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COMPUTING OPTIMAL PUMPING STRATEGIES FOR GROUNDWATER 
CONTAMINANT PLUME REMEDIATION 

Abstract 
Simulation/Optimization (S/0) models can greatly simplify the process of 

designing remediation systems for contaminated groundwater. We describe some 
technical aspects of using S/0 models and possible S/0 model formulations for 
groundwater remediation design. We: discuss some S/0 model optimization 
algorithms; illustrate simple optimization problem solution; describe two real-world 
S/0 model applications; and demonstr·ate S/0 model application under uncertainty. 

I. Introduction 
Groundwater remediation using pumping has been widely applied dming the 

last decade. Extracting contaminated water 1:md injecting clean (treated) water to the 
grmmdwater aquifer (termed 'pump and treat') has been the selected remediation 
technology for many grmmdwater contaminant plumes. Generally, pmnp-and-treat 
systems are designed to achieve plume containment, plmne cleanup, or a combination 
of the two. Plume containment is achieved by preventing further spreading of the 
plume into clean areas of the aquifer. Plume cleanup is achieved by reducing 
contaminant concenh·ations to below acceptable levels, such as the maximum 
contamination limit (MCL). Figures 1 and 2 clarify typical use of containment and 
cleanup. Figure 1 shows a finite difference grid for a groundwater flow model 
superimposed over an idealized plume. One sees the outer nondetect contour and the 
itmer MCL contour. Figure 2 uses the same plume to represent how plmne 
management might be mandated. To achieve plume containment, one will not want 
contaminant concentr·ations to reach any new cells at any time during the 
management period. To achieve plume cleanup, one wants concentrations at all cells 
to not exceed MCL at the end of the management period. 

A pumping strategy refers to a spatially and possibly temporally distributed 
set of pumping rates. It can include both extraction and injection rates. Moving a 
well location, albeit slightly, or even changing a pumping rate at one well constitutes 
creating a different pumping strategy. S/0 models greatly facilitate the process of 
finding pl111lping strategies that satisfy a nmnber of management constraints wllile 
predicting the best (optimal) performance for prescribed management goals. 

Simulation/optimization (S/0) models can be used to greatly speed the 
process of computing desirable groundwater pumping strategies for plume 
management. They make the process of computing optimal strategies fairly straight­
forward and can help mininlize the labor and cost of groundwater contaminm1t 
cleanup and/or containment. 

The remainder of this chapter is orgmlized as follows. Section 2 introduces 
S/0 models. Section 3 describes how state and decision variables can be related 
inside S/0 models and S/0 model formulations for groundwater remediation design. 
Section 4 discusses different optimization algorithms used in S/0 models. Section 5 
describes m1d solves a simple optimization problem and Section 6 describes S/0 
model application to two field problems. Section 7 discusses S/0 model application 
tmder tmcetiainty. 
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2. Simulation/Optimization Models 

Suppose a manager wants to minimize the cost of containing a plume using 
existing wells. In that case, minimizing pumping can be a practical surrogate for 
minimizing cost. The objective function would be the sum of pumping rates from all 
existing wells. Assuming constant plmlping, the objective fi.mction would include as 
many pumping rates as there are wells. 

The pumping strategy that achieves the best value for the objective fi.mction 
from among all feasible strategies is termed the 'optimal' strategy. By definition, m1 
optimal strategy satisfies all constraints imposed by management. 

How does one go about creating an optimal strategy? To develop a pumping 
strategy for a specific goal using a typical simulation (S) model such as MODFLOW 
(McDonald and Harbaugh, 1988), you probably employ the following process (from 
Peralta m1d Aly, 1993). 
1. You specify what you want the pumping strategy to achieve (i.e. what system 

responses-- heads, gradients, etc.) are acceptable. 
2. You assume a reasonable pumping strategy that you think might achieve those 

goals. 
You simulate system response to the plmlping strategy using the simulation 
model. 

4. You evaluate acceptability of the strategy and its consequences. 
5. Based on the evaluation of step 4) you repeat steps 2-4) until you feel you 

should stop. 

When using an S model, the process of assuming, predicting m1d checking 
might have to be repeated many times. As the numbers of possible pumping sites and 
system response requirements increase, the likelihood that you have assumed the 
optimal strategy decreases. Even assuming a feasible strategy might become 
difficult. 

