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CHAPTER III 

METABOLOME SEARCHER: A HIGH THROUGHPUT TOOL FOR METABOLITE 

IDENTIFICATION AND METABOLIC PATHWAY MAPPING1  

Abstract 

Background 
Mass spectrometric analysis of microbial metabolism provides a long list of 

possible compounds. Restricting the identification of the possible compounds to those 

produced by the specific organism would benefit the identification process. Currently, 

identification of mass spectrometry (MS) data is commonly done using empirically 

derived compound databases. Unfortunately, most databases contain relatively few 

compounds, leaving long lists of unidentified molecules. Incorporating genome-encoded 

metabolism enables MS output identification that may not be included in databases. 

Using an organism’s genome as a database restricts metabolite identification to only 

those compounds that the organism can produce.  

Results 
To address the challenge of metabolomic analysis from MS data, a web-based 

application to directly search genome-constructed metabolic databases was developed. 

The user query returns a genome-restricted list of possible compound identifications 

                                                 
 

 

1 Co-authored by Arockia Ranjitha Dhanasekaran, Jon L. Pearson, Balasubramanian 
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formula, molecular weight, SMILES structure, and the respective pathways for all 

compounds extracted from the Pathway Tools Pathway/Genome Database (PGDB) of 

that organism. The script to create the MRDB communicates with Pathway Tools [17] via 

the PerlCyc module (v1.1; www.arabidopsis.org/biocyc/perlcyc). The same approach was 

used to create an additional non-redundant database using Metacyc [17] and KEGG [39] 

(Table 5). The reference monoisotopic masses of individual elements were obtained from 

a publicly available compilation (Scientific Instrument Services, Inc., Ringoes, NJ; 

www.sisweb.com). Using the monoisotopic masses of individual elements, the 

monoisotopic masses of all compounds in the MRDB in their charged and neutral states 

were calculated based on their formulae. The MRDB was then modified to include the 

calculated monoisotopic masses, which is queried for compound identification and 

pathway mapping via the Metabolome Searcher’s web interface.  

Query input 
The Metabolome Searcher allows the user to enter a single query by typing the 

name, formula, molecular/monoisotopic mass or SMILES structure, or multiple queries 

by uploading a query list within a file (Figure 6).This file contains masses and intensities 

of compounds as a tab-delimited text file. For mass searches, whether from a single entry 

or a file, the user selects the type (molecular weight or monoisotopic mass). Most MS 

systems contain software that enables data export to a text or an Excel file [40]. We used 

the QTof system (QTof Premier, Waters, MA) with MarkerLynx software for marker 

identification and analysis to test this approach. A MarkerLynx-derived text file was used 

without modification for the Metabolome Searcher query by submitting the file under the 
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“MarkerLynx file” input on the interface (Figure 6). Alternately, analysis of output from 

other MS systems can be done using the “text file” option (Figure 6). While using the text 

file option, query values of any type, whether masses or specific compound names or a 

mixture of query types, were listed in the first column of the query file. Any headers, 

empty lines, and non-query values in the first column were removed prior to submission 

of data as a text file for matching. For both the file options, other information like 

statistics, marker quality, peak areas, peak heights, and concentrations across experiments 

and replicates were still retained in the file.  

Compound identification for MS analysis 
For compound identification from monoisotopic masses, the user specifies the 

acceptable deviation from the theoretical masses (ppm or Da, under “Mass deviation”; 

Figure 6), the ionization mode (positive or negative, under “Electrospray mode”; Figure 

6),the maximum number of charges (0-5; under the “Number of proton charge states”; 

Figure 6), and adducts (mass or formula; optional; under “Adduct or Deduct molecule” 

and “Maximum number of adducts/deducts”; Figure 6). The deviation value allows the 

software to obtain matches for queried masses within an acceptable range to narrow or 

expand the putative identification list. Acceptable mass deviation values may be 

experimentally determined or obtained from the literature based on a particular 

instrument and operating conditions [41].  

Typically during MS analysis, the molecules are detected by prior ionization with 

or by removal of protons (positive and negative mode, respectively) [35]. The MS 

settings are optimized to mainly produce singly charged ions. However, a molecule may 
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still carry multiple charges depending on the MS settings [42]. The user can verify the 

charge state of compounds contained in the input list to recalibrate the MS settings by 

selecting different charge states during multiple search sessions. 

Positively charged ionic species, such as sodium (Na+) and potassium (K+), or 

negative species, such as chloride (Cl–) and formate (HCOO–), are also used during 

ionization due to their abundance in a sample. The addition of ionic species or adducts 

during ionization shifts the observed monoisotopic mass from that of the intact molecule 

plus/minus a proton [42]. These adducts can be specified either as individual elements or 

as partial functional groups in the “Adduct or Deduct molecule” textbox (Figure 6). 

Similar to adducts, if the user wishes to specify fragments lost during ionization or 

fragmentation the “Deduct” option can be selected. The user can also provide more than 

one adduct or deduct in the textbox simultaneously and specify the number of maximum 

possible adducts or fragments (“Maximum number of adducts/deducts” option). 

Database selection 
MRDBs that contain metabolites from different PGDBs or the KEGG database 

along with calculated monoisotopic masses are used for the queries. MRDBs are included 

for user selection from the ones listed on the interface (Table 5) wherein the user can 

select single or multiple MRDBs for searching (Figure 6). If the user intends to query 

known metabolic pathways in an organism, the organism-specific MRDBs are provided 

for more specific and narrow options of possible compounds due to the known annotated 

pathways. However, if the intent is to discover new pathways unknown in a particular 

system, but identified in other organisms, or if an organism without a preconstructed 
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MRDB is being studied, the user can select a genotypically related organism’s MRDB or 

the MetaCyc MRDB for matching. A user-generated PGDB can also be incorporated as 

an MRDB using the scripts defined above prior to the user defined query. The MRDBs 

were created in a flat file format to reduce complexity in processing and data handling 

such that newer MRDBs for other organisms can be created in a consistent format and 

readily incorporated as per the user’s need. Pathway Tools was selected as the main 

metabolic database platform to create MRDBs and link back to PGDBs due to its 

interactive features and user-level flexibility for metabolic database development and 

curation of whole genome PGDBs [17], while queries of an MRDB for the KEGG 

database [43] are also supported. 

Database searching 
Once a text query has been submitted, the Metabolome Searcher determines 

whether a text input is the name of a compound, its chemical formula or its SMILES 

structure independent of any specifications. After the query is classified into the specific 

type, information of the corresponding type in the MRDB is used for matching (i.e., 

names-to-names, formulae-to-formulae, and masses-to-masses) (Figure 7). All matches 

obtained within the parameters specified for searches are provided in the output files for 

viewing and analysis. 

Output generation 
After entering a single query or uploading a query file and specifying the MRDBs 

along with other MS analysis parameters, the user submits the query. The queries are 

matched against the MRDBs, and the output files are created. Query parameters are 
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printed at the top of all the output files to ensure that the parameters submitted by the user 

were used for searching the database (Figure 8A). 

Three different output files are provided as the result of the analysis, one HTML 

and two text files. The two text files are embedded as links at the top of the HTML page 

(Figure 8A) that the user can download. One text file (“compounds file”) lists only the 

matched compounds without any metabolic pathway information, while the other 

(“pathways file”) repeats each compound’s data by all the pathways that it belongs to as a 

metabolite.  

All scripts were written in Perl (v5.8.6; www.perl.org). The scripts and the 

metabolic reference databases for Metabolome Searcher are hosted in an Apple XGrid 

computational cluster (Panther OS 10.3.9) at the Western Dairy Center at Utah State 

University as well as University of California, Davis. Web pages for data input and 

output were created using Perl CGI.  

MS Data Validation 

Chemical standards preparation 
All compounds used were purchased from Sigma-Aldrich (St. Louis, MO). A 

chemically defined medium described previously by Ganesan et al. [18] was prepared as 

a complex mixture for testing Metabolome Searcher’s performance. The major 

components of this medium are 20 amino acids, sodium chloride, citrate, phosphate, 3-

(N-morpholino)propane sulfonic acid (MOPS), vitamin solution (containing 15 different 

compounds), and glucose. Individual standard solutions of selected amino acids, glucose, 

citrate, and MOPS were also used for molecule identification. 
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Mass spectrometry 
Separation and analysis of standard compound mixtures were done at the mass 

spectrometry facility in the CIB. The samples were separated by liquid chromatography 

(2795 LC system; Waters) prior to introduction by electrospray into the mass 

spectrometer (QTof Premier; Waters) as described by Mortishire-Smith et al. [44]. 

Briefly, the separation was done for 10 min using a linear gradient of water:acetonitrile 

from 0-95% using a  Symmetry C18 column (Waters). After introduction into the MS by 

electrospray, the molecules were detected using both positive and negative electrospray 

conditions, with calibrated settings recommended by the manufacturer. The QTof 

instrument was operated in W mode throughout MS analysis. For both positive and 

negative electrospray analysis, the conditions were: desolvation temperature of 250°C, 

source temperature of 120°C, cone voltage of 40 V, and collision energy of 4 eV. Data 

acquisition was performed for a mass range of 50-1,000 Da. After acquisition, the data 

were centroided [44] using 1 ng/µl leucine-enkephalin infused at 10 µl/min as a 

reference, with an m/z of 556.2771 in positive mode and m/z of 554.25 in negative mode. 

