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ABSTRACT 

 

 This dissertation studied the structural identification and damage detection of civil 

engineering structures. Several issues regarding structural health monitoring were 

addressed. 

 The data-driven subspace identification algorithm was investigated for modal 

identification of bridges using output-only data. This algorithm was tested through a 

numerical truss bridge with abrupt damage as well as a real concrete highway bridge with 

actual measurements. Stabilization diagrams were used to analyze the identified results 

and determine the modal characteristics. The identification results showed that this 

identification method is quite effective and accurate. 

 The influence of temperature fluctuation on the frequencies of a highway concrete 

bridge was investigated using ambient vibration data over a one-year period of a highway 

bridge under health monitoring. The data were fitted by nonlinear and linear regression 

models, which were then analyzed. 

 The substructure identification by using an adaptive Kalman filter was 

investigated by applying numerical studies of a shear building, a frame structure, and a 

truss structure. The stiffness and damping were identified successfully from limited 

acceleration responses, while the abrupt damages were identified as well. Wavelet 

analysis was also proposed for damage detection of substructures, and was shown to be 

able to approximately locate such damages.  

 Delamination detection of concrete slabs by modal identification from the output-

only data was proposed and carried out through numerical studies and experimental 

modal testing. It was concluded that the changes in modal characteristics can indicate the 
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presence and severity of delamination. Finite element models of concrete decks with 

different delamination sizes and locations were established and proven to be reasonable. 

 Pounding identification can provide useful early warning information regarding 

the potential damage of structures. This thesis proposed to use wavelet scalograms of 

dynamic response to identify the occurrence of pounding. Its applications in a numerical 

example as well as shaking table tests of a bridge showed that the scalograms can detect 

the occurrence of pounding very well. 

 These studies are very useful for vibration-based structural health monitoring. 

 

          (213 pages) 

  



v 

 

PUBLIC ABSTRACT 

 

 This dissertation addressed damage detection of civil engineering structure, such 

as, buildings and bridges, by using the measurements of vibration sensors that were 

instrumented on these structures. The damage detection and health monitoring of the 

infrastructures are essential to keep them working safely, thus to avoid loss of lives and 

wealth due to the disastrous damage. Several issues regarding the damage detection of 

civil engineering structures were addressed as follows. 

 A subspace-based method successfully obtained damage information of a truss 

bridge from simulated measurements as well as of a highway concrete girder bridge from 

actual vibration measurements. This method is recommended to be one choice of the 

methods to process vibration data. 

 The influence of temperature fluctuation on the natural frequencies of a highway 

concrete bridge was investigated using vibration data over a one-year period of a 

highway bridge under health monitoring. The data were analyzed through statistical 

method and the relationship between natural frequencies and temperatures were 

correlated. These correlations are useful for discriminating damage from normal changes. 

In reality, it is not possible to install sufficient sensors on the structures and it is also 

difficult to analyze for a large system due to numerical difficulty. A substructural 

approach with a filtering algorithm was used to address this issue and examined by their 

applications. It was proved to be quite effective and can obtain damage information 

accurately.  

 Delamination is of great concern for bridges and routine inspection is necessary. 

This dissertation proposed to detect delamination of concrete plates by modal 
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identification using measurements of vibration sensors. This new approach can reduce the 

costs significantly and could obtain real-time delamination information. 

 When subjected to earthquake, the pounding can occur between different 

structures, for example, the adjacent buildings, or the different parts of a structure, for 

example, two spans of a bridge, and can cause considerable damage or degradation to the 

structures. Therefore, the monitoring of the pounding is useful and can provide useful 

early warning. This dissertation proposed and investigated a wavelet-based approach to 

detect the occurrence of pounding through simulated as well as large shake table tests to a 

bridge model. The approach was proved to be effective. 

 These studies are very useful for the health monitoring and safe operation of 

bridges, buildings, and other engineering structures.  
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CHAPTER I  
 

INTRODUCTION 
 

 

 This chapter gives a general introduction on vibration-based structural health 

monitoring, which is the subject of this thesis. The structural identification and damage 

identification methods are discussed. The research topics and organization of this thesis 

are demonstrated. 

 

1.   Structural Health Monitoring Based on  

      Vibration Measurements 

 

 Structural health monitoring (SHM) is the process to implement a damage 

identification system for civil, mechanical, and aerospace engineering structures, which 

can reliably monitor the health and performance of the structures. SHM can be classified 

as local or global [1]. Local methods detect damages of the structural components using 

non-destructive examination methods, such as, acoustics, eddy current, emission 

spectroscopy, magnetic methods, radiography, ultrasonic, X-ray, and visual inspection.  

 Global methods are used to detect damage to the entire structure. Much research 

has been conducted on global methods based on the sensor system and vibration analysis. 

The vibration-based damage detection has been the routine method for mechanical and 

aerospace engineering structures. With the upgrading of instrumentation and better 

understanding of the dynamics of civil structures, the vibration-based SHM has received 

increased attention and has gone through rapid development in the past two decades. 

Doebling et al. [2-3] did a comprehensive technical literature review of vibration-based 

damage identification of structures. Sohn et al. [4] updated the literature review [2-3] 

with more recent advancement. Chang et al. [5] presented a review of research work on 
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health monitoring of civil infrastructures.  

 Among civil structures, the bridge is one of the most important infrastructures. In 

the U.S.A., around 50% of bridges were built before the 1940‟s and the Federal highway 

administration (FHWA) [6] stated that 24% bridges were structurally deficient in 2010, 

making it necessary to monitor their health for public safety and property protection. 

