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Abstract. Nitrous oxide is introduced as a rocket propellant for small satellites.  The reasons for using this
propellant on small spacecrafts are discussed.  Potential space applications of nitrous oxide are listed.  A nitrous
oxide catalytic decomposition technique is suggested for restartable spacecraft propulsion.  Theoretical
performance of a nitrous oxide monopropellant thruster is shown.  Basics of nitrous oxide catalytic
decomposition are given.  Operating principles of a nitrous oxide monopropellant thruster are described.  The
design of the test apparatus and the set-up for nitrous oxide decomposition are given.  Up-to-date achievements
of nitrous oxide decomposition research at Surrey are reported.   Future design features of nitrous oxide
monopropellant thrusters are discussed.  A conclusion about future research on nitrous oxide catalytic
decomposition is given.

Introduction

Advanced communications, remote sensing and
science missions require propulsion for small satellite
attitude control, station-keeping and orbit
manoeuvring.  Launched as secondary payloads,
small satellites are subjects of unique propulsion
system integration requirements and constraints.
Volumetric constraints, for example, make the use of
nitrogen for conventional cold-gas propulsion
inefficient due to low non-liquefied gas storage
density.  The electric power constraint (an average of
<50W per orbit) restricts application of existing
electric propulsion on board small spacecraft.  The
high cost of conventional mono- and bipropellant
systems is usually prohibitive for these low-cost
spacecrafts.  Since toxic and flammable liquid or
explosive solid propellants are involved, substantial
conventional propulsion cost reduction is unlikely.  In
addition, dominating heat losses out of reaction
chamber and flow friction losses in the nozzle throat
lower performance of conventional thrusters at the
low thrust levels of interest (<1N).  Moreover,
propulsion dry mass fraction increases upon scaling
the system down.  This often makes integration of

compound propulsion on board small spacecraft
unfeasible.  Therefore, novel approaches are required
for efficient small satellite propulsion.

One of the approaches is an application of new
propellant.  Nitrous oxide has been identified as such
a propellant at the University of Surrey.  This gas is a
non-toxic chemical, stable at normal conditions, and
compatible with common structural materials.  It can
be stored as a liquid or compressed gas through the
wide temperature range theoretically limited by its
triple point (-90.8°C) 1 on the lower and thermal
decomposition temperature (520°C) 2 on the upper
end of the scale.  However, the recommended
practical storage temperature range is from -34 to 60°
C. It will be discussed in detail in future publication. 3

Storage density of this liquefied gas is ~745kg/m3 at
20°C while its vapour pressure is about 52bar.
Nitrous oxide decomposes exothermically with
adiabatic decomposition temperature reaching ~1640°
C.  The decomposition can be accelerated by a
catalyst.  Free oxygen available by nitrous oxide
decomposition can be combusted with a wide variety
of fuels.
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Therefore, nitrous oxide can be used for wide range of
space power and propulsion devices including:

• cold-gas thrusters
• monopropellant thrusters
• resistojets thrusters
• bipropellant thrusters
• gas-generators
• turbine drives
• source of breathing oxygen for spacecraft

emergency life-support

Thus, it is possible to design a simple, multi-mode
propulsion system using this self-pressurising
propellant and capable of all necessary functions for
successful mission accomplishment.  Total dry mass
fraction for such a system will be lower in
comparison to an alternative system combining
conventional propulsion.  Since different function
type thrusters share the same propellant, the
flexibility in the firing strategy is gained in orbit.
This important advantage leads to relaxed spacecraft
velocity change requirements for each particular
propulsion function.  Therefore, the number of
mission scenarios may be increased.  The further
advantages of nitrous oxide propulsion are discussed
in recent publication. 4

Recent experience of storing nitrous oxide on-board
the UoSAT-12 mini-satellite for more than one year
indicates that:

• Storage of the gas in-orbit is not a problem
• No expulsion system is required
• Minimum safety overheads and application of

common materials for system design both
provide a potential for low-cost system

To employ nitrous oxide as a rocket propellant it is
suggested to take advantage of its catalytic
decomposition.

