USU Research Greenhouse Complex refrigerator for 

stratification set at 4°C for 5 weeks to accomplish cold-moist stratification.  Pellets were 

checked once a week looking for mold, germination, etcetera.   

Technically, S. munroana does not need cold-moist stratification, but as methods 

were available for the procedure, they were followed as a precaution.  A razor blade was 

used to poke holes in 800 S. munroana seeds following methods of Drenovsky et al. 

(2008).  Four seeds were placed with tweezers on each of 200 peat pellets, and pressed in 

slightly.  The S. munroana seed lot was purchased from Granite Seed Company with a 

germination test rate of 83%.  Only 217 seeds would have theoretically been needed to 

achieve 180 seedlings.   Planting 800 seeds (or allowing for 22.5% germination) allowed 

for errors such as nicking the seed too deeply (and hitting the embryo) or the potentiality 

of having more than the Granite Seed predicted, i.e. 17% unviable seeds.  S. munroana 

pellets were then put in germination trays, covered/sealed with black plastic bags and 

placed in the greenhouse refrigerator for 5 weeks in the same environmental conditions as 

C. acuminata.  Trays were checked weekly for mold and any other concerns. 
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Upon C. acuminata ending stratification (five weeks), S. munroana, was taken out 

as well.  E. cicutarium and L. serriola were planted on the same day of native 

stratification ending.  Five E. cicutarium seeds were placed in each pellet with the tip 

downward and the spiral end pointing up.  Five L. serriola seeds were placed vertically in 

each pellet with the pappus flush to the soil surface.  Neither of these plants have cold 

stratification or scarification requirements for germination.   

All four species were then grown in the same conditions (16-hour photoperiod 

with 25°C day and 20°C night) on benches in one of the USU Research Greenhouse 

Complex greenhouses.   Peat pellets were watered by hand ~1-2x/day to maintain 

adequate soil moistness for germination.  Upon emergence, seedlings were thinned to one 

seedling per peat pellet.  After 3 weeks, 180 peat pellets for each species were taken out 

into the field to be transplanted and 20 were left in the greenhouse in case replacements 

were needed if transplantation failed.   

The field quadrats were prepared by digging up the invasive grasses and roots in 

each quadrat with a garden rake.  In May, four seedlings of each species were planted in 

the center of each quadrat.  Each seedling was planted 15 cm from the center of its peat 

pellet to the center of the adjacent pellets.  One seedling was planted in each compass 

quadrant (north, east, south, and west).  Height in centimeters, number of true leaves and 

basal diameter in centimeters was measured for each plant as fitness parameter baselines.  

Plants were then watered-in thoroughly (~½ L of water per quadrat, 1-2x/day as needed 

to maintain moist soil) for one week before OTCs were placed over experimental 

quadrats.  OTC quadrats were selected randomly for half of the quadrats of each species 

within the plot area.  C. acuminata has a poor transplant survival rate (Scott Jensen, pers. 
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comm., 2009) and proved difficult to grow in the greenhouse as well (<8% germination 

rate), despite cold-moist stratification.  C. acuminata watering in the field (~½ L of water 

per quadrat, 1x/day) continued through mid-June due to high losses every time watering 

was temporarily stopped.  Replacement of dead plants continued until there were no more 

replacements and there were less than 2 plants in each quadrat for that C. acuminata.  

Within three weeks of stopping water, mortality of C. acuminata was 100%.    

 
2009 Field Data Collection 
 

At the end of each species’ growing season, all the plants for that species were cut 

at ground level.  Height, basal diameter, number of leaves and number of flowering 

shoots were measured.   Each plant was dried in the USU Greenville Farms drying ovens 

at 60°C for 3 days, and shoot biomass of shoot biomass in grams was recorded. 

Air and soil temperatures were taken at 16 quadrats, 8 of which were OTC 

quadrats and 8 of which were control quadrats.   This number of quadrats was chosen for 

the number of measurements that could be taken in one hour using a Barnant DuaLogR™  

thermocouple thermometer.  The thermometer has two temperature probes that read 

temperatures independently.  Temperatures were taken weekly at six times a day, 3 hours 

apart, beginning at 10 AM: 10-11 AM, 2-3 PM, 6-7 PM, 10-11 PM, 2-3 AM, 6-7 AM.  As 

the summer progressed temperatures took longer to read (up to two hours to complete one 

round) and the 2-3 AM temperatures were no longer taken.  Two temperatures (one with 

each probe) were recorded ~2 cm above the soil surface.  Two temperatures (one with 

each probe) were recorded 4.4 cm under the soil surface.  At all times probes were shaded 

during readings.  In the OTCs temperatures were taken in the least shaded part of the 
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OTC, as there is some shading from the fiberglass material, and within ~5 cm of a plant.  

Shading effects due to the compass orientation of sagebrush and structures was not 

recognized until quadrats had already been set up, so the design was not ideal in 2009.  

The 16 quadrats selected for temperature and soil moisture readings were chosen 

according to species, but also according to shading from surrounding plants and 

structures.  Each of the four species had two shaded quadrats and two open quadrats.  The 

following field season had a more randomized selection based on shading orientation 

throughout all quadrats. 

Soil moisture measurements were recorded with a two-pronged Campbell 

Scientific HydroSense® system at the same 16 quadrats at a depth of 20 cm.  Two 

measurements of % volumetric water content were taken at each quadrat and converted to 

megapascal (MPa) according to water retention values for the site provided by Scott 

Jensen (pers. comm., 2011).  All soil moisture were recorded weekly at 5 PM and at least 

2 days after a precipitation event.  Soil is very gravelly at this site - in the height of 

summer, the probe was unable to penetrate the soil to 20 cm without the aide of a drill.     

 
2009 Data Analysis 
 

All forb fitness parameter data were entered into Microsoft Office Excel® and 

analyzed using R (2005).  The fitness parameters height, basal diameter, flowering shoots 

and shoot biomass in OTCs were compared to those in control quadrats in a linear mixed-

effects/split-plot factorial model with reduced maximum likelihoods.  Factors included in 

the split-plot model were OTC and Track presence.  Significance was considered α=0.05 

for all models.  The data for S. munroana met model assumptions when log transformed.  
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E. cicutarium and L. serriola met model assumptions without transformations.  The C. 

acuminata treatment failed and no data were therefore available for transformation.  In 

1995, Cui and Caldwell (1997) erected a rain-out shelter on the south-end of the field 

site.  Construction is likely to have partially disturbed, mixed and aerated the soil.  This 

shelter also has foot-high iron railings for movement that comprise the boundaries of 

about half the current plot area.  Therefore, for both 2009 and 2010 data, a factor simply 

termed “Track” was created to evaluate any possible confounding effects of a more 

southerly position within the study site.  The shading from the structure and railings 

could potentially impact temperatures and moisture, while the soil disturbance/mixing 

could impact soil moisture and plant fitness.  Thus, the factors that were accounted for in 

the mixed-effects model were OTC and Track.  All eighty quadrats were included in this 

analysis.   

 Temperature and precipitation data were entered into Microsoft Office Excel® 

and analyzed using R (2005).  Temperatures and soil moisture were analyzed in a split-

plot factorial design using a linear mixed-effects model fit by reduced maximum 

likelihood.  Air and soil temperatures and soil moisture were analyzed with respect to 

OTC, Species, Track, and Date across the 16 monitored quadrats.  Quadrats were 

designed as monocultures and species designation was added as a factor for the following 

reasons: species might locally affect temperature due to differences in biomass and 

structure, and species might affect soil moisture due to different water and nutrient uptake 

requirements by different plants.  Date was, of course, taken into account as well.  

Separate times were analyzed independently rather than as a factor to simplify the model.   

Significance was considered α=0.05 for all models.  All air temperature models were 
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square root transformed to meet model assumptions.  All soil temperature data was log 

transformed to meet model assumptions.   Soil moisture data met model assumptions 

without transformations.   

 
Fall 2009/Summer 2010 
 

For the second year of the experiment, forbs were planted in communities rather 

than monocultures.  This planting structure was intended to help determine the long-term 

resiliency of potential sage-grouse forb communities to increased temperature by adding 

a factor of competition with annual generalist non-natives.  Forb communities should be 

reviewed to help select the most appropriate forbs for sage-grouse success.  Reviewing 

these same communities with respect to increases in temperatures will ideally help to 

avoid ineffective restoration efforts.  Native forbs were chosen based on commercial 

availability to ranchers/range managers, likelihood of sage-grouse consumption (WY 

USGS 2008) and ecological site description compatibility.  A factorial design was set up 

with community and temperature treatments.  There were two community treatments: 

five native species and four native species with one non-native species.  These 

community treatments were crossed with two temperature treatments – ambient and  

elevated.  Native community quadrats had all five natives, S.munroana, C. acuminata, 

Linum lewisii, Penstemon palmeri, and Oenothera pallida.  Non-native community 

quadrats had four natives: S. munroana, C. acuminata, Linum lewisii, and Penstemon 

palmeri and one non-native E. cicutarium.  Replacing O. pallida with E. cicutarium 

ideally helped control for the effects of the non-native on space and morphology as well 

as some life history characteristics.  The factorial design resulted in four treatment 
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combinations.  Replicated ten times, this yielded 40 total subplots, each of which were 

monitored for temperature and moisture.  Forty additional quadrats were planted because 

they were available.   

 In fall 2009, the soil was prepped to simulate soil preparation that occurs with 

tilling treatment prior to restoration projects using a garden rake.  Seed was hand planted 

about 5-10 mm into the soil.  Twenty seeds (to ensure 10% germination success rate) of 

each species were placed in each quadrat.  To increase temperature, OTCs were used.  

Wire mesh (50 cm x 50 cm) was placed over each control replicate during fall seeding to 

dissuade animals from consuming the seeds (OTCs acted as a natural barrier).  Quadrats 

were located randomly within the plot, with statistically randomized consideration for 

quadrats that were shaded with respect to orientation (NESW).  In spring 2010, seedling 

emergence was quantified.  Initially plants were to be thinned to one or two plants per 

species, but the growing conditions were so poor over the summer that seedlings were 

thinned to a maximum of ten seedlings of each species per quadrat.  Survival and life 

history was censused until fall 2010 when aboveground plants were harvested for 

measurement of fitness parameters. 

 
2010 Field Data Collection 
 

At the end of each species’ growing season, the group of that species in each 

quadrat was cut at ground level.  Height, number of plants in the quadrat and number of 

flowering shoots were measured prior to senescence for each plant.  After cutting, each 

plant was dried in the USU Greenville Farms drying ovens at 60°C for 3 days and shoot 

biomass (g) was recorded. 
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 Temperatures were taken with DS1921G Thermochron iButton® temperature 

dataloggers at 40 quadrats: 20 OTC quadrats and 20 control quadrats.  Forty dataloggers 

were suspended ~2 cm above ground level and 40 were buried ~4.4 cm under the soil 

surface.  Dataloggers were located on the north section of each quadrat to avoid shading 

effects on the plants and within 5 cm of the nearest plant.  Dataloggers were housed in 

Signatrol Ltd© SL50-ACC06 watertight secondary silicone enclosures that do not affect 

the temperature reading accuracy of the dataloggers.  Aboveground dataloggers were 

protected from the sun and trapped heat by staked cups spray-painted white, louvered 

with a razor (for air flow), and suspended 3 cm off the ground.  Shading effects due to the 

compass orientation of sagebrush and structures were accounted for and thus each 

quadrat was randomly selected from quadrat sites of specific shading orientation.   

 Soil moisture measurements were recorded weekly with 80 Delmhorst© Soil 

Moisture Meter Gypsum Blocks and a Delmhorst© KS-D1, Digital Soil Moisture Meter.  

Gypsum Blocks were buried at 4 cm and 20 cm.  Gypsum blocks were calibrated 

according to personal communication with Bruce Roundy (2010).  First the gypsum 

blocks were soaked in water for 10 minutes, dried out, and then soaked again.  This was 

repeated three times.  Gypsum blocks were checked with the meter when wet to ensure 

low resistance.  When the soil was wet in the spring, a soil auger was used to make a hole 

to the appropriate depth for the gypsum blocks.  Wet soil from the hole was patted around 

the blocks in a mud ball to ensure soil contact.  The blocks were pushed down manually 

so that they were horizontal in the soil.  Loose soil was back-filled around the block and 

firmed up manually.  Measurements were not taken until at least one week after 

installation.  Measurements were recorded in the field in Delmhorst’s arbitrary scale 
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readings and recorded in Excel in bars tension (bt) according to the calibration curve 

charts provided by Delmhorst.  They were then divided by 10 to convert to megapascals 

(MPa).  Gypsum blocks are not as reliable when the soil is extremely dry (<-1.5 MPa).  

Delmhorst recommends disregarding any measurements outside the range of 5 and 100 

on their soil moisture meter’s arbitrary scale (1.5 and 0.01 MPa).  Thus in July and 

August fewer of the measurements taken were usable.   

 
2010 Data Analysis 
 

All forb fitness parameter data were entered into Microsoft Office Excel® and 

analyzed using R (2005).  Significance was considered α=0.05 for all models.  The fitness 

parameters height, number of plants, flowering shoots, and shoot biomass in treatment 

quadrats were compared to those in control quadrats in split-plot factorial/linear mixed-

effect models with reduced maximum likelihood.  OTC, Track, Shade (east/southeast, 

west/southwest, east and west/southeast and southwest, none and random), and if there 

was a non-native in the quadrat, were all factors in the analysis.  Plant position had been 

accounted for and randomized for all species to aid in evaluating potential competition 

between native and non-native species.  The location of the seeds when planted in 

pentagon shape in each quadrat was: position a [southwest], b [west], c [north], d [east], 

or e [southeast].  Plants did not grow large enough to have an appreciable competitive 

interaction, and so position was evaluated but ultimately discarded as a factor of interest.  

Regardless, the native/non-native factor was retained in the model analysis prior to model 

reduction.    

 Plants can have different value to sage grouse or other species depending on 
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whether they are in seedling, flowering, seed-producing or senescent phases.  Therefore, 

in 2010 forb life stages were monitored periodically throughout the growing period.  Data 

were compiled in tables by species and broken down into seasons (Spring, Early-

Summer, Mid-Summer, Late-Summer) with reference to OTC. 

All temperature data were downloaded from the iButtons via Maxim Integrated 

Products© cables DS1402D-DR8, converted into Microsoft Office Excel® using Maxim 

Integrated Products© OneWireViewer software package and Maxim Integrated 

Products© adaptors DS9490R.  Data were analyzed in R (2005) using a linear mixed-

effect model by reduced maximum likelihood.  Factors included OTC, Track, Native 

Community Status, Shade Orientation, Plant Position and Date.  Times were chosen to 

complement the 2009 data (6 AM, 10 AM, 2 PM, 6 PM, 10 PM, 2 AM) and were each 

analyzed separately for model simplicity.  Model assumptions were met for both air and 

soil temperatures and data were not transformed.  Significance was considered α=0.05 for 

all models. 

Soil moisture measurements were compared across the 40 OTC and control 

quadrats at 20 cm and 4 cm.  In 2009, the only soil moisture probe available needed to be 

inserted completely into the soil in order to obtain accurate readings – this resulted in a 

depth of 20 cm.  However, while the plants being studied might access water at this depth 

once established, a depth of 4 cm is probably more realistic for predicting the effect of 

soil moisture on plants.  In 2010, measurements were taken at 20 cm in order to 

adequately compare to the 2009 data and at 4 cm.  Soil moisture measurements were 

analyzed with a linear mixed-effect model by reduced maximum likelihood.  Factors 

included OTC, Track, Native Community Status, Shade Orientation, and Plant Position.  
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Models were run both over all dates and at specific dates.  Residuals for both depths met 

the model assumptions and data were not transformed.  Significance was considered 

α=0.05 for all models.           