Long-term structural health monitoring systems for large-scale bridges has been 

implemented successfully worldwide; a list of them can be found in [7]. The long-term 

bridge performance assessment of representative highway bridges has been initiated by 

FHWA.  

 It is expected that the SHM systems can provide useful information to determine 

the damage extent of structures. As described by Rytter [8], damage identification can be 

characterized at four levels: 1. determining if the structure has any damage, 2. deciding 

the location of the damages, 3. quantifying the degree of the damage, 4. predicting the 

remaining service life of the structure. 

 This thesis contains research work related to Levels 1-3, that is damage detection 

in Level 1 and the inverse problems typically found in Levels 2 and 3 are studied in this 

dissertation. Belonging to the fields of fracture mechanics and structural design 

evaluation, level 4 is not included in this study.  

 

2.   System Identification and Damage  

      Identification Methods 

 

 The SHM system generates copious amounts of data; therefore, how to process 

these data and interpret the results becomes an important and challenging problem. The 

system identification algorithms are used to process the data while the vibration theories 
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are used to extract features of the structures.  

 System identification is the process of building and improving mathematical 

models of a dynamic system from experimental data which can be input-output data or 

output only data. The general theories and applied techniques can be found in [9-10]. The 

system identification in structures can be called structural identification. The basic routes 

for vibration analysis and structural identification are shown in Figure 1 and Figure 2. 

 Many system identification algorithms are available, such as, the least-square 

estimation (LSE), the extended Kalman filter (EKF), the subspace identification, the 

natural excitation technique combined with the eigensystem realization algorithm (NExT-

ERA), the neural networks, the genetic, and the wavelet based methods. All these 

methods have been used in system identification and damage identification of many types 

of civil engineering structures. 

 The application of system identification to vibrating objects is called modal 

analysis or experimental modal analysis. The experimental testing is referred to as modal 

testing in Ewins [11]. Modal analysis has two stages: 1) to choose the appropriate type of 

model and 2) to figure the appropriate parameters of the chosen model. Generally there 

are three models/phases in the typical progress of vibration analysis, which include the 

following: a) a description of the structure's physical characteristics, in terms of mass, 

stiffness and damping properties, which is referred to as the spatial model; b) description 

of the structure's behavior by modal frequencies, modal damping, and mode shapes of a 

set of vibration modes, which is referred to as the modal model; c) description of the 

structure's response under given excitation, which is referred to as the response model. 

These models are used extensively in modal testing and analysis.  
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Response System Identification  Structural Model 

Structural Model Vibration Analysis Response 

 The modal analysis from the measurements of modal testing can be used for 

updating the numerical (finite element) model. This is referred to as finite element model 

updating in Friswell and Mottershead [12]. The finite element model updating has been 

studied extensively in much of the literature.  

 To briefly summarize, in order to get correct judgment of the structure's health 

status or structural integrity from the SHM systems, it is essential to have an 

understanding of damage identification algorithms and vibration theories, as well as to 

gain insight into its structural behavior. 

 

3.   Focus of the Research 

 

 This thesis focuses on the identification of damage to structures using output-only 

data. The stochastic subspace identification, frequency domain decomposition, traditional 

peak-picking, extended Kalman filter, and wavelet transform methods were used in this 

study. Numerical studies involving finite element modeling, and experimental studies 

including experimental modal testing, real-time monitoring measurements, and shake 

table tests, were carried out. The main contributions are specified as follows. 

 

 

 

 

Figure 1. Vibration analysis 

 
 

 

Figure 2. Structural identification 
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 Data-driven stochastic subspace algorithms were applied in modal identification 

of a numerical bridge with abrupt damage and a real highway bridge from their 

acceleration responses. The stabilization diagrams combined with the subspace 

identification algorithms were used to keep physical modes and eliminate spurious modes. 

A subspace identification algorithm N4SID was also examined through its application to 

modal identification of the highway bridge.  

 The adaptive Kalman filter was proposed for use in identifying spatial models of 

substructures with abrupt damage. This use is to solve an inverse problem by identifying 

and tracking the stiffness and damping through the substructural approach. This approach 

was investigated by numerical studies on three types of structures. Wavelet transform was 

also proposed to be used for substructural damage identification and was examined more 

closely in later sections.  

 This thesis proposes to detect the delamination of concrete structures by modal 

identification from output-only vibration measurements. The method was investigated 

through numerical as well as experimental studies. Finite element models for the 

experimental models with various delamination scenarios were developed and validated. 

Some parameters of the finite element model (the contact model) were manually updated 

to match the modal characteristics from the experimental testing. 

 Statistical analysis was used to correlate the frequencies and temperature based on 

one-year monitoring data by nonlinear as well as linear curve fitting.  

 Identification of the occurrence of pounding was suggested and the wavelet 

scalogram was proposed to fulfill this objective. This method was examined through a 

numerical model and the experimental data from shake table tests.  
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4.   Organization of the Main Text 

 

 This dissertation has been made up of multiple papers. Chapters II-V cover one or 

two topics and are self-contained, consisting of the abstract, introduction, main contents, 

and the conclusion. All of these topics focus on vibration-based system identification and 

damage detection. Chapters II, III, and V mainly investigate the applicability and 

effectiveness of the structural identification algorithms. The goal of chapter IV is to solve 

practical problems by using the vibration-based method from the response measurements 

by sensors in the structures that are under normal operation. The chapter-by-chapter 

overview is given as follows: 

 Chapter I introduces the research background and the issues to be addressed. It 

provides the organization of the main topics and provides context for this thesis.  

