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IntroductIon

The carbon use efficiency (CUE) of microorganisms 
partitions the flow of carbon (C) through terrestrial eco-
systems, regulating atmospheric exchanges and soil C 
sequestration (Bradford et al. 2013, Clemmensen et al. 
2013). Microbial CUE is a critical parameter in ecosys-
tem models, but it is seldom measured directly because of 
the methodological difficulty of measuring in situ rates 
of microbial growth and respiration. Models commonly 
assume fixed values based on literature syntheses even 

though microbial CUE varies in response to available 
resources and biomass composition (Manzoni et al. 
2012, Sinsabaugh et al. 2013, 2015). This assumption 
reduces the accuracy and utility of terrestrial ecosys-
tem models that simulate soil C dynamics (Bradford 
and Crowther 2013, Lee and Schmidt 2014). At present, 
however, there are insufficient data to establish empirical 
relationships between CUE and its environmental cor-
relates that might improve the representation of CUE 
in ecosystem simulation models.

For microorganisms, CUE is most commonly defined 
as the ratio of growth to assimilation, measured in units 
of C, with assimilation estimated as the sum of growth 
(μ) and respiration (R): CUE = μ/(μ + R). In practice, 
there are multiple ways to estimate CUE. Microbial 

Stoichiometry of microbial carbon use efficiency in soils
robert L. SInSabaugh,1,9 benjamIn L. turner,2 jennIfer m. taLbot,3 bonnIe g. WarIng,4  

jennIfer S. PoWerS,4,5 cheryL r. KuSKe,6 daryL L. moorhead,7 and jennIfer j. foLLStad Shah8

1Department of Biology, University of New Mexico, Albuquerque, New Mexico 87131 USA
2Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Panama

3Department of Biology, Boston University, 5 Cummington Mall, Boston, Massachusetts 02215 USA
4Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota 55108 USA

5Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108 USA
6Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 USA

7Department of Environmental Sciences, University of Toledo, 2810 West Bancroft Street, Toledo, Ohio 43606 USA
8Environmental and Sustainable Studies Program, University of Utah, 260 South Central Campus Drive,  

Salt Lake City, Utah 84112 USA

Abstract.   The carbon use efficiency (CUE) of microbial communities partitions the flow 
of C from primary producers to the atmosphere, decomposer food webs, and soil C stores. 
CUE, usually defined as the ratio of growth to assimilation, is a critical parameter in 
ecosystem models, but is seldom measured directly in soils because of the methodological 
difficulty of measuring in situ rates of microbial growth and respiration. Alternatively, 
CUE can be estimated indirectly from the elemental stoichiometry of organic matter and 
microbial biomass, and the ratios of C to nutrient- acquiring ecoenzymatic activities. We 
used this approach to estimate and compare microbial CUE in >2000 soils from a broad 
range of ecosystems. Mean CUE based on C:N stoichiometry was 0.269 ± 0.110 (mean 
± SD). A parallel calculation based on C:P stoichiometry yielded a mean CUE estimate 
of 0.252 ± 0.125. The mean values and frequency distributions were similar to those from 
aquatic ecosystems, also calculated from stoichiometric models, and to those calculated 
from direct measurements of bacterial and fungal growth and respiration. CUE was directly 
related to microbial biomass C with a scaling exponent of 0.304 (95% CI 0.237–0.371) 
and inversely related to microbial biomass P with a scaling exponent of −0.234 (95% CI 
−0.289 to −0.179). Relative to CUE, biomass specific turnover time increased with a scaling 
exponent of 0.509 (95% CI 0.467–0.551). CUE increased weakly with mean annual tem-
perature. CUE declined with increasing soil pH reaching a minimum at pH 7.0, then 
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ratio of fungal : bacteria abundance and growth. Structural equation models that related 
geographic variables to CUE component variables showed the strongest connections for 
paths linking latitude and pH to β- glucosidase activity and soil C:N:P ratios. The inte-
gration of stoichiometric and metabolic models provides a quantitative description of the 
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growth can be measured as rates of biomass increase, 
protein synthesis, DNA replication, or consumption 
of 13C- labeled substrates. Respiration can be measured 
as rates of total CO2 efflux, 13CO2 efflux from labeled 
substrates, oxygen consumption, or respiratory electron 
transport. These methodological choices can lead to 
CUE estimates that vary by a factor of two or more. 
In general, broader measures of community growth 
(e.g., protein biosynthesis) and respiration (e.g., whole 
community CO2 efflux) yield lower values of CUE than 
estimates based on the uptake and respiration of specific 
substrates (Manzoni et al. 2012, Sinsabaugh et al. 2013). 
This methodological contingency complicates compari-
sons across studies and ecosystems, particularly for ter-
restrial soils, because it is difficult to measure microbial 
growth and respiration in a medium with discontinuous 
water availability in an environment where a substantial 
portion of the microbiota live in symbiotic association 
with plants (Manzoni et al. 2012, Sinsabaugh et al. 2013, 
Zechmeister- Boltenstern et al. 2015). As a consequence, 
there are relatively few estimates of microbial CUE in 
soils and it is difficult to parse methodological and mech-
anistic contributions to CUE variance.

An alternative to direct measurements of microbial 
respiration and growth is to estimate CUE from eco-
logical stoichiometry (Sterner and Elser 2002, Cherif  
and Loreau 2007). From this perspective, the CUE of 
an organism is a function of the difference between its 
elemental requirements for growth and the composition 
of environmental substrate. This relationship is most 
often expressed as

(1)

where X usually represents N or P; B
C:X is the elemental 

C:N or C:P ratio of biomass; AX is the apparent assimi-
lation efficiency for nitrogen (N) or phosphorus (P); and 
TERC:X is the threshold element ratio for C:N or C:P 
(Sterner and Elser 2002, Elser et al. 2003, Frost et al. 
2006). For osmotrophic bacteria and fungi, apparent 
assimilation efficiency is defined as the ratio of microbial 
substrate consumption to extracellular substrate genera-
tion (Sinsabaugh and Follstad Shah 2012). The TER is 
defined as the element ratio corresponding to balanced 
microbial growth, i.e., neither C nor nutrient limited.

Sinsabaugh and Follstad Shah (2012) extended this 
model by proposing that the TERC:X/BC:X term, which 
is difficult to estimate directly, was proportional to the 
term EEAC:X/(BC:X/LC:X), where EEAC:X is the ratio of eco-
enzymatic activities directed toward acquiring C and X 
from the environment, and LC:X is elemental composition 
of the substrate consumed. In this formulation, CUE 
is a function of the capacity of microbial communi-
ties, through physiological adaptation and population 
selection, to alter enzyme expression and biomass com-
position to mitigate differences between environmental 
resources and growth requirements, with the goal of 

maximizing growth rate. An assumption of this approach 
is that indicator enzyme activities have steady- state scal-
ing coefficients of approximately 1.0 in relation to micro-
bial production and organic matter concentration, which 
is supported by empirical data (Sinsabaugh et al. 2015). 
An additional assumption is that microbial communi-
ties exhibit optimum resource allocation with respect to 
enzyme expression and environmental resources (Alli-
son and Vitousek 2005, Hernandez and Hobbie 2010, 
Burns et al. 2013). A meta- analysis of environmental 
enzyme activities (V) in relation to substrate availability 
(S) yielded a common steady- state elasticity coefficient 
(ε = δ (ln V)/δ(ln S)) of approximately 0.5 for a wide 
variety of hydrolytic, oxidative, assimilatory, and dis-
similatory enzymes, indicating that enzyme expression is 
regulated at the transcription level to optimize respon-
siveness to fluctuations in substrate availability (Sinsa-
baugh et al. 2014).

From these relationships, CUE is calculated as 

(2)

S
C:X is a scalar that represents the extent to which the 

allocation of ecoenzymatic activities offsets the dis-
parity between the elemental composition of available 
resources and the composition of microbial biomass. On 
that basis, the half- saturation constant KX has a value 
of 0.5. CUEmax is the upper limit for microbial growth 
efficiency (0.6) based on thermodynamic constraints. 
This formulation is consistent with Michaelis- Menten 
kinetics and metabolic control analysis (Cornish- Bowden 
2012). In terms of the latter, increasing the activity or 
concentration of an enzyme at the beginning of a path-
way has progressively less effect on the flux through a 
pathway. For example, an increment in the abundance 
of extracellular enzymes that produce glucose will not 
proportionally increase glucose uptake or flux through 
the glycolysis pathway.

Using mean values for the parameters in Eq. 2, the 
average CUE for microbial communities in terrestrial 
soils, freshwater sediments, and planktonic environments 
was estimated as 0.29, 0.27, and 0.28, respectively (Sin-
sabaugh and Follstad Shah 2012). For comparison, a 
meta- analysis of bacterial and fungal CUE calculated 
from direct measurements of growth and respiration 
yielded mean CUE values of 0.336 ± 0.213 (mean ± 
SD) and 0.326 ± 0.196, respectively (Sinsabaugh et al. 
2015). Because the distribution of these data has a neg-
ative skew the median values (0.281 and 0.296, respec-
tively) more closely approximate the stoichiometric CUE 
estimates.