On the other hand, a grmmdwater simulation/optimization (S/0) model 
directly computes the pumping strategy that best satisfies your goals. It contains both 
simulation equations and an operations research optimization algorithm. The 
simulation equations permit the model to appropriately represent aquifer response to 
hydraulic stimuli and boundary conditions. The optimization algoritlun permits the 
specified mmmgement objective to serve as the function driving the search for an 
optimal strategy. 

Table 1 sununarizes differences in inputs and outputs of groundwater flow S 
and S/0 models. Both model types require data describing the physical system. 
However, model capabilities differ and other inputs and outputs differ. 

The fmniliar S models compute aquifer responses to assumed boundary 
conditions and pumping values. The bmmdary conditions and pumping values are all 
used as data inputs. System response is the output. 

On the other hand, S/0 models directly calculate the best pmnping strategies 
for the specified management goals. The goals m1d restrictions are specified via the 
objective fi.mction, constraint equations and bounds. Data needed to formulate these 
goals represent additional input required by S/0 models (Table 1). Outputs include 
optimal pumping rates and the resulting system responses. 
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Although S/0 models require additional data, that is only the data needed to 
ensme that the computed strategy indeed satisfies all yom management goals. For 
example, upper or lower bounds of pmnping rates, heads or gradients reflect the 
ranges of values that management considers acceptable. The model automatically 
considers those bmmds wllile calculating optimal pumping strategies. One might 
impose lower bounds on head, at a specific distance below current water levels or 
above the base of the aquifer. Upper bounds on head might be the ground smface or 
a specified distance below the ground smface. 

Contaminant transport S and S/0 models can both consider contaminant mass 
or concentration. Again, the most important difference between S and S/0 models is 
that one must input a pumping strategy to an S model, wllile m1 S/0 model finds an 
optimal pumping strategy. 

Many researchers have developed S/0 models for specific problems. 
Generally applicable S/0 models for hydraulic (flow) optimization include 
MODMAN, REMAX and MODOFC. No generally applicable S/0 model is 
connnercially available at tins moment for transpmt optimization, although a 
WINDOWS version ofREMAX has that capability. Appendix B lists some unique 
teatmes ofREMAX. 

3. State and Decision Variables 

An S/0 model is considered to contain two types of vmiables: decision and 
state variables. Decision vmiables represent variables that can be controlled by the 
decision maker in the field. State variables represent physical system responses to the 
decision vmiables. State variable values me controlled by adjusting the values of 
decision vmiables. Contmninant trm1sport S/0 models can include as decision 
variables: water injection rate, concentration and rate of injected nutrients, oxygen or 
em-bon somces. State variables include groundwater gradients, contmninant 
concentrations, and plume mass. 

S/0 models must have a means of quantifying the relationsllip between 
decision m1d state variables. For example, m1 S/0 model must be able to predict the 
concentration that will result at a monitoring (compliance) point fi"om a pmticular set 
of pumping rates. These quantitative relationships m·e sometimes termed simulation 
constraints. 

Several exact and approximation approaches me used to form simulation 
constraints. One exact approach (the embedding method) employs separate constraint 
equations to represent each flow m1d transport equation for each stress period 
(Aguado and Remson, 1980; Ghm·bi and Peralta, 1993). Although preferred for some 
situations, the embedding method can sometimes result in an impracticably huge 
optimization problem. 

Another exact approach calls a full simulation model (such as MODFLOW or 
MT3D) dming each iteration of an optimization algorithm (Gorelick, 1983; 
McKinney eta!., I 995, Wm1g m1d Zheng,I998). If calling a fii!l simulation model 
thousm1ds of times witllin an optimization algorithm, tllis approach can require more 
computer time than is practicable. 

A third method employs linear systems theory and superposition via a 
discretized convolution expression. This response matrix method is exactly 
applicable for linear (confined) aquifers and has been implemented in several 
software packages: MODMAN (Greenwald, 1998); MODOFC (Ahlfeld and Riefler, 
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1998); and REMAX (Peralta and Aly, 1993) and applied widely (Hegazy and Peralta, 
1997; and many others). Sometimes this method can be reasonably applied to slightly 
nonlinear aquifers (those having saturated thickness which is large by comparison 
with the change in head with time). REMAX includes an adaptation of the 
superposition approach to accmately address nonlinear (unconfined) aquifers and 
piece-wise linear (e.g. river-aquifer seepage) flows. 