 Chapter II investigates the effectiveness of stochastic subspace identification 

algorithms and stabilization diagrams in the modal identification of bridges using output-

only data. The simulated accelerations from a numerical truss bridge and recorded 

accelerations from a real concrete bridge are explored as the output data. It also deals 

with the relationship between temperature and frequencies based on one-year monitoring 

data of a highway bridge. 

 Chapter III identifies damage in substructures with the extended Kalman filter 

from the measurements in the substructures only. This method was investigated by 

numerical studies of shear building, frame, and truss structures. The stiffness and 

damping were clearly identified. This chapter also used wavelet transform to detect 

damages that were presented in substructures.  

 Chapter IV presents the delamination detection of concrete structures by modal 
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identification from output-only data, which are, acceleration or velocity measurements. 

The applicability was first studied through simulations by finite element modeling. Then 

the experimental studies were carried out to test the proposed method of delamination 

detection and useful results were found. 

 Chapter V proposes to detect the occurrence of structural pounding by using 

wavelet scalograms of acceleration responses. The methods were examined by their 

applications in a numerical example as well as in shake table tests of a scale model of a 

steel bridge subjected to earthquake ground motion.  

 Chapter VI integrates the conclusions of the main work. Additionally, it gives 

suggestions for further studies.  
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CHAPTER II  
 

APPLICATION OF STOCHASTIC SUBSPACE IDENTIFICATION IN BRIDGE 

HEALTH MONITORING, AND STATISTICAL ANALYSIS OF INFLUENCES OF 

TEMPERATURE FLUCTUATIONS ON FREQUENCIES 

 

ABSTRACT 

 Forced vibration tests of civil engineering structures is not economical, and in 

many cases impractical or even impossible. As an alternative, ambient vibration tests and 

real-time monitoring have become more accepted. Both time and frequency domain 

system identification algorithms can be used for these output-only systems. This study 

used the data-driven subspace identification algorithms, which directly use the output 

time histories and don't need to compute the covariances. The purpose was to investigate 

the effectiveness and applicability of this type of algorithm in modal analysis of bridges 

by using output-only measurements. 

 The stochastic subspace identification (SSI) algorithm was examined through a 

numerical truss bridge as well as a real concrete girder bridge. In the modal 

identifications, the simulated dynamic responses of the truss bridge with abrupt damages 

during the excitation and the actual acceleration measurements by the real-time health 

monitoring system were used as the output data for the numerical truss bridge and the 

real highway bridge respectively. Stabilization diagrams with a range of model orders 

were used to determine the modal frequencies, damping ratios, and mode shapes.  

 As one of the environmental conditions, temperature fluctuations can have a great 

effect on the dynamic characteristics of a bridge. It is useful to learn the pattern of 

changes in frequencies due to temperature fluctuations. The variation of frequencies with 
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respect to temperature was investigated using one-year ambient vibration data of a 

highway bridge. The data were sufficient for statistical analysis with a large range of 

temperatures. The modal frequencies and temperatures were correlated, which shows that 

such correlations for most modes can be represented by single or bilinear lines, which are 

summarized later in the document. 

 

1.   Introduction 

 

 For structural health monitoring, the system identification methods are vital as 

well as challenging and are still in the development stage. Both frequency-domain and 

time-domain methods are used in this dissertation. Frequency-domain methods use either 

frequency response functions (FRFs) or output spectra as primary data. Time-domain 

methods use the input/output data directly or indirectly. Some time-domain methods use 

impulse response functions (IRFs) or directly input and output time histories as primary 

data. Output-only time-domain methods use output covariances or directly output time 

histories as primary data [1].  

 Brincker et al. [2] introduced the frequency domain decomposition method (FDD), 

which is user friendly as simple peak-picking method but is also capable of identifying 

even the closed modes using strong noise contaminated signals. This method has been 

used frequently as shown in literature, as we will see as we examine case studies in later 

sections. 

 Among time-domain methods, the subspace based identification method 

originally proposed in [3] has emerged and gained much attention over the past twenty 

years where, it has been applied effectively for various types of civil and mechanical 

structures. These algorithms are based on the concepts of system theory, linear algebra, 
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and statistics. The subspace methods can obtain linear models from column and row 

spaces of the matrices calculated from the input-output data. Normally, the column and 

row spaces contain the model information and Kalman filter (state sequence) information 

[4]. Subspace identification can be used to compute state space models for either 

deterministic system from input-output data or stochastic system from output only data. 

The deterministic and stochastic subspace identification can be treated as special cases 

and unified as a combined deterministic-stochastic identification to compute state space 

models from given input-output data. For the theorems and derivations of these 

algorithms, refer to Van Overschee and De Moor [4]. In this study, stochastic subspace 

identification (SSI) is used and investigated. 

 Peeters and Ventura [1] reviewed the benchmark work on evaluating the dynamic 

characteristics of a three-span reinforced concrete bridge in Switzerland, the Z240 bridge 

from forced, free and ambient vibration tests data. Both time and frequency domain 

modal analysis techniques were applied and compared. The frequency domain methods 

used were the peak-picking, the complex mode indication function and rational fraction 

polynomial. The time domain methods used were two-stage least squares, Ibrahim time-

domain, IRF-driven/covariance-driven subspace identification, and data-driven stochastic 

identification methods. It concluded that the subspace methods applied to all data sets 

produced the most complete and consistent modal parameter estimations.  