The principal advantages of estimating CUE from 
stoichiometric relationships are that (1) the component 
parameters can be readily measured, (2) the approach 
can be applied at high spatial and temporal resolution, 

TERC:X∕BC:X = AX∕CUE, or

CUE = (BC:X AX)/TERC:X

CUEC:X = CUEmax

[

SC:X/
(

SC:X + KX

)]

,

where SC:X =
(

1∕EEAC:X

)(

BC:X/LC:X

)

.
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and (3) the approach is phenomenological because CUE 
is calculated from variables known to influence CUE. 
Eq. 2 provides a template for establishing empirical rela-
tionships between CUE, organic matter composition, 
microbial biomass composition, nutrient availabilities 
and microbial metabolism. These relationships, in turn, 
provide a foundation for improving the representation 
of microbial processes in ecosystem simulation models.

We systematically evaluated Eq. 2 by assembling stoi-
chiometric data from studies that included measurements 
of the elemental C:N and C:P composition of soil organic 
matter and microbial biomass, and the potential activities 
of β- 1,4- glucosidase, β - 1,4- N- acetylglucosaminidase, 
leucine (alanine) aminopeptidase, and acid (alkaline) 
phosphatase, a total of 2046 cases representing approx-
imately 200 sites that span a broad range of natural and 
managed ecosystems (Table 1). CUE values were cal-
culated independently for C:N and C:P stoichiometries 
and compared with those reported from other studies.

The first step in our analyses was to examine the 
partial regressions between CUE and each of  its compo-
nent variables. The second stage compared the correla-
tion between CUE

C:N and CUEC:P and the dependence 
of  that relationship on the elemental N:P ratios of  bio-
mass and substrate. Next we evaluated the theoretical 
relationship between CUE and threshold element ratio 
(TER) by comparing TER values predicted from Eq. 1 
to empirical relationships between CUE and elemental 

substrate composition. From there, we determined the 
scaling coefficients for CUE and microbial biomass, 
i.e., the increment in CUE per increment in biomass, 
which, in turn, defined the relationship between CUE 
and biomass turnover rate. Finally, we rearranged Eq. 
2 to predict microbial nutrient use efficiencies and 
compared the values to those reported in other studies. 
For each stage of  analysis, we present empirical trends 
using partial regression models, highlight differences 
between ecosystems where comparisons were possible, 
and compare the results to other representations from 
the literature.

Collectively, these analyses provide a broad empirical 
evaluation of the relationships presented in Eqs. 1 and 
2 that can be applied to microbial process models. For 
larger scale comparisons, we used structural equation 
models to link CUE and its component parameters to 
master variables of mean annual temperature, mean 
annual precipitation and soil pH. These statistical mod-
els provide additional information for simulation models 
by resolving the relative strength of ecosystem variables 
on CUE variance.

methodS

Data from published studies

We searched the literature for studies of  terrestrial 
soil and litter that included, at a minimum, measure-
ments of  the potential activities of  β - 1,4- glucosidase 
(Bg) and β - 1,4- N- acetylglucosaminidase (NAg), and 
the elemental C and N content of  organic matter. The 
search yielded a total of  66 published studies (Table S1). 
Most studies (39) also included data on the potential 
activity of  leucine aminopeptidase (LAP), alanine ami-
nopeptidase (AAP), or other enzymatic indicators of 
proteolytic potential. Only 24 studies included direct 
measurements of  microbial biomass C and N content. 
Five studies included data on acid (alkaline) phosphatase 
activity (AP) and soil C:P ratio, and two studies included 
microbial biomass C:P ratio.

Data were extracted from tables and figures. In almost 
all cases, these values were presented as means from mul-
tiple samples collected from specific sites, treatments, 
horizons, or dates. For studies in which we participated 
directly, we included full data sets when each sample 
had independent measurements of the CUE component 
variables. In cases where there was only a single estimate 
of organic matter C:N or C:P ratio for a site, treat-
ment, or date, but multiple EEA samplings, the EEA 
data were averaged to create a single case for inclusion 
in the meta- analyses.

For each study, we also collected information on mean 
annual temperature (MAT), mean annual precipitation 
(MAP), soil pH, soil taxonomy, latitude, longitude, eleva-
tion, and ecosystem type (Appendix S1: Table S1). Notes 
on sampling and methodology were also included. The 
total number of cases from published studies was 794.

tabLe 1. Distribution of data cases by ecosystem type and 
soil horizon. 

Ecosystem and horizon Records Cases

Tropical forest
 Mineral soil 84 787
 Litter/organic 2 22
Arid/semiarid
 Mineral soil 7 117
 Litter/organic 2 17
Temperate grassland
 Mineral soil 4 66
 Litter/organic 3 9
Temperate deciduous forest
 Mineral soil 12 112
 Litter/organic 7 24
Temperate coniferous forest
 Mineral soil 28 280
 Litter/organic 23 234
Boreal forest
 Mineral soil 7 53
 Litter/organic 10 73
Arctic/alpine tundra
 Mineral soil 7 32
 Litter/organic 3 40
Agriculture
 Mineral soil 16 169

Note: Records are data sets that correspond to a specific 
site or treatment.
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Data from new studies

In addition to published studies, our meta- analysis also 
included previously unpublished data from the authors. 
The largest data set, 659 cases, comes from analyses of A 
horizons from 71 tropical forest sites in Panama conducted 
by Turner (Appendix S1: Table S2). These cases include 
measurements of soil and microbial biomass C, N, and P, as 
well as β - 1,4- glucosidase, β - 1,4- N- acetylglucosaminidase, 
and phosphatase. Analytical methods are described in 
Turner and Wright (2014).

Talbot et al. (2014) measured soil C and N and the activi-
ties of β - 1,4- glucosidase, β - 1,4- N- acetylglucosaminidase, 
and leucine aminopeptidase for O and A horizon sam-
ples from 27 pine forest sites distributed across North 
America, yielding 511 cases (Appendix S1: Table S3). 
Sampling strategy and analytical methods are described 
in Talbot et al. (2014).

Kuske et al. analyzed Oe, Oa, and A horizon samples col-
lected from the Duke Forest FACE site (North Carolina, 
USA) in October 2012 for soil C and N and the activities 
of β - 1,4- glucosidase, β - 1,4- N- acetylglucosaminidase 
and alanine aminopeptidase, yielding 36 cases divided 
between ambient and N- amended plots within rings 1, 
5, and 6 (Appendix S1: Table S4). Analytical methods 
follow those presented by Finzi et al. (2006).

Waring et al. (2015) analyzed A horizon soils collected 
in October 2013 from three tropical dry forests in Costa 
Rica for soil and microbial biomass C, N, and P and β 
- 1,4- glucosidase, β - 1,4- N- acetylglucosaminidase, leucine 
aminopeptidase, and phosphatase activities, yielding 42 
cases (Appendix S1: Table S4). Sampling strategy and 
analytical methods are presented by Waring et al. (2015). 
Metadata on latitude, longitude, MAT, MAP, altitude, and 
soil pH are also included in Appendix S1: Tables S2–S4.

Carbon use efficiency calculation

Microbial CUE was calculated using Eq. 2. EEA 
values were converted to units of  nmol per g dry mass 
per h, or nmol per g organic matter (OM) per h, in 
cases where OM concentrations per g dry mass were not 
provided. EEA

C:N was calculated as Bg/(NAg + PEP), 
where PEP represents leucine or alanine aminopeptidase 
(LAP or AAP), or in a small number of  cases other 
measures of  proteolytic activity (Appendix S1: Table S1). 
For studies involving acidic soils or litter that did not 
include measures of  proteolytic potential, we estimated 
LAP from a linear regression model, using data from 
similar studies (ln LAP = 0.65 × ln Bg – 0.43, R2 = 0.41, 
n = 192 soil samples). Peptidase activities in acidic soils 
were generally low, averaging 10.7% of  Bg and 11.6% of 
NAg, so the impact of  these estimates on EEAC:N is rel-
atively small. However, filling these gaps allows EEAC:N 
estimates from these studies to be directly compared to 
those from alkaline soil and aquatic environments, where 
LAP activity is often comparable to Bg in magnitude, 
and both activities are much greater than NAg (Sinsa-
baugh and Follstad Shah 2012).

Molar ratios of soil organic C : total N (SOC : TN) were 
used as estimates of LC:N. Microbial biomass C:N was also 
calculated as molar ratios. For studies that lacked direct 
estimates of microbial biomass C and N (Appendix S1: 
Tables S1–S4), we used a mean molar BC:N ratio of 8.6 based 
on the meta- analysis by Cleveland and Liptzin (2007).