In order to subtract background from the LC column and sample matrix, HPLC-grade 

water (Thermo Fisher Scientific Inc., Waltham, MA) was injected into the MS as a 

negative control. All samples were analyzed in technical duplicates.  

Peak detection, intensity extraction, and normalization were performed using 

MarkerLynx software (Waters) to obtain monoisotopic masses and molecule retention 

times. In this study, only the monoisotopic masses of the markers were used for database 

searches. The Metabolome Searcher does not support any data analysis of the 

concentrations or relative measures of compound levels obtained from MarkerLynx. 
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Results and Discussion 
Metabolomic assessment provides a list of compounds that facilitates the 

estimation of metabolic flux through both single pathways and networks [45, 46]. 

Metabolome analysis enables determination of abiotic conditions and genetic regulation 

of metabolic networks. To achieve these purposes, a tool that rapidly determines the 

compound identity, pathways, and metabolic networks was needed [47, 48]. The tool 

accepts queries from common data types and facilitates data integration from independent 

sources into a unified compound identification and pathway-mapping scheme. To our 

knowledge, this is the first tool of this type to be developed. The Metabolome Searcher 

addresses these purposes by receiving input from the user, querying the user-selected 

metabolic reference database(s), and displaying the generated output for further 

biological interpretation (Figure 8). 

Of the Metabolome Searcher’s outputs, the compounds file is useful when the 

user plans to conduct compound classification, data clustering, principal component 

analysis, analysis of variance, or graphical visualization. The pathways file allows the 

users to sort the data by pathways and facilitates analysis of the matches by pathways to 

enable interpretation of metabolic flux and pathway connections to determine if a 

compound is an intermediate or an end product. The main feature of the HTML output is 

that it lists and links compounds to all metabolic pathways in which the metabolite is 

involved (Figure 8). These links help the user understand the role of that particular 

metabolite in the organism’s metabolic network. The user can click on any one of these 

links that will navigate them to the PGDBs curated and hosted at ProCyc (www.usu.edu/ 

westcent/procyc). The user need not repeat queries on the Metabolome Searcher as the 
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HTML file contains the links to the pathways associated with the returned putative 

compound IDs. 

Verification 
For names, formulae, and SMILES structures, any partial matches will also be 

detected and listed. For example, a query of “glucose” against the MetaCyc database 

identifies D-glucose and an additional 52 hits (data not shown) that also include alpha-

methyl-glucose, NDP-Glucoses, as well as all other molecules that contain the substring 

“glucose” in the name. String matching offers the user the ability to obtain partial 

matches and allows additional control over the query specificity and flexibility for 

unknown pathways. In most cases, if the specific MetaCyc compound names are used, 

the results will be restricted to one hit.  

Compound identification from LC-MS or NMR spectrometry data has proven to 

be a challenge to biologists because the compound databases are limited, especially with 

respect to the compounds that a specific organism can produce. Based on the user 

selection of MRDB(s) in Metabolome Searcher, the number of hits is refined and is 

metabolically relevant to the organism under study, thus providing a basis for biological 

conclusions to be drawn. As an example of the convenience provided by Metabolome 

Searcher, we initially queried the MetaCyc MRDB with the monoisotopic mass of 

isocitrate as the search query and used the results for further narrowing the hits by 

querying organism-specific MRDBs. These results were compared to those hits obtained 

by querying the monoisotopic mass of isocitrate using Chemspider (Figure 9). The 

ChemSpider query returned 118 possible compound identifications that included non-
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biological compounds and required extensive analysis outside the query system to derive 

possible identifications, whereas querying the MetaCyc MRDB provided hits that 

included ten compounds with similar monoisotopic masses to that of isocitrate. Each 

genome (i.e., organism) further reduced the hits to two to five compounds that reflected 

the genetic differences in metabolism, all of which were related to citrate. Combining 

genome restriction with the MS compound list refined the possible identification list to a 

low number of compounds that was reasonable for empirical confirmation.  

The interface and search function were verified by accessing the database search 

function, using known exact masses and a data set generated from a known mixture of 

compounds (i.e., a chemically defined bacterial growth medium) from LC-MS output. 

The resulting markers exported into a MarkerLynx format text file were used to query the 

compound identification using Metabolome Searcher. All the main ingredients of the 

growth medium represented in the MetaCyc MRDB were detected during the search. 

MOPS, a buffering salt, was used as a negative control for the chemical challenge, which 

was done by excluding it from the MetaCyc MRDB. Interestingly, after excluding 

MOPS, some of the query masses also matched multiple metabolites, many of which 

were isomeric forms of the metabolites being tested. This allowed further restriction of 

identification to narrower ranges of mass deviation to obtain better accuracy. However, in 

nearly 90% of compounds identified, the number of hits was limited to less than five 

metabolites, thus aiding the directed development of protocols for further compound 

identification. This approach enabled detection of common starting substrates for 

metabolism and verified that if the compound was in the database Metabolome Searcher 
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found it. 

Uses of metabolome searcher 
An example demonstration of the Metabolome Searcher for microbial 

metabolomics was performed by collecting metabolomics profiles for both sterile 

chemically defined media and spent media collected after inoculation with the bacterium 

Lactococcus lactis IL1403 for 16 h. Metabolomics profiles were collected by LC-MS 

analysis in both positive and negative electrospray modes for the same samples, and the 

masses obtained from MarkerLynx were queried against the L. lactis IL1403 MRDB 

(Table 5). After overlaying the compound identifications, we quickly inferred changes in 

compound classes, such as amino acids (Figure 10), by sorting the compounds file, or 

pathways file that changed during growth of L. lactis IL1403 (Figure 10). This example 

demonstrated that Metabolome Searcher performed the intended search and enabled the 

biological meaning to rapidly assign the identified compounds using constructed 

databases from metabolic reconstruction maps. 

Conclusions 
The Metabolome Searcher provides an automated tool to identify metabolites 

from MS analyses from metabolic reconstruction of specific genomes. This approach 

couples long lists of masses to specific genomic-based metabolites for identification and 

subsequent visualization via metabolic pathways. The tool is flexible so that queries can 

use many types of data that include names, molecular formulae, or SMILES structures, 

and monoisotopic masses that are entered singly or in bulk as a text file. The matches to 

queries are then presented as results along with other input parameters that the user 
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included in the query and the pathways in which the matched metabolites are involved. 

The versatility of accepted query types and the provision of pathways mapped to queries 

are unique to the Metabolome Searcher. The Metabolome Searcher’s utility and 

flexibility facilitates rapid advances from metabolomics to biological comprehension. 
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Table 9  - Kinetic parameters Vmaxf and Vmaxr of all reactions in the three pathways 
of Salmonella 
 
Reaction Pathway Enzyme Vmaxf Vmaxr 

1 Aspartate 
Biosynthesis Aspartate transaminase  39.7 71.3 

2 TCA cycle & 
Glyoxylate Cycle 

 aconitase B 
(citrate->aconitate) 5001.3 22.0 

3 TCA cycle & 
Glyoxylate Cycle citrate synthase 2165.1 1391.6 

4 TCA cycle & 
Glyoxylate Cycle 

aconitase B 
(aconitate->isocit) 4728.8 904.3 

5 Glyoxylate Cycle  isocitrate lyase 1421.5 360.9 

6 Glyoxylate Cycle  malate synthase G 386.3 411.2 

7 TCA cycle & 
Glyoxylate Cycle malate dehydrogenase 2443.6 714.8 

8 TCA cycle succinate dehydrogenase 1877.9 2647.1 

9 TCA cycle  isocitrate dehydrogenase 3961.9 2364.0 

10 TCA cycle 2-oxoglutarate 
dehydrogenase 1652.9 784.0 

11 TCA cycle  succinyl-CoA synthetase 1405.0 3430.6 

12 TCA cycle fumarase A 1622.8 775.3 
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Table 10  - Kinetic parameters Vmaxf and Vmaxr of all reactions in the three pathways 
of Salmonella + Caco-2 
 

Reaction Pathway Enzyme Vmaxf Vmaxr 

1 Aspartate 
Biosynthesis 

Aspartate 
transaminase  19259.6 8651.0 

2 TCA cycle & 
Glyoxylate Cycle 

 aconitase B 
(citrate->aconitate) 2077.7 1326.2 

3 TCA cycle & 
Glyoxylate Cycle citrate synthase 259.6 3095.0 

4 TCA cycle & 
Glyoxylate Cycle 

aconitase B 
(aconitate->isocit) 1011.6 9111.5 

5 Glyoxylate Cycle  isocitrate lyase 101654.0 64.9 

6 Glyoxylate Cycle  malate synthase G 668.7 1041.0 

7 TCA cycle & 
Glyoxylate Cycle malate dehydrogenase 1293.6 8728.2 

8 TCA cycle succinate 
dehydrogenase 1189.8 1149.6 

9 TCA cycle  isocitrate 
dehydrogenase 2376.4 2561.5 

10 TCA cycle 2-oxoglutarate 
dehydrogenase 2276.1 1131.2 

11 TCA cycle  succinyl-CoA 
synthetase 2634.3 723.9 

12 TCA cycle fumarase A 802.1 64659.8 
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Table 11  - Kinetic parameter Kdy of all reactions in the three pathways of 
Salmonella and Salmonella + Caco-2 
 