 The advantages of the subspace based identification algorithms are that the user 

has simple and few design variables, and that the methods are numerically robust and 

computationally simple [5]. Van Overschee and De Moor [6] derived two N4SID 

algorithms for identifying mixed deterministic-stochastic systems. These algorithms 
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determine state sequences using the projection of input and output data. These state 

sequences were outputs of non-steady state Kalman filter banks. Therefore it was easy to 

determine the state space system matrices. The authors found that because N4SID only 

use QR decomposition and singular value decomposition (SVD), they were convergent 

and numerically stable. Abdelghani et al. [7] compared three of the following subspace 

identification methods: the eigensystem realization algorithm with observer/Kalman filter 

Markov parameters (ERA/OM), the numerical algorithms for subspace state space system 

identification (N4SID) that has been implemented in MATLAB, and a refined multiple-

output error state space (MOESP) family of algorithms and concluded that 

N4SID/MOESP obtained better results than ERA/OM.  

 This study examined the applicability and effectiveness of stochastic subspace 

identification in modal identification of a numerical truss bridge, and a real bridge in 

section 3. The simulated acceleration response and actual acceleration measurements 

were used as output-only data for the identification of numerical model truss bridge and 

the real bridge respectively. The SSI identified frequencies of the real bridge from the 

measurements were compared with those by FDD algorithm. The effectiveness of the 

N4SID was investigated as a specific subspace algorithm in obtaining modal 

characteristics for the bridge under health monitoring.  

 This chapter also studies the environmental effects on the modal parameters based 

on one-year monitoring data of a highway bridge. The background and results are 

discussed in section 4. This section may be a stand-alone paper after further extensive 

work. 
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2.   Introduction of Subspace Based Identification 

 

 This section briefly summarizes the computational steps of using SSI algorithm to 

extract the modal characteristics of structures.  

 

2.1   State-space models of the vibrating structures 

 

 The equation of motion of the structure can be written as 

2( ) ( ) ( ) ( , ) ( )MU t C U t KU t F U t u t      (1) 

where 1 1

2M, C , K n n  are the mass, damping, and stiffness matrices respectively, 

  1 1U t n  is the displacement vector at time t, the superscript dot denotes the 

derivative with respect to time,   1 1U,t nF   is the external force applied at time t, 

which can be expressed as a multiplication of an influence matrix 1n m   and a vector 

  1u t m  denoting the time series of input data. 

 The state-space equations are a set of algebraic equations that describe the linear 

system internally [8]. They originate from control theory, and are also used in structural 

identification of civil/mechanical structures. Most of the state-space equations in this 

chapter are classical and extensive descriptions of them can be found in [9].  

 The Eq. (1) can be written as 

1 1 1 1 1, ,

1 1 1
2

0 0( )( )
( )

( )( )

n n n n nI U tU t
u t

U tU t M K M C M   

      
       

          




 (2) 

let 

1 1 1 1 1, ,

1 1 1
2

0 0( )
( ) , ,

( )

n n n n n

c c

IU t
x t A B

U t M K M C M   

    
      

        
  (3) 

where 1( ) nx t   (n = 2n1) is the state vector, 
n n

cA   is the state matrix, 
n m

cB   is 
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the input matrix. 

Eq. (1) thus can simplified as 

( ) ( ) ( )c cx t A x t B u t    (4) 

 Assume the output vector 1( ) ly t   composed of accelerations, velocities, and 

displacements, it can be expressed as 

( ) ( ) ( ) ( )a v dy t C U t C U t C U t     (5) 

Combing Eq. (5) and Eq. (1), it gives 

1
2( ) ( ) ( ) ( ) ( ) ( )a v dy t C M u t C U t KU t C U t C U t       
   (6) 

or in a simplified form 

( ) ( ) ( )c cy t C x t D u t    (7) 

where 1 1 1
2 ,c d a v a c aC C C M K C C M C D C M         , the 

l n
cC   is the output 

influence matrix, 
l m

cD   is the direct transmission matrix. 

 Equations (4) and (7) are the state-space equations of the dynamic system, which 

constitute the continuous-time state-space model. The order of the system is the 

dimension of the state matrix Ac. In most studies including this one, the accelerations are 

the only measurements, thus, output vector y(t) can be changed accordingly in the 

computation. 

 In reality, the vibration measurements are in discrete fashion. Suppose the 

constant time interval is t , the discrete-time model can be derived as 

     

     

1x k Ax k Bu k

y k Cx k Du k

  

 
  (8) 

where the elements in the Eq. (8) are defined as 
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'

0
; '; ;

( 1) [( 1) ]; ( ) ( )

c c
tA t A

c c cA e B B e d C C D D

x k x k t u k u k t

 
   

     

   (9) 

If Ac is asymptotically stable, i.e., the real parts of the eigenvalues are all negative, the A 

and B in Eq. (9) can be expanded into Taylor series and the series can converge. If all the 

eigenvalues Ac are non-zero values, B can be computed by   1
c cB A I A B  . The zero 

eigenvalues in the continuous-time dynamic model means rigid body modes. 

 The process noise w(k) due to disturbance and modeling inaccuracies, as well as 

observation noise v(k) due to device inaccuracies can be included into Eq. (8) 

     

     

1 ( )

( )

x k Ax k Bu k w k

y k Cx k Du k v k

   

  
 (10) 

The noise cannot be measured, but is assumed to be zero mean white vector sequence 

with covariance 

 p T T
q q pqT

p

Q Sw
E w v

v S R


   
   

     

 (11) 

where E denotes the expected values pq  denotes the Kronecker delta. 

 Equations (8) and (9) are the state-space discrete-time model for the deterministic 

system. Equation (10) is the state-space model for the combined deterministic-stochastic 

system. The subspace identification algorithms for these systems can be found in [4]. It 

must be stated that in this study, the focus is on the stochastic system. 