 
RESULTS 

 
 
Temperature and Soil Moisture Data:  
2009 
 
 Air Temperatures.  As a warming instrument OTCs effectively increased air 

temperatures by 1.11ºC across all time periods (24 h) through the entire growing season 

(Table 1 and Fig. 1).  When separated by hour, OTCs significantly increased temperature 

in quadrats at all times except 6-7 AM and 2-3 AM (Table 1).       

 Potential species-level temperature differences were also measured to assess 

whether temperature differences were associated with differential plant biomass increases 

throughout the study period (for example, C. acuminata experienced 100% mortality by 

July while L. serriola and E. cicutarium were growing out of the OTCs by the same 

period).  The interaction between OTC and species was not significant at any time 

(Appendix A, Table 1).  The data were all square root transformed and assumptions were 

met. The interaction between OTC and track was a significant predictor of temperature 

at 6am (p-value <0.0001, DF =1:12, F-value = 22.230).  At 6 am, track presence 

decreased air temperature by 1.135±1.112ºC in OTC quadrats and increased air 

temperature by 0.060 ±0.816ºC in control quadrats.  Track presence was not significant at 

any other times (Appendix A, Table 2). The data were all square root transformed and  

assumptions were met. 
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Table 1. 2009 OTC effect on air temperature (ºC) at different times of the day throughout 
the growing period (F-test, α = .05)                     

Time OTC Control Difference S.E. DF F-value p-value 
24 h 21.241 20.131 +1.110 0.430 1:14 5.54 0.034 

6-7 am 10.663 10.414 +0.249 0.202 1:14 2.343 0.148 
10-11 am 23.941 21.940 +2.001 0.410 1:14 84.944 <0.0001 
2-3 pm 30.960 28.670 +2.290 0.380 1:14 84.394 <0.0001 
6-7 pm 25.565 24.696 +0.869 0.385 1:14 11.978 0.004 

10-11 pm 16.827 16.532 +0.295 0.213 1:14 7.925 0.014 
2-3 am 9.552 9.440 +0.112 0.188 1:14 0.411 0.566 

 
 

Figure 1. 2009 effect of OTC on air temperatures at 6 times throughout the growing 
period (untransformed data). 
  
 

Soil Temperatures.  OTC effectiveness with regards to soil temperature was also 

evaluated and was found to increase temperatures by 1.41°C across all time periods (24 

h) through the entire growing season.  When separated by hour, OTC was a significant 

predictor of soil temperature in this model at all time periods (Table 2 and Fig. 2). 

Species was only a significant predictor at 6am (Value = 0.800±0.790, p-value = 0.054, 

DF = 3:8, F-value = 3.900) and 10pm (Value = 1.425±1.093, p-value = 0.011, DF = 3:8,  
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Table 2. 2009 OTC effectiveness on soil temperature (ºC) at different times of the day 
throughout the growing period (F-test, α = .05)          

Time OTC Control Difference S.E. DF F-value p-value 
24 h    25.019   23.606     +1.413  0.444 1:14 13.70   0.0024 

6-7 am    11.244   10.200     +1.044  0.165 1:14 93.1 <0.0001 
10-11 am    21.301   19.213     +2.088  0.778 1:14 11.83   0.0038 
2-3 pm    18.639   16.964     +1.675  1.181 1:14 13.70   0.0024 
6-7 pm    21.525   20.825     +0.700  0.719 1:14 8.815   0.0102 

10-11 pm    15.907   13.794     +2.113  0.300 1:14 70.22 <0.0001 
2-3 am    12.600   11.644     +0.956  0.208 1:14 33.17 <0.0001 

 

Figure 2. 2009 effect of OTC on soil temperatures at 6 times throughout the growing 
period. 
 

F-value = 7.254) and only for C. acuminata which essentially acted as a control, never 

having much biomass throughout the study (Appendix A, Tables 3 and 4).    In the split-

plot design separated by hour, track presence was a significant predictor of soil 

temperature at 10am only (Value = -1.750± 3.095, p-value = 0.016, DF = 1:12, F-value = 

7.91) (Appendix A, Table 5).    

Soil Moisture.  OTC effect on plant available water was also evaluated.  OTCs 

did not have a significant influence over soil moisture (Table 3; Fig. 3), nor did Track or  
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Table 3. 2009 OTC soil moisture (MPa) effectiveness throughout the growing period (F-
test, α = .05). 

OTC Control Difference SE DF F-value p-value 
0.0039 0.0029 0.0010 0.0015 1:14 0.113 0.741 

Figure 3. 2009 effect of OTC on soil moisture (megapascals) over growing period. 

 
Species (Appendix A, Table 6).  When measurements were able to be taken, water tension 

tended to be higher (less available for plants) in OTCs compared to control quadrats (Fig. 

3).   

Temperature and Soil Moisture Data:  
2010 
 
 Air Temperatures.  In 2010, OTC was the only factor found to have an effect on 

air temperatures in the quadrats (Table 4; Appendix A, Tables 7 and 8).  Over the entire 

2010 study period, OTCs increased air temperature for the 24 h time period by 2.79ºC.  

OTCs significantly increased air temperature at all separate times as well (Fig. 4). 
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Table 4. 2010 OTC (ºC) effectiveness at different times of the day throughout the 
summer (F-test, α = .05) 

Time OTC Control Difference S.E. DF F-value p-value 
24 h 24.759 21.972 +2.787 0.326 1:38 125.900 <0.0001 
6am 9.603 8.595 +1.008 0.150 1:38 34.020 <0.0001 

10am 24.759 21.972 +2.787 0.591 1:38 16.210 <0.0003 
2pm 35.927 30.751 +5.176 0.442 1:38 100.220 <0.0001 
6pm 30.590 28.165 +2.425 0.278 1:38 55.367 <0.0001 

10pm 16.039 15.089 +0.941 0.181 1:38 19.632   0.0001 
2am 12.380 11.433 +0.947 0.166 1:38 25.245 <0.0001 

 

Figure 4. 2010 effect of OTC on air temperatures at 6 different times throughout the 
growing period. 
  
 
 Soil Temperatures.  OTC and Shade were the only factors found to have any 

effect on soil temperatures (Table 5; Appendix A, Tables 9 and 10).  Over the entire 2010 

study period, with time as a factor, OTCs significantly increased soil temperature by 

2.65ºC (Table 5; Fig. 5).  Also, at individual times, OTCs significantly increased soil 

temperatures.  At 10am shade orientation had a significant effect on soil temperature as 

well (p-value = 0.0089, DF = 4:29, F-value = 4.148).  OTC treatment accounting for 

shade (shade compared to shade, nonshade compared to nonshade) at 10 am resulted in  
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Table 5. 2010 Soil Temperature OTC (ºC) effectiveness at different times of the day 
throughout the summer (F-test, α = .05)                  

Time OTC Control Difference S.E. DF F-value p-value 
24 h 20.478 17.825 +2.653  0.363 1:37 7.643 0.0088 

6-7 am 15.197 14.041 +1.156  0.242 1:37 16.883 0.0002 
10-11 am 20.479 18.138 +2.341  0.706 1:37 9.953 0.0032 
2-3 pm 30.929 29.892 +1.037  0.137 1:37 42.25 <0.0001 
6-7 pm 29.951 28.991 +1.600  0.531 1:37 6.708 0.0135 

10-11 pm 21.374 20.255 +1.119  0.295 1:37 10.651 0.0024 
2-3 am 17.527 16.388 +1.139  0.255 1:37 14.794 0.0005 

 

Figure 5. 2010 effect of OTC on soil temperatures at 6 different times throughout the 
growing period. 
  
 
an overall increase in soil temperature  of 4.224±3.062 ºC (p-value = 0.0012, DF = 1:29, 

F-value = 12.886).  OTC without accounting for shade at 10am resulted in an overall 

temperature increase of 2.59 ºC throughout the plot (Table 5).      

Soil Moisture.  In the model, neither OTC (Table 6) nor any of the other factors 

(Appendix A, Tables 11 and 12) had a significant effect on soil moisture MPa at either 

depth (Figs. 6a and 6b).  In analysis separated by dates, OTC was a significant predictor 

of soil moisture at 4 cm on: 5/10/10 only (Table 8).  Soil moisture readings at this depth  
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Table 6. 2010 OTC water tension (Mpa) effect at 4 cm  (F-test, α = .05).   
OTC Control Difference SE DF F-value p-value 
0.101 0.090 0.011 0.007 1:36 0.740 0.395 

 
 
Table 7. 2010 OTC water tension (Mpa) effect at 20 cm (F-test, α = .05).   

OTC Control Difference SE DF F-value p-value 
0.044 0.048 -0.004 0.048 1:37 7.55 0.009 

 
 
Table 8. OTC water tension (MPa) effect at 4 cm separated by date (F-test, α = .05). 
Date OTC Control Difference SE DF F-value p-value 
4/27 0.101 0.090 0.011 0.005 1:36 2.670 0.111 
5/10 0.076 0.066 0.010 0.004 1:36 4.222 0.047 
5/11 0.035 0.035 -0.0008 0.0005 1:36 2.05 0.161 
6/08 0.105 0.109 -0.004 0.008 1:36 0.189 0.667 
9/01 0.133 0.122 0.011 0.012 1:34 0.587 0.449 

 
 

Figure 6. 
a. OTC effect on soil moisture at 4cm at 6 dates throughout the growing period. 
b. OTC effect on soil moisture at 20cm at 6 dates throughout the growing period.  
 
 
in July and August were unusable according to the manufacturer guidelines.  In arid 

environments, gypsum blocks are often used solely as an indicator of plant available 

water (Taylor et al. 2004; Chambers et al. 2005; Bruce Roundy, pers. comm., 2010).  The 
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July and August readings in all cases were > -1.5 MPa and therefore unusable. 

 At 20 cm depth, OTCs significantly decreased water tension (increased plant 

available water) in OTC quadrats (Table 7).  However, separated by date, only 7/2/11 

reflected this result (Table 9).  On all other dates OTC treatment was strongly 

nonsignificant as a predictor of water tension.  No other factors had any effect on water 

tension at 20 cm depth (Appendix A, Table 12).  Soil moisture readings at this depth for 

most of July and all of August were unusable according to the manufacturer guidelines.     

Plant Fitness: 2009 
 
 Sphaeralcea munroana.  OTC warming did not have a significant effect on 

height, number of leaves, basal diameter, flowering shoots, or shoot biomass (see Table 

10).  Track was a marginally nonsignificant predictor of decreased height and was a 

significant predictor of number of leaves, but was not a significant predictor of basal 

diameter, flowering shoots, or shoot biomass (see Table 11).  Twelve of the 77 plants 

produced flowering shoots.   

Crepis acuminata.  All plants died by mid-July.  Transplanting at this site was not 

successful for this species. 

 E. cicutarium.  Neither OTC nor Track presence had an effect on height or 

number of leaves for this species (Tables 12 and 13).  OTC significantly reduced basal 

diameter, while Track effect on reducing basal diameter and height were marginally 

nonsignificant.  Seventy-nine out of 80 plants had flowering shoots.  OTC and Track  

presence each reduced the number of flowering shoots.  Neither OTC nor Track had an 

effect on shoot biomass. 

Table 9. OTC water tension (MPa) effect at 20 cm separated by date (F-test, α = .05). 
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Date Warmed Control Difference SE DF F-value p-value 
4/27 0.044 0.048 -0.004 0.003 1:37 1.176 0.285 
5/10 0.041 0.043 -0.002 0.004 1:37 0.1925 0.663 
5/11 0.038 0.038 -0.0001 0.001 1:36 0.006 0.937 
6/08 0.042 0.044 -0.002 0.004 1:37 0.255 0.617 
7/02 0.658 1.051 -0.393 0.138 1:27 5.840 0.023 
9/01 0.219 0.352 -0.133 0.193 1:3 0.315 0.614 
 
 
Table 10.  2009 Plant fitness for S. munroana under artificially warmed and control 
conditions (F-test, α = .05). 

Parameter OTC Control Difference SE DF F-value p-value 
x‾  height 8.698 12.172 -3.474 2.009 1:16 1.294 0.272 
Leaves 24.825 31.036 -6.211 5.310 1:16 1.601 0.224 

Basal Diameter 1.126 1.094 +0.032 0.117 1:16 0.038 0.849 
x‾  #  flowering 

shoots (12 of 80) 
0.527 

(5 of 40) 
1.385 

(7 of 40) -0.858 0.542 1:16 0.928 0.350 

x‾  shoot biomass (g) 3.327 3.541 -0.214 0.856 1:16 0.558 0.466 
 
 
Table 11. 2009 Plant fitness for S. munroana under different soil conditions created by 
Track presence  (F-test, α = .05). 

Parameter Track No Track Difference SE DF F-value p-value 
x‾  height 7.942 12.152 -4.210 1.954 1:16 4.075 0.061 
Leaves 21.210 32.486 -11.276 4.835 1:16 5.205 0.037 

Basal Diameter 1.068 1.138 -0.070 0.114 1:16 0.361 0.556 
x‾  #  flowering 

shoots (12 of 77) 
0.870 

(4 of 31) 
1.020 

(8 of 46) -0.150 0.547 1:16 0.012 0.913 

x‾  shoot biomass (g) 2.981 3.739 -0.758 0.842 1:16 1.723 0.208 
 
 
Table 12.  2009 Plant fitness for E. cicutarium under artificially warmed and control 
conditions (F-test, α = .05).  All values from original nontransformed data. 

Parameter OTC Control Difference SE DF F-value p-value 
x‾  height 34.453 31.180 +3.273 1.858 1:16 2.512 0.132 
Leaves 126.200 149.300 -23.100 16.283 1:16 1.678 0.214 

Basal Diameter 1.370 1.795 -0.425 0.169 1:16 6.584 0.021 
x‾  #  flowering 

shoots (79 of 80) 
62.975 

(40 of 40) 
74.325 

(39 of 40) -11.350 8.554 1:16 1.568 0.229 

x‾  shoot biomass (g) 6.253 6.273 -0.020 0.896 1:16 0.0004 0.985 
 
 
 
 
 
 
 
 
Table 13. 2009 Plant fitness for E. cicutarium under different soil conditions (F-test, α = 
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.05).  All values from original nontransformed data. 
Parameter Track No Track Difference SE DF F-value p-value 
x‾  height 30.269 34.515 -4.246 1.742 1:16 4.074 0.061 
Leaves 120.813 149.042 -28.229 16.105 1:16 2.406 0.140 

Basal Diameter 1.385 1.715 -0.330 0.174 1:16 3.816 0.069 
x‾  #  flowering 

shoots (79 of 80) 
60.000 

 (31 of 32) 
 74.417 

 (48 of 48) -14.417 8.183 1:16 2.428 0.139 

x‾  shoot biomass (g) 5.678 6.652 -0.974 0.854 1:16 0.859 0.368 
 

 Lactuca serriola.  OTC presence decreased height, leaves, basal diameter, 

flowering shoots, and shoot biomass (Table 14).  Track was not a significant predictor of 

height, leaves, basal diameter, flowering shoots, or shoot biomass (Table 15). Fifty-seven 

out of the 77 plants that established had flowering shoots. 

 
Plant Fitness: 2010 
 
 Sphaeralcea munroana.  Forty-seven of the 80 quadrats contained established 

seedlings of this species.  The only variable found to have an effect was Track.  The 

model was simplified and run with both variables OTC and Track to obtain the OTC and 

Track values of interest.  OTC did not affect S. munroana height, number, or shoot 

biomass (Table 16).  Track effect on increasing shoot biomass and height was marginally 

nonsignificant (Table 17).  Soil disturbance (Track) led to an increase in plant density.  