Decomposition

Nitrous oxide catalytic decomposition is considered at
Surrey as a key-technology for mono- and
bipropellants restartable in orbit.

In the past nitrous oxide decomposition has been
extensively studied, both in the presence, and in the
absence, of catalysts. 5-38

The decomposition of nitrous oxide results in
formation of nitrogen and oxygen according to the
following reaction equation:

N2O(g) →→  N2(g) + ½O2(g) + Heat

At standard conditions this exothermic reaction
generates ~82kJ of heat per mole of nitrous oxide. 39,

40  However, heat input is required to initiate the
reaction.  In the case of thermal decomposition the
activation energy barrier for nitrous oxide is about
250kJ/mole. 40  Therefore, in order to attain the
required reaction rates, the gas must be heated to
above 1000°C.

A catalyst lowers the activation energy barrier, and
thus the decomposition occurs at much lower
temperatures (>200°C).  Figure 1 illustrates the
advantage of catalytic over thermal decomposition.
Textbooks on catalysis and chemisorption often give
nitrous oxide decomposition as an example followed
by list of catalysts. 41-44

In the gas flow, if balance between rates of heat
generated by decomposition and heat dissipated into
surrounding is achieved (Rateheat generated – Rateheat

dissipated = 0) then the reaction becomes self-sustaining.
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Figure 1. Nitrous oxide decomposition. (Ea – activation energy; ∆∆H°°r – reaction enthalpy)
Previous Accomplishments

The research on nitrous oxide decomposition started
at Surrey after self-sustaining decomposition was first
reported by Timothy J. Lawrence in 1998.  Earlier
that year a self-sustaining nitrous oxide
decomposition was observed in the Mark-III resistojet
for longer than 18 hours during its vacuum test at the
US Air Force Research Lab at EDWARDS Air Force
Base, CA.  The highest recorded specific impulse of
that nitrous oxide resistojet was 148s. 45, 46  In 1999
the first (0.1N and 100W) nitrous oxide resistojet
thruster Mark-IV has been successfully commissioned
on board the UoSAT-12 mini-satellite.

Monopropellant Thruster Concept

The schematics of a nitrous oxide monopropellant
thruster employing catalytic decomposition is shown
in Figure 2.  In this device a flow of nitrous oxide is
injected into the decomposition chamber.  Upon
injection, nitrous oxide starts to decompose on an
electrically heated catalytic wire.  The heat generated
by decomposition activates the main catalyst, which
in turn decomposes more nitrous oxide, and generates
more heat.  The process proceeds with increasing
temperature until all of the catalyst is activated and
the rate of decomposition reaches its maximum when
steady state is achieved.  This takes a few seconds.
The products of the decomposition leave the chamber
through the converging-diverging nozzle generating
thrust.  Once self-sustaining nitrous oxide
decomposition is achieved, the electrical power input
is no longer required.

N2O
N2 + O2

Catalyst

Catalytic wire

Electric 
Power

Thermal Insulation

Thermal InsulationNozzle

Figure 2. Nitrous oxide monopropellant thruster
schematics.

The suggested concept offers significant electrical
power savings because:

• It makes use of catalytic decomposition providing
considerable input power savings for reaction
initiation over thermal decomposition technique
employed in a resistojet

• It takes an advantage of self-sustaining
decomposition as zero input power main operation
mode for a thruster

This is expected to make nitrous oxide propulsion a
feasible option for small satellites, extending its
application range from mini-satellite (100-500kg) to
micro-satellite (10-100kg) platforms.