Reaction Pathway Enzyme Salmonella Salmonella  
+ Caco2 

1 Aspartate 
Biosynthesis 

Aspartate 
transaminase  0.8 59082.6 

2 
TCA cycle & 
Glyoxylate 
Cycle 

 aconitase B 
(citrate->aconitate) 421.5 0.3 

3 
TCA cycle & 
Glyoxylate 
Cycle 

citrate synthase 1.2 0.5 

4 
TCA cycle & 
Glyoxylate 
Cycle 

aconitase B 
(aconitate->isocit) 8.3 0.1 

5 Glyoxylate 
Cycle  isocitrate lyase 130733.0 4.4*10^12 

6 Glyoxylate 
Cycle  malate synthase G 3.3 1.7 

7 
TCA cycle & 
Glyoxylate 
Cycle 

malate 
dehydrogenase 5.1 0.4 

8 TCA cycle succinate 
dehydrogenase 1.3 0.4 

9 TCA cycle  isocitrate 
dehydrogenase 1.6 0.6 

10 TCA cycle 2-oxoglutarate 
dehydrogenase 7.3 0.1 

11 TCA cycle  succinyl-CoA 
synthetase 1.1 0.3 

12 TCA cycle fumarase A 1.4 0.0 
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Figure 11  - Two states of metabolism: Dynamic State vs Steady State 
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Figure 12  - Different representations of a biochemical reaction 
(a) Conventional, (b) Hypergraph and (c) Symbolic. E – enzyme, A & B – substrates, C 

&D – products 
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Figure 13  - Three metabolic pathways used in the study  
1) Aspartate biosynthesis, 2) Tricarboxylic acid cycle and 3) Glyoxylate cycle  
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Figure 14  - Plot of the different hill-climbing variants 
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Figure 15  - Experimental data vs Model data for the various metabolites present in 
the three metabolic pathways 
The line with circular markers represents experimental data and the line with square 

markers denotes model data. RSS is the residual sum of squares value for the metabolite. 
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Figure 16  - The three metabolic pathways overlaid with the KR values of 
Salmonella 
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Figure 17  - The three metabolic pathways overlaid with the KR values of 
Salmonella & Caco-2 
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CHAPTER V 

DYNAFLUX: A TOOL FOR DYNAMIC STATE FLUX  

ESTIMATION AND NETWORK ANALYSES 

Abstract 

Background 
A major challenge in the post-genomic era is to understand the metabolism of an 

organism. The four cellular variables, namely, mRNA transcripts, proteins, small 

molecules, and metabolic flux aid in the comprehensive characterization of the metabolic 

capabilities present in an organism. mRNA transcripts, proteins, and small molecules can 

be directly measured using high-throughput omics technologies like transcriptomics, 

proteomics, and metabolomics, respectively. However, intracellular fluxes cannot be 

directly measured and thus have to be inferred from measurable data. The cost of 

experiments, needed skills, and laborious setup of experiments have restricted flux 

measurements to only a few laboratories. Bioinformatics plays an important role in 

profiling the fluxome of an organism and has made flux analysis available to the 

scientific community. Several bioinformatic tools have been developed for steady state 

analysis of flux, but there is a shortage of dynamic state flux tools. Dynamic state 

analysis of metabolic flux sheds more light on the transient behavior of metabolism and 

serves to predict metabolic behavior in unexplored conditions. 

Results 
A user-friendly software tool, DynaFlux, was developed to make flux estimation 

available to non-expert users. The tool was built using Wolfram Mathematica® 7.0 and 
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the Integrated Development Environment Wolfram Workbench™ 2.0. The features 

available in the tool include: 1) deriving metabolic reconstructions for the simulation 

from Pathway Tools; 2) automated building of the mathematical model of the metabolic 

network; 3) parameter estimation using hybrid-mutation random-restart hill climbing 

algorithm; 4) perturbation studies of enzyme activities; 5) enumeration of feasible routes 

between two metabolites 6) minimal enzyme set; 7) imputation of missing metabolite 

data and 8) visualization of the network. 

Conclusions 
DynaFlux aids in the estimation of fluxes through the metabolic network and 

analysis of the network at dynamic state. Estimation of flux at dynamic state helps in 

understanding the transient behavior of the network and facilitates prediction of 

metabolic phenotypes at unexamined genetic or environmental conditions. In order to 

detour the metabolite towards the product of interest, enumeration of feasible routes 

along with the fluxes assists in decision-making at critical branch points. Perturbation 

studies help achieve the goals of metabolic engineering by knocking out or amplifying 

the enzymes to increase the production of the useful metabolite. Finally, imputation of 

missing metabolite data circumvents the need to conduct another tedious experiment. 

Background 

Metabolic engineering 
Metabolic engineering is a rational approach to improve organisms using 

recombinant DNA technology to restructure metabolic networks for redirecting 

biochemical flux in order to enhance metabolic capabilities. Prior to metabolic 
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engineering, classical crossover of different strains was the rule of thumb to improve the 

metabolic capabilities [1]. Even though classical crossovers resulted in better strains with 

improved capabilities, the process was slow and involved random mutagenesis [2]. 

Conversely, metabolic engineering employs targeted genetic modifications, which is 

considered to be a more rational technique for strain improvement. 

The field of metabolic engineering has grown to be highly multidisciplinary in 

nature, and derives support, tools, ideas, and methods from biochemistry, genetics, 

molecular biology, cell physiology, chemistry, chemical engineering, systems analysis, 

computer simulation, and bioinformatics [2, 3]. Metabolic engineering is an iterative 

process that consists of two steps: analysis and synthesis [4, 5]. Genetic modifications are 

done in the synthesis step to produce the desired strain with enhanced metabolic qualities 

using molecular biological techniques like genetic engineering and recombinant DNA 

technology. Analysis is the step wherein the metabolic capabilities present in the 

organism are characterized using analytical techniques [4, 6, 7].  

To achieve the goals of metabolic engineering, there is a need to map the 

genotype of an organism to the metabolic phenotype. As a first step towards phenotypic 

mapping, the metabolic potential present in an organism has to be determined. But the 

biochemical characterization of metabolic networks and capabilities present in an 

organism lags as compared to the rate at which genomes are being sequenced [8]. Current 

workhorse technologies have resulted in a rapid increase in the number of completely 

sequenced genomes. As of 2010, there are about 1500 completely sequenced genomes 

including those of eukaryotes, bacteria, and archaea present in the Kyoto Encyclopedia of 
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Genes and Genomes (KEGG) database [9]. Bioinformatics has stepped in to bridge the 

gap between genome sequencing and characterization of the metabolic potential of an 

organism. Several bioinformatics tools such as Pathway Tools [10], KEGG [11], Pathway 

Analyst [8, 12], BioMiner [13], and What Is There [14] aid in the reconstruction of 

metabolic networks present in the organism using the annotated genome. 

In conjunction with the reconstructed metabolic network, four important 

variables, namely, mRNA transcripts, proteins, small metabolites, and metabolic flux 

contribute to the complete description of the metabolic potential present in an organism 

[7]. Metabolic engineering serves as a framework to integrate these four cellular variables 

[7, 15]. High-throughput omics technologies like transcriptomics, proteomics, and 

metabolomics have enabled the systemic measurements of mRNA transcripts, proteins, 

and small metabolites, respectively. However, an organism’s fluxome cannot be easily or 

directly measured because flux involves a dimension of time [16]. Due to the required 

expertise, time-consuming and expensive experimental setup, metabolic flux analysis has 

been restricted to only a few expert groups [17]. Consequently, the fluxome of the 

organism has to be inferred from other measurable quantities. Bioinformatics plays a vital 

role in estimating intracellular flux and also makes flux analysis accessible to non-expert 

groups. As a result, bioinformatics has contributed to the missing piece of the puzzle to 

complete metabolic analysis.  

Metabolic flux can be analyzed at steady state or dynamic state. At steady state, 

the metabolite pools are considered to be unchanging [18], and thus the kinetic 

parameters and reaction mechanisms can be ignored in the model. The various analyses 



139 

of a metabolic network at steady state employ stoichiometric modeling as the basis [19]. 

Several computational tools for steady state flux analysis are available for educational 

and commercial purposes. DBSolve [20], FluxAnalyzer [21], YANA [22], Expa [23], 

SNA [24], Metatool [25, 26], MetaFluxNet [27, 28], and CycSim [29] are tools designed 

for steady state analysis of flux. Steady state analysis utilizes the topology of the network, 

and reveals network information such as extreme pathways, flux distribution, optimal 

flux distribution, and elementary modes present in the network under study; but the 

steady state assumption provides only a static snapshot of the metabolic potential of the 

organism. 