Five published studies plus the tropical ecosystem 
studies by Turner (Appendix S1: Table S2) and Waring 
et al. (2015) included data for calculating microbial CUE 
from both C:P and C:N stoichiometry (n = 694 soil sam-
ples). For these cases, EEAC:P was calculated as the ratio 
of β - 1,4- glucosidase : acid (alkaline) phosphatase activity 
(Bg/AP). LC:P was calculated as the molar ratio of soil 
organic C : soil organic P. Total P was used when SOP 
was not available (about 30 cases), which increases the 
corresponding CUEC:P estimates. Three of the published 
studies lacked direct measurements of microbial biomass 
C and P. For those cases (n = 37 soil samples), we used 
a mean molar BC:P ratio of 60 (Cleveland and Liptzin 
2007) in the CUE calculations.

The data and resulting CUE calculations were also 
used to estimate values for two other parameters that 
appear in Eq. 1: apparent assimilation efficiencies for 
N and P (AN and AP) and the threshold element ratios 
(TER) for C:N and C:P. For our data, AN and AP esti-
mates were calculated as 

(3)

The threshold element ratios (TER) for C:N and C:P 
were calculated as 

(4)

Statistical analysis

Partial regressions were used to examine the relation-
ships between CUE and its component and cognate 
variables (StatPlus ver. 5.9.5, AnalystSoft Inc.). The 
regressions highlight the relative strength and residual 
distributions of various associations based on observed 
data. These relationships are intrinsically autocorrelated 
through Eqs. 1 and 2; no causality is assumed. The intent 
was to identify ecological trends and provide empirical 
relationships for process models.

At larger scale, the relationships between CUE, its com-
ponents and geographic variables were investigated using 
recursive structural equation models (SEM, Ωnyx, ver. 
1.06, University of Virginia & Max Planck Institute for 
Human Development). Our a priori C:N model included 
four observed exogenous variables (latitude, MAT, MAP, 
and soil pH) and five observed endogenous variables 
(Bg, NAg + LAP, LC:N, BC:N, CUEC:N). All variables 
were standardized using z- transformation to homogenize 
the variances. There were fixed covariance paths among 
each exogenous variable, and each exogenous variable 
was connected to each CUEC:N component variable by 
a free directional pathway. The four CUEC:N component 

AX = CUEC:X/SC:X =
[

CUEC:X/BC:X

]

LC:X EEAC:X.

TERC:X =
[

AX BC:X

]

/CUEC:X = LC:X EEAC:X.
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variables were interconnected by fixed covariance paths 
(disturbance correlations) and each of the four variables 
was linked to CUEC:N by a free directional path. The fixed 
covariance values were taken from a covariance matrix 
generated for the entire data set (n = 1827 soil samples, 
litter bag studies were excluded from the SEM). The same 
a priori design was used for the C:P model, substituting 
AP, LC:P, and BC:P and using covariance values specific to 
the data set. The a priori models were used to diagram 
the relative strength of the directional connections among 
variables. Nested post hoc models were created by progres-
sively deleting weak connections between exogenous and 
endogenous variables until a likelihood ratio threshold of 
P = 0.05 was approached.

reSuLtS

Carbon use efficiency and ecological stoichiometry

For the data set as a whole (n = 2046 soil samples), 
the arithmetic mean LC:N, BC:N, and EEAC:N ratios were 
22.2 ± 14.9 (mean ± SD), 7.91 ± 2.42, and 1.316 ± 1.214, 
respectively (Table 2). The CUEC:N estimates were normally 
distributed with an arithmetic mean of 0.269 ± 0.110 
(Table 2, Fig. 1). The arithmetic means for AN and TERC:N 
were 0.658 ± 0.213 and 28.8 ± 34.9, respectively (Table 
2). For the subset of wet tropical forest sites (Turner, 
Appendix S1: Table S2), the arithmetic means were LC:N 
13.8 ± 2.1, BC:N 5.97 ± 1.54, EEAC:N 1.095 ± 0.478, and 
CUEC:N 0.278 ± 0.077. For the subset of North American 

tabLe 2. Definitions, abbreviations, and mean values for parameters associated with carbon use efficiency calculations.

Stochiometric parameter Abbreviation
Arithmetic 
mean SD Median

geometric  
mean Cases Range

Labile organic matter C:N ratio LC:N 22.2 14.9 16.7 19.3 2046 4.2–185
Microbial biomass C:N ratio BC:N 7.91 2.42 8.60 7.59 2046 1.2–44
Ecoenzymatic activity C:N ratio EEAC:N 1.316 1.214 1.022 0.988 2046 0.1–20
Carbon use efficiency from C:N data CUEC:N 0.269 0.110 0.267 0.243 2046 0.022–0.563
Apparent assimilation efficiency for N AN 0.658 0.213 0.667 0.609 2046 0.074–1.0
Threshold element ratio for C:N TERC:N 28.8 34.9 17.4 19.0 2046 1.1–393
Nitrogen use efficiency NUE 0.804 0.137 0.834 0.787 2046 0.05–0.91
Labile organic matter C:P ratio LC:P 1211 1074 890 897 713 42–8962
Microbial biomass C:P ratio BC:P 42.2 49.6 31.5 33.2 700 5–309
Ecoenzymatic activity C:P ratio EEAC:P 0.180 0.198 0.124 0.107 707 0.01–1.11
Carbon use efficiency from C:P data CUEC:P 0.252 0.125 0.242 0.216 694 0.02–0.57
Apparent assimilation efficiency for P AP 0.687 0.240 0.714 0.632 696 0.06–1.0
Threshold element ratio for C:P TERC:P 138 235 92.3 96.6 694 10–3257
Phosphorus use efficiency PUE 0.814 0.145 0.855 0.797 694 0.17–0.99

FIg. 1. Frequency distribution of  soil microbial carbon use efficiencies (CUE) calculated from stoichiometric C:N and C:P 
models. The median values for CUEC:N and CUEC:P are 0.27 (n = 2046) and 0.24 (n = 694 cases), respectively.
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conifer sites (Talbot et al., Appendix S1: Table S3), 
the arithmetic means were LC:N 30.5 ± 12.2, EEAC:N 
1.422 ± 1.017, and CUEC:N 0.218 ± 0.096.

For studies that included data on C:P stoichiometry 
(n = 713 soil samples), the arithmetic mean LC:P and BC:P 
ratios were 1211 ± 1074 (mean ± SD) and 42.2 ± 49.6, 
respectively (Table 2). The arithmetic mean EEAC:P ratio 
was 0.180 ± 0.198, indicating strong P limitation. The 
arithmetic mean CUEC:P was 0.252 ± 0.125. The CUEC:P 
distribution showed a slight positive skew (0.08) with a 
median value of 0.242 (Table 2, Fig. 1). The arithme-
tic means for AP and TERC:P were 0.687 ± 0.240 and 
138 ± 235, respectively (Table 2).

Among its component variables, CUEC:N was most 
closely associated with EEAC:N and LC:N. Excluding 
cases that lacked direct measures of peptidase activity, 
CUEC:N declined as EEAC:N (R2 = 0.79, Fig. 2A) and LC:N 
(R2 = 0.23, Fig. 2B) increased. Excluding cases that lacked 
direct measures of biomass C and N, CUEC:N increased 
with BC:N (R2 = 0.20, Fig. 2C) and BC:N/LC:N (R2 = 0.24, Fig. 

2D). The regression model [CUEC:N = −0.09612(ln LC:N) 
– 0.12145(ln EEAC:N) + 0.5525] accounted for 88.5% of 
the variance in CUEC:N (F = 7887, n = 2046 soil samples).

In contrast, CUEC:P was most closely associated with 
BC:P (R2 = 0.60, Fig. 3C) and EEAC:P (R2 = 0.38, Fig. 3A) 
and only weakly correlated with LC:P (R2 = 0.01, Fig. 3B) 
and BC:P/LC:P (R2 = 0.17, Fig. 3D). The poor relation-
ship with LC:P and CUEC:P suggests that the SOC : SOP 
ratio was not a good indicator of P bioavailability. The 
regression model [CUEC:P = 0.1246(ln BC:P) – 0.0569(ln 
EEAC:P) – 0.3109] accounted for 73.2% of the variance 
in CUEC:P (F = 945, n = 694 soil samples).

The CUE estimates calculated independently from 
C:N and C:P stoichiometry were weakly correlated 
(R2 = 0.16, Fig 4A) because N:P ratios varied among 
samples. The regression slope (0.57, 95% CI 0.47–0.67) 
was equal to the product of mean EEAN:P (0.105) and 
mean BN:P (5.441) and the intercept was equal to 1/LN:P. 
The two values converge when normalized to LN:P 
(R2 = 0.79, Fig. 4B).