In Figure 3 theoretical specific impulse performance
of nitrous oxide monopropellant thruster was
evaluated as a function of chamber temperature using
the USAF ISP computer code written by Curt Selph.
The specific impulse rises monotonically till it
reaches value of 206s corresponding to maximum
thermodynamic decomposition temperature.
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Figure 3. Theoretical specific impulse of nitrous oxide monopropellant thruster as a function of chamber
temperature (chamber pressure = 3bar; nozzle expansion ratio = 200).

Figure 4. Test design.

Since low thrust levels (<1N) and, thus, low
propellant mass flow rates (<0.5gm/s) are of interest,
it is suggested to reduce thruster’s operating chamber
pressure to below 3bar.  The lower chamber pressure
is desirable for several reasons:
• The famous Le Chatelier’s principle 40 can be

interpreted as: “for chemical reaction with
increasing volume of products lower pressure will
shift equilibrium towards reaction products”.  In
other words, lower pressure is beneficial for
nitrous oxide decomposition.

• It increases the thuster’s nozzle throat to the size
that is easy to manufacture.

• It improves thrust efficiency since flow friction
losses in the thuster’s nozzle throat are reduced.

• Higher nitrous oxide storage tank depletion can be
achieved.

• Taking in account low mechanical (due to lower
pressure) and moderate thermal (due to “slow”
start-up) stresses exerted on thruster’s casing it

would be possible to use high temperature ceramic
materials (such as, for example, alumina) for its
design.  Application of high temperature ceramics
in thruster design will shift operating temperature
and, thus, improve the specific impulse
performance.

Slight increase in thruster size and mass due to lower
operating pressure is not crucial for low-thrust
propulsion system, and is a subject of optimisation.

Test Apparatus

As a first step towards the development of flight-
qualified thruster the following simple test apparatus
was designed.  A 190mm-piece of 2.54mm-inner-
diameter stainless steel pipe was adopted to house the
catalysts.  The test apparatus design is shown in
Figure 4.
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Figure 5. Test set-up schematics.

Experimental set-up for nitrous oxide decomposition
research is shown in Figure 5.  Nitrous oxide from the
cylinder flows though the valve and regulators to the
test apparatus where it decomposes on a catalyst
before discharging to atmosphere.  A pressure gauge
and flow meter in the nitrous oxide feed line indicate
flow parameters set by the regulators.  Direct current
power supply is necessary for heating a catalytic wire
inside the apparatus. Thermal insulation is used to
reduce heat loss from the decomposition chamber.
Thermocouple 1 is set to read the temperature of
exhaust gases. Thermocouples 2, 3, and 4 are set to
measure decomposition chamber outside wall
temperature. Thermocouple 5 is set in stream of
nitrous oxide feed line. Thermocouple 6 measures the
outside wall temperature of end plug of the apparatus.

Experimental Results

The potential for the nitrous oxide catalytic
decomposition technique has been demonstrated in
dozens of experimental tests at Surrey Space Centre,
U.K. (see Figure 6).   During these tests:

• The proof-of-concept was demonstrated.
• Repeatable, self-sustaining, decomposition of

nitrous oxide has been achieved using different
catalysts.

• Hot restarts at zero-power input have been
repeatedly shown in operation.

• More than 50 different catalysts have been tested.
• A catalyst activation temperature as low as 250°C

has been recorded.

• Nitrous oxide mass flow rates above 1.1gm/s have
been supported.

• Decomposition temperatures in excess of 1500°C
have been demonstrated.

• Electrical power input as low as 24W has been
used.

• The time required to heat the catalyst from ambient
to activation temperature has been as short as
3min.

• A catalyst lifetime in excess of 76min. was
demonstrated.

• Nitrous oxide decomposition was shown to ignite
solid fuel (PMMA).  A vortex flow “pancake”
hybrid rocket motor was successfully ignited by
injection of hot gaseous products of the nitrous
oxide decomposition into the combustion chamber
(see Figure 7). 47  In the test, a well-known
hydrazine decomposition catalyst (Shell 405) was
used to decompose nitrous oxide.