There were no flowering shoots for this species this year in any quadrat.  S. munroana 

seeds under warming treatment emerged earlier in the spring and grew to seedlings earlier 

and faster during spring and early summer (Table 18).   

Crepis acuminata.  Sixty-three of the 80 quadrats contained established seedlings 

of this species.  The only variable found to have an effect was Track.  The model was 

simplified and run with both the variables OTC and Track to obtain the values of interest.   

Table 14. 2009 Plant fitness for L. serriola  under artificially warmed and control 
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conditions (F-test, α = .05).  All values from original nontransformed data. 
Parameter Warmed Control Difference SE DF F-value p-value 
x‾  height 38.163 56.766 -18.603 7.194 1:16 5.071 0.039 
Leaves 39.72 69.621 -29.901 10.362 1:16 5.764 0.029 

Basal Diameter 0.761 1.138 -0.377 0.140 1:16 5.727 0.029 
x‾  #  flowering 

shoots (57of 77) 
52.447 

(24 of 38) 
117.769 

(33 of 39) -65.322 17.071 1:16 10.778 0.005 

x‾  shoot biomass (g) 5.385 9.570 -4.185 1.510 1:16 5.905 0.027 
 
 
Table 15.  2009 Plant fitness for L. serriola under different soil conditions (F-test, α = 
.05).  All values from original nontransformed data. 

Parameter Track No Track Difference SE DF F-value p-value 
x‾  height 50.000 63.145 -13.545 7.385 1:16 2.587 0.127 
Leaves 46.781 60.266 -13.485 11.440 1:16 1.109 0.308 

Basal Diameter 0.772 1.073 -0.301 0.145 1:16 3.457 0.082 
x‾  #  flowering 

shoots (57of 77) 
66.656 

(23 of 32) 
99.543 

(34 of 45) -32.887 19.952 1:16 2.447 0.137 

x‾  shoot biomass (g) 5.697 8.809 -3.112 1.629 1:16 2.990 0.103 
 
 
Table 16.  2010 Plant fitness for S. munroana  under artificially warmed and control 
conditions (F-test, α = .05).  All values from original nontransformed data. 

Parameter OTC Control Difference SE DF F-value p-value 
x‾  height (cm) 0.415 0.460 -0.045 0.100 1:76 0.156 0.694 

x‾  number of plants 2.4 2.4 0.000 0.556 1:76 0.000 1.000 

x‾  shoot biomass (g) 0.008 0.007 +0.001 0.002 1:76 0.219 0.641 
 
 
Table 17. 2010 Plant fitness for S. munroana under different soil conditions (F-test, α = 
.05).  All values from original nontransformed data. 

Parameter Track No Track Difference SE DF F-value p-value 

x‾  height (cm) 0.362 0.340 +0.022 0.097 1:76 3.722 0.057 

x‾  number of plants 3.429 1.600 +1.829 0.517 1:76 8.696 0.004 

x‾  shoot biomass (g) 0.011 0.006 +0.005 0.003 1:76 3.553 0.063 

 
 
 
 
 
 
 
 
 
Table 18.  S. munroana life-table through the 2010 growing period 
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LIFE STAGE: Emerging 
seedling Seedling Total 

emerged Dying Dead 

Control 0 0 0   Spring OTC 4 2 6   
Control 26 1 27 0  Early Summer OTC 21 3 25 1  
Control 15 12 28 1  Mid-Summer OTC 15 10 26 1  
Control  1 28 4 23 Late 

Summer OTC  3 26 1 22 
 
 
 OTC did not affect height, number of plants, or shoot biomass (Table 19).  Plants 

located in the Track area of the study site had significantly greater height (Table 20).  

Also, while the result was not statistically significant, the number of plants per quadrat 

was greater for quadrats located between the track rails, with all 20 seeds of this species 

emerging in many of the quadrats in that section.  Track presence did not significantly 

affect shoot biomass.  There were no flowering shoots in any quadrat.   

 C. acuminata emerged and grew to seedlings rapidly in both treatment groups 

(Table 21).  The majority of plants were dying or dead by July 2nd
 regardless of treatment 

type.  However, fewer total seeds emerged in OTC quadrats and plants in OTC quadrats 

died faster than those in control quadrats.   

 Linum lewisii.  Seventy-eight of 80 quadrats contained established plants of this 

species.  The only variable found to have an effect was OTC.  The model was simplified 

and run with both the variables OTC and Track to obtain the values of interest.  OTC 

presence was associated with increased height, flowering shoots, and shoot biomass (See 

Table 22).  OTC was not a significant predictor for number of plants in each quadrat, 

likely because almost all seeds germinated in all quadrats.  Track had no effect on height, 

number of plants, flowering shoots, or shoot biomass (Table 23). 
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Table 19. 2010 Plant fitness for C. acuminata under artificially warmed and control 
conditions (F-test, α = .05).  All values from original nontransformed data. 

Parameter OTC Control Difference SE DF F-value p-value 

x‾  height (cm) 2.637 3.215 -0.578 0.349 1:76 2.222 0.140 

x‾  number of plants 5.750 6.325 -0.575 0.783 1:76 0.400 0.529 

x‾  shoot biomass (g) 0.035 0.032 0.003 0.006 1:76 0.173 0.678 

 
 
Table 20. 2010 Plant fitness for C. acuminata under different soil conditions (F-test, α = 
.05).  All values from original nontransformed data. 

Parameter Track No Track Difference SE DF F-value p-value 

x‾  height (cm) 3.637 2.373 +1.264 0.326 1:76 10.238 0.002 

x‾  number of plants 7.000 5.289 +1.711 0.753 1:76 3.438 0.068 

x‾  shoot biomass (g) 0.040 0.028 +0.012 0.006 1:76 2.901 0.093 

 
 

Table 21. C. acuminata life-table through 2010 growing season 
LIFE STAGE: Emerging 

seedling Seedling Alive Total 
emerged Dying Dead 

Control 1 37  38   Spring OTC 0 33  33   
Control 2 34  39 3  Early Summer OTC 2 30  35 3  
Control 0 8 0 39 21 10 Mid-Summer 

 OTC 0 7 1 35 16 16 
Control    39 0 39 Late 

Summer OTC   0 35 0 35 
 
 
Table 22. 2010 Plant fitness for L. lewisii under artificially warmed and control 
conditions (F-test, α = .05). 

Parameter OTC Control Difference SE DF F-value p-value 

x‾  height (cm) 9.558 6.220 +3.328 0.979 1:76 8.479 0.005 

x‾  number of plants 8.900 9.275 -0.375 0.404 1:76 0.552 0.460 

x‾  shoot biomass (g) 0.237 0.095 +0.142 0.036 1:76 11.306 0.001 

x‾  flowering shoots 1.200 0.575 0.625 0.233 1:76 5.143 0.026 
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Table 23. 2010 Plant fitness for L. lewisii under different soil conditions (F-test, α = .05). 
Parameter Track No Track Difference SE DF F-value p-value 

x‾  height (cm) 6.982 8.584 -1.602 1.000 1:76 1.736 0.192 
x‾  number of plants 9.229 8.978 +0.251 0.440 1:76 0.225 0.637 
x‾  shoot biomass (g) 0.164 0.168 -0.004 0.038 1:76 0.000 0.999 

x‾  flowering shoots 0.942 0.844 0.098 0.236 1:76 0.169 0.682 

 
 
 Warming treatment resulted in slightly less emergence of L. lewisii seeds in the 

spring, but faster progression through the life-cycle by mid-summer (Table 24).  Almost 

double the plants flowered in OTCs compared to control.   

Penstemon palmeri.  Thirty-eight of the 80 quadrats contained established 

seedlings of this species.  The only variable found to have an effect was Track.  The 

model was simplified and run with both the variables OTC and Track to obtain the values 

of interest.  OTC presence was a marginally nonsignificant predictor of increasing plant 

height (Table 25).  OTCs did not affect the number of plants that germinated or the shoot 

biomass of plants.  Location within the Track section of the study site was associated with 

increased height, number, and shoot biomass of plants (Table 26).  There were no  

flowering shoots for this species in any quadrat.   

 P. palmeri grew faster into seedlings in OTC quadrats in April (Table 27).  By 

July, this species was dying earlier in OTC quadrats than in controls. 

 Oenothera pallida.  Sixteen of the 40 quadrats contained plants of this species 

that germinated to seedlings.  No variables were found to have an effect on plant fitness 

(Tables 28 and 29).  O. pallida grew to seedlings faster in OTCs, but also experienced 

lower total emergence (Table 30).  By mid-summer, more seedlings in OTCs were dying 

and dead.   
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Table 24.  L. lewisii life-table for the 2010 growing season. 
LIFE STAGE: Emerging 

seedling Seedling Alive Flowering Seeds Total 
emerged Dying Dead 

Control 0 39    39   Spring OTC 0 36    36   
Control 0 40    40   Early Summer OTC 1 37    38   
Control 0 24 4 12 0 40 0 0 Mid-Summer 

 OTC 0 5 5 21 2 39 2 1 
Control      40 2 38 Late 

Summer OTC      39 8 31 
 

Table 25. 2010 Plant fitness for P. palmeri under artificially warmed and control 
conditions (F-test, α = .05). 

Parameter OTC Control Difference SE DF F-value p-value 

x‾  height (cm)  1.053 0.630 +0.423 0.203 1:76 4.196 0.044 

x‾  number of plants 2.000 1.75 +0.25 0.519 1:76 0.218 0.642 

x‾  shoot biomass (g) 0.027 0.013 +0.014 0.008 1:76 2.797 0.099 

 
 
Table 26. 2010 Plant fitness for P. palmeri under different soil conditions (F-test, α = 
.05). 

Parameter Track No Track Difference SE DF F-value p-value 

x‾  height (cm) 1.446 0.371 +1.075 0.176 1:76 27.274 <.0001 

x‾  number of plants 3.371 0.711 +2.660 0.444 1:76 24.390 <.0001 

x‾  shoot biomass (g) 0.036 0.007 +0.029 0.008 1:76 11.886 0.0009 

 

Table 27.   P. palmeri life-table through 2010 growing season 
LIFE STAGE: Emerging 

seedling Seedling Alive Total 
emerged Dying Dead 

Control 11 0  11   Spring OTC 8 3  11   
Control 19 7  26   Early Summer OTC 18 6  24   
Control 4 18 2 26 1 1 Mid-Summer OTC 1 16 3 25 1 4 
Control  4  26 6 16 Late 

Summer OTC  4  25 1 20 
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Table 28. 2010 Plant fitness for O. pallida under artificially warmed and control 
conditions (F-test, α = .05). 

Parameter OTC Control Difference SE DF F-value p-value 

x‾  height (cm) 0.480 0.580 -0.180 0.293 1:36 0.263 0.611 

x‾  number of plants 1.950 2.600 -0.650 0.951 1:36 0.354 0.555 

x‾  shoot biomass (g) 0.015 0.014 +0.001 0.007 1:36 0.014 0.908 

     
 
Table 29. 2010 Plant fitness for O. pallida under different soil conditions (F-test, α = 
.05). 

Parameter Track No Track Difference SE DF F-value p-value 

x‾  height (cm) 0.607 0.413 0.194 0.285 1:36 0.293 0.592 

x‾  number of plants 3.063 1.750 1.313 0.916 1:36 1.387 0.247 

x‾  shoot biomass (g) 0.0103 0.010 0.0101 0.006 1:36 1.362 0.251 

 
 
Table 30.  O. pallida life-table throughout 2010 growing season 

LIFE STAGE: Emerging 
seedling Seedling Total 

emerged Dying Dead 

Control 4 0 4   Spring OTC 3 1 4   
Control 14 1 15   Early Summer OTC 8 3 11   
Control  12 15 3 0 Mid-Summer OTC  4 11 5 2 
Control   15 0 15 Late 

Summer OTC   11 0 11 
 
 

Erodium cicutarium.  Twenty-nine of the 40 quadrats seeded with E. cicutarium 

contained established plants of it.  The only variable found to have an effect was Track.  

OTC presence did not significantly increase height, number of plants, flowering shoots, 

or shoot biomass (Table 31).  Track presence was associated with a significantly larger 

number of plants but did not affect height, flowering shoots, or shoot biomass (Table 32).     
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Table 31. 2010 Plant fitness for E. cicutarium under artificially warmed and control 
conditions (F-test, α = .05). 

Parameter OTC Control Difference SE DF F-value p-value 

x‾  height (cm) 4.800 3.095 1.705 0.831 1:36 3.338 0.076 

x‾  number of plants 0.900 1.300 0.400 0.367 1:36 0.999 0.324 

x‾  shoot biomass (g) 0.121 0.070 0.051 0.034 1:36 1.617 0.212 

x‾  flowering shoots 10.200 6.300 3.900 2.853 1:36 1.386 0.247 

 
 
Table 32. 2010 Plant fitness for E. cicutarium under different soil conditions (F-test, α = 
.05). 

Parameter Track No Track Difference SE DF F-value p-value 

x‾  height (cm) 4.864 3.120 1.744 0.822 1:36 3.844 0.058 

x‾  number of plants 2.000 1.048 0.952 0.344 1:36 5.908 0.020 

x‾  shoot biomass (g) 0.114 0.078 0.036 0.034 1:36 0.952 0.336 

x‾  flowering shoots 10.158 6.524 3.634 2.834 1:36 1.336 0.255 

 

In addition to low emergence numbers for a non-native annual, of the twenty seeds 

planted in each quadrat, a maximum of three plants emerged, a vast majority only having 

one or two plants.  Warming treatment caused E. cicutarium to grow to seedlings faster 

(Table 33).  Otherwise, this non-native was unaffected by warming (Table 33).    

 
Phenology Summary  

Overall, spring warming affected all species except O. pallida.  OTCs reduced 

emergence timing for two natives: C. acuminata and L. lewisii.   Conversely, spring 

warming treatment increased emergence and establishment of S. munroana and 

establishment of P. palmeri and doubled emergence and seedling establishment of the 
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Table 33.  E. cicutarium life-table through 2010 growing season 

LIFE STAGE: Emerging 
seedling Seedling Alive Flowering Seeds Total 

emerged Dying Dead 

Control 1 7    8   Spring OTC 1 14    15   
Control 0 3  3 10 16   Early 

Summer OTC 0 3  3 10 16   
Control 0 1 0 0 2 16 5 8 Mid- 

Summer OTC 0 1 0 0 2 16 5 8 
Control      16 0 16 Late 

Summer OTC      16 0 16 
 
 
non-native E. cicutarium.  OTC treatment slightly reduced availability (total emergence) 

of all natives except S. munroana.   

 Early summer results are similar to spring results – the first June after a reseeding 

project, out of these five native species, C. acuminata and L. lewisii are likely to be the 

most available forbs for forage (established seedlings), although emerging seeds of S. 

munroana, P. palmeri, and O. pallida are starting to become more available.  Warming 

treatment sped up growth for S. munroana and O. pallida, but was unremarkable for the 

other three natives other than reducing total emergence of all the natives.  The non-native 

E. cicutarium was already producing flowering shoots and seeds, and was unaffected by 

warming. 

 By mid-summer, the field site was extremely dry (at 4 cm unusable readings, at 

20 cm in the control quadrats 1.051 MPa) and temperatures were consistently hot 

(daytime high ~ 30°C).  Many seedlings were already starting to die from the heat and 

lack of water at shallow depths.  Other than having fewer emerged seeds, OTC treatment 

did not affect S. munroana.  OTC treatment did result in higher C. acuminata and P. 

palmeri deaths and more dying/dead O. pallida.  Warming treatment resulted in double 

the flowering and seed producing L. lewisii at mid-summer, but OTCs also contained 
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more dead and dying L. lewisii.  E. cicutarium was literally unaffected. 