Except for some cases of injecting contaminated water, transport optimization 
problems are usually nonlinear. S/0 models addressing transport optimization 
problems sometimes apply smrogate expressions to describe physical system 
response to stimulti. Lefkoffand Gorelick (1990), Ejaz and Peralta (1995) Cooper et al 
(1997) and Aly and Peralta (1999a) used polynomial functions to simulate 
contaminant concentrations. A promising approximation function is an artificial 
neural network applied to simulate contaminant peak concentration as a function of 
pumping rates (Aly and Peralta, 1999b ). 

The previous discussion describes how linear and nonlinear equations can be 
used as simulation constraints in a S/0 model. Depending on whether linear or 
nonlinem· equations are used, different optimization algoritlnns can be used to solve 
the formulated optimization problem. The following section describes different kinds 
of optimization problems and the corresponding optimization algorithms. 

4. Optimization Problems: Types and Algorithms 

Figure 3 lists common terminology descriptive of optimization problem types. 
Linear optimization problems are usually solved using simplex or other techniques 
that check vertices of the feasible solution space. Historically, nonlinear problems 
were most connnonly solved using gradient search methods. Branch and bound 
tecln1iques were most commonly used for MIP problems, m1d outer approximation 
methods were applied to MINLP techniques. Currently, evolutionary optimization 
techniques are used increasingly for NLP, MIP and MINLP problems. 

Several resemchers applied nonlinear optimization to aquifer contmnination 
problems (Gorelick et al., 1984; Ahlfeld, 1990; Gharbi and Peralta, 1994; Peralta et al., 
1995, Peralta and Aly, 1996). Nonlinem progrm11ming techniques cannot guarm1tee 
global optimality when applied to lmge non-convex problems. For real problems, where 
the time required to simulate the groundwater system is significant, nonlinear 
progrmnming methods may need prohibitive mnounts of CPU time. 

The limitations of mathematical programming have motivated resemchers to use 
alternative optimization techniques such as simulated am1ealing (Rizzo and Dougherty, 
1996; Shieh and Peralta, 1998b) and genetic algoritlmlS (GAs) (McKinney and Lin, 
1994; Ritzel et al., 1994; Rogers and Dow/a, 1994; Shieh and Peralta, 1998a). Aly and 
Peralta (1999a) found that a GA perfmmed better than matl1ematical progrmmning for 
nonlinear and mixed-integer nonlinem· problems. lvfcKinney et al. (1994) found that 
using a GA to compute tl1e stmiing point for a nonlinear gradient-based optimization 
algoritlnn provided significant advantages and allowed them to locate solutions that me 
approximately globally optimal. Aly and Peralta (l999b) used neural networks and a 
genetic algoritlnn in designing of an aquifer cleanup system to reduce the concentrations 
of two contaminants simultaneously. 
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5. A Simple Optimization Problem 

For relatively simple problems, one can manually determine the optimal 
pumping sh·ategy. Figure 4 and the following example, (after Peralta and Aly, 1993) 
illustrate a graphical approach for a simple containment problem in a confined aquifer 
patterned after a real problem from the northeastern United States. Assume the 
potentiometric surface is initially horizontal and at equilibrium. The box in the upper 
right corner depicts a plan (map) view of the sh1dy area and management problem. 
There are two existing extraction wells, and four observation wells. The observation 
wells are paired to permit describing head difference between members of a pair. 

The goal is to minimize the cost of from the two wells necessary to cause: 
(a) the groundwater level at the head of arrow 1 to be at least 0.2 m lower than at the 

tail; and 
(b) the grmmdwater level at the head of arrow 2 to be at least 0.15 m lower than at the 

tail. 
The strategy is also constrained in that: 
(c) the smn of pumping rates from wells 1 and 2 must be at least 15 units; 
(d) and (e) pumping at wells 1 and 2 must be extraction. 

The upper left insert box in Figure 4 describes the optimization problem 
mathematically. It includes the objective function (top unnumbered equation) and 
five constraint equations. The goal is to minimize the value of the objective function, 
Z, which is a sum of pmnping rates times pumping costs. The 1.5 value indicates that 
pumping at well 2 costs 150% of pumping at well 1. 

Pumping rates are considered 'decision vmiables'. These are variables that 
management can control directly. Groundwater heads or head differences are 'state 
variables'-variables defining the state of the physical system. 