FIg. 2. Soil microbial carbon use efficiency (CUE) in relation to its component C:N variables. (A) The ratio of  ecoenzymatic C 
and N acquisition activities (EEAC:N): CUE = −0.1234 × ln(EEAC:N) + 0.2498, R2 = 0.79, n = 1037 soil samples, F = 3829. (B) Soil 
C:N ratio: ln(CUE) = −0.01587 × LC:N − 1.0617 R2 = 0.23, n = 2046 soil samples, F = 602 (where LC:N is the labile organic matter 
C:N ratio). (C) Microbial biomass C:N ratio (BC:N): CUE = 0.1148 × ln(BC:N) + 0.0737, R2 = 0.195, n = 964 soil samples, F = 232. 
(D) The ratio of  biomass C:N and soil C:N: CUE = 0.1092 × ln(BC:N/LC:N) + 0.3714, n = 2046 soil samples, R2 = 0.24, F = 632.
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The CUE estimates for C:N and C:P stoichiom-
etry can also be linked through threshold element 
ratios (Fig. 5A, C). The two values were equal only 
when the ratio of  TERC:P to TERC:N corresponded 
to the mean N:P ratio of  microbial biomass (BC:P/B-

C:N = 42.1/6.4 = 6.6).
For the data set as a whole, the C:N ratio of soils 

often overlapped with the TERC:N with peak CUEC:N 
occurring at LC:N ratios somewhat greater than the esti-
mated TERC:N (LC:N – TERC:N ≈ 10–30, Fig. 5B). But for 
tropical systems, the C:P ratios of organic matter were on 
average 10× greater than the TERC:P. As a result, there 
was no trend between (LC:P – TERC:P) and CUEC:P (Fig 
5D), consistent with the weak relationship between LC:P 
and CUEC:P shown in Fig. 3B.

Sinsabaugh and Follstad Shah (2012) suggested 
that the square root of  the product CUEC:N × CUEC:P 
might be a better estimate of  microbial community 
CUE given the methodological problems intrinsic to 
measurements of  microbial biomass composition and 
ecoenzymatic potential, and the tenuous connection 
between the bulk elemental composition of  organic 
matter and the labile substrate consumption of  micro-

bial communities. This calculation yielded an average 
CUE of  0.255 ± 0.092 (mean ± SD, n = 692 soil 
samples) for our tropical data sets (Tables S2 and S4). 
This composite CUE increased as microbial biomass 
C increased with a scaling coefficient (δ ln(CUE)/δ 
ln(MBC)) of  0.302 ± 0.057 (95% CI, R2 = 0.144, 
n = 641, F = 108, Fig. 6A). A parallel regression 
showed that CUE decreased as microbial biomass P 
increased with a scaling coefficient of  −0.254 (95% CI 
−0.296 to −0.212, R2 = 0.174, n = 653 soil samples, 
F = 137, Fig. 6B). The relationship between CUE 
and microbial biomass N was weak with a scaling 
coefficient of  0.069 (R2 = 0.01, n = 620 soil samples, 
F = 4.3, P = 0.038) that was not significantly different 
from zero.

Carbon use efficiency and fertilization

Our meta- analysis included data from agricultural 
sites as well as results from natural systems that were 
experimentally manipulated with nutrient additions. For 
the data set as a whole, the mean CUEC:N for fertilized 
soils (agricultural systems and experimental nutrient 

FIg. 3. Soil microbial carbon use efficiency (CUE) in relation to its component C:P variables. (A) The ratio of  ecoenzy-
matic C and P acquisition activities: CUE = −0.0739 × ln(EEAC:P) + 0.0858, R2 = 0.380, n = 691 soil samples, F = 422. (B) Soil 
C:P ratio: CUE = 0.0178 × ln(LC:P) + 0.1327, n = 689 soil samples, R2 = 0.012, F = 8.0, P = 0.0047. (C) Microbial biomass C:P 
ratio: CUE = 0.169 × ln(BC:P) − 0.3291, R2 = 0.604, n = 650 soil samples, F = 990. (D) The ratio of  biomass C:P and soil C:P: 
CUE = 0.05585 × ln(BC:P/LC:P) + 0.43815, n = 694 soil samples, R2 = 0.168, F = 140.
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manipulations) did not differ from that of  unfertilized 
soils (fertilized CUE 0.285, n = 199 soil samples, unfer-
tilized CUE 0.278, n = 183 soil samples, F = 0.50). 
Fertilization may have affected growth rates, but physi-
ological adaptation and population selection appeared 
to stabilize CUEC:N.

Carbon use efficiency and biomass turnover

Three studies included estimates of  respiration rate 
per unit biomass (R/B, also known as qCO2). From these 
values, biomass turnover rate (μ/B) was calculated as 
qCO2 CUEC:N/(1 − CUEC:N), where CUE in this case 
was defined as μ/(μ + R). Biomass turnover time (TB) 
decreased with increasing CUE (R2 = 0.40) with a mean 
value of  58 d (Fig. 7A). Extrapolating this regression 
to the full data set yielded a mean microbial biomass 
turnover time of  67 ± 22 d (mean ± SD).

A more comprehensive approach to linking CUE and 
biomass turnover is to describe how each changes in 

response to biomass increments. Sinsabaugh et al. (2015) 
found that growth increased with biomass with an expo-
nent of approximately 0.75 (R2 ≈ 0.6) for both bacteria 
and fungi. To estimate growth (μ) from biomass, we 
normalized this regression to our data (i.e., shifted the 
intercept) by assuming a specific growth rate of 0.001 h−1 
at mean biomass concentration (62.2 mol C/g), based on 
a mean qCO2 of 0.003 h−1 for soil microbes (Spohn 2015) 
and a mean CUE of 0.25. Because production rate scales 
sublinearly (~0.75) with biomass, biomass turnover 
time increases as biomass increases. CUE also increases 
with biomass but the scaling coefficient is smaller (~0.30, 
Fig. 6A). When directly compared, the net effect is that 
biomass specific turnover time and biomass specific CUE 
have a scaling coefficient of 0.509 ± 0.041 (δ(ln TB)/δ(ln 
CUE); Fig. 7B).

A coefficient of about 0.5 is implicit in the regression 
models presented by Sinsabaugh et al. (2015) because 
production rate was proportional to B0.75 and CUE was 
proportional to B0.25. But unlike the earlier study, the 
CUE values in the current study (Fig. 7B) are indepen-
dent of the biomass turnover estimates because CUE 
was calculated from stoichiometric parameters (Eq. 2) 
while the biomass turnover rates were generated from a 
growth vs. biomass regression.

Nutrient use efficiency

An inverse relationship between CUE and nutrient 
use efficiency is intrinsic to the stochiometric model 
presented in Eq. 2. Because C supplies both the energy 
and the mass for growth, the upper limit for CUE is 
about 0.6. This constraint does not apply to N or P use 
efficiency (NUE, PUE). If  NUE or PUE can range to 
1.0, then Eq. 2 can be rearranged as 

(5)

where X represents N or P, KC = 0.5, and XUEmax = 1.0. 
From Eq. 5, the mean NUE and PUE values for our 
data were 0.804 ± 0.137 (mean ± SD) and 0.814 ± 0.145, 
respectively (Table 2, Fig. 8).

Carbon use efficiency and geographic variables

We used structural equation models to assess whether 
the local variables used to calculate CUE were correlated 
with a broader set of  geographic variables. For the full 
data set, latitude, MAT, and MAP were highly cor-
related (latitude and MAT r = −0.94, latitude and MAP 
r = −0.71, MAT and MAP r = 0.66) with much weaker 
correlations with soil pH (r < |0.1|; Fig. 9). None of  these 
variables had strong direct links to CUEC:N (R2 < 0.05). 
The CUE component variables were also highly cor-
related as presented above. For the standardized variables 
in the SEM, the strongest correlations were between Bg 
and NAg + LAP (r = 0.88) and BC:N and LC:N (r = 0.40). 

XUEX:C = XUEmax

[

SX:C/
(

SX:C + KC

)]

,

where SX:C =
(

1- EEAX:C

)(

BX:C/LX:C

)

FIg. 4. Comparison of  CUE estimates from C:N and  
C:P stoichiometry. (A) CUEC:P vs. CUEC:N: CUEC:P =  
0.568 × CUEC:N + 0.0911, R2 = 0.162, n = 690 soil sam-
ples, F = 133. (B) CUEC:P vs. CUEC:N normalized to 
the substrate N:P ratio (LN:P): (CUEC:P/LN:P) = 0.9697 
(CUEC:N/LN:P) + 0.00035, R2 = 0.792, n = 688 soil samples, F = 
2615.
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The post hoc SEM (Fig. 8) deleted three paths relative 
to the a priori model (latitude → NAg + LAP, MAT 
→ LC:N, pH → BC:N; likelihood ratio for nested post hoc 
model P = 0.14, χ2 = 666, df  = 19, n = 1827 soil samples, 
P < 0.001). The strongest regression coefficients for the 
ecosystem to enzyme paths were latitude → Bg (−0.20) 
and MAT → Bg (−0.35, Table 3). The strongest paths 
from geographic variables to elemental ratios were lat-
itude → LC:N (0.39) and latitude → BC:N (0.27). In turn, the 
direct linear paths linking the four CUEC:N component 
variables to CUEC:N captured 16% of  the variance in 
CUEC:N. The actual relationships between these variables 
and CUEC:N are defined by Eq. 2 and described by the 
nonlinear correlations presented in Fig. 2.