  By late summer of 2010 there had been no significant rain events since June, with 

temperatures in the mid- to high 30’s.  Accordingly, most of the plants were dead or 

dying, with only a handful still existing robustly as seedlings.  At this stage, the only 

plants still alive were S. munroana, P. palmeri and L. lewisii (however, the latter were all 

dying or dead).   In fact, more S. munroana and L. lewisii were still alive in the OTCs 

than in the controls.   Conversely, P. palmeri had more dead plants in warmed quadrats.     

 All species, except E. cicutarium, had less emergence in quadrats with OTCs than 

control quadrats (Table 34).  OTC treatment increased availability and longevity of S. 

munroana, increased reproductive potential and slowed senescence for L. lewisii and sped 

up establishment of E. cicutarium. OTC treatment increased establishment, but also sped 

up senescence for P. penstemon.  OTC treatment reduced emergence and increased 

senescence for C. acuminata and sped up growth and senescence for O. pallida.     

 
DISCUSSION 

 
 

Judging by the best available predictions of future climate, strategies will be 

needed for managing the western sagebrush ecosystem for resiliency to warmer  

temperatures and less available water.  However, successful forb establishment is likely 

to continue to be challenging, regardless of predicted changes.  Few studies have 

reviewed actual forb responses to predicted warming.  Field studies of restoration efforts 

with and without climate change are important to understanding how plants actually 

respond, despite their currently believed ranges and adaptations.  For example, according 

to the USDA, NRCS (2010), most of the natives used in the current study are highly 
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Table 34.  OTC effect on Fitness as well as timing and final totals of seedling emergence, 
flowering and seeding, and senescence. 
Effect of OTC 

on: 
Fitness 
2009 

Fitness 
2010 

Emergence 
timing 

Emergence 
final totals 
(quadrats) 

Flowering 
&Seeding 

2009 

Flowering 
&Seeding 

2010 

Senescence 
timing 

S. munroana None None Earlier 2 Less None N/A Later 
C. acuminata Decreased Decreased None 4 Less N/A N/A Earlier 

L. lewisii N/A Increased None 1 Less N/A Increased Later 
P. palmeri N/A None Earlier 1 Less N/A N/A Earlier 
O. pallida N/A None Earlier 4 Less N/A N/A Earlier 

E. cicutarium Decreased None Earlier None None None None 
L. serriola Decreased N/A N/A N/A N/A N/A N/A 

 

drought tolerant (with the exception of C. acuminata, classified as medium drought 

tolerance), all are adapted to medium and coarse-grained soils and all have moderate 

growth rates.  These characteristics, along with precipitation and other types of ecological 

site descriptors, suggested that the species chosen were appropriate for the site in 

question.  However, this study illustrates that broad classifications are not always 

deterministic of performance in the first year of a field restoration experiment, regardless 

of temperature treatments, as was evidenced especially by the performance of C. 

acuminata.   

 Changing climatic variables can have other impacts on these closely studied 

interactions.  Warming studies have shown decreases in Great Basin forb above-ground 

biomass (Harte and Shaw 1995) and shallow-rooted forb success (de Valpine and Harte 

2001).  Tap-rooted forb warming studies have shown either no change or an increase in 

above-ground biomass (Saavedra et al. 2003).  In the context of the current study, S. 

munroana and C. acuminata are tap-rooted forbs and could be reasonably expected to 

have no change or to increase above ground biomass, while S. munroana, L. lewisii and 

O. pallida do not have tap roots and above ground biomass could be expected to 

decrease.  Warming experiments have also been shown to increase net nitrogen 
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mineralization for all forbs (Shaw and Harte 2001).   Outside of the Rocky Mountain 

Research Station, there does not appear to be any other studies of this region’s forb 

responses to warming treatments.  Understanding how different forb species will perform 

in many future field conditions is crucial information for range managers.  

 Sphaeralcea munroana and Linum lewisii (natives).   The data from the current 

study overall suggest that an increase in temperature could help S. munroana to extend its 

time in the field (emerge sooner and senesce later) and is not likely to significantly affect 

overall plant fitness.  None of the 2010 S. munroana developed to flowering plants.  

Some of the 2009 plants that were started in the greenhouse did develop to reproductive 

ability, suggesting restoration projects using S. munroana could benefit more reliably 

from transplants that have undergone scarification treatments than in situ seeding, 

especially if early success is desired.  No other studies could be found on S. munroana 

and warming experiments.   

  Nearly all of the L. lewisii emerged and established plants from in situ treatment, 

many of which also flowered.  Warming significantly increased all fitness parameters 

except for number of plants (likely because almost all emerged in every quadrat).  

Overall, data suggest that L. lewisii may emerge earlier, flower and seed earlier and 

senesce later under increased temperature conditions.  Thus it can likely be a good forb 

choice for continued use in future restoration projects.  The range of L. lewisii extends 

well beyond the Great Basin region.  As this species exhibits high drought tolerance, it 

might seem logical that an increase in temperature would not significantly harm this 

species.  While these results run counter to the conclusions of Harte and Shaw (1995), 

who suggest that fibrous-rooted native species should decrease in fitness as a result of 
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warming, there seem to be other strategies aiding affecting this species. 

 A recent greenhouse study by Drenovsky and James (2010) investigated 

functional trait aspects of S. munroana and L. lewisii, concluding that S. munroana may 

be a more successful forb than L. lewisii in competition with invasives.  They used a plant 

economic spectrum relating to specific leaf area, root growth and nutrient use efficiency 

to determine which plants had the functional traits that would most likely compete best 

with invasives in rangelands.  S. munroana has more similar functional traits to invasives 

than L. lewisii.   Their work seems to bolster our conclusion that S. munroana may be a 

good forb for continued use in restoration efforts combating future concerns.   

 However, in our 2010 field experiment, it appeared that L. lewisii performed 

better (grew faster, flowered in the first year) than S. munroana (barely formed true 

leaves, no flowering) in a setting also featuring an annual non-native.  The difficulty of 

breaking dormancy for S. munroana can cause complications with seeding establishment, 

and greenhouse experiments typically follow scarification guidelines for this species 

(Sabo et al. 1979; Roth et al. 1987).  While Drenovsky and James (2010) reported L. 

lewisii had smaller root growth, smaller leaf area, and less nitrogen-use efficiency than S. 

munroana, our 2010 study indicated increased first-year efficiency and fitness for L. 

lewisii compared to S. munroana in both warming and control quadrats.  Comparison of 

these key functional traits for other forb restoration species could be quite valuable, but it 

seems that field testing might provide much different results than greenhouse studies.    

 Crepis acuminata (native).  This species is being considered as a viable option 

for restoration with a native forb (WY USGS 2008; Matt Fisk, pers. comm., 2009). Yet in 

our experiment, all 2009 plants died shortly following transplant into the field; in 2010, 



63 

 

while almost 80% of the plants emerged in spring, there were fewer plants present in 

OTCs than in control plots.  And in early summer, more plants in the OTCs were dying 

than in control plots and there were fewer seedlings in OTC quadrats.  By mid-summer, 

the majority of plants had already died or were dying.  Almost all C. acuminata that 

failed to emerge were in quadrats with experimental warming.  The seed was obtained 

from locations with elevations of 1128 m and 945 m, slightly lower and likely hotter than 

the current study site. The fact that the seeds emerged suggests that site conditions 

signaled a safe site for germination.  Also, prior to planting, data on the species’ 

tolerances to soil elements and site variables were cross-checked with soil descriptions 

from the site.  However, there could be unknown factors that differed between the study 

area and the locations where the seed was acquired, which affected phenotypic plasticity 

(for example if the area acquired had a high water table and so no seeds were eventually 

produced that needed to cope without water in mid-summer).   

A recent study found that survival of C. acuminata decreased significantly in 

sandy loam soil compared to clay loam soil (Rawlins et al. 2009).  Green Canyon soil 

type has been described as very calcareous loamy-skeletal Typic Haploxerolls – while the 

site is not sandy, the Rawlins et al. (2009) results suggest that water retention in the soil is 

an important component for this species to succeed, and a skeletal xeric soil is unlikely to 

have much plant-available water in the middle of summer.  Soil type could explain the 

lower survival rates for this species and lend support to Rawlins et al. (2009) data, 

although the USDA, NRCS (2010) describe this plant as adapted to medium and coarse 

textured soils.  Solely based on the conditions during this study, it would not appear that 

C. acuminata would do well if future conditions mimic summer 2010; it may also be that 
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C. acuminata would fare even worse if temperatures were to increase.  This is also 

contradictory to the findings of Saavedra et al. (2003) that showed tap-rooted forbs had 

either no change or increased above ground biomass in response to warmed conditions.  

The contradiction could be due to lack of establishment of this forb in the current study or 

to the previously mentioned conditions.  As increased temperatures in much of the Great 

Basin are likely to be coupled with decreases in precipitation during the growing season, 

use of C. acuminata in the future should be used with caution except in places with 

higher likelihood of precipitation and water retention.         

 Penstemon palmeri (native).  Only about half of the quadrats yielded established 

seedlings for P. palmeri.  Warming did not have a significant effect on plant fitness 

parameters in the first year of this study.  P. palmeri emerged earlier in warmed quadrats, 

but this was balanced by earlier senescence as well.  It seems possible from this 

preliminary study that P. palmeri could be a reasonable forb to use in future restoration 

projects but that it may have altered timing.  The USDA, NRCS (2010) offers a plant 

guide for P. palmeri that states this species does best on well-drained soils that are 

infertile and recently disturbed.   Additionally, the guide suggests that germination may 

not occur until the second growing season.  These guidelines may explain our low 

emergence numbers in 2010 as well as the species’ better performance in the Track (more 

disturbed) area.   

 A greenhouse study (Cardoso et al. 2007) found that P. palmeri quality increased 

with ≥ 200ppm N but <400ppm N, while in contrast, the USDA, NRCS (2010) guide 

suggests that P. palmeri prefers infertile soils.  To understand N efficiency for this species 

would require further study, but despite the greenhouse study, information available so far 
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indicates this may be a forb that can successfully compete with some non-native forbs in 

low nutrient environments once established.  However, allelopathy could be a 

complication factor.  P. palmeri has been shown to be highly sensitive to Spotted 

Knapweed and its potent phytotoxin (±)-catechin (Perry et al. 2005).  It should be noted 

again that the RMRS warming experiments have indicated shallow-rooted forbs decrease 

in above-ground biomass and results from our study are only from the first year.  

Indications from plant guides and the current study are encouraging for this species in 

future climate conditions, but should still be used with caution until further studies can be 

conducted, especially in areas concerned with Spotted Knapweed.   

 Oenothera pallida (native).  O. pallida is currently recommended for well-

drained rocky or sandy soils (USDA plants database).  About 40% of O. pallida emerged 

at our study site in 2010.  Warming was not found to have any effect on O. pallida 

fitness.  This result for these first-year plants contradicts the findings of Harte and Shaw 

(1995) and de Valpine and Harte (2001) that nontap rooted forbs show a decrease in 

above-ground biomass as a response to warming.  In a paper by Ehleringer et al. (1991), 

woody perennials (inclusive of O. pallida) did not rely upon/respond to summer 

precipitation events as heavily as herbaceous perennials or annuals.  However, this also is 

in reference to established plants and as such does not provide a strong explanation of our 

first year O. pallida results.  Additionally, low numbers of O. pallida overall emergence 

and lack of many fitness parameters could explain conflicting results and further studies 

are recommended.    While the fitness parameters from 2010 do not indicate concerns, the 

life-stage tracking data may suggest some sensitivity to temperature (shifted availability 

in the field, but fewer warmed quadrats with emerged plants).  It is unknown how 
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maturing plants would respond to warming experiments, and this information seems 

especially important for this species.   

 Erodium cicutarium (non-native).  E. cicutarium has been reported in all states 

except Florida and Louisiana (Hulten 1968; Minnich 1983).  The largest North American 

populations occur in California, where annual grasslands have replaced historical 

perennial grasslands (Heady 1977), which has interesting implications for Great Basin 

landscapes that are currently in danger of conversion to annual grasslands.  This species 

can be cool- or warm-season, depending on the local climate (Munz 1973; Urness 1973) 

and overall is highly adaptable.  E. cicutarium will tolerate a broad range of climates, 

from tropical Hawaii to the cold, rainy Pacific Northwest (Gordon and Sampson 1939; 

Hulten 1968).  However, Talbot and Biswell (1942) found that E. cicutarium cover in a 

California range reduced from 70% in 1934 to 30% in 1935, a drought year, suggesting 

local sensitivity to precipitation.  E. cicutarium grows in well-drained, clayey, loamy, or 

sandy soil and has a large range in pH tolerance (Biswell and Gilman 1961; Brotherson et 

al. 1987).  Additionally, seeds can remain viable in the seed bank for many years 

(Burgess et al. 1991). 

E. cicutarium is reproductively mature within 2-4 months (Griffin 1974).  The 

2010 data therefore suggests that the earlier emergence of E. cicutarium in quadrats with 

increased temperatures could result in increased competition for natives trying to 

establish both in the spring and later in the season with a potential second generation.  As 

a nationwide generalist non-native it could be surprising that E. cicutarium flowering in 

2009 was decreased by an increase in temperature, however there is some precedence for 

local sensitivity to changes (Talbot and Biswell 1942).  These local changes may have 
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been exacerbated in 2009, when all plants were grown to seedlings in a greenhouse under 

equal conditions.  It is possible that if they had been able to be seeded in the fall, 

phenotypic variability in the seed bag might have resulted in only the seeds that were 

better adapted for hotter temperatures emerging.  Indeed, when this was the case in 2010, 

flowering shoots showed no significant differences.   

Low total emergence of E. cicutarium seeds in 2010 may have been due to the 

close proximity of the seeds and the spreading life-form of the plant.  However, it was 

also noted (pers. obs.) that in 2009, the interspaces between quadrats were rife with 

natural E. cicutarium; in 2010, very few E. cicutarium grew in the areas around quadrats.  

It seemed to be a hard year for germinating forbs at this site, including generalist forbs.  

This was also observed for other forb species in the vicinity. 

 Lactuca serriola (non-native).   L. serriola is native to dry Mediterranean 

climates and currently is widespread through the United States (USDA plants database).  

Viable seeds of L. serriola have been found in seed banks at Great Basin sites dominated 

by the invasive annual grass Bromus tectorum (Humphrey and Schupp 2001).  L. serriola 

has also been documented as consumed by sage-grouse (Klebenow and Gray 1968; 

Wallestad and Eng 1975).  There have been some climatic studies with relation to this 

species.  The geographical range (Prince et al. 1985) and seed germination (Carter and 

Prince 1985) of L. serriola have been shown to be related to summer temperatures and 

precipitation.  Temperature and photoperiod also impact blooming time (Prince et al. 

1978).  A study in Colorado researched water and nitrogen additions to a shortgrass 

prairie community and resulted in the introduction and establishment of L. serriola and 

other introduced weeds (Lauenroth et al. 1978).    



68 

 

 In the current study, L. serriola was only used in 2009.  Fitness of L. serriola was 

much reduced across all categories due to an increase in temperature.  As 2009 was the 

only year L. serriola was studied, it is not possible to quantify the impact of germination 

in a greenhouse on this annual.  However, given the native range of this species (dry 

Mediterranean) it was somewhat surprising that L. serriola would do worse with an 

increase in temperature.  The past 250 years of expansion of this annual forb toward the 

poles (D’Andrea et al. 2009), along with current distribution maps, suggest this plant 

does well in a wide range of temperature and precipitation regimes.  It therefore seems 

likely the 2009 L. serriola outcome is a result of transplanting rather than warming.   