 For the ambient vibration tests or real-time monitoring of structures, the u(k) is 

unknown and omitted, therefore the input are modeled implicitly by noise only. However, 

the white noise assumption is still needed. The state-space equations of stochastic system 

are 
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   

   

1 ( )

( )

x k Ax k w k

y k Cx k v k

  

 
  (12) 

The wk and vk are zero mean white noise vector with covariances as in Eq. (11), 

independent of xk, 

[ ( )] 0; [ ( )] 0; [ ( ) ( )] 0; [ ( ) ( )] 0T TE w k E v k E x k w k E x k v k      (13) 

The stochastic process is assumed to be stationary, i.e., 

[ ( )] 0

[ ( ) ( )]T STY

E x k

E x k x k



 
  (14) 

Here the covariance matrix STY  is independent of the time k, which implies that A is 

stable. The output covariances can be defined as 

[ ( ) ( )] ( )TE y k i y k i     (15) 

The cross covariance of state and output is defined as 

[ ( 1) ( )]TE x k y k G    (16) 

It is easy to derive the following properties 

1

;

(0) ; ( )

STY STY T STY T

STY T i

A A Q G A C S

C C R i CA G

      

     
  (17) 

Equation (17) conveys that the output covariances can be treated as Markov parameters 

of the deterministic linear time-invariant system, which are A, G, C, Λ(0). More 

stochastic state-space models are displayed in [4]. All of these models are equivalent in 

nature. 

 Some notations used for the subspace algorithms are introduced here. The block 

Hankel matrices are vital in the algorithm; they are constructed using the output data. 



17 

 

0 1 1

1 2

1 2 0| 1 0|

0|2 1
1 1 |2 1 1|2 1

1 2

2 1 2 2 2

...

...

... ... ... ...

...

...

...

... ... ... ...

...

P

j

j

i i i j i iP
i

i i i j i i f i i

i i i j

i i i j

y y y

y y y

Yy y y Y YY
Y

y y y Y Y Y

y y y

y y y





   


     

  

  

 
 
 
 
 
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      
          
 
 
 
 
 

   
fY 

 
 
  

 (18) 

The number of block rows (i) should be large enough to obtain sufficient information, 

which at least needs to be greater than the order of the system that is expected to be 

identified. Let s denote the number of time samples. The number of columns (j) is usually  

s-2i+1.  

The extended observability matrix is defined as 

(i) 



 
 
 
  
 
   

 
  

 2

1

li n

i

C

CA

CA

CA


  (19) 

The {A,C} is assumed to be observable, which indicates that all the modes of the system 

can be observed. The reversed extended stochastic controllability matrix is defined as 

1 2i i n li(i) A G A G AG G        (20) 

The pair {A,Q
1/2

} is assumed to be observable, which indicates that all the modes of the 

system can be excited by noise. The block Toeplitz matrices Ti can be obtained from the 

output covariance matrices 
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( ) ( 1) (2) (1)

( 1) ( ) (3) (2)

( ) ( 2) ( 1) (4) (3)

(2 1) (2 2) ( 1) ( )

li li

i i

i i

T i i i

i i i i



      
      
 

        
 

              
         

   (21) 

 

2.2   Covariance-driven based stochastic 

        subspace identification 

 

 Based on equations (15) and (21), and the assumption of ergodicity, the block 

Toeplitz matrix can be written as the output function 

( ) T
f pT i Y Y   (22) 

From equations (17)-(21) , the block Toeplitz matrix Ti can be decomposed into 

( )T i (i) (i)    (23) 

Decomposing the block Toeplitz matrix by singular value decomposition (SVD)  

  11
1 2 1 1 1

2

0
( )

0 0

T
T T

T

VS
T i USV U U U S V

V

  
    

    

 (24) 

where li liU   and li liV   are orthonormal matrices, S is a diagonal matrix, S1 is a 

diagonal matrix with the zero diagonal values omitted. In the real world application, the 

values that are essentially small are treated as zeros and omitted. From equations (23) and 

(24), the extended observability and reversed extended observability matrices are 

obtained as 

1/2 1/2
1 1 1 1; T(i)=U S (i)= S V    (25) 

From the definitions of the (i)  and (i) , it is clear that the first l  rows of (i)  are 

equal to the matrix C, and the last l  columns of (i)  are equal to the matrix G. 

Define T(i+1) to be 
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( 1) ( ) (3) (2)

( 2) ( 1) (4) (3)

( 1) ( 3) ( 2) (5) (4)

(2 ) (2 1) ( 2) ( 1)

li li

i i

i i

T i i i

i i i i



      
       
 

         
 

              
         



 

then  

( 1)T i (i)A (i)     (26) 

Matrix A is obtained by solving Eq. (26) 

† †( ) ( 1) ( )A i T i i     (27) 

The (∙)
† 

here denotes Moore-Penrose pseudoinverse.  

 

2.3   Data-driven based stochastic subspace  

        identification 

 

 The principles and computational steps of the data-driven SSI method are 

introduced briefly and used in processing the ambient vibration data in this study.  

 The Kalman filter plays a vital role in deriving the algorithms for stochastic 

subspace identification. It is used to optimally predict the state vector, and can be defined 

by the following recursive formulas 

1

1

ˆ ˆ ˆ( ) ( 1) ( 1)( ( 1) ( 1))

( 1) ( ( 1) )( (0) ( 1) )

( ) ( 1) ( ( 1) )

( (0) ( 1) ) ( ( 1) )

T T

T T

T T T

x k Ax k K k y k Cx k

K k G AP k C CP k C

P k AP k A G AP k C

CP k C G AP k C





      

      

    

     

  (28) 

where hat (^) denotes the prediction, and the other symbols are same as those in section 

2.1.  