The a priori SEMs for the subset of  tropical forest A 
horizon soils (Turner, Appendix S1: Table S2) did not 
include MAT as a variable because all sites had a MAT 
of  26°C. The strongest correlation among ecosystem 
variables was between latitude and MAP (r = 0.88). 
The correlations among the CUEC:N component vari-
ables were weaker than those in the global model, with 

the greatest correlation between Bg and NAg + LAP 
(r = 0.54). The reduced post hoc model deleted four 
paths (pH → NAg + LAP, MAP → LC:N, latitude → 
LC:N, pH → BC:N; likelihood ratio for nested post hoc 
model P = 0.115, χ2 = 64.7, df  = 24, n = 657 soil 
samples, P < 0.005). The three geographic variables 
had moderate to strong path coefficients for all of  the 
CUEC:N component variables (|0.13 −0.38|, Table 3). In 
turn, the direct linear paths linking the four CUEC:N 
component variables to CUEC:N captured 86% of  the 
variance in CUEC:N (Appendix S1: Fig. S1).

For the same subset of  tropical forest A horizon soils 
(Turner, Appendix S1: Table S2), the strongest correlation 
among the CUEC:P component variables was between 
phosphatase activity and LC:P (r = 0.74). The post hoc 
SEM deleted three paths (latitude → BC:P, MAP → 
Bg, latitude → LC:P, latitude → phosphatase; likelihood 
ratio for nested post hoc model P = 0.137, χ2 = 136.6, 
df  = 15, n = 613 soil samples, P < 0.001, Appendix S1: 
Fig. S2). Soil pH had moderate to strong path links 
to each of  the four CUEC:P component variables (|0.17 

FIg. 5. CUE and threshold element ratios (TER). (A) ln(CUEC:N) = −0.5227 × ln(TERC:N) + 0.1296, R2 = 0.86, n = 2021 soil 
samples, F = 12332. (B) CUEC:N in relation to the difference between the C:N ratio of  available substrate (LC:N) and the threshold 
element ratio (TERC:N). (C) ln(CUEC:P) = −0.7013 × ln(TERC:P) + 1.659, R2 = 0.71, n = 671 soil samples, F = 1640. (D) CUEC:P in 
relation to the difference between the C:P ratio of  available substrate (LC:N) and the threshold element ratio (TERC:P).
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– 0.50|). MAP had strong links to three CUEC:P compo-
nent variables (AP, BC:P, and LC:P, 0.24–0.48, Table 3).  
In turn, the direct linear paths linking the four CUEC:P 
component variables to CUEC:P captured 76% of  the 
variance in CUEC:P.

For the subset of North American conifer forest 
soils (Talbot et al., Appendix S1: Table S3), the a priori 
SEM did not include BC:N because these values were not 
directly measured. The correlations among climatic vari-
ables were similar to those for the global model, but the 
connections between climate variables and soil pH were 
stronger (|0.37–0.45|). Among the CUEC:N component 
variables, only Bg and NAg + LAP were strongly cor-
related (r = 0.85). The post hoc model deleted five paths 
(MAT → Bg, MAP → Bg, pH → NAg + LAP, MAP 
→ NAg + LAP, MAT → NAg + LAP; likelihood ratio 
P = 0.218, χ2 = 390.6, df = 26, n = 493 soil samples, 
P < 0.001, Appendix S1: Fig. S3), LC:N was linked to 
all of the ecosystem variables by strong negative regres-
sion coefficients (−0.73 to −0.31, Table 3). In turn, the 
direct linear paths linking the three CUEC:N component 

variables to CUEC:N captured only 6% of the variance in 
CUEC:N, likely because of the lack of case- specific BC:N 
values (Appendix S1: Fig. S3).

Horizon- specific SEMs had stronger connections 
between the geographic and CUEC:N component vari-
ables and between the three CUEC:N component vari-
ables and CUEC:N (Table 3). The SEM for the O horizon 
deleted two paths (MAP → NAg + LAP, pH → Bg; 
likelihood ratio P = 0.218, χ2 = 72.9, df = 23, n = 228 
soil samples, P < 0.005, Appendix S1: Fig. S4) and cap-
tured 31% of the variance in CUEC:N. The SEM for the A 
horizon deleted two paths (MAP → NAg + LAP, MAP 
→ Bg; likelihood ratio P = 0.247, χ2 = 68.9, df = 23, 
n = 265 soil samples, P < 0.005, Appendix S1: Fig. S5) 
and captured 18% of the variance in CUEC:N.

Across the six SEMs, all post hoc models included paths 
from latitude to Bg, and pH to LC:N or LC:P (Table 3). Five 
SEMs included paths from pH to Bg and MAP to LC:N 
(or LC:P). The regression coefficients for the pH to LC:N 

FIg. 6. Carbon use efficiency in relation to microbi-
al biomass carbon (MBC). (A) CUE vs. MBC: ln(CUE) =  
0.302 × ln(MBC) − 3.373, 95% CI for slope ± 0.067, 
R2 = 0.144, n = 641 soil samples, F = 108. (B) CUE 
vs. MBP: ln(CUE) = −0.254 × ln(MBP) − 0.395, 95% 
CI for slope ± 0.056, R2 = 0.174, n = 653 soil samples,  
F = 137.

FIg. 7. Microbial biomass turnover time (TB) in relation to 
carbon use efficiency (CUE). (A) Turnover time calculated from 
qCO2 data: TB = −197.98CUE + 120.08, R2 = 0.40, n = 28 soil 
samples, F = 17.0, P = 0.00034. (B) Scaling of  biomass specific 
turnover time and CUE: ln(TB/MBC) = 0.509 × ln(CUE/M-
BC) + 2.443, 95% CI for slope 0.467–0.551, R2 = 0.474, n = 641 
soil samples, F = 575.
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(or LC:P) paths were all negative. The coefficients for the 
MAP to LC:N paths were negative; the MAP to LC:P coef-
ficient was positive (0.32). BC:N and BC:P had the fewest 
connections to the geographic variables. As expected from 
Eq. 2, all Bg to CUE and L to CUE paths had negative 
coefficients, and all NAg + LAP (or AP) paths to CUE 
and BC:N (or BC:P) to CUE paths had positive coefficients.

There were weak macroscale trends between 
CUE and both pH and MAT. The relationship 
between soil pH and CUE was mediated by sig-
nificant correlations between pH, LC:N, LC:P and 
Bg as shown by the structural equation models. 
CUE generally declined with pH for both conifer 
and tropical forest soils (for conifer forest CUEC:N =  
−0.0246pH + 0.3432, R2 = 0.041; for tropical forest 
CUEC:N = −0.0197pH + 0.4001, R2 = 0.065; for tropical 
forest CUEC:P = −0.0472pH + 0.5066, R2 = 0.142; Fig. 
10A). When these data sets were excluded, the pH trend 
for the remaining data reversed, pulled by Aridisols 
with high pH and high CUE. As a result, the global 
data showed a CUE minimum at pH 7 (Fig. 10B).

The association between MAT and CUE was 
more diffuse. While some direct paths between MAT 
and CUE component variables were significant, it 
appeared that indirect paths through latitude and 
MAP to LC:N, LC:P, and Bg were at least as influential. 
Within the conifer forest data set, ln(CUE) increased 
with MAT (0.0154°C−1 (95% CI 0.0079–0.0229°C−1), 
corresponding to an apparent activation energy of 
0.101 ± 0.51 eV as estimated by the Arrhenius equa-
tion, Fig. 11). The broader data set showed a similar 
trend (0.0150°C−1 ± 0.0053, apparent activation energy 
of  0.119 ± 0.036 eV). The tropical forest data were 
excluded from these analyses because all sites had the 
same MAT of  26°C.

dIScuSSIon

Stoichiometric comparisons

Several measures included in our data have been the 
subject of  other meta- analyses. Our mean biomass C:N 
ratio of  7.91 ± 0.05 (mean ± SE) for soil microbiota 
approximated the values of  8.6 ± 0.3 (mean ± SE) 
 calculated by Cleveland and Liptzin (2007) and 7.6 (no 
error estimate provided) reported by Xu et al. (2013). 
For 45 taxa of  Ascomycota, Basidiomycota, and Zygo-
mycota isolated from grassland litter, the mean C:N 
ratio was 8.3 (95% CI 7.2–9.4); for 42 cultures of  Act-
inobacteria, Proteobacteria, and Bacteriodetes from 
the same litter, the C:N ratio was 6.1 (95% CI 5.5–6.7; 
Muoginot et al. 2014). The mean EEAC:N ratio for our 
data set (1.335, 95% CI 1.282–1.388) was similar to 
that reported for terrestrial soils by Sinsabaugh and 
Follstad Shah (2012) (1.434, 95% CI 1.214–1.654). 
Mean estimates for the ratio of  SOC : TN (14.3 from 
Cleveland and Liptzin [2007] and 16.4 from Xu et al. 
[2013]) were lower than the LC:N mean of  19.6 for 
our data, which combined measurements from both 
mineral and organic horizons.