Equations (d) and (e) me sometimes termed 'bounds' in that they are simply 
limits on acceptable variable values. They can also be termed constraints. Equation 
(c) assures that total pmnping is at least 15 units. Equations (a) and (b) constrain final 
head differences between observation well pairs. The linem superposition Equations 
(a) and (b) are applicable because confined aquifers are linear. Those expressions 
employ the additive and multiplicative prope1iies of linear systems theory (Appendix 
A discusses formation of Equations (a) and (b ( 

As described below, restrictions (a)-( e) represent constraints tlmt define the set 
of feasible solutions (the feasible solution space). The feasible solution space is two 
dimensional because there are two pumping rates being optimized, (i.e. two degrees 
of fi·eedom). 

Figure 4 illustrates how tl1e constraints restrict the two-dimensional solution 
space. Because Equation (a) is an::> constraint, all points in the graph to the right of 
Line (a) satisfy that equation. All points to the right of Lines (b) and (c) satisfy 

Equations a and b are applications of Equation A-4. In Equation (a), both 
p"1(1) and p"1(2) equall.O. Also, o11h(l,l) and oLI\1,2) me 0.02 and 0.01, respectively. 
The 0.02 coefficient describes the effect of p1m1ping p(l) on the difference in head 
between the two observation wells at control location 1. Each mlit of p(l) will cause 
a 0.02 increase in head difference between the two observation points of control pair 
I (i.e., an increase in gradient toward pumping well 1). Each unit of p(2) will cause a 
0.01 increase in head difference toward well 1 at the same location. 
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Equations band c, respectively. Equation (b) is similar to Equation (a)--it describes 
the effect of pumping on head difference across control pair 2. 

'Bound' Equations (d) and (e) prevent decision variables p(l) and p(2) from 
being negative (i.e. representing injection). Thus, only positive values of p(l) and 
p(2) are acceptable. 

Only points inside or on the boundaries of the region formed by all five 
constraint or bound lines satisfy all 5 equations. These points constitute the feasible 
'solution space'. The optimization problem goal is to find the smallest combination of 
p(l) + 1.5*p(2) in the solution space. Because all involved equations are linear, that 
optimal combination will lie on the boundary between the feasible solution region and 
the infeasible region. In fact, it will be at a point where two or more lines intersect (a 
vertex of the solution space). For this simple problem of only 2 decision variables, a 
graphical or manual solution (evaluating Z at the intersections of the lines) is simple-­
the minimum value of Z is 18.75. p(l) and p(2) both equal 7.5. Note how the Z 
isocontour lines decrease as one moves toward the optimal solution. 

Optimization problems can become complex. For example, if we want to 
optimize three pumping rates in the above problem, we must solve the problem within 
3-space (i.e., 3 dimensions, one for each pumping rate). Problems can rapidly 
become difficult or impossible to solve manually. 

6. S/0 Models for Contaminant Plmne Containment and Cleanup 

6.1 Phune Containment 
Norton Air Force Base (NAFB) lies in the San Bernardino Valley of 

California, a graben filled with deep unconsolidated alluvial material (Figure 5). 
Peralta and Aly (1995a) provides a more-detailed description for the site. In the 
NAFB vicinity are three groundwater-bearing zones--the upper two are 
semiconfining. The top layer is contaminated by dissolved trichloroethylene (TCE), 
which is migrating from NAFB toward water supply wells. A Record of Decision 
(ROD) mandates that NAFB is to 'maintain hydraulic control to the extent possible of 
the plume while extracting contaminated grmmdwater, and reinjecting treated 
groundwater into the contaminant plume or the clean pmiion of the aquifer". NAFB 
addressed t!Iis goal by installing two pump and treat systems--one in the central base 
area near the TCE phune source (for cleanup) and the other near the southwestern 
base boundary (for containment). Section 6.2 describes development of a cleanup 
pumping strategy (after Peralta and Aly, 1995b). 

REMAX was used to compute optimal pumping strategies that would ac!Iieve 
phune containment by preventing any contaminated grmmdwater fi·om migrating 
outside base boundaries. Figure 6 shows the candidate wells. Figure 7 shows the final 
pumping strategy and rates. 

The well locations shown in Figure 7 are a subset of those in Figure 6. 
REMAX indicated tl1at there should be no pmnping at the other wells shown in 
Figure 6. The locations of subset well locations were checked to ensure physical 
feasibility of installation wells at the selected locations. 