 The forward Kalman filter state sequence is defined as  

ˆ ˆ ˆ ˆ( ) [ ( ) ( 1) ( 1)] n jX i x i x i x i j        (29) 
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This sequence can be recovered from the observation data by the SSI algorithm. The 

backward Kalman filter can be found in [4], which is beyond the scope of this study. 

 Using the terms of Eq. (18), the projection of row space of future outputs on row 

space of past outputs is defined as 

†( ) / ( )T T
f p f p p p pi Y Y Y Y Y Y Y P  (30) 

and the SVD of the projection is 

  11
1 2 1 1 1

2

0
( )

0 0

T
T

T

VS
i U U U S V

V

  
   

    

P  (31) 

The main theorem for stochastic subspace identification algorithm in [4] clarifies that  

ˆ( ) ( )i (i)X iP   (32) 

Because rank ( ( )iP ) = n, 1 1 1; ;li n n n j nU S V       . From equations (31) and 

(32), the following extended observability and Kalman filter state sequence are given as 

1/2
1 1

†ˆ ( ) ( )

(i)=U S

X i (i) i



 P
  (33) 

The order of the system n can be determined as the number of non-zero singular values of 

S1 or the singular values greater than a user-defined small value. Let (i - 1)  denote 

(i)  without the last l  rows, thus the following equations can be derived 

1
ˆ/f p i(i - 1) Y Y (i - 1)X 
 P   (34) 

†
1

ˆ
iX (i - 1) (i - 1)  P   (35) 

The following equation can now be obtained below 

 
ˆ ( 1) ˆ ( )

( | )

w

v

AX i
X i

CY i i





 
  
    

  (36) 
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where Y(i|i) is a block Hankel matrix with one row of output data, the Kalman filter state 

and the output are known, ρw and ρv are the Kalman filter residuals uncorrelated with 

ˆ ( )X i , The matrices A and C can therefore be solved by least square method as  

 †
ˆ ( 1) ˆ ( )

( | )

A X i
X i

C Y i i

 
 

   
  (37) 

Solving the Lyapunov equation results in 

STY STY TA A Q      (38) 

and then using Eq. (17) to compute G and (0)  

(0)

STY T

STY T

G A C S

C C R

  

   
  (39) 

Now the matrices A, C, G, and (0)  are all available for modal analysis. 

 The above computation is based on all the available output data. Peeters and De 

Roeck [10] proposed an extension of the SSI algorithm called reference-based stochastic 

identification for output only modal analysis that used reduced output data.  

 

2.4   Extraction of modal characteristics 

 

 The modal characteristics include modal frequencies and damping ratios, mode 

shapes, and modal participation factors. In the output only system identification, the last 

term cannot be identified, while all the other parameters can be determined from the 

discrete state matrices A and C.  

 The matrix A can be decomposed as  

1A D      (40) 

where ( ) n n

rD diag    , r = 1, 2,∙∙∙, n, is a diagonal matrix containing the discrete time 
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complex eigenvalues, columns of n n contains the corresponding eigenvectors. For 

a continuous time system, the continuous state matrix Ac can be decomposed as 

1
C C C CA D     (41) 

where ,( ) n n

c c rD diag    , r = 1, 2, ∙∙∙, n, is a diagonal matrix containing the 

continuous time complex eigenvalues, columns of n n

c

  contains the corresponding 

eigenvectors. These eigenvalues and eigenvectors for the continuous-time state matrix are 

the same as those for the equation of motion of the structure in Eq. (1).  

Recall the relationship in Eq. (9) 

;CA t
cA e C C    (42) 

It is easy to derive that  

,

ln( )
;r

c r c
t


    


  (43) 

The eigenvalues of Ac can be expressed as the following pairs 

* 2

, ,, 1c r c r r r r rj           (44) 

where 
r  is the circular modal frequency of mode r, and 

r  is the modal damping ratio of 

mode r. 

The mode shapes can be computed from the eigenvectors and observation matrix 

c cC C       (45) 

 Analyzing the real measurements usually results in complex modes, whereas for 

light damping system, we use the amplitudes of complex mode shape with signs of the 

corresponding real parts to draw them as real mode shapes. 
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     (a) 

 

 
     (b) 

Figure 18. Modal frequency vs. temperature for the 5th and 12th frequencies, and the data 

fitting: (a) nonlinear fit model for the 5th frequency; (b) linear fit model for the 5th 

frequency; (c) nonlinear fit model for the 12th frequency; (d) linear fit model for the 12th 

frequency. 
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Figure 18. Cont'd 
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Table 9. Summary of the trends of modal frequency vs. temperature 

Figure 17. Modal frequency vs. temperature for 

the 1st frequency, and the data fitting 

 

2 lines intersect at 0ºC: both with a downward 

trend. The slope is larger before 0ºC. 

Figure 18. Modal frequency vs. temperature for 

the 5th and 12th frequencies, and the data 

fitting. 

 

2 lines intersecting at10ºC; Downward trend 

before 10ºC, upward trend after 10ºC. 

Figure 19. Modal frequency vs. temperature for 

the 3rd and 8th frequencies, and the nonlinear 

fit model. 

 

1 line with constant 0 slope, but with abrupt 

upward and downward around 0ºC. 

Figure 20. Modal frequency vs. temperature for 

the 24th frequency, and the nonlinear fit model. 

 

1 line with downward trend.  

Figure 21. Modal frequency vs. temperature for 

the 2nd and 10th frequencies, and the nonlinear 

fit models. 

 

1 line with flat trend. 

Figure 22. Modal frequency vs. temperature for 

the 22nd frequency, and the nonlinear fit 

model. 