 
MANAGEMENT IMPLICATIONS 

 
 

The findings of this study suggest that in restoration projects, S. munroana, L. 

lewisii and P. palmeri are likely reasonable choices for withstanding future increases in 

temperatures.  C. acuminata should be used with caution with reference to soil water 

retention capabilities and could benefit from future studies with more varied soil 

conditions.  Caution is currently recommended for use of O. pallida due to indications 

that this plant may be sensitive to increases in temperature during establishment.  

Disturbed soil conditions seemed to benefit the fitness measurements for Sphaeralcea 

munroana and Penstemon palmeri.  These results suggest that these species are especially 

appropriate for restoration of areas subjected to significant soil disturbance in the recent 

past.  This study was unable to determine effects of competition with non-natives due to 

growing condition limitations.  However, as expected, temperature did not impact fitness 

of E. cicutarium and results in more seedlings establishing earlier.  It seems likely that 
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competitive interactions between non-natives and natives could be further compounded 

by increases in temperature, further underlining the importance of establishing native 

forbs.   
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CHAPTER III 
 

LAND MANAGER PERSPECTIVES ONLOCAL  

CLIMATE CHANGES AND FORBS 

 
ABSTRACT 

 
The purpose of this study was to evaluate manager beliefs about future changes in 

their ecosystems, especially as they relate to climate change and forb populations.   

Semi-structured phone interviews of sagebrush ecosystem range managers in Utah, 

Idaho, Nevada, Wyoming, Oregon, and Montana were conducted to address 

demographics, climate and land changes, and general forb knowledge.  Additionally, 

managers’ beliefs about climate were compared to long-term climate data sets in their 

specific areas.  Managers’ beliefs about climate were evenly divided in each state (except 

Montana), with about half perceiving changes in precipitation regime or temperature 

while half did not.  Montana’s recent increases in climate-related events may explain all 

the managers noting changes.  Managers who had longer tenure at their current location 

gave less definitive but more accurate climate answers.  Managers that said there was no 

change tended to base their answers on recent weather conditions, while those who 

perceived changes tended to base their answers on long-term climate patterns.  Managers 

overall did not perceive forbs as having a significant role in ecosystem health and/or 

resilience.  While this study used an inductive approach that was not designed to test 

hypotheses, several hypotheses are suggested by the findings, which could be tested in 

future research. Results suggest organizations involved in restoration activities might 
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benefit from more outreach to their managers, with reference to specific issues such as 

local climate or forb populations.  

 
INTRODUCTION 

 
 

The Great Basin sagebrush ecosystem is considered to be one of the most 

threatened in the United States (Noss et al. 1995).  A rapidly expanding human 

population, interacting with factors such as climate change, urbanization, changing land 

use, limited water resources, altered fire regimes, invasive species, insects, disease and 

more, all collide to put the environments in Great Basin and surrounding regions at great 

risk (Chambers et al. 2008).    

 Managers across the Great Basin are faced with the ever-daunting task of 

maintaining or improving these landscapes.  Rangeland managers often need to 

concentrate money and resources on immediate, pressing issues in their area such as 

excess sagebrush canopy cover, invasive grasses and perennials, and woodland 

encroachment (Miller et al. 2005).  Extensive research has been conducted on the social 

acceptability of different restoration treatments (Brunson et al. 1996; Brunson and 

Shindler 2004; Brunson and Evans 2005), further highlighting the human dimensions 

management must account for in their policies and treatment plans.  As managers struggle 

to catch up with increasing fire cycles and invasive species, it becomes much more 

essential that the work they are doing is successful and lasting in future conditions.  To 

fully comprehend what climate/global change will mean for the Great Basin, an 

understanding of how rangeland managers consider the ecosystem components is critical.   
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Understanding Land Manager Context: 
“Climate Change” 
 

Brunson and Kennedy (1995) suggest that land manager job responsibilities have 

changed throughout the decades.  Initially the managerial role was intended as stewards 

of land resources and production.  Today, managers’ roles typically consist of 

maintaining a relationship between resources and society.  Society, resources, nature and 

climate are all subject to fluctuations.  Any one of these aspects changing directionally 

results in a de facto change in their relationships.  As climate, nature, resources and/or 

society change, natural resource agencies likewise must adjust their policies and on-the-

ground attitudes. 

A societal change of particular note in the past couple of decades has 

encompassed the term “climate change”.  What was once a topic for scientists and 

environmentalists has become a polarized political debate in America (Shackley and 

Deanwood 2002).  The larger scientific community is under no doubt: climate change is 

happening both nationally and globally, and it is drastically affecting ecosystems 

(Rosenzweig et al. 2008).  The authors of the US Climate Change Science Program 

Report state that 60% of peer-reviewed papers studying 1598 species exhibited shifts in 

distributions and/or phenologies (Backlund et al. 2008a).  These shifts are predicted to 

accelerate in occurrence and severity in the future due to changes in climate alone.  

Nonetheless, the political debate surrounding climate cannot be ignored as society, 

politics and perception of risk are what ultimately decide land management policy and 

may also help shape land manager opinions and therefore decisions (Leiserowitz 2006).   

While range managers are stretched to their limits trying to combat wildfire, 
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encroachment, invasives, diseases, etcetera, climatologists have been scrambling to keep 

up with demand for scientifically robust practical and regional and local predictions 

(Baldwin et al. 2003; Wagner 2003; Kharin et al. 2007; Backlund et al. 2008a).   The 

basin and range topography and large geographic surface area of the sagebrush steppe 

ecoregion can cloud consensus even further.  Nonetheless, Great Basin climatologists 

have been able to offer estimates of what can be expected.  The predicted 5-10°C increase 

over the next 100 years over the entire Great Basin (Wagner 2003) would be quite a 

meaningful change for these already arid landscapes. Additionally, changes in 

precipitation timing, intensity, evaporation, and the form and timing of snowmelt will 

likely result in less available water for ecological processes (Baldwin et al. 2003; Mote et 

al. 2005; Kharin et al. 2007; Backlund et al. 2008a, 2008b).  Honing in on what these 

changes might mean for specific landscapes in need of restoration will likely pose the 

greatest, but most relevant, challenge for future restoration success.    

Due to the political debate surrounding the term “climate change”, several studies 

have been conducted on public perceptions of it (Berk 1999; Leiserowitz 2006; Semenza 

et al. 2008).  For example, Leiserowitz (2006) found that value orientation was the most 

important indicator of climate change viewpoint.  Value frameworks and norms are 

formed through information and perceived social (e.g., work colleagues and community 

members) consensus (Sherif 1935; Asch 1951; Goldberg 1954; Nilsson et al. 2004).  

Historically, range managers, foresters, and wildlife managers were believed to develop 

their values through relevant rural American culture, which did not conflict with agency 

policy at the time (both were commodity based) (Kennedy et al. 2001).  Today, broad 

agency values focus on ecosystem-based sustainability, while local rural community 
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values tend to focus on supply and demand (Kennedy et al. 2001).  Cramer et al. (1993) 

suggest that today’s managers must make difficult choices among policy priorities 

outlined in a context of multiple-use mandates.  Not only do they have this complex 

political and social value conflict at the local level, but managers must also cope with 

regional, and sometimes national, scales, current and future generations.  Communities 

and managers that were once isolated and buffered from other American values, now find 

themselves immersed in various clashes with people from entirely different regions. 

A few studies in other countries have evaluated these value clashes with respect to 

climate change.  In Sweden, Nilsson et al. (2004) found that public sector decision 

makers’ climate values were significantly mediated by local norms.  In England, 

Shackley and Deanwood (2002) found that land managers’ beliefs in anthropogenic long-

term climate change were coupled with their experience of local short-term weather 

events’ impact on their specific ecosystems.  Indeed, similar results have been found in 

the American public: “...climate change is unlikely to become a high-priority national 

issue until Americans consider themselves personally at risk” (Leiserowitz 2006).     

Given that there is some information about manager perceptions in other countries 

and some information about the American public’s perceptions, it is useful to understand 

what might distinguish beliefs of American land managers from those of the American 

public.  Kennedy (1985) argues that while the broader policies are coming from the top 

tier in the agencies, the flexibility inherent in the land manager job requires that they be 

able to make on-the-ground decisions.  It is important to understand how the managers 

making those decisions may or may not differ from their family, friends and neighbors, 

especially in a region so greatly at risk.  A small body of social theory addresses some 
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complementary phenomena relevant to identifying whether or not land managers can be 

considered a unique demographic from their neighbors.  Two hypotheses include 

professional culture and individual bias.    

A unique professional culture, according to Kennedy (1985) is one that exists 

within, and adapts to, broader society.  The criteria he uses to define this culture include 

identifying unique language, unique technology and artifacts, and presence of both a 

social structure and a professional value system.  Kennedy (1985) argued that the wildlife 

management community met all of his requirements for a professional culture. 

However, it is also unreasonable to assume that land managers would be unbiased 

in the context of conflict.  Despite official agency policy, it is unlikely that anyone can 

truly make impartial decisions (Vining and Ebreo 1991).  In fact, two studies found that 

land managers believed their ideas matched more closely with those of the broader 

American public rather than with agency policy (Vining and Ebreo 1991; Cramer et al. 

1993).  In both studies, American values were perceived by managers to be commodity-

oriented and agency values to be environment-oriented.  However, in Vining and Ebreo’s 

(1991) study, managers were found to be incorrect in their perception of the American 

public as commodity-oriented.  This discordance, yet with similar manager perceptions of 

value orientations in both studies, may be explained by what political scientists call 

“Capture Theory”: long-term managers may find themselves to be more attached to the 

local ranching lifestyle than ecological priorities, while not realizing that their orientation 

with the larger American public has changed. 

Thus, both Brunson’s (1992) and Kennedy’s (1985) studies suggest that 

managerial values arise from a complexity between inescapable individual bias as well as 
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a subculture value orientation.  Indeed, the most likely predictor of changes on local 

resource production and land uses is land manager values, priorities, and bias (Brunson 

1992; Cramer et al. 1993).  Knowing where those values lie today, and the orientation of 

bias and priorities with reference to climate, is crucial to predictions about future Great 

Basin land resiliency.   

 
Importance of Range Manager  
Perceptions of Native Forbs 
 

In addition to climate, other types of land changes must be acknowledged and 

accounted for in almost all ecosystems today.  A major component of land changes are 

ecosystem conversions by invasive species (Vitousek et al. 1996).  Introduced species, as 

defined by Carlton (2001), are those species that have been intentionally or 

unintentionally transported by humans into a region where they could not have found 

themselves otherwise, and are now reproducing in the new environment.  Invasive 

species are those whose presence in the new environment imposes significant harm on 

the previous natural habitat (Perrings et al. 2002). 

 Possibly due to the large cost of coping with invasive species already, the fact that 

people can see them, and/or by definition, their large impact on ecosystems, invasions do 

not seem to be as subjected to debate about whether or not they are really happening.   

For example, The United States’ annual cost of plant invader damage and control has 

been estimated in the billions of dollars (Pimentel et al. 2000).  Additionally, invasive 

plants frequently threaten native species and change ecosystem function (e.g., by altering 

water availability or fire frequency) (D’Antonio and Vitousek 1992). Understanding and 

predicting the effects of climate and ecosystem changes on invasive and native species 
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have become a predominant and recognized challenge for land managers throughout the 

world (Lockwood et al. 2007).  Therefore, a study on values and beliefs relating to 

invasions is not necessary.   

 While it is typical to seek eradication of invasive plants on rangelands, natives are 

not always reasonable for initial restoration.  Natives may lack the competitive strategies 

necessary to successfully drive out targeted invasives (Jones 2003).  Additionally, 

grasses, shrubs and trees are often the focus of restoration efforts and subsequently where 

most money is invested.  In light of the numerous other concerns range managers must 

cope with daily, how do native forbs fit into this spectrum? 

 Despite their relatively small percentage on the landscape, the native forb 

component of rangelands has been suggested to have large impacts on ecosystem 

functions ranging from soil stabilization to wildlife forage (Shaw and Monsen 1983; 

Stevens et al. 1985; Sheley and Petroff 1999; Parkinson 2003).  Abundant and diverse 

native forb communities have been shown to be vitally important to populations of 

Greater sage-grouse chicks, Centrocercus urophasianus (Klebenow and Gray 1968; 

Peterson 1970; Dunn and Braun 1986; Klott and Lindzey 1990; Drut et al. 1994; Apa 

1998; Connelly et al. 2000; Flinders et al. 2000) and the nutrition of pre-laying hens 

(Barnett and Crawford 1994).  Sage-grouse are currently listed as an imminent candidate 

for “Threatened Species” status by the U.S. Fish and Wildlife Service (November 12, 

2010).  Breeding populations of Greater sage-grouse have declined 17% in the past 50 

years (Connelly and Braun 1997).  These population declines have been largely attributed 

to sagebrush habitat loss, degradation, and fragmentation (Connelly and Braun 1997; 

Braun 1998) and invasive species (Klebenow and Gray 1968).  Additionally, several 



78 

 

studies have found that invasion and wildfire resistance on rangelands can be reduced by 

increasing native forb species richness and niche occupation (Jacobs and Sheley 1999; 

Anderson and Inouye 2001; West and York 2002; Carpinelli et al. 2004; Pokorny et al. 

2005; Sheley and Half 2006; Chambers et al. 2008).  While current land managers may 

be well aware of these benefits, unfortunately, the high cost and risk of failure associated 

with native revegetation efforts have often been prohibitive (Jacobs et al. 1998). 

 Much of agency policy we have today seems likely rooted in the commodity-

focused value systems from the 1910s, as moderated by the protective values of the 

“environmental era” of 1964-80 (Sayre 2010).  Do current agency vision statements 

match manager and public values several decades later?  How do the values of agencies, 

the broader American public and local resource-dependent communities affect manager 

values?  This research was exploratory in nature and as such did not have any initial 

hypotheses.  Analyzing the data did not allow us to answer the scope of the question 

above, but we were able to evaluate current land manager beliefs and value orientations 

in the sagebrush steppe region.  This paper thus attempts to answer 1) do managers view 

local weather events as indicators of the larger climate debate, 2) are managers concerned 

about the risk of climate changes in their areas, 3) are they actively trying to come up 

with solutions to cope with future predictions, 4) and how do forbs fit into the context of 

ecosystem health and resilience for managers?   

 
METHODS 

 
 

Semi-structured interviews were conducted with land managers in the Great Basin 

and nearby states where sagebrush is a dominant rangeland species.  Interviews were 
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designed to elicit responses that would improve our understanding of the social and 

managerial contexts in which decisions about rangelands, and especially rangeland forb 

populations and their importance to Greater sage-grouse, may be made in a time of 

changing climates.  There have been studies of how citizens perceive climate change in 

the U.S., and even more so in Europe.  However, very little of previous research is related 

directly to what land managers actually think about climate change.  While there are also 

theories about how managers’ values, training and agency culture affect their perceptions 

of the land and how it should be managed, this information may not be specific enough to 

base predictions about climate change or forb populations.   

 Informal phone interviews using an interview protocol (Appendix B) were 

conducted with respondents in spring 2010.  An interview protocol is a flexible guide that 

provides some level of basic conformity of questions in the interview process (Cresswell 

2009).  The respondents included range managers of different states throughout 

sagebrush ecosystems.  This survey is not intended to describe all land managers in the 

ecosystem.  The overall goal of the interviews was to allow the respondents to express 

their professional perceptions about climate change and forb communities in their 

specific range jurisdiction.   