Figure 7 shows that total extraction equals total injection. All extracted water 
is treated and reinjected. Figure 7 shows how exh·action and injection can be used 
together to prevent contaminated groundwater fi·om reaching off-base supply wells. 
Injection is used to split the plume and direct contaminated water toward extraction 
OPTIMAL PLUME REMEDIATION. 09108199. 7:13PM 7 



wells. Without this coordinated application of injection and extraction, much more 
extraction would be required. The presented optimal pumping strategy required 2,250 
gpm of extraction while satisfying all management criteria. This is 10% below the 
2,500 gpm upper limit of the originally envisioned treatment equipment. The l 0% 
reduction provided some capacity for fi1ture pumping strategy modification, should 
that be necessary, without requiring additional treatment capacity. Table 2 shows the 
savmgs. 

6.2. Plume Cleanup 

As mentioned in the previous section (6.1 ), a pump and treat system was 
needed to maximize contaminant removal fi·om the central base area near the plmne 
source. Peralta and Aly (l995b) provides a more-detailed description for the site. A 
consultant specified fixed injection well locations to be placed along existing 
pipelines. The consultant also proposed locations for extraction wells. Due to the 
time restrictions on accomplishing tllis optimization effort, REMAX was used to: (1) 
utilize the proposed well locations, (2) assume l 00 gpm injection rate at each of 
proposed 4 injection locations, and (3) determine optimal extraction rates for 5 
proposed extraction locations. A REMAX precursor determined the optimal 
(maximum mass of contaminant extraction) strategies needed to achieve cleanup. 
Figme 8 shows the potential pumping locations. 

Results showed tl1at about 31% of the original plume mass can be removed 
using a treatment facility size of 400 gpm. At 2,000 gpm, about 50% removal could 
be acllieved. 

Other sites at which optimization has been formally applied to plume 
remediation include March AFB (containment), Mather Air Force Base (cleanup), 
Travis Air Force Base (containment), Wurtsmith Air Force Base (cleanup and 
containment). 

Optimization methods rely on the prediction accuracy of flow and transpmi 
simulators. Since accurate modeling of any aquifer can be very difficult, developed 
optimal strategies may not be optimal for the real aquifer system. There is a growing 
attention to considering the stochastic nature of aquifer parameters wlllle designing 
remediation strategies. Gorelick (1990) discusses some techniques used to account for 
uncetiainty in designing grmmdwater management systems. In tl1e following section, we 
describe tl1e most sigtlificant proposed approaches and discuss their applicability. 

7. S/0 Models for Planning under Uncetiainty 
Groundwater remediation system design is often complicated by the random 

nature of aquifer parameters. Three general teclmiques have been used for solving 
groundwater management problems under uncertainty. In the first, the sources of 
uncertainty are not defined but it is assumed that optimal pumping rates can be 
modified after a period of implementation and monitoring (Jones el a/., 1987, Whiffen 
and Shoemaker, 1993 ). In this technique, the differences between variable values 
predicted via optimization and the measmed vmiable values (obtained from the field 
after the optimal strategy is implemented) are used to guide subsequent modification 
of the optimal strategy. The relation used to modify the computed optimal strategies 
is termed a feedback law. The process is continued as the modified optimal strategy is 
implemented. 
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In the second technique, a probability distribution is either derived or assmned 
for the variables of interest. Then, analytical relations are developed to relate the 
quantiles of tins distribution to the decision variables. These analytical relations are used 
as constraints in the optimization problem. These constraints are tenned chance 
constraints and the resulting optinuzation model is known as the chance-constrained 
model (Cantiller and Peralta, 1989; Peralta and Ward, 1991). 

In the tlurd stochastic grmmdwater management teclnuque, a group of 
constraints is fonnulated - each for a different realization of the uncetiain aquifer 
parameters (Wagner and Gorelick, 1987). A realization is a set of the uncetiain 
parameter values. Typically, each realization is generated from the probabilistic model 
of the unceJiain parameters. The resulting optimal strategy must satisfY all (or some) of 
the realizations simultaneously. The idea is to find optimal strategies that are robust 
(satisfY all management constraints) for a range of the uncertain parameters. Several 
sh1dies tried to estimate the reliability of optimal strategies computed using the multiple­
realization teclnuque (Morgan eta/., 1993; Chan, 1993; Chan, 1994). 