1 line with upward trend. 9th has a small slope, 

and 22nd has a large slope after 0ºC. 

 

 

 N4SID is one of the subspace identification algorithms that can be used for both 

output-only and input-output systems. This study examined the effectiveness of N4SID in 

modal identification of the C846 highway bridge using ambient vibration measurements. 

The frequencies, mode shapes, and damping ratios were able to be determined. The 

frequencies obtained from the stabilization diagram corresponded with the values from 

the force vibration tests with differences of 0.16%~7.59%. It was observed from the 

stabilization diagrams that N4SID needs a much larger order than its theoretical value. 

When the system order number increases, the computation time also increases 

significantly, therefore, this algorithm is not recommended for large systems before 

significant improvement of its performance. 

 The mode shapes need further analysis. A denser layout of sensors on the highway 

bridge is needed to obtain complete mode shapes. The information for the mode shapes 
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different weights of these effects on each modal frequency resulted in unique correlations 

for each mode.  

 The variations of damping ratios and mode shapes need to be investigated in 

future studies. Also, temperature sensors are recommended to be installed on the bridge 

to provide exact temperatures.  
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CHAPTER III  
 

DAMAGE IDENTIFICATION OF SUBSTRUCTURES BY USING ADAPTIVE 

KALMAN FILTER AND WAVELET TRANSFORM 

 

ABSTRACT 

 Substructure identification is a method to address the numerical difficulty and 

insufficient sensors involved in structural identification of a large system. This method 

divides the structure into many small substructures and identifies them separately. 

Various structural identification algorithms have been applied in substructure 

identification that includes the extended Kalman filter, which has been used for 

identifying constant structural parameters. This study proposes to use the adaptive 

Kalman filter to identify varying properties of substructures. To investigate the 

effectiveness of the substructure identification by using adaptive Kalman filter, numerical 

studies were performed on a shear building, a plane frame, and a plane truss bridge. It 

was demonstrated that the stiffness and damping of substructures can be identified 

successfully from the limited acceleration responses and abrupt changes of these 

properties can be identified as well. Wavelet analysis was also proposed for damage 

detection of substructures and applied to the frame structure to show the ability of 

scalograms of acceleration responses in detecting and approximately locating changes of 

structural properties or damages. These studies can be very useful for structural health 

monitoring and structural model updating.  

 

1.   Review of the Applications of Substructural 

      Approach 

 

 For structural health monitoring of large structures, it is impractical to obtain 
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complete measurements due to the limited number of sensors and the difficulty of 

conducting field tests. In addition, it is inconvenient to identify a large number of 

unknown parameters in a full system because of numerical difficulty in convergence and 

accuracy [1]. Adopting the strategy of "divide-and-conquer," substructural identification 

is formulated to address this issue and assess localized damage. The purpose is to reduce 

a seemingly insurmountable problem into many smaller problems of manageable size, 

thereby improving numerical convergence and accuracy [2-3]. The effect of excitation 

can be expressed in terms of the responses at the interfaces, and therefore substructural 

identification may be carried out without measuring the actual input excitation to the 

structure [4]. 

 Efforts have been made to develop methods to eliminate the need for interface 

measurements and thus to reduce the computational costs. Koh and Shankar [2] proposed 

a method for parameter identification of substructures without the interface 

measurements. Tee et al. [1] presented a novel substructure strategy involving model 

condensation for stiffness matrix identification and damage assessment with incomplete 

measurement. Likewise, Sandesh [5] and Shankar  presented a method that requires only 

the acceleration measurement at the interior DOFs of the substructure. In [6], the 

equations of motion of the complete system were derived and the dimension was reduced 

considerably. In [7-8], the procedures of a dynamic stiffness method that reduce the 

global matrix dimension were proposed and improved. Weng et al. [9] proposed the 

modal truncation approximation in a substructuring method that only needs to calculate 

the lowest eigensolutions of the substructures.  

 The substructural identification has been used to determine the localized structural 
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damage. Park et al. [10], Sandesh and Shankar [5], and Skjaeraek et al. [11] also 

investigated methods for damage localization of structures. Okuma et al. [12], and Su and 

Juang [13] explored the possibility of performing system identification at the 

substructural level and then synthesizing the results to obtain an analysis model for the 

assembled structure.  

 The probabilistic approaches have been studied in [14-16] for substructure 

identification, by which the probability of different damage levels in each substructure 

can be computed. 

 To identify the dynamic properties of substructures, various system identification 

algorithms have been employed and discussed in the literature. Oreta and Tanabe [17] 

and Koh et al. [18] used the extended Kalman filter (EKF) with a weighted global 

iteration algorithm to formulate and solve state and observation equations. Tee et al. [19] 

employed the eigensystem realization algorithm (ERA) and the observer/Kalman filter 

identification (OKID). Huang and Yang [20] employed an adaptive damage tracking 

technique, the sequential nonlinear least-square estimation to identify damage to a 

complex structure. Bakhary et al. [21], Wu et al. [22], Xu [23], and Yun et al. [24] used 

the neural networks for identification. Rothwell et al. [25] used a short-time Fourier 

transform with an adaptive window width to analyze the transient response of radar 

targets. Koh et al. [3] used a non-classical approach of genetic algorithms. Ma and 

Vakakis [26] performed system identification of the dynamics using Karhunen-Loeve (K-

L) decomposition. Yun and Lee [4] derived an autoregressive moving average with a 

stochastic input (ARMAX) model for a substructure to process the noise-polluted 

measurement data.  
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 The substructural identification methods have been applied to damage 

identification of numerous types of structures. Some of the applications are briefly 

summarized here. The numerical/experimental studies using substructural identification 

methods were performed for shear buildings in [1, 3, 5, 15, 18, 23] and other lumped 

mass systems under different excitations [27]. The localized substructure identification of 

a shear building involving soil-structure interaction effects was presented in [28]. 