 Managers were initially selected using a Microsoft Office Excel® (2003) 

spreadsheet of managers from the Sagebrush Steppe Treatment Evaluation Project 

listserv.  A random selection routine in the statistical software package R (2005) was used 

to randomly select five managers from each state (Utah, Idaho, Nevada, Wyoming, 

Oregon, and Montana) in order to obtain 30 interviewees.  Potential interviewees were 

contacted via email to request participation in the study.  If the interviewee did not 
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respond after one week they were sent another identical email.  If they did not respond 

after another week they were called.  In some cases potential interviewees declined to 

participate or were no longer associated with that work email address.  When the latter 

was the case, the person currently working in that position was contacted through the 

same process above.  When participation was declined, the listserv was then scanned for 

the next manager (regardless of job description) from the same state and that person was 

contacted through the same process above.  Simultaneously, other managers that agreed 

to participate were already being interviewed.  Eventually, the pursuit of additional 

interviewees to obtain the desired thirty was abandoned due to similar patterns among 

answers.  After twenty-two managers were contacted, it was not felt that further 

information could be gleaned by talking with one or two more managers from each state 

and that the results were therefore saturated. 

 The interview protocol addressed respondents’ familiarity and frequency of 

visitation in sagebrush-steppe environments, knowledge pertaining to land-use changes, 

wildlife and ecosystem changes, climate related changes in their specific location, 

knowledge about the specific forbs in the study, general perceptions about forbs in these 

systems, particular concerns, if any, about change in forb communities, and measures 

taken or considered. Three general categories of questions were included: description of 

each interviewee’s management responsibilities and objectives; perceptions of ongoing 

and likely effects of climate and land changes in their area; and the role of forbs in their 

management priorities and decisions.  This information was used to predict implications 

of study findings to the large Great Basin land management community and provide 

baseline information for potential future studies.   
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Formal hypotheses were not developed prior to the interview process in an effort 

to prevent the researcher from bias and leading questions. Data collected from the 

interview process were qualitatively analyzed.  Yin (1994) suggests that qualitative 

analysis depends largely on “rigorous thinking, along with the sufficient presentation of 

evidence and careful consideration of alternative interpretations,” while always keeping 

in mind that this is one perspective on the meaning, which can later be tested as a 

hypothesis.  While the process necessarily requires adaptive flexibility, some data 

organization can be and was applied.  Qualitative data are generally lengthy and 

unorganized (Huberman and Miles 1983); however, data reduction techniques allow the 

researcher to code responses by categories and major themes. 

 Manager answers about their local climate were compared to long-term climate 

data sets found on Utah State University’s Climate Center website (2010).  Sites were 

chosen based on manager descriptions of their field locations, but may not be indicative 

of all the field areas they work in.  For example, one respondent works in all areas of the 

Ashley National Forest, which is topographically, elevationally, and vegetatively quite 

diverse – one would also expect climate to vary in this area.  For diverse elevational 

areas, multiple long-term sites were used to attempt more conservative local estimates.  

Changes in precipitation, snowfall, and maximum and minimum temperatures were 

calculated using “thirty-year normals”: annual means from the past 10 years (1999-2009) 

were compared to the 30 previous years (1968-1998) (NOAA).  For temperatures, if 

mean of the last 10 years was different from that of the past 30 by more than two percent, 

this was categorized as an “appreciable” change.  The lowest values of 2% translated to a 
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change in the 30-year normal temperatures of 0.45°C.  According to observations 

compiled by NOAA’s National Climatic Data Center, temperatures over the past century 

in the United States rose at an average rate of 0.06°C per decade (0.61°C per century). 

From 1979 to 2005, average temperatures rose at an increased rate of 0.31°C per decade, 

a change of concern.  A 2% change (equivalent to  ≥0.45°C in temperatures is therefore a 

conservative estimator.  For precipitation and snowfall, if the last 10 years was different 

from the past 30 by 2%, this was categorized as an “appreciable” change.  A 2% change 

in global precipitation over the past century (Backlund et al. 2008a) is considered 

noteworthy and, so a 2% change over the past 10 years compared to the past 30 was 

deemed conservative.  Snowfall (not snowmelt timing) is not generally mentioned and so 

was analyzed with the same regard as precipitation.  Graphs of the annual means for the 

last 10, 30, and 60 years were analyzed visually for cyclic patterns and increases or 

decreases in extremes or variability – due to the more subjective nature of this analysis, 

results were only used to confirm respondents answers, never to disagree with 

respondents.  Data containing one or more years that were obviously different were 

analyzed both with and without the years and both values were included – excluding 

anomalous years never changed the overall outcome of the result (increase or decrease – 

there were none that had a “no change” result).         

 Managers’ beliefs about temperature trends were compared over all the long-term 

results to determine agreement with the data.  For example, suppose a manager thought 

there were changes in temperature extremes, but not in either direction (not overall hotter 

or colder).  If the long-term data showed that there were indeed changes in extremes, but 
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(contrary to the respondent’s answers) there was also an increase in maximum and/or 

minimum temperatures, there was not considered to be overall data agreement. 

 
RESULTS 

 
 

Descriptive Demographics: 
 

Twenty-one usable surveys were obtained during May 2010.  Eleven of the 

interviewees were male and nine were female.  Among the Great Basin states, five 

managers operate in Utah, four in Idaho, four in Montana, three in Oregon, three in 

Wyoming, and two in Nevada.  Eventually, an equal number of interviewees across states 

was not sought due to lack of response and similarity across answers (saturation).  Six of 

the interviewees work for the National Resources Conservation Service, six work for the 

Bureau of Land Management, three work for the Forest Service, four work for private 

environment or conservation organizations and one works for their state Department of 

Agriculture and Food.  Four subjects have worked in range management for less than 5 

years, six have worked between 5 and 15 years, five have worked between 15 and 25 

years, and five have worked for more than 25 years in range management.  In their 

current locations, nine subjects have worked for less than 5 years and 10 subjects have 

worked between 5 and 15 years.  One subject has worked in the same location for more 

than 15 years.  Subjects were relatively well spread among the Great Basin states, 

agencies, gender and years working.   

 In addition to individual demographics, it was also important to take a “snap-

shot” of the lands they manage.  All managers worked in rangelands, a large majority 

were managing for multiple-use (18), and most characterized their land in good or mixed 
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condition (16).  All managers thought their land would significantly benefit from more 

restoration efforts.  Range improvement or restoration techniques used were either 

focused on grazing treatments or a combination of site-specific approaches (Table 1). 

 
Land Changes 
 

The next section of the interview attempted to identify changes that managers 

perceived on their landscapes.  The majority of subjects (17) identified changes in 

vegetation, with a little under half (8) being concerned about noxious weeds.  A little 

under half (8) of the managers noted decreases of sage grouse. 

 
Climate 
 

Respondents, in general, were extremely hesitant answering questions about 

precipitation and temperature.  Answers were riddled with long pauses and qualifiers and 

often elaborating with such statements as this one: “It’s really just hard to give my 

opinion about this as a government employee.”  About half of the respondents had 

noticed no changes in local precipitation while the other half thought there were changes 

(Fig. 1a).  Managers who answered that they had not seen any changes and gave 

descriptive answers tended to view recent weather events as indicators of local long-term 

climate patterns, while managers who had noticed changes tended to be reviewing their  

 
Table 1. Techniques managers identified for addressing range restoration projects.  “Use” 
= manager noted using the technique in the past.  “Emphasize” = managers emphasized 
technique as their most commonly used tactic.   

 Grazing Mechanical Chemical Burning Water/Fencing Other Seeding 
Use 2 12 13 8 6 1 2 

Emphasize 12 4 0 2 5 0 3 
 

 



85 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. a.  Summary of managers’ responses to the question: “Have you noticed or 
heard of any changes in precipitation in your field areas?”  Answers include: “I Don’t 
Know” (DK); hesitant, but overall “Yes, I do think precipitation has changed” (DK, yes); 
“Yes I do think precipitation has changed” (yes); hesitant, but overall “No, I do not think 
precipitation has changed” (DK, no); and “No, I do not think precipitation has changed” 
(no).  b. Summary of managers’ responses to the question: “Have you noticed or heard of 
any changes in temperatures in your field areas?” 
 
 
long-term climate observations.  The managers who noted precipitation change tended to 

qualify their ‘yes’ (“did not really know”), while those respondents who answered ‘no’ 

seemed to answer with much less hesitancy.   

 Local observations about temperature were also evenly divided across “yes” and 

“no” answers.  Those that answered “yes” were slightly more willing to give definitive 

answers about temperatures than they were about precipitation (Fig. 1b).       

 
Summary Land and Climate Changes 
 

About half of the managers mentioned concern over changes in climate, 

vegetation, wildlife and OHV use, and about three-quarters felt there had been some 

changes in grazing practices.  For the respondents that noted change, a little less than half 

noted changes in grazing management policy and only four noted more focus on 
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invasives.  Five said their agencies were starting to talk about changes, while five 

remarked that there had been no agency changes as of yet.  This was an open-ended 

question, and there may be more agency policy changes than were noted by respondents, 

if by no other factor than many work for the same agencies.  However, overarching 

policy does not always correspond with a manager’s day-to-day responsibilities.  For 

example, one respondent noted “Not really [any policy change] after the first 2 years.  We 

pretty much returned to normal grazing practices.”  It is possible, however, that if asked 

outright if policy changes toward climate had changed, there might be some different 

answers.   

 
Comparison with Long-term Climate  
Trends 
 

Managers’ answers were compared to long-term climate data sets to evaluate 1) if 

there was agreement between data sets and answer type (“Yes Change” or “No Change”), 

and 2) if the relationships between data sets and answer type were related to any known 

interviewee demographics (geography, length of term in current location).  In most states, 

respondents were evenly divided among those that thought there was change and those 

that did not.  However, in Montana, all four managers responded that there were long-

term changes in precipitation/snow fall, and three of the four noted long-term changes in 

temperatures (Tables 2a and 2c).   Agencies were relatively evenly divided across 

opinions about climatic changes (Tables 2b and 2d).  Manager responses’ agreement with 

the data sets were also compared to the length of time they have worked in rangeland in 

their specific location (1-5 years, 6-10 years, 11-15 years, and >15 years).  The most  

definitive answers (all hesitant answers were categorized as such) pertaining to 
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Table 2a. How managers by state answered the question: “Have you noticed or heard of 
any changes in temperatures in your field areas?” Answers include: “I Don’t Know” 
(DK); “Overall, Yes, I do think precipitation has changed” (Yes); and “Overall, No, I do 
not think precipitation has changed” (No).  Superscripts noted for all responses that 
agreed with long term data. 

 Utah Montana Wyoming Oregon Idaho 
Yes 2 3 1 1 2 
No 21 1 2 2 2 
DK 1  1   

 1One of the responses agrees with long-term data. 
 
 
Table 2b. How managers by agency answered the question: “Have you noticed or heard 
of any changes in temperatures in your field areas?” Bureau of Land Management 
(BLM), Natural Resources Conservation Science (NRCS), Forest Service (FS), Private 
and Other Restoration Organizations (Pvt/Other).  Answers include: “I Don’t Know” 
(DK); “Overall, Yes, I do think temperature has changed” (Yes); and “Overall, No, I do 
not think temperature has changed” (No).  Superscripts noted for all responses that agreed 
with long term data.   

 BLM NRCS FS Pvt/Other 
Yes 2 3 1 3 
No 4 3 11 2 
DK 1  1 1 

1One of the responses agrees with long-term data.  
 
 
Table 2c. How managers by state answered the question: “Have you noticed or heard of 
any changes in precipitation in your field areas?”  Answers include: “I Don’t Know” 
(DK); “Overall, Yes, I do think precipitation has changed” (Yes); and “Overall, No, I do 
not think precipitation has changed” (No).   Superscripts noted for all responses that 
agreed with long term data. 

 Utah Montana Wyoming Oregon Idaho 
Yes 1 43 11  1 
No 3  22 2 2 
DK 1   1 1 

1The response doesn’t agree with long-term data (there has been change, but not as 
described). 
2 One of the responses agrees with long-term data. 
3Three of the responses don’t agree overall with long-term data (there has been change, 
but not as described) 
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Table 2d. How managers by agency answered the question: “Have you noticed or heard 
of any changes in precipitation in your field areas?” Bureau of Land Management 
(BLM), Natural Resources Conservation Science (NRCS), Forest Service (FS), Private 
and Other Restoration Organizations (Pvt/Other).  Answers include: “I Don’t Know” 
(DK); “Overall, Yes, I do think precipitation has changed” (Yes); and “Overall, No, I do 
not think precipitation has changed” (No).    

 BLM NRCS FS Pvt/Other 
Yes 1 22 2 32 
No 41 4 1 1 
DK 2   2 

1 One of the responses agrees with long-term data. 
2 Two of the responses don’t agree with long-term data (there has been change, but not as 
described). 
 
 
temperature changes tended to come from managers that had worked at their current 

location for 1-5 years, while longer-term managers (>5 years) at a location tended to give 

more equivocal answers (Fig. 2).  Additionally, temperature data tended to confirm long-

term managers full answers more than the definitive answers from short-term managers. 

Long-term managers in an area tended to see change as having occurred more than short-

term managers.  Conversely, there was high disagreement (long-term data did not agree 

with manager answers) for all managers with reference to precipitation data (Fig. 3).   

 At the specific sites studied, maximum temperatures overall increased and 

minimum temperatures either increased or decreased (Table 3).  Precipitation decreased 

at almost all sites (18) with an average change of 12.15%.  Snow fall changed at all sites, 

average change of 36.73% (decreased at 14 and increased at 7) (Table 4).  Assuming the 

long-term climate data sets chosen can be indicative of conditions these managers are 

seeing, both temperature and precipitation data confirmed most respondents that 

answered did see change (Tables 5 and 6).  The data only confirmed one respondent that 

saw no change in temperature and precipitation.  Discordance with respondents who 

answered along the lines of “Yes, I do think there has been change” in either temperature 
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Figure 2. How many managers by length of term in current location answered the 
question: “Have you noticed or heard of any changes in temperatures in your field 
areas?”.  “# concur” refers to manager response agreement with long term data. 
 

 
Figure 3. How managers by length of term in current location answered the question: 
“Have you noticed or heard of any changes in precipitation or snowfall in your field 
areas?”.  “# concur” refers to manager response agreement with long term data. 
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Table 3. Summary of ‘thirty-year normal’ temperature results compared to the past ten 
years.  Change is considered appreciable if >2%.  Maximum temperatures (Max. Temp.), 
maximum spring temperatures (Min. Temp.; March through May), minimum 
temperatures (Min. Temp.), and minimum spring temperatures (Min. Temp; March 
through May) 

 Increased Decreased No Change 
Max. Temp. 14 2 5 

Max. Spring Temp. 13 3 5 
Min. Temp. 11 8 2 

Min. Spring Temp. 10 11 0 
 
 
Table 4.  Summary of ‘thirty-year normal’ precipitation results compared to the past ten 
years.  Change is considered appreciable if >2%. 

 Increased Decreased No Change 
Precipitation 0 18 3 

Snow Fall 7 14 0 
 
 
Table 5. Summary of how many manager answers agreed with long-term data sets.  ‘Yes, 
I think there have been long-term changes in temperatures in my area’ (Yes); ‘No, I don't 
think there have been long-term changes in temperatures in my area’ (No); and ‘I don't 
really know one way or the other’ (DK). 

 Yes No DK 
Data agrees 7 1  

Data disagrees 2 9  
Total 9 10 2 

 
 
Table 6. Summary of how many manager answers agreed with long-term data sets.  ‘Yes, 
I think there have been long-term changes in precipitation in my area’ (Yes); ‘No, I don't 
think there have been long-term changes in precipitation in my area’ (No); and ‘I don't 
really know one way or the other’ (DK).  