All cited studies concluded that in order to assure a design that has a !ugh level 
of reliability, at least 50 to 100 realizations are needed (Chan, 1993; Chan, 1994; 
Morgan et al., 1993). For large problems, where the time required to simulate the 
system is sigtuficant, the time required to generate all the constraint equations can be 
prohibitive. However, since the response smfaces for different realizations can be 
evaluated simultaneously, one can greatly speed the process by computing them in 
parallel. Another possible remedy is to determine whether some realizations can be 
dropped without having to carry out the optimization (Gomez-Hernandez and Carrera, 
1994; Ranjithan et al., 1993). Aly and Peralta (1999b) present and apply an 
approximation method that develops the tradeoff curve between the treatment facility 
size (total groundwater extraction) and estimated reliability. 
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Appendix A (Derived from Peralta and Aly, 1993) 

A particular type of S/0 model, termed a response matrix (RM) model, 
utilizes the multiplicative and additive propetiies of linear systems. The following 
equation illustrates use of the multiplicative property in groundwater head 
computation. Here we assume that the initial water table is horizontal and at 
equilibrium. Groundwater is extracted at a single well, index munber e. 

where 
L\h(6) = change in steady-state aquifer potentiometric surface elevation at 

observation location 6 [L]; 
= influence coefficient describing effect of steady groundwater 
pumping at location e on steady-state potentiometric surface elevation 
at location 6 [L]; 
=pumping rate at location e [L3/T]2

; 

= magnitude of steady 'unit' pumping stimulus in location e used to 
generate the influence coefficient [L3 /T]. Tins does not necessarily 
equall. 

Assume that a 'mlit' steady pumping extraction rate of 1 nl /min at well e causes a 
drawdown of 1m at observation point 6. In that case, p"1(e) = 1 and 8\6,e) equals(-
1). Equation A-1 shows that if 8\6,e) and p"'(e) are known, the change in head 
caused by any pumping rate can be easily computed. If pmnping, p(e), equals 2 
m3 /min, head change will equal (-I )(2)/(1) or -2. This linear response is typical of 
confined aquifers (or approximates behavior of unconfined aquifers where the change 
in transmissivity clue to pumping is small by comparison with the original 
transmissivity). 

Similarly, the effect caused by a unit pumping at location e on the final 
difference in potentiomeh·ic surface elevation between locations, 1 and 2, of a pair of 
locations, f1, can be expressed as: 

Mr ~~ "(' ~~ "(' ~~ (5 lu,e; = (5 o lt,I ,e;- r5 o u,2,e; 

2 For clarity and ease of explaining this example, pumping to extract groundwater is 
treated as positive in sign, and the 8h influence coefficients are negative. In REMAX those 
signs are reversed to be consistent with MODFLOW. 
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Ou, 1 = index referring to point 1 of pair of locations fi; 
oa,2 = index referring to point 2 of pair of locations i1; 

For example, if 811(o1,x ,e) for locations x=l and x=2 of pair 1 are (-1) and (-
1.02), respectively, 8"'\o,e) equals 0.02. 

Assmne that pmnping at MP locations affect head at location o. The 
cumulative effect at o is simply the result of adding the effect of MP pumping rates. 
The following summation expression illustrates this application of the additive 
property, with the same assumptions as above. 

f'..h(oJ = f a" (o, eJ 1~;,eJ. 
eel p (e) 
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where 
M~' = total mm1ber of locations at which water is being pumped from the 

aquifer. 

Similarly, the additive property can be used to describe the effect on head 
difference due to pumping at M~' locations. 

where 
Q(u) =the difference in potentiometric smface elevation between locations 

1 and 2 of pair il, [L]. Here, since the initial steady-state 
potentiometric smface is horizontal, Q(fl) also equals the change in the 
difference due to pumping, LiQ(u). 
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Appendix B. Unique Features of REMAX 
(From Peralta and Aly, 1993) 

I. Well-proven, diverse simulation modules to addTess porous and fractured media. 
REMAX is appropriate for optimizing flow and transpoti management in 
heterogeneous multilayer porous or fractured aquifers. To develop influence 
coefficients describing hydraulic head or flow response to stimuli, REMAX uses 
MODFLOW and MT3D for porous media simulation or SWIFT for fractured 
media. Other simulation models are easily added as necessary. 

2. Robust and proven optimization solvers. REMAX contains all software needed to 
solve the described optimization problems. 

3. Easily maintained data sets. For any pmiicular problem, REMAX reads all data 
files from a user-specified subdirectory (or folder in WIN95/NT). This allows 
REMAX users to save all problem-specific input and output in a distinct location. 