In the post-genomic era, one main challenge is to understand the dynamic 

metabolic behavior of an organism and consequently be able to predict the behavior in 

unexplored genetic or environmental conditions. For this purpose, the kinetic and 

mechanistic information has to be incorporated into the metabolic model [30]. The 

software tools that, to date, have integrated the kinetic parameters and simulated the 

dynamic behavior of an organism are GEPASI [31], MIST [32], and SCAMP [33]. 

Owing to the network complexity, shortage of computational resources, and lack of 

technical tools for model development, not much work has been done in the area of 

metabolic analysis. In the past, dynamic models have been developed to study 

tricarboxylic acid cycle in Dictyoselium discoideum [34], threonine synthesis pathway in 

Escherichia coli [35], glycolysis in Trypanosoma brucei [36], and the human red blood 

cell metabolic network [37]. The major drawback is that these models are restricted to 

only the problem domain for which the model was constructed. 
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Pathway analysis 
In order to apply rational and targeted modifications to the metabolic network of 

an organism, metabolic engineering requires the analysis of pathway topology [38]. 

Consequently, once the metabolic network has been successfully reconstructed and 

kinetic parameters have been estimated, few analyses help in understanding the metabolic 

potential present in the organism and aid in predicting transient metabolic behavior. 

These network analyses include but are not limited to 1) enumeration of the most 

probable paths from a source metabolite to desired product, 2) knock-out and 

amplification of enzymes, and 3) computation of the minimal enzyme set and the 

dispensable set. 

Most probable path 
A metabolic pathway is defined as a complex series of consecutive, controlled, 

and enzyme-catalyzed biochemical transformations. One of the goals of metabolic 

engineering is to improve the production of chemicals already present in an organism [2-

5]. This is achieved by redirecting metabolite fluxes towards a desired product when 

there are two or more enzymes competing for the same metabolite, and accelerating or 

avoiding rate limiting reactions. To redirect the fluxes, the first step is to enumerate all 

feasible paths between a source metabolite and desired product metabolite. At steady 

state, the most probable paths and alternative routes through the network can be 

determined by calculating the elementary flux modes [38, 39]. Several studies at steady 

state have applied convex analysis to the stoichiometric matrix to calculate elementary 

flux modes [38] or basic reaction modes [40]. Flux modes are possible direct routes 

between two metabolites. The flux modes are termed elementary when the mode consists 
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of a minimal set of reactions and are nondecomposable. Since this study involves 

dynamic state analysis and does not employ stoichiometric modeling, a graph theory 

approach is used to calculate the most probable paths between a source metabolite and 

desired product. 

Minimal and dispensable enzyme set  
Alteration of a pathway for the production of desired product must involve 

identification of the enzymes involved in the biochemical transformation. The 

identification of the most probable routes between two metabolites also reveals the 

enzyme set that is essential for the functioning of the pathway in order to actively 

produce the desired metabolite. The minimal enzyme set is composed of those enzymes 

that are almost certainly essential for the production of the metabolite of interest, whereas 

the set of enzymes that can be deleted simultaneously without affecting the production of 

the desired metabolite is known as the dispensable set [40].  

Knock-out, attenuation or amplification of  
enzyme activity 

The goals of metabolic engineering can be accomplished by the following two 

approaches [38]: 

1. Enzymes can be blocked completely or removed by knocking out the 

corresponding genes, 

2. Enzyme activities can be gradually changed. 

The first approach is termed as knock-out and the second is amplification of enzyme 

activity.  
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Imputation of missing data 
Handling missing or incomplete experimental data is a challenge that scientists 

often face. Missing data poses a concern to the scientific community because inference 

from a real dataset containing missing values may not be accurate. On the other hand, 

setting up and running an experiment is also very time consuming and expensive. 

Imputation is an approach used to fill in missing data with estimated values in order to 

produce a complete dataset. Imputation of missing data is an important topic in machine 

learning and data mining [41]. The area of imputing missing data has received 

considerable focus in the recent past in statistics as well and several different strategies 

that have been developed to deal with this issue [42]. In this study, a simulation-

optimization method is used for imputation of missing data. 

Network visualization 
Visual information conveys the message more aptly than tabulated data, 

especially in this case of analysis of a metabolic network. Manually drawing and 

visualizing a metabolic pathway is the best way to depict a complex pathway because 

humans may be able to produce better visualizations than automated layout algorithms. 

However, the problem with this approach is that drawing complex pathways is time-

consuming, and modifications to the pathway, which is often the case, cannot be 

incorporated automatically.  Metabolic network visualization is by itself an interesting 

area of research, and different graph layout algorithms have been devised to draw the 

pathway topologies [43, 44].  
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Thus, given the challenge of understanding the dynamic behavior of a metabolic 

network and a need for a software tool to enable the analysis of metabolism of an 

organism at dynamic state, this research focussed on developing a software tool to meet 

these needs. DynaFlux is a user-friendly software tool that is capable of performing 

dynamic analyses of metabolic networks. This tool integrates flux profiling and network 

analyses based on estimated network flux. The analyses include estimation of kinetic 

parameters, imputing missing experimental data, enumeration of the most probable paths 

from a source metabolite to desired product, knock-out and amplification of enzymes, 

computation of the minimal enzyme set, and the dispensable set. The graphical user 

interface also provides a visualization of the metabolic network and the analyses. 

Implementation 
DynaFlux was developed using Wolfram Mathematica® 7.0 and the Integrated 

Development Environment Wolfram Workbench™ 2.0. The architecture of DynaFlux 

consists of five functional modules as shown in Figure 18. The modules are 

1. Network input module 

2. Automated differential equations generator module 

3. Parameter estimation module 

4. Network analysis module 

5. Visualization/output module 

The modules are accessible via a user-friendly graphical user interface (Figure 19). 
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Network input module 
Metabolic pathway information and time course experimental data are two inputs 

for the tool that are essential to build the metabolic network for simulation, flux 

estimation, and network analysis. Major goals while developing the tool were that non-

expert users should be able to use the tool with ease and that there should be minimum 

user interaction required for flux estimation and network analysis.  In order to achieve 

these goals, the tool draws pathway information from an external software tool to help 

the user choose the pathways of interest, instead of forcing the user to define the pathway 

along with all the reactions manually that make up the pathway.   

The metabolic pathway information of an organism is stored in the DynaFlux 

Database (DFDB) of the organism and consists of three flat files derived from Pathway 

Tools Pathway Genome Database (PGDB) of that particular organism [45]. The data 

needed for DFDB creation is exported from the desktop version of Pathway Tools 

software. The three DFDBs are 

1. Pathway database 

2. Reaction database 

3. Enzymatic reaction database 

The user is able to choose an organism from a list of organisms for which the 

DFDBs are available. Once the organism has been selected, the user is presented with the 

list of metabolic pathways present in the organism. The user can then select one or more 

pathways of interest (Chapter III). The DynaFlux software extracts the needed 

information from the three databases to reassemble the reactions along with the 

respective enzymes that make up the metabolic pathways for the purposes of estimating 
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flux through the pathways and other analyses of the network. DynaFlux is not organism-

specific; rather the software allows the user to study the metabolism of any organism of 

interest, the only constraint is that the organism’s PGDB must be available in Pathway 

Tools. Even if the PGDB is unavailable, the user can create one by using the PathoLogic 

component of Pathway Tools if the annotated genome of the organism is available [10, 

45, 46].  

The second input to the tool is the time course data. When the pathways of 

interest have been selected by the user, DynaFlux identifies and lists the metabolites and 

enzymes present in the pathway(s) of interest in the order that they appear in the reaction 

set. The user is required to input the file containing the values corresponding to the 

concentrations of the metabolites and enzymes in the order provided in a tab-delimited 

format, with the columns being the different time points at which the measurements were 

taken, and the rows should corresponding to the reactants and enzymes. Here, ‘value’ can 

stand for concentrations, peak areas detected using a mass spectrometer, or any other 

units of data measured over time. This gives the user the flexibility of providing time 

course data measured using any technology.  

Automated differential equations  
generator module 

To accomplish the task of simulating a biochemical system on a computer, the 

system has to be transformed into a mathematical representation. Considering the facts 

that a metabolic system is non-linear in nature and the system is at dynamic state, the 

metabolic network is transformed into a set of coupled ordinary differential equations 

representing the pathway(s). The mathematical representation of the network is derived 
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by parsing the reactions individually in a linear sequence and generating the 

corresponding coupled differential equations [47]. There are four basic rules for 

generating the coupled differential equations for a reaction (Chapter IV). The automated 

differential equations generator (ADEG) uses those four rules to process the metabolic 

network and results in the complete set of coupled differential equations without any user 

intervention. A simulation of the biochemical system involves 1) transforming the system 

into a mathematical representation of the network, and 2) solving the mathematical 

representation. The first step is achieved by ADEG, and the second step is completed by 

the next module. 