Despite these achievements, two major challenges
were revealed.  Both of them are associated with
choice of high temperature materials.

The first challenge is due to high temperature
generated inside decomposition chamber.  This
temperature is enough to melt stainless steel casing
(see Figure 8).  Application of refractory materials in
the design is presently not considered because they
are difficult to manufacture and expensive.  Lowering
the process temperature is unfavourable because it
sacrifices thruster performance.  Application of
alumina ceramics was found promising for high
temperature casing design.  However, additional tests
comprising both thermal and mechanical stress loads
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need to be carried out before the final conclusion can
be made.  The future designs involving ceramics will
require careful consideration of thermal expansion
coefficients.

Figure 6. Self-sustaining nitrous oxide decomposition
on LCH 212 hydrazine catalyst.  The
electric leads have been disconnected from
power supply after “ignition”.  No electric
power is applied.

The second challenge is associated with high
temperature (>1100°C) instability of the catalyst
materials.  The literature search on nitrous oxide
decomposition catalysts provided no answer for the
problem.  Since practical applications for nitrous
oxide decomposition catalysts are currently limited to
environmental outlooks rather than power generation
the maximum explored temperatures did not exceed
800°C.  It is also believed that above this temperature
homogeneous (or thermal) decomposition dominates
the process.  However, it was found that in the case of
suggested dynamic system homogeneous
decomposition rates at 800°C are not high enough to
initiate self-sustaining decomposition; therefore, the
need in high temperature catalyst still remains.

Figure 7. A vortex flow “pancake” hybrid rocket
motor firing.

 a

b

Figure 8. Test design after firing: a) Stainless steel
pipe is melted with iron catalyst and
MICROPORE thermal insulation; b)
Alumina pellets coated by catalyst have
survived the heat.
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Meanwhile, it was found that above 1100°C the
following problems occur:

• Zeolites and silica sinter
• Cordierite matrix does not withstand the

temperature
• Iridium and rhodium oxides sublimate
• Nickel, cobalt and iron react with alumina or

magnesia substrates forming spinels (complex
oxides).

The work on high temperature stable catalysts
continues.

Summary

Nitrous oxide has been identified at Surrey Space
Centre as a rocket propellant for small satellites.
Application of this propellant on small spacecraft is
advantageous because:

• All propulsion functions for small satellites can be
covered.

• Multi-mode propulsion system can be designed for
a small satellite.  Such a system will have lower
total dry mass fraction and increase the number of
mission scenarios due to more efficient propellant
management.

• It has potential in providing significant reduction
of propulsion system cost.

Previous research regarding nitrous oxide space
application proved that:

• It can be stored in orbit.
• It can be used as a resistojet propellant.
• Its self-sustaining decomposition is attainable.

A continuation of earlier efforts, nitrous oxide
catalytic decomposition is a focus of current research
at Surrey.  It is considered to be a key-technique for a
novel monopropellant thruster concept.  This
technique reduces input power requirements for
power-constrained small satellites in comparison with
a thermal decomposition technique, and, therefore,
will be affordable for smaller spacecraft.  As a further
step, nitrous oxide catalytic decomposition technique
is suggested for bipropellant thruster ignition.

As a first approach towards the monopropellant
thruster a catalytic decomposer for nitrous oxide has
been designed and successfully tested along with
supporting infrastructure.

Catalysts for nitrous oxide decomposition exist.  They
have been proven feasible for heat and thrust
generation as well as hybrid rocket motor ignition.

Although the existing catalysts work well, high-
temperature stable catalyst materials would further
enhance the performance of a monopropellant
thruster.

Current research at Surrey is focused on the
investigation of the performance of a nitrous oxide
catalytic decomposer leading towards the
development of a nitrous oxide monopropellant
thruster.

The ultimate research goal is to provide theoretical
and experimental basis for the development of the
first nitrous oxide multi-mode propulsion system for
small satellite applications.
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