The mean microbial biomass C:P ratio (42.2 ± 1.9; 
mean ± SE) for our largely tropical forest data was 
lower than the mean of  59.5 ± 3.6 (mean ± SE) reported 
by Cleveland and Liptzin (2007) but similar to the mean 
of  42 reported by Xu et al. (2013). The EEAC:P ratio of 
0.180 (95% CI 0.165–0.195) was lower than the mean 
of  0.617 (95% CI 0.572–0.662) reported by Sinsabaugh 
and Follstad Shah (2012) for a data set dominated by 
temperate and boreal systems, but similar to the ratio 
of  0.21 (95% CI 0.16–0.27) ratio reported for tropical 
systems by Waring et al. (2014). The mean ratio of 
SOC : TP for our tropical sites was 278 (95% CI 258–
298) compared to values of  186 and 287 calculated 
by Cleveland and Liptzin (2007) and Xu et al. (2013), 
respectively. However, for the CUEC:P calculations we 
defined LC:P as the ratio of  SOC : SOP. For tropical 
soils, SOP is approximately 25% of  total P (Turner 
and Engelbrecht 2011). Our mean SOC : SOP value of 
1211 and yielded a mean CUEC:P estimate of  0.252, 
which approximated the mean CUEC:N estimate of  0.287 
for these sites (Table 2). For reference, inflating the 
apparent bioavailability of  P by substituting SOC:TP 
for LC:P yields a mean CUEC:P value of  0.38, which is 
inconsistent with the low EEAC:P ratios observed and 
the generally low bioavailability of  P in tropical soils 
(Vitousek et al. 2010).

The exercise highlights the difficulty of estimating bio-
available P from chemical measures. Our assumption is 
that much of the organic P is potentially available, which 
is supported by its chemical composition and apparent 
dynamic nature over relatively short timescales in tropi-
cal forests (Vincent et al. 2010, Turner and Engelbrecht 
2011, Turner et al. 2015). This limitation, along with a 
broader range of biomass C:P composition and uncou-
pled pathways for C and P uptake, produces greater 

FIg. 8. Nutrient use efficiency (XUE), calculated from Eq. 
5, in relation to carbon use efficiency (CUE), calculated from 
Eq. 2. The relationship follows a polynomial regression: XUE 
= −12.922(CUE)4 + 9.408(CUE)3 − 3.5401(CUE)2 − 0.0601(C
UE) + 0.9872, R² = 0.99987, where XUE is N or P use efficiency. 
XUE = CUE at a value of  0.48 (shown by crossed horizontal 
and vertical lines).
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heteroscedasticity among the CUEC:P component vari-
ables, relative to CUEC:N (Figs. 2 and 3). Despite these 
problems, the often contrasting values for CUEC:N and 
CUEC:P converge when normalizing to the N:P ratio of 
available resources (LN:P, Fig. 4).

Frequency distributions of CUE

The frequency distribution of CUE estimates for soil 
microbial communities was similar to that for fresh-
water sediments calculated with the same stoichiometric 
model (Fig. 12). The arithmetic mean CUE for fresh-
water sediments (0.267 ± 0.087 [mean ± SD], median 
also 0.267, n = 2100 samples [Hill et al. 2012]) is nearly 
identical to the mean CUE of terrestrial soil and litter 
(0.269 ± 0.110, n = 2046 soil samples, median = 0.267, 
Table 2). A meta- analysis of the CUE of bacterial-  and 
fungal- dominated communities, calculated from direct 
measures of microbial growth and respiration, averaged 
0.336 ± 0.213 (median 0.281, n = 932) for bacteria and 
0.326 ± 0.196 for fungi (median 0.296, n = 398 samples 
[Sinsabaugh et al. 2015]). Compared to the stoichiometric 
CUE estimates, which were normally distributed, the 

 distributions of the direct CUE measures have a negative 
skew (Fig. 12). The stoichiometric estimates are based on 
a saturating Michaelis- Menten formulation with a fixed 
maximum CUE of 0.60, based on thermodynamic con-
straints. Direct estimates of microbial community CUE 
are unconstrained and vary with methodology, which can 
lead to apparent CUE values >0.60 (Manzoni et al. 2012, 
Sinsabaugh et al. 2013).

Threshold element ratio and CUE

Carbon use efficiency and the threshold element ratio 
are inversely related through biomass composition and 
apparent assimilation efficiency (Eq. 1). Consequently, 
the TER should decrease as microbial CUE increases 
unless there are compensatory changes in B

C:X and 
AX (Fig. 5). In our study, the C:N ratio of  soils (LC:N) 
spanned the range of  TERC:N estimates, but contrary to 
theoretical predictions the maximal values for CUEC:N 
did not occur when LC:N = TERC:N. Maximum CUE 
coincided with LC:N ratios that exceeded the TERC:N 
by 5–20 (Fig. 5B). One plausible explanation is that 
the bioavailability of  N is greater than indicated by 

FIg. 9. Structural equation model linking microbial carbon use efficiency based on C:N stoichiometry to  ecosystem 
 variables (n = 1827). The model captures 16% of variance in CUEC:N. Abbreviations are Bg, β - 1,4- glucosidase; NAg,  
β- 1,4- N- acetylglucosaminidase; LAP, eucine aminopeptidase; MAT, mean annual temperature; MAP, mean annual precipitation.
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the bulk C:N ratio, given that some organic matter 
fractions are chemically or physically shielded from 
microbial access (Fanin et al. 2013, Wagai et al. 2013, 
Kaiser et al. 2014).

Another consideration is that within the stoichiometric 
model, CUE is a function of enzyme allocation, which is 
assumed to reflect the bioavailability of resources, as well 
as the C:N ratios of biomass and substrate. Conceptu-
ally, CUE is maximal when the unit costs of obtaining C 
and N are minimal (Moorhead et al. 2012). These costs 
vary with organic matter composition as well as element 
ratio. The rapid decline in CUEC:N as soil C:N decreases 
below the TER indicates that the cost of obtaining C 
from chemically protected soil organic matter (Cotrufo 
et al. 2013) increasingly exceeds the value of its greater 
N concentration (Moorhead et al. 2013). Conversely, the 
cost of obtaining N at C:N ratios in excess of the TER 
may be mitigated when N (and C) are available in more 
accessible forms.

Within our tropical forest data set, soil C:P ratio did 
not overlap with the TERC:P and there was almost no 
relationship between LC:P and CUE (Fig. 3B). Biomass 

C:P ratio was the best predictor of  CUEC:P, but BC:P 
ratios were not greater than those observed in other 
systems. The EEAC:P ratios were lower than those of 
temperate biomes by a factor of  2–3, indicating greater 
P limitation but also suggesting that P bioavailability is 
greater than bulk chemical analyses imply. High P use 
efficiency and tight P cycling as biomass turns over may 
limit P losses to the bulk soil pool, thereby attenuat-
ing the relationships among CUEC:P, TERC:P, and bulk 
 estimates of  LC:P.