Parameter estimation module 
An inverse problem is one in which the effects of the system are given and the 

causes that resulted in those effects are to be estimated. In this case, the time course data 

(effects) is given, and the kinetic parameters (causes), that yielded the time course data, 

are to be estimated and thus this problem falls into the category of Inverse Problems. The 

differential equations generated by parsing each reaction in the ADEG module is solved 

as a set of coupled differential equations using the NDSolve method in Mathematica 

(version 6.0 or above). NDSolve takes the following form: 

NDSolve[eqns, vars,{t, start, end}]; 

where eqns is the set of coupled differential equations, vars is the set of all compounds 

involved in the pathway, t represents the time variable, start and end are the starting 

and ending time. 
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Network analysis module 
Imputation of missing data 

Imputation of missing data is done in two steps: estimation using slope method 

followed by estimation using simulation-optimization. As a first step, the “slope method” 

is used to find an initial estimate of the missing value of a metabolite at a given time 

point. The slope method was introduced in this study and uses the formula for calculating 

the slope of a straight line. Analysis of metabolite time course data indicated that a 

metabolite A produced or consumed by metabolite B usually follows a trend similar to 

metabolite B (Chapter IV), i.e., the rate of change of concentrations over time for the 

metabolites A and B were approximately the same; thus, the lines of the plots of 

concentrations of the metabolites were parallel. Mathematically, two parallel lines have 

the same slope. Applying this fact, the slope of the metabolite with measured 

concentration values was used to estimate the missing concentration of the other 

metabolite. The metabolite used for calculating the slope is called the neighbor to the 

missing metabolite. In situations wherein the metabolite is a branch point metabolite and 

as a result there are several neighbors available for the missing metabolite, a neighbor 

that is nearest to the missing metabolite is chosen based on the following criterion 

 

(1) 

 

where NN is the nearest neighbor, and c is the metabolite that has a missing value. The 

slope of the neighbor with measured concentrations at two time points is given by 

Equation 2 
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(2) 

 

where Bt1 and Bt2 are the concentrations of metabolite B at time points t1 and t2, 

respectively. Using the slope of metabolite B, the missing concentration of metabolite A 

can be found using Equation 3 

(3) 

With At1 as the initial estimate, a simulation-optimization routine in the PEM is then used 

to determine the final estimate. The algorithm for imputing the final estimate is 

1. Run the simulation-optimization routine. Determine the set of best-evaluated 

model parameters and c, the corresponding concentration of the missing 

metabolite.   

2. If Absolute[At1- c] < 1.0 and Absolute[At1- caverage] < 1.0, then accept c as one 

of the feasible final estimate. Here caverage is the average of the feasible final 

estimates found thus far. 

3. Repeat steps 1 and 2 for a few times. 

4. Report caverage as the final estimate of the missing value of the metabolite. 

5. Repeat steps 1 through 4 for the next missing metabolite, if any. 

Perturbation 
This network analysis involves determining enzyme activity by perturbation and 

predicting the corresponding changes in the rate of a reaction. Perturbation study involves 

amplifying the levels of the enzyme or knocking out the enzyme completely. This allows 

analyzing the activities of the enzyme, changes in the estimates of model parameters, and 

the concentrations of the metabolites involved in the reaction catalyzed by the enzyme at 
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different time points and the systemic changes. PEM’s simulation-optimization routine is 

used, and the overall-best-evaluated model parameters are estimated (Chapter V). Using 

the overall-best-evaluated model parameters and the amplified or knocked out enzyme 

concentration, a new set of data is generated for the network reactants and enzymes. 

PEM’s simulation-optimization routine is again employed and the new overall-best-

evaluated model parameters are estimated for the perturbed biochemical system. 

The kinetic parameters KR, Kdy, Vmaxf, Vmaxr and v are calculated for the normal 

and the perturbed system. The definitions for KR, Kdy, Vmaxf and Vmaxr can be found in 

(Chapter 4). Consider the uni-uni reaction in Equation 4 

 

(4) 

 

The net rate of product formation for this reaction is obtained by subtracting the rate at 

which the product is consumed in the reaction from the rate at which the product is 

released in the reaction and is given by 

(5) 

where [EA], [E], and [P] are the concentrations of the complex, enzyme, and product 

[48].  
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Most probable path 
The metabolic network is transformed into a graph with nodes representing the 

metabolites and the edges symbolizing the reactions of the network. All feasible routes 

between a source metabolite and a desired product are found using a breadth-first search. 

Breadth-first search is a graph-search algorithm that is a simple strategy in which the 

search begins at the root node, i.e., the source metabolite and expands this node, then all 

the neighboring nodes are expanded, next their neighbors, and so on until the desired 

product is found [49]. Once all the feasible paths are found by BFS, the paths are tested 

for validity. All the valid feasible paths are then ranked using the overall rate of product 

formation while taking the route to get to the desired product.  

The fastest route from the source metabolite to the desired product is considered 

to be the best route. The enzymes that catalyze the reactions in this route are called the 

minimal enzyme set. The rest of the enzymes in the other feasible routes are termed as 

the dispensable enzyme set. At a branch point, an enzyme from the dispensable enzyme 

set can be knocked out resulting in routing the metabolite through the other faster 

enzyme, thus yielding more of the desired product. 

Visualization/output module 
This module displays the output of PEM and the other network analyses that can 

be done in DynaFlux. The kinetic parameters KR, Kdy, Vmaxf and Vmaxr are output in a 

tabular form that can be saved into a text file or exported to a spreadsheet application for 

further analysis. The graph representation of the metabolic network is constructed using 

the GraphPlot function available in Mathematica (6.0 or above). The syntax for 

GraphPlot is  



151 

GraphPlot[{vi 1->vj 1,vi 2->vj 2,…}]; 

where vertex vik  is connected to vertex vjk. The rate of a reaction v is overlaid on the 

graph representation of the network for better comprehension of the rates. 

Results and Discussion  
One of the most important goals considered during the development of DynaFlux 

was to minimize user intervention. Several softwares for flux analysis at dynamic state 

like GEPASI [31], MIST [32], and SCAMP [33] require the user to define every reaction 

present in all the pathways in the metabolic network. Even softwares that deal with 

steady state analysis, such as FluxAnalyzer [21], Metatool [25, 26] and SNA [24], expect 

the users to define the reactions. On the contrary, DynaFlux pools in pathway information 

from Pathway Tools [10]. In this way, the user can pick the pathways of interest from the 

list provided and is not required to describe every reaction involved in the pathways 

present in the metabolic network. When the network’s complexity increases, the time 

taken to define the individual reactions also increases, but DynaFlux circumvents this 

drawback.  

There are a few dynamic models that were used to study tricarboxylic acid cycle 

in Dictyoselium discoideum [34], threonine synthesis pathway in Escherichia coli [35], 

glycolysis in Trypanosoma brucei [36], and human red blood cell metabolic network 

[37]. These models were developed for the specific problem domain. But DynaFlux is not 

organism-specific, rather the software can be used for any organism of interest that has 

metabolic reconstructions, from the genome sequence, available in Pathway Tools 

software.  

http://reference.wolfram.com/mathematica/ref/GraphPlot.html
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In this study, a time course dataset of the food-borne pathogen Salmonella typhimurium 

in normal growth conditions was used. The dataset was comprised of metabolomics and 

genomics data of three basal metabolic pathways, namely, aspartate biosynthesis, the 

tricarboxylic acid cycle, and the glyoxylate cycle. The three pathways shown in Figure 20 

were constructed using the visualization module of DynaFlux. The metabolites and gene 

expression data were measured at 30 minutes, 60 minutes, and 120 minutes.   

Flux analysis at dynamic state is the main feature of DynaFlux. The ADEG 

module of DynaFlux generates the mathematical model of the network represented by the 

set of coupled differential equations based on the pathways selected, without needing the 

involvement of the user. The PEM module uses a hybrid-mutation random-restart hill 

climbing algorithm to achieve the best fit between the experimental data and the model 

data (Chapter 4). Figure 21 shows the pathways overlaid with the estimated flux through 

the reactions. 

Apart from flux estimation, DynaFlux can be used to impute missing data in 

experimental time course measurements and pathway analyses like enumeration of most 

probable paths between source and product, knock-out and amplification of enzymes, and 

computation of the minimal enzyme set and the dispensable set. In addition, DynaFlux 

provides network visualization for easy comprehension of the network under study.  

Missing data is a common problem in real datasets. There are several methods 

that have been devised to handle this problem [42]. These methods are used to impute 

missing data, especially non response data in all types of medical research and social 

sciences. Recently, machine learning and data mining have been used to deal with 
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missing data [41]. All these approaches focus only on non response data from a sample 

population. But in this research, the missing data is from experimental measurements 

using high throughput technology and not from subjects of a sample population. So, the 

statistical approaches cannot be applied in this scenario. Thus, imputation of missing data 

is done using a novel approach that was introduced in this research.  

The dataset used in this study was complete without any missing data. For the 

purposes of validating the imputation of missing data approach introduced in this study, 

the data points were forced to be missing. The approach used for imputation of missing 

data consists of two steps: 1) the slope method, and 2) the simulation method.  

Table 12 lists the imputation of isocitrate at the third time point (120 minutes). 