4. User-friendly data files, error checking, and diagnostics. Innovative REMAX 
input file organization allows users to write comments, use blmlk lines, or use 
blank spaces as desired. This permits thorough data set documentation. REMAX 
also checks every input file entry and generates error messages with diagnostic 
explmmtions. 

5. Compatibility with other software. REMAX cm1 read standard MODFLOW, 
MT3D and SWIFT data sets. Users cm1 prepare these files using their preferred 
pre-processor and use the generated input files within REMAX. 

6. Ability to compute head at well casing or at cell center. Tllis feature is useful for 
mm1aging unconfmed aquifers of small saturated thickness and for computing 
hydraulic lift costs. 

7. Ability to address systems in which pumping cells or head control cells might 
initially be or might become fully dewatered. Tllis nonlinem or piecewise linem 
problem is not addressed by normal response matrix models. 

8. Automatic cycling and post-optimization simulation. This enables users to 
accurately address nonlinear systems (unconfined aquifers and stream/aquifeT 
systems). Cycling proceeds nntil user-specified maximum numbeT of cycles or 
convergence cTiteTia for decision variables aTe achieved. Post-optimization 
simulation veTifies that the results in the nonlinem physical system should be like 
those in the optimization model. 

9. Almost infi1lite flexibility in addressable problem types. Any of the different types 
of objective functions cm1 be combined into composite objective functions. Any 
type of the mentioned constraints cm1 be used with any of the objective function 
types. 

10. Optimization under uncertainty or for risk management. Optimization can satisfy 
constraints for m1 llln-estricted number of sets of asslmled bmmdary conditions m1d 
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aquifer parameters (realizations) simultaneously. Reliability of computed 
strategies is determined via Monte Carlo post optimization simulation. This 
feature can be used with any combination of objective ftmction(s) and constraints. 

11. Ability to develop cost-reliability tradeoff curves. This ability is provided by 
employing the following REMAX features: 

- optional use of head at well casing instead of average cell heads. 
-use of quadratic objective function including pumping rate, volume, imd 
cost. 
-use of binary and mixed integer variables to include cost of well installation 
or water treatment plant sizing within the optimization. 
- coupled use of cost optimization with the multiple realization option. 

12. Adaptability for special situations (available within a special REMAX version). 
Additional constraints can be added as needed, such as those for: (1) managing 
reservoir releases and conjunctive water delivery to a system of irrigation unit 
command areas (Belaineh et a!, 1998); or (2) assuring that legal water right priorities 
are satisfied (Assume two adjacent surface water users. User 1 has a higher legal 
water right than User 2. Special constraints can assure that User 2 will not receive any 
water tmless all of User 1 water right is satisfied). 
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TABLE 1. 

Model Type 

Simulation 
(S) 

Simulation/ 
Optimization 

(S/0) 

Partial comparison between inputs m1d outputs of Simulation and 
Simulation/Optimization (S/0) models 1 

Input Values Computed Values 

Physical system parameters 

Initial conditions 

Some boundary flows Some boundary flows 

Some boundary heads Heads at 'variable' head cells 

Pumping Rates 

Physical system parameters 

Initial conditions 

Some boundary flows Optimal boundary flows 

Some boundary heads Optimal heads at 'variable' 
head cells 

Bounds on pumping, Optimal pumping, 
heads, & flows heads, & flows 

Objective function (equation) Objective function value 

Both types of models also require as input descriptors and parameters defining the physical system. 
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Figure 2. Contaminant plume management: containment and cleanup (Peralta, 1999). 
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Figure 3. Optimization problem types (modified from Peralta, 1999). 
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Figure 4. Graphical solution to linear two-well containment optimization problem (modified from Peralta and Aly, 1993). 
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Figure 5. Regional aquifer: Norton Air Force Base, Southwest Boundary Area (from Peralta and Aly, 1995a). 
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Figure 6. Candidate wells, gradient control locations, and finite difference grid: Norton Air Force Base, Southwest Boundary Area 
(Peralta and Aly, 1995a). 
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Figure 7. Pathlines for optimal pumping strategy: Norton Air Force Base, Southwest Boundary Area (Peralta and Aly, 1995a). 
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Figure 8. Potential pumping locations and initial TCE concentration: Norton Air Force Base, Central Base Area (Peralta and Aly, 
1995b). 
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