Biomass turnover and CUE

Eq. 2 relates CUE directly to the C:P and C:N ratios 
of biomass, but the association was stronger for C:P than 
C:N ratio (R2 = 0.6 vs. 0.2, regression coefficients of 0.169 
vs. 0.115, Figs. 2 and 3). This trend also appears in the 
scaling of CUE and biomass (Fig. 6). CUE increased with 
microbial biomass C (MBC) with a scaling coefficient (δ(ln 
CUE/δ(ln MBC)) of 0.302 (95% CI 0.245–0.359; Fig. 6A). 
This coefficient is not significantly different from those 
reported previously for fungal and bacterial  dominated 

tabLe 3. Regression coefficients for structural equation model paths connecting geographic variables to the component variables 
used to calculate carbon use efficiency (CUE). 

geographic and CUE 
component variables

Tropical C:P Tropical C:N Conifer C:N global C:N

A horizon A horizon O horizon A horizon O + A horizon O + A horizon

Latitude
 Bg 0.10 0.22 0.73 −0.32 0.27 −0.20
 NAg + LAP −0.22 0.79 −0.32 0.26
 LC:N −0.75 −0.78 −0.73 0.39
 BC:N 0.16 0.27
MAT
 Bg 0.23 −0.37 −0.35
 NAg + LAP 0.35 −0.37 −0.13
 LC:N −0.52 −0.52 −0.48
 BC:N −0.12
MAP
 Bg −0.13 0.18 −0.09
 AP 0.48
 NAg + LAP 0.38 −0.1
 LC:P 0.32
 LC:N −0.39 −0.54 −0.46 −0.08
 BC:P 0.24
 BC:N −0.37 −0.17
Soil pH
 Bg 0.35 0.35 −0.16 −0.14 −0.08
 AP −0.50
 NAg + LAP −0.15 −0.18 −0.10
 LC:P −0.42
 LC:N −0.33 −0.47 −0.27 −0.31 −0.13
 BC:P −0.17

Notes: Results are shown for six post hoc models: two models that used A horizon data from tropical forests (Appendix S1: Table S2) 
to calculate CUE based on C:P and C:N stoichiometry; three models that used O, A, and O + A horizon data from conifer forests to cal-
culate CUE based on C:N stoichiometry (Appendix S1: Table S3); and a global model that uses data from all sites to calculate CUE based 
on C:N stoichiometry (Appendix S1: Tables S1–S3). Abbreviations are Bg, β - 1,4- glucosidase; NAg, β - 1,4- N- acetylglucosaminidase; 
LAP, leucine aminopeptidase; AP, phosphatase activity; MAT, mean annual temperature; MAP, mean annual precipitation.
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communities that used CUE values calculated from rates 
of growth and respiration (0.27 [95% CI 0.20–0.34] and 
0.27 [95% CI 0.24–0.30], respectively [Sinsabaugh et al. 
2015]). A broader comparison of CUEC:N in relation to 
MBC had a coefficient 0.175 (95% CI 1.30–2.10). It is 
not possible to determine whether the lower value is the 
result of including a wider variety of ecosystems or using 
a narrower estimation of CUE or both.

CUE increases with microbial biomass C because 
production increases relative to biomass with a scaling 
coefficient of  approximately 0.75 while the coefficient 
for respiration is approximately 0.50. Sinsabaugh et al. 
(2015) interpreted this CUE trend as evidence for proto- 
cooperative processes that increase metabolic efficiency. 
However, the trend does not extend to other elemental 
measures of  biomass concentration. The scaling coef-
ficient for microbial biomass P (MBP) and CUE was 
−0.254 (95% CI −0.296 to −0.212, Fig. 6B) and the 
relationship between CUE and microbial  biomass N was 

not significantly different from zero. The inverse relation-
ship between microbial biomass P and CUE strengthens 
the correlation between CUEC:P and biomass C:P ratio 
(R2 = 0.6, Fig. 3C) while the poor relationship between 
CUE and microbial biomass N weakens the connection 
between biomass C:N and CUEC:N (R2 = 0.2, Fig. 2C).

The relationship between microbial biomass P and 
CUE differs from that for microbial biomass C and CUE 
because cellular P content controls growth rates, i.e., the 
growth rate hypothesis (Sterner and Elser 2002, Allen 
and gillooly 2009). Microbial growth increases with cel-
lular P content because most cellular P is in the form of 
ribosomal RNA (Allen and gillooly 2009). In turn, the 
capacity of a cell to respond quickly to environmental 
resource pulses is linked to rRNA gene copy number, 
i.e., the capacity to quickly produce new ribosomes (Ste-
venson and Schmidt 2004, gyorfy et al. 2015). These 
traits are advantageous in environments with generally 
high, but fluctuating, resource availabilities. As examples, 
Muoginot et al. (2014) isolated bacteria and fungi from 
decomposing grass litter. For bacteria, but not fungi, 
growth rates in culture were inversely related to biomass 
C:N and C:P ratios. DeAngelis et al. (2015) analyzed 
the bacterial communities from a 20- year soil warming 
experiment at the Harvard Forest. Average bacterial 
rRNA gene copy number has decreased with warming, 
suggesting that the treatment has selected bacteria with 
a more oligotrophic lifestyle as a result of depletion of 
labile substrate stocks. Figure 6 suggests that the neg-
ative effect of faster growth on CUE is stronger than 
the positive effect of biomass concentration on CUE.

Biomass turnover and CUE are correlated because both 
are functions of growth rate, which in turn is connected to 

FIg. 11. Microbial carbon use efficiency (CUE) in rela-
tion to mean annual temperature (MAT). For the conifer for-
est soils, CUEC:N increased with MAT (0.0154°C−1; 95% CI, 
0.0079–0.0229°C−1, R2 = 0.043, n = 511 soil samples, F = 23.1). 
The broader data set showed a similar trend (0.0150°C−1; 95% 
CI, 0.0097–0.0203°C−1, R2 = 0.051, n = 816 soil samples, 
F = 44.1). The tropical forest data were excluded from the anal-
ysis because all sites had the same MAT of 26°C.

FIg. 10. Microbial carbon use efficiency (CUE) in re-
lation to soil pH. (A) CUE declined with pH for both co-
nifer (CUEC:N = −0.0246pH + 0.3432, R2 = 0.041) and 
tropical forest soils (CUEC:N = −0.0197pH + 0.4001, 
R2 = 0.065; CUEC:P = −0.0472pH + 0.5066, R2 = 0.142). 
(B) CUE vs. soil pH for all data showing a minimum    
value at pH 7 (CUE = 0.0099(pH)2 − 0.1073pH + 0.5416,  
R2 = 0.023, n = 2617 soil samples).



186 ROBERT L. SINSABAUgH ET AL. Ecological Monographs  
Vol. 86, No. 2

the biomass C:P ratio through the growth rate hypothesis. 
In Eq. 2, BC:P is one of variables used to calculate CUE; it 
was also the variable that was most closely correlated with 
CUEC:P (Fig. 3C). This association may act to attenuate 
the correlation between CUEC:N and CUEC:P.

Only three studies included data on microbial biomass 
and respiration from which biomass turnover times could 
be calculated (Fig. 7A). Extrapolating from this limited 
data to the full data set yielded a mean microbial biomass 
turnover time of 67 ± 22 d (mean ± SD). For compar-
ison, a meta- analysis of fungal biomass turnover based 
on direct measurements of biomass, growth, and respi-
ration had arithmetic mean and median turnover times 
of 90 and 47 d, respectively (Sinsabaugh et al. 2015).

Turnover time and CUE both increased with biomass 
with a relative scaling coefficient (δ(ln TB)/δ(ln CUE), 
Fig. 7B) of 0.509 ± 0.041. A similar relationship was 
reported by Sinsabaugh et al. (2015) using CUE data 
calculated from growth and respiration measurements. 
This empirical relationship is significant for process 
models because it shows that CUE, which determines 
the fraction of assimilated C that is retained in the soil, 
and biomass turnover, which determines the transfer of 
C into soil organic matter pools, are both functions of 
biomass as well as growth, and biomass is much more 
often measured.

Nutrient use efficiency

Using Eq. 5, the mean NUE value for our data was 
0.804 ± 0.137 (mean ± SD; Table 2, Fig. 8). Mooshammer 
et al. (2014) estimated microbial community NUE across 
a range of  substrates from plant litter to organic soil to 

mineral soil by comparing the uptake of  free amino acids 
to the release of  ammonium, finding mean NUEs of 
0.70, 0.83, and 0.89, respectively. NUE was a saturating 
function of  LC:N/BC:N best described by a Michaelis- 
Menten formulation: NUE = 1.03(LC:N/BC:N)/(0.92 + 
LC:N/BC:N), R2 = 0.431, n = 71 samples). Using our data, 
the Moosehammer et al. equation yielded a mean NUE 
similar to that predicted from Eq. 5 (0.746 ± 0.096), but 
the predicted NUE estimates were not well correlated 
with those estimated from Eq. 5 (y = 0.3062x + 0.5002, 
R2 = 0.192, n = 2046 soil samples), in part because Eq. 5 
combines ecoenzymatic and elemental stoichiometry. In 
addition, the Mooshammer et al. model with our data 
predicted a minimum NUE of 0.50 at CUE = 0 while Eq. 
5 predicts that NUE = 1 at CUE = 0 (Fig. 8). Despite 
these issues, both models yield a similar range of  NUE 
estimates within the CUE range that includes 80% of 
observed values.

We are not aware of any direct estimates of PUE 
for microbial communities. While C and N uptake are 
coupled through the consumption of amino acids and 
amino sugars, P is assimilated independently of C, 
mostly by membrane- associated symport proteins (Plas-
sard et al. 2011, Dick et al. 2014). From Eq. 5, the mean 
PUE for our data (0.814 ± 0.145 [mean ± SD]; Table 2, 
Fig. 8) was similar to the mean NUE. Based on Eq. 1, 
the apparent assimilation efficiencies for N and P were 
also similar (0.66 and 0.69, respectively, Table 2). In the 
context of our stoichiometric model, these similarities 
arise because the environmental scarcity of P relative to 
N is offset by increased ecoenzymatic activity directed 
toward P acquisition relative to activity directed toward 
N acquisition.