The log2 of the peak area of isocitrate at time point 3 was 12.4 units in the original 

dataset. The neighboring metabolites for isocitrate in the pathways under consideration 

are aconitate, glyoxylate, and ketoglutarate. Using the nearest neighbor approach 

introduced in this study, aconitate was found to be the nearest neighbor. Next, using 

aconitate as the neighboring metabolite, the slope method resulted in 12.4 units as an 

estimate for the missing value for isocitrate. Imputing the slope estimate at the missing 

spot in the dataset, PEM is invoked, and several estimates of the missing value are 

generated. The slope estimate remains the same for every simulation estimate. The 

simulation estimates are considered to be one set of data, and the slope estimates 

constitute the second set of data. Next, a paired t-test is applied to assess if the means of 

the two sets are statistically significantly different from each other. The p-value from the 
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t-test is 0.49, which is far greater than 0.05 and thus the two data sets are statistically the 

same. As a result, the final estimate of the missing value is given as 12.6 ± 0.1.  

Table 13 lists four missing metabolites that were estimated using the slope-

simulation approach. When the dataset contains two or more missing values, the slope 

method is first used to estimate all the missing values using the nearest neighbor 

approach. These estimates are then filled in at the missing places in the dataset. PEM is 

used repetitively to estimate each missing metabolite one at a time and replace the slope 

estimate. The final estimates are relatively close to the actual values listed in Table 13. 

The order in which the metabolites are estimated does not affect the final estimates. 

The next goal was to find all feasible paths between a source metabolite and the 

desired product. Enumerating feasible or alternative routes between metabolites in a 

metabolic network has several applications in systems biology, for example in the design 

of knock-out experiments [50] and comparative analysis [51]. There are a number of 

well-established methods that exist to calculate the paths in a graph, but those cannot be 

applied to metabolic networks that are much more complicated than ordinary graphs. A 

few approaches apply shortest path algorithms to compute the metabolic routes using 

atomic mapping rules or structural information [52]. Some tools that use this approach 

are Pathway Hunter Tool [53] and Rahnuma [51]. At steady state, convex analysis has 

been applied to the stoichiometric matrix of the metabolic network to calculate the 

elementary flux modes. In this study, the network is at dynamic state represented as a 

graph. Consequently, a breadth-first search algorithm is used to enumerate all the feasible 
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paths between two metabolites. Furthermore, no other software tool calculates the 

shortest path or ranks the feasible paths using the fluxes present in the pathways.  

Figure 22 shows the most probable paths between succinate and glutamate. There 

were three possible paths between the two metabolites and are listed in Table 14. The 

most probable paths found using BFS are highlighted in the metabolic network. The rank 

of the path and the total flux of the path are also recorded. The shortest path has only 

three transformations to the desired product and takes 13.16 flux units to produce 

glutamate. However, there are one or more individual reactions in all the three routes that 

have a negative flux (Figure 22). Negative values for flux indicate that the reaction was 

taking place in the reverse direction, i.e., the product was consumed to form the 

substrates of the reaction. Thus, a reaction with a negative flux in the pathway disrupts 

the flow of conversion, and the desired product is never achieved by taking that route. 

Conversely in Figure 23a, there are three possible routes that exist between citrate 

and malate. None of the reactions in the three paths have a negative flux indicating that 

all the reactions are proceeding in the forward direction. The shortest path from citrate to 

malate is via aconitate and isocitrate (Table 15). This path has the minimum number of 

transformations and also the minimum value for the overall flux of the pathway, which is 

obtained by adding the individual fluxes. Consequently, the shortest path is the fastest 

path in going from citrate to malate. Figure 23b shows the fastest route in isolation from 

the pathways under study. The minimal enzyme set for the transformation of citrate to 

malate comprises  aconitase B, isocitrate lyase, and malatesynthase G. All the other 

enzymes in the rest of the possible routes are considered to belong to the dispensable 



156 

enzyme set. The enzymes from the dispensable set can be knocked-out one-by-one to 

check if the metabolites in the fastest path can be routed efficiently towards the desired 

product. 

Perturbation study involves knocking out an enzyme or amplifying the 

concentration of an enzyme. The enzyme aspartate transaminase was chosen for the 

perturbation study. Figure 24 shows the rates of the reactions overlaid on the metabolic 

network, which resulted from the perturbation study. The flux value listed below the 

enzyme’s name is the flux estimated using normal growth conditions. The next flux value 

is when aspartate transaminase was knocked out followed by the flux value wherein the 

enzyme concentration was amplified two-fold. The lower the flux value,  the faster the 

reaction. From Figure 24, for aspartate transaminase, the flux was negative at normal 

growth conditions, indicating that the reaction was taking place in the reverse direction; 

thus, more oxaloacetate and glutamate were produced when compared to production of 

aspartate and ketoglutarate. The flux was nil as expected when the enzyme was knocked 

out. When the enzyme was amplified, the reaction was fast and proceeded in the forward 

direction. The perturbation study of aspartate transaminase not only affected the flux of 

this reaction but also changed the fluxes of other reaction. Thus, a change in one of the 

reactions has a systemic effect. Results from up to 5 perturbations can be overlaid on the 

same graphical representation for comparative studies.  

The other important features of DynaFlux include integration of metabolomics 

and genomics data, mass balance of metabolites, the use of a benchmark metabolite to 

run the simulation, applying thermodynamic information to determine the direction of a 
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reaction to generate the set of coupled differential equations and visualization of 

directionality in the network, and sending an email to the user in order to indicate the 

completion of the simulation.  

In summary, DynaFlux acts as a framework to integrate metabolic 

reconstructions, genomic data, metabolic data, and thermodynamics, along with dynamic 

state metabolic flux estimation and network analyses. This integration makes DynaFlux a 

unique software for understanding metabolism at dynamic state and performing network 

analyses that will aid in metabolic engineering.  

Conclusions  
DynaFlux is a user-friendly tool for conducting dynamic state metabolic flux 

analysis. Due to the fact that flux analysis is done at dynamic state, the tool helps predict 

the behavior of the metabolic system under unexplored genetic or environmental 

conditions. The tool requires very less user interaction by mostly automating the 

processes involved in flux estimations and network analyses. Thus, non-expert users can 

use the tool without having to know the underlying mathematics employed. Flux analysis 

was time-consuming and was mostly restricted to only a few specialized groups, but 

DynaFlux makes flux analysis available to any user with a need to study fluxes of a 

metabolic network. The tool imports pathway information from Pathway Tools, so the 

initial setup is also effortless.  

The tool integrates metabolomics and genomics data for flux estimation. 

Furthermore, the tool can be used for imputation of missing experimental data and a few 

network analyses such as perturbation study, finding all feasible paths between a source 
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metabolite and desired product, and visualization of the network. The results of the 

perturbation study will guide the researcher to formulate possible hypotheses about 

substrate limitation, abiotic stress, metabolic engineering options, and the optimal method 

to modify the metabolic system to produce the desired product. 

Finding all feasible paths between two metabolites will help in directing the fluxes at 

branch points towards the metabolite of interest.  

DynaFlux is an innovative tool aiding flux estimation and network analysis in the 

post-genomic era, thereby bridging the gap between genome sequencing and metabolic 

analysis. This in turn will hasten the process of metabolic engineering that is aimed at 

improving the metabolic potential of organisms for agricultural and industrial purposes. 
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Table 12  - Imputation of missing value of isocitrate at the third time point  
STD – standard deviation, COV – coefficient of variation, SEM – standard error of the 

mean. 

Run Slope Estimate Simulation Estimate 

1 
12.4 12.8 

2 12.4 12.7 

3 12.4 13.3 

4 12.4 12.5 

5 12.4 11.7 

6 12.4 12.9 

7 12.4 11.5 

8 12.4 12.9 

Average 12.4 12.6 

STD 0.0 0.6 

COV 0.0 5.0 

Count 8 8 

SEM 0.0 0.1 

T-test         0.49 
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Table 13  - Imputation of missing data 
 
No. of 
missing 
values Metabolite Timepoint 

Actual 
Value 

Slope 
Estimate 

Simulation 
Estimate 

Final 
Estimate p-value 

1 Isocitrate 2 11.9 11.9 11.9 11.9±0.1 0.92 

1 Isocitrate 3 12.4 12.4 12.6 12.6±0.1 0.50 

2 
Oxaloacetate 3 19.5 19.9 19.8 19.8±0.1 0.68 

Glyoxylate 2 11.8 12.1 11.6 11.6±0.1 0.08 
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Table 14  - Feasible paths between succinate and glutamate 
 
Rank Path Flux 

1 SUC -> THREODSISOCITRATE -> KETOGLUTARATE -> GLT 13.16 

2 SUC -> FUM -> MAL -> GLYOX -> THREODSISOCITRATE  
                                     -> KETOGLUTARATE -> GLT 506.51 

3 SUC -> FUM -> MAL -> OXALACETICACID -> CIT -> CISACONITATE  
                      -> THREODSISOCITRATE -> KETOGLUTARATE -> GLT 2965.99 
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Table 15  - Feasible paths between citrate and malate 