 Yes No DK 
Data agrees 4 1  

Data disagrees 4 9  
Total 8 10 3 

 

or precipitation was typically due to data set and answer conflicts in directions or 

specifics.   For example, one respondent answered they were seeing “more rain and less 

snow,” while the long-term local data suggested that both rain and snow had decreased.  

There was never an instance in which a respondent thought there was change when, in 

fact, there was no change at all.  There was one instance where the manager thought there 
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was no change, and there was none according to the data.    

 
Forbs 
 

Respondents reported that most agency policies promote the use of natives 

“whenever feasible.”  Managers viewed forb importance in terms of forage for wildlife or 

livestock (11), or whether they were native (8) or invasive (7).  Three respondents replied 

that they did not know which forbs were important on the landscape.  Eight (of 21) of the 

respondents did not think there had been notable changes in their local forb communities 

and three did not know either way.  Seven reported increases in non-native species.  

Managers were directly asked if they thought that abundance or diversity of forbs had 

changed: four out of the 21 thought forb abundance had decreased and three that diversity 

had decreased, while three did not know.   

 The overall impression was that about half the managers interviewed were aware 

of forbs when undergoing a restoration project that specifically addressed them.  

Otherwise, most did not consider them very important.  Not all managers knew what seed 

mixes they used but, of the 19 that did, 16 used custom seed mixes that have forbs in 

them.  Native forbs were preferred, but forb diversity was typically quite low in mixes, 

with only one or two forbs included.  Forb seed selection in mixes was based on land 

objectives, which vary by agency.  For example, the NRCS bases its choices on 

landowner goals, which often focus on livestock forage or fire control.  In an open-ended 

question, half the managers noted native status as an important criterion, but the ability to 

effectively compete with invasives as a top priority.  Five mentioned cost as a priority 

concern.   Three were concerned about wildlife compatibility and two were focused on 
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livestock forage compatibility as a criterion for forb selection in a seed mix. 

 
DISCUSSION 

 
 

This study attempted to gain some understanding about range manager beliefs 

about climate and forbs.  Not only is there considerable political debate surrounding 

climate concerns, but managers also reported conflicting information from their agencies.  

The general impression was that agency policy assumes temperatures and precipitation 

patterns are changing and that these changes should be taken into account when 

practicing restoration, but don’t offer more specific guidance.  In other words, “here’s the 

agency policy, but we don’t know what you should do about it.”  This lack of a clear 

guidance essentially results in managers forming climate change opinions from what they 

see in the field, what time and money they have available to devote to the issue, and what 

data and solutions they can find on their own.  Further clouding the issue is the fact that 

climate answers are not always straight-forward: the current immediate weather may not 

conform to what detached data shows.  As one respondent put it, “I haven’t noticed [any 

changes in temperature].  The data suggests change, but I don’t know.”  All agencies were 

split fairly evenly in opinion.  Mixed messages about climate combined with other 

pressing concerns (wildfire, cheatgrass, etcetera) make it perhaps not surprising that 

while climate concerns may be discussed at conferences, they are not at the forefront in 

actual restoration decisions.   

 Managers’ beliefs have been thought historically to be partially shaped by 

prevailing opinions in the local community, despite the independence of land 

management as a unique professional culture (Kennedy 1985; Kennedy et al. 2001).  
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However, it was unknown if this pattern persists in today’s society or in the Great Basin.  

To address this question, manager responses were compared geographically, by agency 

and by length of employment at their current location.  Except in Montana, no consistent 

pattern of response was noted within states.  Managers in Montana agreed there have 

been both precipitation and temperature changes. Similar to the results of Shackley and 

Deanwood (2002), this uniformity of opinion could be a result of more immediate and 

perceivable change occurring in Montana, such as drastic increases in fire cycles and 

decreases in snowpack.   

 Length of employment at a manager’s current location did seem to have some 

effect on answers.  Interestingly, the most definitive answers pertaining to climate 

changes tended to come from the managers that had worked at their current location for 

1-5 years, while longer-term managers tended to give more equivocal answers.  

Numerous factors could explain this result 1) perhaps longer-term managers are more 

wary of answering what might be considered a political question; 2) long-term employees 

may have been exposed to more conflicting policies/opinions, moderating their 

preconceived notions for or against the issue – it is unknown what values they held prior 

to coming to a location, so values could have been mediated by either community or 

workplace norms; or, 3) local climate fluctuations could hide actual trends, or change that 

has happened so gradually that it was less noticeable.   

 Temperature data tended to confirm long-term managers’ equivocal answers more 

than the definitive answers from short-term managers.  This may suggest that managers 

come to a new office with formulated opinions about temperatures but those opinions are 

dulled over time, possibly through experience with climate fluctuations and interaction 
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with local and workplace communities.  Conversely, there was high discordance (long-

term data did not agree with manager answers) for all managers with reference to 

precipitation data.  The high discordance suggests that the more wily precipitation data is 

much less understood on local scales.   

 Previous studies in other countries have suggested managers more readily 

incorporate the concept of climate change in their management frameworks if they have 

already experienced local changes (Shackley and Deanwood 2002).  The current study 

asked managers to explain their climate perceptions descriptively.  Managers who did not 

think there had been any changes in local climate tended to view recent weather events as 

indicators of local long-term climate patterns, while managers that did think there had 

been changes in local climate tended to base their answers on their own long-term 

observations.   

 Predictably, respondents that believed climate and/or land changes had occurred 

in their area were also concerned about similar changes in the future.  However, how to 

incorporate that concern in a practical way on the landscape was a predominantly elusive 

question.  Respondents that were concerned about future risk noted that agencies are 

starting to talk about how to address concerns, but that there has not been much practical 

and affordable action or solutions yet.   

 Land managers are presented with scientific publications, agency policies, 

practical land concerns and values/beliefs of their community.  The amount of 

discordance with long-term data, and fewer definitive answers from longer-term 

managers seem to bolster the hypothesis that their opinions about local changes might be 

mediated by local and/or workplace norms.  Additionally there is some preliminary 
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indication that manager beliefs in local long-term climate patterns may be coupled with 

experiences of local short-term weather events.  One respondent gave a particularly 

succinct response: “Yes [temperatures are changing].  When I first came here I never had 

to use AC in my car.  Now we have 90 degree days in the summer!  It’s warmer and the 

warm spells are lasting longer.  That is why cheatgrass is merging into our area.  We’re 

losing.  We have felt we are safe [from cheatgrass] in higher elevations – this is a dry, 

cold area.  Even though people like to scoff at climate change and global warming, to be 

real, to be honest, extremes are fooling everybody into thinking it’s not happening.”   

 The forb section of the interview was brief.  The study goal was to gain some 

understanding about how managers fit forbs into their personal frameworks concerning 

ecosystem health and resilience. The overall impression was that managers pay attention 

to forbs when undergoing a restoration project that specifically addresses forbs.  

However, fluctuations in forb abundance or diversity were not considered important 

criteria of ecosystem health.  Almost all managers preferred custom, native seed mixes, 

but forb diversity was typically quite low in mixes.  The ability for forbs to effectively 

compete with invasives and to be affordable were top priorities.  The lack of overall 

knowledge about forbs suggested managers are primed to use them in mixes, but aren’t 

seeing their abundance or diversity as indicators of ecosystem health or resilience. 

 Although this was an inductive study not intended to test hypotheses, these results 

do suggest hypotheses that could be tested in future studies.  These include: 

• Managers’ beliefs about local climate and land changes will vary by demographic 

characteristics such as age, sex, or education. 

• Managers’ beliefs about local climate and land changes tend to moderate with 
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increased tenure in a particular location. 

• Manager beliefs are mediated by local or workplace norms as well as agency 

policy direction. 

• Managers do not perceive forbs as an important factor in ecosystem health 

relative to other factors such as disturbance regime, grass and shrub populations, or other 

factors; therefore, they will use forb diversity as a decision criterion only when it is 

identified as a specific management goal.   

 
MANAGEMENT IMPLICATIONS 

 
 

This study indicates that organizations whose activities involve ecological 

restoration might benefit from more outreach to their managers, with reference to specific 

issues such as local climate, sage-grouse habitat needs, and/or forb populations and 

diversity.  Agencies need to be able to move forward to figuring out solutions on the 

landscape - and that cannot happen if managers are not working together.  It does not 

particularly matter if manager norms are more influenced by their local community or 

their workplace – the result is the same.  Increased and more concise information about 

their relevant areas seems to be called for, and can only aid in the success of collaborative 

efforts.  
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CHAPTER IV 
 

SUMMARY AND CONCLUSIONS 
 
 

Selecting Rangeland Forbs for  
Restoration in an Era of Climate Change 
 

Climate changes have already created shifts in distributions, phenologies and 

traditional species relationships of plants world-wide and these shifts are only expected to 

increase (Risser 1995; Root et al. 2003; Walther et al. 2003; Backlund et al. 2008a; 

Thuiller et al. 2008).  In the Great Basin changes in compositional structures are thought 

to have profound effects on ecosystem stability and resiliency (Gunderson 2000; 

Schwinning et al. 2008; Mooney et al. 2009). 

 Great Basin temperatures are predicted to increase by 5-10°C over the next 100 

years (Wagner 2003).  Precipitation predictions are complicated, but overall, and 

especially in combination with temperatures, available water for plants is predicted to be 

seriously lowered (Baldwin et al. 2003; Mote et al. 2005; Kharin et al. 2007; Backlund et 

al. 2008a, 2008b).  Forbs in the Great Basin have adapted to specific  patterns of water 

availability that are likely to be affected by increased rates and levels of 

evapotranspiration (Svejcar et al. 2003; Hatfield et al. 2008).  Indeed, current temperature 

regimes already often result in evaporative losses exceeding precipitation inputs in the 

Great Basin.  Thus, water availability to plants is thought to result in the most consistent 

shifts in species composition (Polley et al. 1999; Morgan et al. 2004).   

 Great Basin managers must also account for other types of land changes, such as 

habitat fragmentation and biological introductions.  Non-native plants frequently threaten 

native species and change ecosystem function by altering components such as associated 
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communities, water availability or fire frequency (D’Antonio and Vitousek 1992).  

Sheley and Petroff (1999) argue that in rangelands, invasive plants threaten the overall 

ecosystem function and therefore utility.  Additionally, the diversity and abundance of 

forbs is important to Greater sage-grouse breeding success (Klebenow and Gray 1968; 

Peterson 1970; Drut et al. 1994; Barnett and Crawford 1994; Flinders et al. 2000).   

Understanding and predicting the effects of climate and ecosystem changes on non-native 

and native species have become a predominant challenge for land managers throughout 

the world.   

 Managing the Great Basin ecosystem for resiliency to warmer temperatures and 

less available water will likely be the most successful strategies.  Several studies have 

found that invasion resistance on rangelands can be increased by increasing native forb 

species richness and niche occupation (Jacobs and Sheley 1999; Carpinelli et al. 2004; 

Pokorny et al. 2005).  Sheley and Half (2006) found that using a seed mixture of native 

forbs could greatly increase likelihood of forb establishment in restoration efforts.  

Unfortunately, the high cost and risk of failure (germination and emergence) associated 

with native revegetation efforts has often been prohibitive (Jacobs et al. 1998).   

Considerations for warmer temperatures and less water are not yet in these models. 

 Human disturbance has opened up sagebrush ecosystems to annual and perennial 

invasion.  These disturbed systems are drastically changed in ecological structure and are 

expensive to restore (Leonard et al. 2008).  Rangeland managers in the Great Basin are 

informed about sage-grouse concerns, yet primary focus for restoration efforts at this 

time does not take into account the native forb diversity necessary for sage-grouse 

specific forage or ecosystem function or the effects of future climate conditions.  It is 
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unknown if managers perceive forb species as a valuable and worthwhile aspect of their 

restoration efforts outside of sage-grouse specific projects.  The long-term resiliency of 

rangeland forbs to increased temperature should be reviewed now for two reasons: to 

help select the most appropriate forbs for sage-grouse success and to avoid retro-active 

restoration efforts. 

 Sphaeralcea munroana (native).  Although it has not been documented in a 

scientific publication as consumed by sage-grouse, S. munroana, a Great Basin native 

forb, is a recommended forb in sage-grouse restoration projects (WY USGS 2008).  The 

data overall suggest that an increase in temperature would help S. munroana to germinate 

sooner and would not significantly affect its overall plant fitness.  This is contradictory to 

what was predicted in previous studies on plant shifts in future conditions (Polley et al. 

1999; Svejcar et al. 2003; Morgan et al. 2004; Hatfield et al. 2008).  The most obvious 

explanation would be lack of replication throughout the Great Basin.  While the Green 

Canyon site can not be taken as representative of the entire Great Basin, it is a disturbed 

sagebrush site with comparable Great Basin soils, at mid-elevation, and therefore 

representative of sites already said to be at particular risk.  However, more studies with 

increased site replication would probably help support these results.  In the meantime, the 

results from this study support the continued use of S. munroana in restoration projects in 

sagebrush communities at similar elevations and soil types.     

 Crepis acuminata (native).  Sage-grouse consume C. acuminata readily in their 

diet (Klebenow and Gray 1968; Barnett and Crawford 1994; Drut et al. 1994).  In 2009, 

all plants died shortly following transplant into the field.  In 2010, almost 80% of the 

plants germinated, but there were fewer plants present in OTCs than in control plots.  By 
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early summer, more plants in the OTCs were dying than in control plots and there were 

fewer seedlings in OTC quadrats.  By mid-summer, the majority of plants had already 

died or were dying.  Almost all C. acuminata that failed to germinate were in quadrats 

with OTCs.  Although this species is being looked at as a viable option for restoration 

with a native forb (Matt Fisk, pers. comm., 2009), the results of this study suggest that it 

may be less appropriate under conditions of increased temperature, at least in sites 

lacking the clay loam soil where this species does best. As increased temperatures in 

much of the Great Basin are likely to be coupled with decreases in precipitation, use of C. 

acuminata in the future should be used with caution except in places with high likelihood 

of precipitation and water retention.      

 Linum lewisii (native).  Linum lewisii was chosen for study based on the 

recommendations (WY USGS 2008), its native status and ease of acquisition for 

managers.  Nearly all of the L. lewisii germinated and established plants.  Warming 

significantly increased all fitness parameters except number of plants (because almost all 

germinated in every quadrat).  Overall, data suggest that L. lewisii may emerge earlier, 

flower and seed earlier and senesce later under increased temperature conditions.  It will 

likely be a good forb for continued use in future restoration projects, but with the same 

caveats mentioned for S. munroana.     

 Penstemon palmeri (native).  Penstemon palmeri was chosen for study based on 

similarity to the recommendations (WY USGS 2008), ease of acquisition for managers 

and native status.  Only about half of the quadrats established seedlings for P. palmeri.  

OTC did not have a significant effect on plant fitness parameters. In the spring, the only 

seedlings of P. palmeri were in quadrats with OTCs, but this was balanced by P. palmeri 
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tending to senescence slightly sooner in OTC quadrats.  It seems likely that P. palmeri 

would be a reasonable forb to use in future restoration projects and it may just have 

altered timing with the same caveats mentioned for S. munroana and L. lewisii. 

 Oenothera pallida (native).  Oenothera pallida was chosen for study based on 

inclusion in seeding recommendations (WY USGS 2008), ease of acquisition for 

managers and native status. About 40% of O. pallida germinated.  None of the 

environmental factors were found to have any effect on O. pallida fitness.  While the 

fitness parameters do not indicate concerns, the life-stage tracking data may suggest some 

sensitivity to temperature and overall indicate some caution to be used and grounds for 

further studies with second or even third year, more mature, established plants.  These 

results match what might be expected for natives in future conditions, and are a good 

indicator of why it is important to research species future viability before expending large 

amounts of resources on them. 