Large- scale trends in CUE

Microbial CUE is an integrative measure of  local 
resource availability and physicochemical constraints on 
growth. At larger scales, gradients in resources, climate, 
and dominant vegetation select community compo-
sition, but the connections to community function 
are tenuous (Talbot et al. 2014). Regressions relating 
CUE directly to latitude, MAT, MAP, or soil pH had 
R2 statistics < 0.1. For this reason, structural equation 
modeling was used to determine whether there were 
significant trends between geographic variables and the 
constituent variables that define CUE.

Among its component variables, CUE was most 
closely correlated to the stoichiometry of the ecoenzy-
matic activities that mediate C and nutrient acquisition. 
All six SEMs included significant paths from latitude to 
β- glucosidase, five models included paths from pH to 
β- glucosidase, and four models had paths from latitude 
to NAg + LAP (Fig. 9, Appendix S1: Figs. S1–S5). 
For the elemental stoichiometry components of CUE, 
all models included paths from soil pH to LC:N or LC:P, 
five models had paths from MAP to LC:N or LC:P, and 

FIg. 12. Comparative frequency distributions for micro-
bial community CUE estimates. The aquatic sediment values 
(n = 2100 samples) were calculated from data of  Hill et al. 
(2012) using the same stoichiometric model used for the ter-
restrial soil calculations (n = 2002 samples). The bacterial and 
fungal distributions are based on direct measures of  commu-
nity growth and respiration (bacteria n = 1000 samples, fungal 
n = 400 samples; [Sinsabaugh et al. 2015]).
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four models had paths from latitude to LC:N. Biomass 
composition had the fewest connections to ecosystem 
variables, suggesting that biomass stoichiometry, a mea-
sure of homeostasis, was more constrained than other 
CUE component variables. However, for many studies, 
including the subset of conifer forest data, there were 
no direct measurements of biomass composition, which 
made it less likely that significant paths would emerge.

Cleveland and Liptzin (2007) did not detect latitudinal 
trends in microbial biomass C:N and C:P in their meta- 
analysis, but Xu et al. (2013) found that biomass C:N and 
C:P ratios varied across biomes in relation to soil organic 
matter content. In contrast, elemental composition of 
phytomass does vary with climate and soil nutrient con-
centration. Foliar C:N and C:P ratios tend to decrease, 
and N:P ratios increase, with decreasing latitude and 
increasing MAT and MAP (Mcgroddy et al. 2004, Reich 
and Oleksyn 2004, Zechmeister- Boltenstern et al. 2015). 
Within our global structural equation model, LC:N also 
decreased with latitude (0.35) and increased with MAP 
(−0.08). Biome- specific models for conifer and tropical 
forests also showed inverse relationships between LC:N 
and MAT and MAP, but also for latitude. However, the 
latitude ranges in these models were small compared to 
the global range.

Temperature and pH are often highlighted as mas-
ter variables ordering the composition and function of 
microbial communities. The idea that rising temperature 
per se increases microbial community respiration rela-
tive to production, thereby reducing CUE, is common 
in the ecological literature, but difficult to demonstrate 
at large spatiotemporal scales where temperature is con-
flated with resource gradients and shifts in microbial 
community composition (see discussions by Davidson 
et al. 2006, López- Urrutia and Morán 2007, Sarmento 
et al. 2010, Billings and Ballantyne 2013, Wagai et al. 
2013). At the biochemical scale, there is no evidence that 
the activation energy of microbial catabolic pathways 
is intrinsically different from that of anabolic path-
ways (López- Urrutia and Morán 2007, Doi et al. 2010, 
 Sarmento et al. 2010). A complication is that growth rate 
increases with both temperature and resource availabil-
ity, and CUE is inversely related to growth.

However, our meta- analysis showed a positive trend 
for CUE

C:N and MAT (0.0150°C−1 ± 0.0053, apparent 
activation energy of 0.119 ± 0.036 eV, Fig. 10) for both 
the global data and the subset of conifer forest data. 
Because CUE was calculated from a stoichiometric 
model, the CUE effect is driven by gradients in resource 
availability and ecoenzymatic activity rather than direct 
temperature effects on respiration and growth. Regres-
sion analysis showed that the EEAC:N ratio tended to 
decrease with MAT (R2 = 0.06) while the BC:N/LC:N ratio 
tended to increase (R2 = 0.01). Both effects contribute 
to greater CUE, so it appears that greater CUE reflects 
greater resource availability at lower latitudes, which 
could be a result of increasing rates of net primary 
production.

Except for tropical forest Bg activity, the paths from 
soil pH to ecoenzymatic activities had negative coeffi-
cients. A meta- analysis of soil enzyme activities found 
that NAg and AP activities generally decreased as soil 
pH increased with regression coefficients of −0.54 and 
−0.25, respectively, while LAP activity increased (1.25); 
Bg activity did not vary significantly (Sinsabaugh et al. 
2008).

For soils with pH < 7, both CUEC:N and CUEC:P were 
inversely related to pH, suggesting that resources decline, 
or alternatively that growth rates increase (Fig. 10). For 
tropical forest data, the EEAC:P ratio increased exponen-
tially with increasing pH from about 0.1 to 0.6 (expo-
nent = 0.66, R2 = 0.41), indicating lower P limitation and 
faster growth at circumneutral pH. BC:P/LC:P followed a 
similar, but weaker trend (exponent = 0.27, R2 = 0.10). 
A similar pattern occurred for CUEC:N; EEAC:N increased 
exponentially with pH, depressing CUE (exp = 0.17, 
R2 = 0.15). But BC:N/LC:N remained flat. For the conifer 
data, both EEAC:N and BC:N/LC:N increased with pH, but 
similar to the tropical forest C:P data, the effect was 
greater for EEAC:N so CUEC:N declined (EEAC:N exp = 
0.30, R2 w= 0.10; BC:N/LC:N exp = 0.10, R2 = 0.06). For 
arid soils, the CUEC:N trend reversed as pH increased 
beyond 7.0, consistent with slower growth.

Underlying these stoichiometric trends is the rela-
tionship between pH and the relative abundance and 
growth of  fungi and bacteria. Fungal C:N ratio is 
greater than that of  bacteria (Strickland and Rousk 
2010, Muoginot et al. 2014), which can increase CUE. 
Fungal biomass and growth decline, and respiration 
increases, as soil pH increases from 4 to 7 (Rousk et al. 
2010), which directly reduces CUE. Conifer forest soils 
with ectomycorrhizal- dominated fungal communities 
showed the same pattern as tropical forest soils with 
arbuscular- mycorrhizal- dominated fungal communi-
ties (Fig. 10A). Lauber et al. (2008) found that soil pH 
was the best predictor of  bacterial community compo-
sition while fungal community composition was most 
closely associated with changes in soil nutrient avail-
ability, specifically extractable P and soil C:N ratio. 
The upturn in CUE with alkaline pH is associated with 
arid soils. In these systems, much of  the soil surface 
is colonized by biological crusts composed of  primary 
producers in the form of  mosses, lichens, and cyano-
bacteria in symbiotic association with fungi (Pointing 
and Belnap 2012).

concLuSIonS

Carbon use efficiency and microbial biomass turnover 
are critical parameters for mechanistic models of  soil C 
dynamics. Our analyses show that values predicted from 
stoichiometric models are generally similar to those 
reported from direct measurements of  rates, although 
we have no examples where both approaches have been 
applied to the same soil samples. Because stoichiometric 
data are broadly available, the utility of  ecosystem 
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models can potentially be improved by adopting site-  
and season- specific parameters for microbial CUE and 
biomass turnover based on the empirical relationships 
presented. At larger scales, the growing body of  stoi-
chiometric data makes it possible to resolve patterns 
in CUE along resource gradients associated with mean 
annual temperature and soil pH. The existence of  such 
gradients as bases for predicting long- term responses to 
climate drivers is a topic of  considerable interest and 
debate.

The low congruence of CUE values derived from C:N 
and C:P models highlights the problem of representing C 
and nutrient bioavailability using bulk chemical analyses, 
especially in the case of P. Calculations based on analyses 
of potentially more labile organic matter pools such as 
soil solution or soil extracts may lead to better corre-
spondence. Like C use efficiency, the use efficiencies of N 
and P are critical parameters for biogeochemical models 
of soil processes. These values can be predicted from our 
stoichiometric model, but are difficult to independently 
verify. Despite data gaps and methodological diversity, 
the integration of stoichiometric and metabolic mod-
els provides a quantitative description of the functional 
organization of soil microbial communities in relation 
to edaphic variables that can improve the representation 
of CUE in microbial process and ecosystem simulation 
models.
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