Rank Path Flux 

1 CIT -> CISACONITATE -> THREODSISOCITRATE -> GLYOX -> MAL 584.4 

2 CIT -> CISACONITATE -> THREODSISOCITRATE -> SUC -> FUM -> MAL 1033.7 

3 CIT -> CISACONITATE -> THREODSISOCITRATE -> KETOGLUTARATE  
                                        -> SUCCOA -> SUC -> FUM -> MAL 1280.5 
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Figure 18  - DynaFlux architecture
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Figure 19  - User interface of DynaFlux 
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Figure 20  - Three pathways: Aspartate biosynthesis, TCA cycle and glyoxylate 
cycle 
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Figure 21  - Metabolic flux estimates overlaid on the network 
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Figure 22  - Feasible routes between succinate and glutamate 
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Figure 23  - Feasible routes between citrate and malate 
a) Metabolic network with the three routes highlighted; b) the fastest route isolated from 

the network. 
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Figure 24  - Metabolic network overlaid with fluxes from normal, knocked-out and 
amplified aspartarte transaminase 
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CHAPTER VI 

CONCLUSION 

Introduction 
Metabolism is one of the most complex cellular processes by which an organism 

obtains energy from intaken food in order to perform activities so as to maintain a living 

state [1]. The process of metabolism consists of two phases or states: 1) dynamic state 

and 2) steady state. Metabolism can be analyzed at either the steady state or the dynamic 

state of metabolism. Steady state analysis provides only a static snapshot of the metabolic 

capabilities because the analysis includes only the stoichiometry of the network and few 

constraints [2], and excludes kinetic properties and regulatory information in order to 

reduce the complexity thus limiting the usefulness. On the contrary, dynamic analysis 

sheds light on the transient behavior of metabolism by including kinetic and regulatory 

information.  

Analysis of metabolism aids in achieving the goals of metabolic engineering. 

However, there is a lag between the two phases of metabolic engineering, namely 

synthesis and analysis, because tools for molecular biology are available to bring about 

the genetic changes, but analytical techniques to identify the optimal genetic 

modifications are still naïve [3]. In addition, the cost of experiments, needed skills, and 

laborious setup of experiments has restricted flux measurements to only a few 

laboratories [4]. Bioinformatics helps to bridge this gap through modeling and 

simulation. At present, there are several mathematical methods and computational tools 

that describe network flux at steady state (Chapter II). Owing to the limitations of steady 
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state analysis, there has been an increasing demand to examine metabolism during the 

dynamic state [3, 5-7] because of the predictive capabilities at unexplored conditions 

available through such models. This research focused on dynamic state analysis of 

metabolism. 

Research Objectives 
To accomplish the goals of this research, the first step was to identify the 

metabolites present in the metabolic pathways that were actively participating in the 

metabolism of an organism at the given condition. Metabolome Searcher is a web-based 

application for metabolite identification and pathway mapping. The tool addresses the 

challenge of metabolic analysis using mass spectrometry data by not only identifying the 

metabolites present in the organism but also maps the metabolites to the associated 

metabolic pathways. This was achieved by searching publicly available genome-

constructed metabolic databases (Chapter III). The searches can be further refined by 

restricting the queries to be specific to the experiment’s MS analysis conditions. In 

addition, the tool aids in visualizing the active pathways by redirecting the user to ProCyc 

[8] and KEGG [9]. 

Large compound databases such as Pubchem [10] and Chemspider [11] allow 

searches of single mass and other query types, but they do not allow queries from large 

lists of masses or connect putative compounds to metabolic pathways. As the query list 

expands, as it does in metabolome data sets, data analysis using single queries becomes 

unrealistic and tedious. Additionally, querying compound databases that contain millions 

of non-biological molecules can impede a researcher’s ability to overlay a metabolic 
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context onto metabolomic data. Metabolome Searcher is a novel tool that eliminates these 

limitations. The versatility of accepted query types, the provision of pathways mapped to 

queries, and providing direct links to visualize the pathways are unique to the 

Metabolome Searcher.  

Once the researcher identifies the pathways of interest by using Metabolome 

Searcher, the next step is to analyze metabolic flux. A few tools like GEPASI, MIST and 

SCAMP have been developed to analyze dynamic state metabolic flux [6, 12, 13]. The 

limitations of these tools are that the structure, kinetics, and kinetic parameters are 

required as input from the users. The mechanistic details and kinetic parameters of a 

metabolic pathway are mostly unknown [14-16]. DynaFlux overcomes these limitations 

and enables the analysis of metabolic flux by estimating the kinetic parameters that 

resulted in the time course metabolomics and genomics data. The metabolic pathways are 

mathematically represented as a set of coupled differential equations and solved. Hybrid-

mutation random-restart hill-climbing, a novel variant of hill-climbing, is introduced and 

used for flux estimation (Chapter 4). Recent advancements in computational capability, 

such as high-performance computing [17] and the availability of several technical 

computing softwares, have made genome-scale dynamic state metabolic modeling 

feasible. The estimation of kinetic parameters was validated by applying proof of 

concept.  

Having solved the inverse problem of estimating kinetic parameters, the 

metabolic network is ready for perturbation studies. Dynamic state metabolic flux 

analysis not only portrays the transient behavior of the network but also serves as a guide 
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to predict alterations in flux during unexplored conditions and the resulting metabolic 

phenotype. Perturbations studies included knock-out and attenuation of enzymes. This 

study shows that a modification in one of the network enzymes resulted in a local effect 

that rippled through the entire network to create a systemic effect. Imputation of missing 

data was an important problem that DynaFlux handles and was validated using a 

statistical approach. Also, all feasible paths between two metabolites are enumerated, 

which in turn helps in directing the fluxes at branch points towards the metabolite of 

interest. 

DynaFlux is a one-of-a-kind tool that combines estimation of flux and analysis of 

the metabolic network. DynaFlux is a user-friendly software tool that was developed for 

the scientific community interested in metabolic flux analysis, and was built using 

Wolfram Mathematica® 7.0 and the Integrated Development Environment Wolfram 

Workbench™ 2.0. The features available in the tool include: 1) deriving metabolic 

reconstructions for the simulation from Pathway Tools; 2) automated building of the 

mathematical model of the metabolic network; 3) parameter estimation using hybrid-

mutation random-restart hill climbing algorithm; 4) perturbation studies of enzyme 

activities; 5) enumeration of feasible routes between two metabolites 6) minimal enzyme 

set and 7) visualization of the network. 

Recommendations 

Automated import of data from pathway tools 
A script to communicate with Pathway Tools [18] via the PerlCyc module [19] to 

create the DynaFlux Database of an organism would be a useful addition to DynaFlux. 

Currently, the information from Pathway Tools Pathway/Genome Databases was 
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manually exported and then automatically pooled within DynaFlux to create the 

organism’s DynaFlux Database. 

Modification of metabolic pathways 
Allowing the user to manually edit the imported pathways, such as insertion or 

deletion of metabolic reactions and metabolites, would provide more flexibility in flux 

analysis. 

Optimization algorithms 
The present study analyzed four different variants of hill-climbing search. Hybrid-

mutation random-restart hill-climbing search proved to be the best among the four 

variants. Other optimization algorithms like simulated annealing and genetic algorithms 

could be employed and compared with the current approach. The best algorithm could 

then be adopted for estimating the kinetic parameters. 

Representation format of  
the computational model 

The model can now be backed-up, saved or retrieved as a flat file. The Systems 

Biology Markup Language (SBML) is an XML-based format for representing 

biochemical networks [20].  Implementing SBML would enable the model to be portable 

between different simulation and analysis tools for performing different kinds of 

metabolic analysis. 
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Integration of transcriptional  
regulatory network 

Integration of the transcriptional regulatory network into the metabolic network 

modeling would increase the accuracy of the model, and thereby imitate the biology more 

precisely. 

Different kinetic mechanisms 
Incorporation of different kinetic mechanisms would provide more flexibility to 

the user who knows the underlying mechanism. If the mechanism were unknown, the 

current mechanism, namely sequential ordered, would be the default. 

 Reverse mapping of metabolic  
phenotype to genotype 

The ultimate end for this research would be to reverse map the desired metabolic 

phenotype to the genotype of the organism to achieve the goals of metabolic engineering. 

References 
1. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P: The Molecular 

Biology of the Cell, 4th edn. New York: Garland; 2002. 

2. Llaneras F, Picó J: Stoichiometric modelling of cell metabolism. Journal of 

Bioscience and Bioengineering 2008, 105(1):1-11. 

3. Nielsen J: Metabolic engineering: Techniques for analysis of targets for 

genetic manipulations. Biotechnology and Bioengineering 1998, 58(2-3):125-

132. 

4. Zamboni N, Fischer E, Sauer U: FiatFlux--A software for metabolic flux 

analysis from 13C-glucose experiments. BMC Bioinformatics 2005, 6. 



 
 

183 

5. Wiechert W, Schweissgut O, Takanaga H, Frommer WB: Fluxomics: Mass 

spectrometry versus quantitative imaging. Current Opinion in Plant Biology 

2007, 10(3):323-330. 