Substructuring approaches were applied for the parameterization of multi-story buildings 

in [10, 15-16]. The applicability and effectiveness of substructure identification methods 

in beam structures were investigated in [7-8, 29-31]. The substructure approaches were 

employed in estimating and tracking the stiffness and damping of truss structures [4, 18, 

20, 26, 32]. The use of the substructure methods to identify dynamic properties of plane 

frame structures were presented in [17-18, 27], and the use for multi-storey frames were 

studied in [1, 9, 12, 19, 21, 33]. The effectiveness of substructure approaches in plates 

and continuous concrete slabs were addressed in [34] and [21], respectively. The 

identification of linear and non-linear joint properties involving substructure methods can 

be found in [31, 34-38]. It was stated in [39] that in engineering dynamics, substructuring 

technique was first choice in solving large numerical systems and performing 

experimental analyses on large structures, and the technique has been applied to both 

civil  and mechanical structures. 

 The above literature review shows that the methodology of substructure was able 

to locate and quantify damage accurately for various types of structures from incomplete 

dynamic measurements by using different damage identification algorithms.  
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2.   Objective of this Study 

 

 The purpose of this study is to investigate the effectiveness of substructural 

identification of shear building, truss bridge and frame structure with abrupt degradation 

in stiffness and damping. The extended Kalman filter was used to identify dynamic 

properties and detect damage. Furthermore, the effectiveness of wavelets in damage 

detection of substructures was also investigated. The vibration-based damage 

identification by wavelet transform has been used for frame structures [40], beams and 

plates [41-42], and it has been studied extensively in the literature. The motivation for 

using wavelets in substructure identification is to provide immediate useful information 

for decision-making regarding maintenance of the structures based on damage assessment 

using wavelet analysis of the measurements from sparsely deployed sensors. 

 

3.   Formulation of Substructure 

 

 Without loss of generality, a linear elastic plane frame structure was used to 

illustrate the formulation of substructure identification. Figure 23 illustrates the frame and 

a substructure of it. The equation of motion of the entire structure can be expressed as 

( ) ( ) ( ) ( ) ( ) ( ) ( )M t U t C t U t K t U t F t   

  

(57) 

where M, C, K are the mass, damping and stiffness matrices of the entire structure, 

respectively, U is the displacement vector, the dot (∙) denotes derivative respect to time, 

and  F is the external excitation on the structures and can represent force or motion. 

 The equation of motion for the substructure can be extracted from the partitioned 

matrices of Eq. (57) as  
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Substructure 

ur 

us 

ud 

D 

uR 

uD 

R 

rr rs r rr rs r rr rs r r

sr ss sd s sr ss sd s sr ss sd s s

ds dd d ds dd d ds dd d d

M M O u C C O u K K O u F

M M M u C C C u K K K u F

O M M u O C C u O K K u F

          
                          
                      

 

 

 

(58) 

where U is replaced by u to denote displacement of substructures, O is zero block matrix, 

subscript „s‟ denotes internal DOFs of the substructure, subscripts „r‟ and „d‟ denote 

interface DOFs between the substructure and its neighboring structures, subscripts „R‟ 

and „D‟ denote the neighboring substructures shown in Figure 23(a).  

 To identify the structural parameters within the substructure, the second block 

matrix of Eq. (58) is taken to formulate a state equation as follows: 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

ss s ss s ss s s sr r sd d sr r

sd d sr r sd d

M u t C u t K u t F t M u t M u t C u t

C u t K u t K u t

     

  

    


  (59) 

The right hand side of Eq. (59) is treated as an input excitation to the substructure, the su , 

su , and su  are output responses.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  (a)      (b) 

Figure 23. Illustration of substructure: (a) Frame structure (b) A Substructure of the frame 

structure. 
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 The displacement, velocity and acceleration responses of all degrees of freedom 

within the substructure and at the interfaces of the substructure can be used for structural 

identification. In the structural identification by the adaptive Kalman filter algorithm in 

this study, not all these measurements are required. 

 The following state vectors are introduced into the state equation as 

1 ,1 ,2 ,

T

s s s nX u u u    ; 2 ,1 ,2 ,

T

s s s nX u u u      ;  3 1 2

T

mX      (60) 

where 1X  is the state for displacements, 2X  is the state for velocities, the array 3X

contains the unknown parameters to be determined, such as those in the M, C and K 

matrices. For convenience, more vectors, such as 4X , can be added for more unknown 

parameters. The state-space equations of the system may be expressed as  

1 2

1

2 3 3 2 3 1

3

( )[ ( ) ( ) ( ) ( ) ( )]

0

ss ss ss sr sd s

X X
d

X M X C X X K X X F t F t F t
dt

X



  
  

       
  

 

 (61) 

where 

3 3 3( ) ( ) ( ) ( ) ( ) ( ) ( )sr sr r sr r sr rF t M X u t C X u t K X u t        

3 3 3( ) ( ) ( ) ( ) ( ) ( ) ( )sd sd d sd d sd dF t M X u t C X u t K X u t        

The observation (measurement) equation is written as 

( ) ( ) ( ) ( )Y k H k X k v k    (62) 

where Y(k) is the discrete observation vector that contains the measurements, H(k) is the 

observation (measurement) matrix, v(k) is the noise vector with covariance R, k denotes 

time tk. Since acceleration is the most frequently used on-line dynamic response 

measurement, acceleration signals were investigated for structural identification in this 

study. 