 Erodium cicutarium (non-native).  According to the USDA, NRCS (2010),  E. 

cicutarium is a nationwide generalist annual weed – a good representative of the impacts 

introduced annuals might have on perennial dominated systems (Dukes and Mooney 

1999), especially following a disturbance (man-made or natural) which is always the case 

with seeding restoration projects.  Moreover, research has shown that native plant 

diversity increases when this species is removed from a site (Schutzenhofer and Valone 

2006).  E. cicutarium is reproductively mature within 2-4 months. The data therefore 

suggest that the earlier emergence of E. cicutarium in quadrats with increased 

temperatures could result in increased competition for natives trying to establish both in 

the spring and later in the season with the second generation.  As a nationwide generalist 
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non-native it was surprising that E. cicutarium flowering in 2009 was decreased by an 

increase in temperature.  In 2009, all plants were germinated to seedlings in a greenhouse 

under equal conditions.  It is possible that if they had been able to be seeded in the fall, 

phenotypic variability in the seed bag might have resulted in only the seeds that were 

better adapted for hotter temperatures germinating.  Indeed, when this was the case in 

2010, flowering shoots showed no significant differences.  If results from 2009 were 

overly affected by initial growth in the greenhouse, it is interesting to note that the two 

non-natives were negatively affected by the later separation of temperature conditions, 

while the native S. munroana was more resilient to later season differences in 

temperature. 

 Lactuca serriola (non-native).  Finally, Prickly lettuce (Lactuca serriola), 

another generalist annual weed in the Great Basin, is known to be consumed by sage-

grouse (Klebenow and Gray 1968; Peterson 1970) and for this reason, and availability, 

was included in the pilot study.  However, as it is not a predominant plant in Great Basin 

rangelands, E. cicutarium was chosen as a more realistic “token” non-native for 

experimental design.  Thus, Lactuca serriola was only used in 2009.  Fitness of L. 

serriola was much reduced across all categories with an increase in temperature.  Soil 

disturbance had no effect on the plant.  As a nationwide generalist, the OTC effect was an 

unexpected result.  As 2009 was the only year L. serriola was studied, it is not possible to 

quantify the impact of germination in a greenhouse and further studies, if this plant was 

of significant interest, seem appropriate.   

 Management implications.  The data overall suggest that in restoration projects, 

S. munroana, L. lewisii and P. palmeri are likely reasonable choices for withstanding 
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future increases in temperatures.  C. acuminata should be used with extreme caution with 

reference to soil water retention capabilities and could possibly benefit from future 

studies with ideal soil conditions.  Caution and future studies are also recommended for 

O. pallida due to indications that this plant may be sensitive to increases in temperature.  

This study was unable to determine effects of competition with non-natives due to 

growing condition limitations.  However, as expected, temperature did not seem to 

impact fitness of E. cicutarium and did seem to increase germination timing.  It seems 

likely that competitive interactions between non-natives and natives could be further 

compounded by increases in temperature, further underlining the importance of 

establishing native forbs soon.     

 
Factors Influencing Managers’ Decision  
Processes about Forb Restoration 
 
 The Great Basin ecosystem is considered to be one of the most threatened regions 

in the United States (Noss et al. 1995).  Managers across the Great Basin are faced with 

the ever-daunting task of maintaining or improving these landscapes (Chambers et al. 

2008).  The management community focuses on areas that are at the highest risk; they 

rarely have the resources, time or money to restore low or medium risk areas.  As 

managers self-reportedly struggle to catch up with increasing fire cycles and invasives, it 

becomes much more essential that the work they are doing is successful and lasting.     

         The importance of management effects on the Great Basin landscape deems it 

imperative that research focuses not only on how to establish successful plant community 

structure in future conditions, but also what aspects of the landscape the decision makers 

(managers) believe are imminent and are prepared to focus on.  To fully comprehend 
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what climate and global change will mean for the Great Basin, an understanding of how 

rangeland managers consider the ecosystem components is critical.   

         A societal change of particular note in the past couple of decades has encompassed 

the term “climate change”.  What was once a topic for scientists and environmentalists 

has become a polarized political debate in America.  Little, if anything, is truly known 

about American land manager opinions on climate and land changes and if/how those 

opinions affect restoration decision making.   

  It is unreasonable to assume that land managers would be unbiased in the context 

of conflict.  Historically, range managers, foresters and wildlife managers have developed 

their values from relevant rural American culture (Kennedy et al. 2001).  However, 

professional norms have also changed and there may be more influence on values from 

other sources today.  Range managers today have to juggle broad agency policy and 

extra-local ideology with real people and real livelihoods.  Not only do they have this 

complex political and social conflict at the local level, but managers must also juggle 

management options across regional and sometimes national scales.  Additionally they 

must concern themselves with the interests of the current generation and future ones.  

Communities and managers that were once isolated and buffered from other American 

values, now find themselves immersed in various clashes with people from entirely 

different regions. 

  Semi-structured phone interviews attempted to gain some understanding about 

range manager beliefs about climate and forbs.  Not only is there considerable political 

debate surrounding climate concerns, managers also reported conflicting information 

from their agencies.  Managers suggest that while agency policy tells them to consider 
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climate change in decision making, it rarely tells them how to do so.  This lack of clear 

guidance from the agency essentially results in managers forming climate change 

opinions from what they see in the field, what time and money they have available to 

devote to the issue, and what data and solutions they can find on their own.  Data alone 

may not be enough to influence managers’ views on climate.  As one respondent put it, “I 

haven’t noticed [any changes].  The data suggests change, but I don’t know.”  Mixed 

messages about climate combined with other pressing concerns (wildfire, cheatgrass, 

etcetera), makes it perhaps not surprising that while climate concerns may be discussed at 

conferences, they are not at the forefront in actual restoration decisions.   

  The most definitive answers pertaining to climate changes tended to come from 

the managers that had worked at their current location for 1-5 years, while longer-term 

managers tended to give more equivocal answers.  An explanation may lie in what 

political scientists call “Capture Theory”: long-term managers may find themselves to be 

more attached to the ranching lifestyle than ecological priorities, while not realizing that 

their orientation with the overall public has changed.  Again, if this is true, ranching 

lifestyle necessitates a more realistic view of rangeland changes.   

  Predictably, managers that believed climate and/or land changes had occurred in 

their area were also concerned about similar changes in the future.  However, how to 

incorporate that concern in a practical way on the landscape was a predominantly elusive 

question.  Managers that were concerned about future risk noted that agencies are starting 

to talk about how to address concerns, but that there has not been much practical and 

affordable action or solutions yet.   
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Appendix A: Supplemental Data Tables 
 
 
Table 1. 2009 OTC and Species effect on air temperature (°C) separated by time (F-test, 
α = 0.05). 

Time DF F-value p-value 
6-7 am 3:8 1.074 0.413 

10-11 am 3:8 1.107 0.401 
2-3 pm 3:8 1.284 0.344 
6-7 pm 3:8 0.374 0.774 

10-11 pm 3:8 0.171 0.913 
2-3 am 3:8 0.547 0.664 

 
 
Table 2. 2009 OTC and Track effect on air temperature (°C) separated by time (F-test, α 
= 0.05).   

Time OTC 
Track 

OTC 
No 

Track 

OTC 
Difference 

Control 
Track 

Control 
No 

Track 

Control 
Difference DF F-value p-value 

6 am 9.228 
 

10.363 
 

-1.135 
±1.112 

9.910 
 

9.850 
 

0.140 
±0.816 1:12 22.230 0.001 

10 am 20.241 
 

21.888 
 

-1.647 
±2.858 

17.130 
 

19.517 
 

-2.387 
±2.099 1:12 4.101 0.066 

2pm 23.420 
 

27.000 
 

-3.580 
±2.560 

23.830 
 

24.250 
 

-0.420 
±1.878 1:12 0.259 0.620 

6pm 21.656 
 

19.425 
 

2.231 
±3.403 

18.810 
 

20.233 
 

-1.423 
±1.905 1:12 0.343 0.569 

10 pm 10.498 
 

11.838 
 

-1.34 
±1.510 

10.440 
 

10.750 
 

-0.310 
±1.108 

1:12 2.653 0.129 

2am 11.244 
 

11.113 
 

0.131 
±1.364 

11.509 
 

11.333 
 

0.176 
±1.001 1:12 0.997 0.338 

 
 
Table 3. 2009 OTC and Species effect on soil temperature (°C) separated by time (F-test, 
α = 0.05). 

Time DF F-value p-value 
6-7 am 3:8 3.900 0.054 

10-11 am 3:8 2.310 0.153 
2-3 pm 3:8 0.075 0.972 
6-7 pm 3:8 0.152 0.926 

10-11 pm 3:8 7.254 0.011 
2-3 am 3:8 0.481 0.704 
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Table 4.  2009 OTC and Species effect on soil temperature (°C) separated by species and 
by times that were indicated as significant in Table 3 (F-test, α = 0.05). 

Parameter Warmed Control Difference S.E. DF t-value p-value 
C 10.975 10.175 0.800 0.790 8 2.494 0.037 
E 10.400 10.150 0.350 1.117 8 0.470 0.651 
L 10.400 10.375 0.025 1.117 8 0.421 0.685 

6-7 am 

S 10.700 10.100 0.600 1.117 8 1.104 0.302 
C 15.050 13.625 1.425 1.093 8 3.134 0.014 
E 14.650 13.600 1.050 1.547 8 1.508 0.170 
L 14.557 14.150 0.407 1.547 8 1.307 0.228 

10-11pm 
 
 
 S 14.400 13.800 0.600 1.547 8 1.096 0.305 

 
 
Table 5. 2009 OTC and Track effect on soil temperature (°C) separated by time (F-test, α 
= 0.05).     

Time Warmed 
Track 

Warmed 
No 

Track 

Warmed 
Difference 

Control 
Track 

Control 
No 

Track 

Control 
Difference DF F-value p-value 

6am 10.112 11.275 -0.338 
±0.899 10.050 10.450 -0.400 

±0.661 1:12 1.2 0.291 

10am 20.537 22.287 -1.750 
±3.095 18.150 20.983 

 
-2.833 
±2.273 1:12 7.91 0.016 

2pm 25.822 29.650 -3.828 
±2.839 25.990 26.300 

 
-0.310 
±2.086 1:12 0.599 0.454 

6pm 23.569 21.313 2.256 
± 2.503 20.290 21.717 1.427 

±1.839 1:12 1.167 0.301 

10pm 14.056 16.325 -2.269 
±1.240 13.540 14.217 -0.677 

±0.910 1:12 0.002 0.966 

2am 11.676 12.700 
 

-1.024 
±0.839 

11.590 11.733 -0.143 
±0.616 

1:12 1.021 0.332 

 
 
Table 6. 2009 OTC, Species and Track effect on soil water tension (MPa, F-test,  α = 
.05). 

Factor DF F-value p-value 
OTC 1:8 0.181 0.682 

Species 3:8 3.312 0.078 
Track 1:12 0.001 0.975 

 
 
Table 7. 2010 OTC and Community effect on air temperature (°C) separated by time (F-
test, α = .05). 

Time DF F-value p-value 
all 1:36 1.135 0.312 

6 am 1:36 0.004 0.952 
10 am 1:36 1.191 0.282 
2 pm 1:36 0.701 0.408 
6 pm 1:36 0.028 0.868 

10 pm 1:36 0.012 0.913 
2am 1:36 0.001 0.975 
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Table 8. 2010 OTC and Shade effect on air temperature (°C) separated by time (F-test, α 
= .05).   

Time DF F-value p-value 
all 4:30 0.014 0.999 

6 am 4:30 0.684 0.609 
10 am 4:30 0.802 0.533 
2 pm 4:30 0.357 0.837 
6 pm 4:30 0.599 0.667 

10 pm 4:30 0.252 0.906 
2am 4:30 0.472 0.756 

 
 
Table 9.  2010 OTC and Community effect on soil temperature (°C) separated by time  
(F-test, α = .05). 

Time DF F-value p-value 
all 1:35 0.027 0.870 

6 am 1:35 0.787 0.381 
10 am 1:35 0.151 0.700 
2 pm 1:35 0.578 0.452 
6 pm 1:35 0.009 0.924 

10 pm 1:35 0.502 0.483 
2 am 1:35 0.685 0.413 

   
 
Table 10.  2010 OTC and Shade effect on soil temperature (°C) separated by time (F-test, 
α = .05).   

Time DF F-value p-value 
all 4:29 2.47 0.067 

6 am 4:29 0.627 0.647 
10 am 4:29 4.148 0.009 
2 pm 4:29 1.865 0.144 
6 pm 4:29 2.260 0.087 

10 pm 4:29 0.898 0.478 
2am 4:29 0.707 0.594 

 
 
Table 11.  2010 4 cm OTC, Community, Track and Shade effect on water tension (MPa, 
F-test, α = .05).   

Factor DF F-value p-value 
OTC 1:18 0.538 0.473 

Native/Introduced 1:18 0.549 0.468 
Track 1:30 1.386 0.248 
Shade 4:18 0.391 0.812 
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Table 12.  2010 20 cm OTC, Community, Track and Shade effect on water tension (MPa, 
F-test, α = .05). 

Factor DF F-value p-value 
OTC 1:19 1.748 0.202 

Native/Introduced 1:19 0.006 0.940 
Track 1:31 0.113 0.739 
Shade 4:19 0.335 0.851 
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Appendix B: Semi-structured Interview Protocol 

 
 
A.  Demographics of Managers and Land 
 
 

1. How long have you been involved in range management overall? 
2. How long have you been involved in range management in your current 

area? 
3. Tell me a bit about the rangeland you manage and your role in managing it. 
4. How would you characterize the health of the rangeland you manage? 
5. What types of range management techniques do you use? 
6. Do you think there is a land use type/usage for which this land is best 

suited? 
7. Do you think this land is in need of any specific types of restoration? 
8.  If so, what percentage of the land could benefit significantly from 

restoration efforts? 
9. What means would you suggest to best achieve that restoration? 

 
 
B.  Climate and Land Changes 
 
 

10. In the years since you’ve been working in your current area, have you 
heard of or noticed any changes in the overall characteristics of the 
vegetation?  What are they? 

11. Have there been any changes in livestock practices on the land or other 
land usage?  What are they? 

12. Have there been any changes in wildlife? What are they? 
13. Have there been any changes in recreational usage on the lands?  What are 

they? 
14. Have you noticed any long-term changes in precipitation?  What are they? 
15. Have you noticed any long-term changes in temperatures?  What are they? 
16. If one or more of these changes mentioned above has occurred, have any 

of these changes caused you or your agency to alter your management 
techniques?  (If applicable, please specify which changes, and how they 
were adapted to) 

17. Do you anticipate any (or more) of these changes in the future?  (Please 
specify which changes you anticipate and explain why.) 

18. What sort of management responses have you been considering as a 
response to these changes? 
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C.  Forbs 
 
 
An important goal of our research is to anticipate the effects of climate change on 
important forb species in Great Basin rangelands.  The next questions will help us 
understand the management contexts that affect forbs in our region. 
    

1. You mentioned before that your area includes_________.  Can you give a 
rough estimate of the   percentage of forbs in your area? 

2. Which forbs, would you say, constitute a significant or important 
component of the forb communities in your jurisdiction? 

3. Have you seen any changes in forb diversity?  If yes, for which species, 
and what types of changes? 

4. Have you seen any changes in abundances of forbs? If yes, for which 
species and what types of changes? 

5. Do you use reseeding mixes or anticipate reseeding in the future?   
a. If yes, do you use custom or standardized mixes? 
b. What is typically in the mixes? 
c. What criteria do you prioritize for forb selection in a seed mix? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 