6. Mendes P: Biochemistry by numbers: Simulation of biochemical pathways 

with Gepasi 3. Trends in Biochemical Sciences 1997, 22(9):361-363. 

7. Adiamah DA, Handl J, Schwartz J-M: Streamlining the construction of large-

scale dynamic models using generic kinetic equations. Bioinformatics 2010, 

26(10):1324-1331. 

8. ProCyc [http://procyc.westcent.usu.edu:1555/] 

9. KEGG PATHWAY Database [http://www.genome.jp/kegg/pathway.html] 

10. Pubchem [http://pubchem.ncbi.nlm.nih.gov] 

11. Chemspider [http://www.chemspider.com] 

12. Ehlde M, Zacchi G: MIST: A user-friendly metabolic simulator. Computer 

Applications Biosciences 1995, 11(2):201-207. 

13. Sauro HM: SCAMP: A general-purpose simulator and metabolic control 

analysis program. Computer Applications Biosciences 1993, 9(4):441-450. 

14. Stelling J, Klamt S, Bettenbrock K, Schuster S, Gilles ED: Metabolic network 

structure determines key aspects of functionality and regulation. Nature 

2002, 420(6912):190-193. 

15. Fievet JB, Dillmann C, Curien G, Vienne Dd: Simplified modelling of metabolic 

pathways for flux prediction and optimization: Lessons from an in vitro 

http://procyc.westcent.usu.edu:1555/
http://www.genome.jp/kegg/pathway.html
http://pubchem.ncbi.nlm.nih.gov/
http://www.chemspider.com/


 
 

184 

reconstruction of the upper part of glycolysis. Biochemical Journal 2006, 

396(2):317-326. 

16. Lee JM, Gianchandani EP, Papin JA: Flux balance analysis in the era of 

metabolomics. Briefings in Bioinformatics 2006, 7(2):140-150. 

17. Henry CS, Xia F, Stevens R: Application of high-performance computing to 

the reconstruction, analysis, and optimization of genome-scale metabolic 

models. Journal of Physics: Conference Series 2009, 180:012025. 

18. Karp PD, Paley SM, Krummenacker M, Latendresse M, Dale JM, Lee TJ, Kaipa 

P, Gilham F, Spaulding A, Popescu L et al: Pathway Tools version 13.0: 

Integrated software for pathway/genome informatics and systems biology. 

Briefings in Bioinformatics 2010, 11(1):40-79. 

19. Sol Genomics Network: PerlCyc [http://solgenomics.net/downloads/index.pl] 

20. Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H, and the rest of 

the SBML Forum:, Arkin AP, Bornstein BJ, Bray D et al: The systems biology 

markup language (SBML): A medium for representation and exchange of 

biochemical network models. Bioinformatics 2003, 19(4):524-531. 

http://solgenomics.net/downloads/index.pl


185 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

APPENDICES 



186 
 

APPENDIX A 
 

SUPPLEMENTARY DATA FOR CHAPTER IV 
 

Proof for Ranjitha’s Shortcut Method for kinetic parameter KR, Vmaxf and 
Vmaxr 

Based on the definitions of Km for reactants of uni-uni and bi-bi reaction [1], a 

generalized formula was determined using Ranjitha’s Shortcut Method, and was used to 

quantify enzyme affinity and rate of product formation. The definition for the kinetic 

parameter KR is 

    (1) 

where kDFP  =  forward rate constant representing dissociation of final product from 

complex 

 kDLC = Sum of the forward and reverse rate constants representing dissociation of 

largest enzyme-substrate complex. Special case: For the first substrate in a 

reaction with more than one substrate, only the forward rate constant 

representing dissociation of product from largest complex 

 kAR  = Forward rate constant representing association of this reactant with 

enzyme to form complex 

 kDP  = Sum of the forward rate constants representing dissociation of product(s) 

from respective complex(es) 

KR was proved using the concept presented in Chapter 9 Section A of [2], which 

describes the King-Altman method of deriving steady-state velocity equations. The 

formula in Equation 1 can be applied to deduce the kinetic constant KR of a reaction 
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consisting of any number of substrates and products. In addition, Equation 1 is valid for 

reactions at dynamic state and steady state. When at steady state, KR turns out to be the 

Michelis constant Km of the reaction. 

Bi-Bi reaction 
 

 

 

 

 

             (2) 

 

 

 

 

The method in [2] was applied to a bi-bi reaction (Equation 2), and the velocity equations 

were obtained using the five steps as follows: 

1. Figure 25 shows the geometric representation of a bi-bi reaction 

2. Figure 26 shows all possible patterns containing one less line than basic figure 

shown in Figure 25. 

Using Equation IX-1 of [2], 

n = 4 and m = 4 for a bi-bi reaction 

Number of patterns with (n-1) lines  =  
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  Number of patterns with 3 lines   =     

  =  4  (as shown in Figure 26) 

3. Applying step 3, 

4. Thus, 
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5. Referring to Section C in Chapter 9 of [2], the Michaelis constants are 

 

 

 

 

 

 

 

The formulae from step 5 can be obtained using Ranjitha’s Shortcut Method for KR at 

dynamic state by skipping the five derivation steps and can also be verified with [1] for a 

ternary-complex mechanism. 

Also, 
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Likewise, the formulae for  Vmaxf and Vmaxr can be obtained using Ranjitha’s Shortcut 

Method for Vmaxf and Vmaxr at dynamic state without having to go through a tedious 

derivation method and can be also verified with [1] for a ternary-complex mechanism. 

Ranjitha’s Shortcut Method for kinetic parameters for a uni-uni, uni-bi and ter-ter 

reaction were also proved in a similar manner. 
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Figure 25  - Geometric representation of a bi-bi reaction 
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Figure 26  - Patterns containing one less line than basic figure 
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Student Orientation, Advising & Registration (SOAR)   01/2004-04/2004 
A-team facilitator  
Utah State University, Logan, Utah 
 
National Institute of Information Technology (NIIT)    06/2003-12/2003 
Enterprise Application Developer 
Chennai, India 
  
IBM Advance Career Education      09/1998-09/2001 
Application Developer Curriculum 
Chennai, India 
 

COMPUTER 
SKILLS 

Languages   
 
 
 
Softwares 
 
 
 
 
 

Java, C, C++, C#, Perl, LISP, R, SAS, PHP, HTML, XML, 
Perl CGI, ASP.Net, VB.Net, SQL, Unix Shell, BASIC, 
Pascal, COBOL, FORTRAN 
 
Mathematica 6.0/7.0, Wolfram Workbench 1.1/2.0, MS 
Visual Studio.NET 2003/2005/2008/2010, EndNote X1/X2, 
Macromedia Studio MX 2004/8, Developer 2000, Visual 
Basic 6.0, NetBeans 7.0.1 
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COMPUTER 
SKILLS 
(CONTINUED) 
 

Platforms 
 
 
Packages   
 
Databases 
 
Web Servers 
 

Windows NT/95/98/2000/XP/2003 Server/Vista/7, AIX, 
LINUX, Mac OS, Solaris, MS-DOS 
 
MS-Office 98/XP/2003/2007, OpenOffice.org 
 
Oracle 9i, MS SQL 
 
Apache, Microsoft IIS 

OTHER 
EXPERIENCE 
 

Website Developer        05/2006-08/2006 
Department of Animal, Dairy and Veterinary Science 
Utah State University, Logan, Utah 
 
Website Developer & Systems Administrator    01/2005-05/2006 
Office of International Students and Scholars 
Utah State University, Logan, Utah 
 
Note Taker for Psychology and Comparative Cultures    05/2005-08/2005 
Disability Resource Center 
Utah State University, Logan, Utah 
 
Teaching Assistant         01/2005-05/2005 
Advanced Artificial Intelligence (CS6600) 
Department of Computer Science 
Utah State University, Logan, Utah 
 
A-team facilitator         05/2004-08/2004 
SOAR 
Utah State University, Logan, Utah 
 
Student Assistant         03/2004-12/2004 
Office of International Students and Scholars 
Utah State University, Logan, Utah 
 

LEADERSHIP & 
SERVICE 

Graduate Student Senate, Utah State University 
 

• Department Representative, Computer Science          2007-Present 
• International Senator       2007-2009 

 
International Student Council 
 

• Active General Council Member     2007-2008 
• Volunteered for International Banquet           2005 & 2008  
• Fund Raising Activities  

 Bangladesh flood relief               2007 
 Tsunami Relief           01/2005 

• Mr. & Ms. International 2nd Runner-up   2004-2005 
 
 
 



199 
 

LEADERSHIP & 
SERVICE 
(CONTINUED) 
 

Indian Student Association 
 

• Volunteered for organizing Diwali 2009 
• Best Organizer Award Diwali 2005 (750 participants) 
• Website Developer                  2005-2006 
• General Secretary                  2004-2005 

 
Association for Computing Machinery Committee on Women (ACMW, 
Dept. of Computer Science) 
  

• Website Developer                 2006-2007 
• Hosted a website design workshop              2007 

 
LANGUAGES English (fluent), Tamil (native), Hindi, Telugu and Bengali (intermediate) 

Willing to Relocate – Available December 15 2011 

 


