
Utah State University Utah State University 

DigitalCommons@USU DigitalCommons@USU 

All Graduate Theses and Dissertations Graduate Studies 

12-2011 

Causes and Consequences of Plant Spatial Patterns on Natural Causes and Consequences of Plant Spatial Patterns on Natural 

and Experimental Great Basin (USA) Plant Communities and Experimental Great Basin (USA) Plant Communities 

Andrew P. Rayburn 
Utah State University 

Follow this and additional works at: https://digitalcommons.usu.edu/etd 

 Part of the Plant Sciences Commons 

Recommended Citation Recommended Citation 
Rayburn, Andrew P., "Causes and Consequences of Plant Spatial Patterns on Natural and Experimental 
Great Basin (USA) Plant Communities" (2011). All Graduate Theses and Dissertations. 1123. 
https://digitalcommons.usu.edu/etd/1123 

This Dissertation is brought to you for free and open 
access by the Graduate Studies at 
DigitalCommons@USU. It has been accepted for 
inclusion in All Graduate Theses and Dissertations by an 
authorized administrator of DigitalCommons@USU. For 
more information, please contact 
digitalcommons@usu.edu. 

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F1123&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/102?utm_source=digitalcommons.usu.edu%2Fetd%2F1123&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/1123?utm_source=digitalcommons.usu.edu%2Fetd%2F1123&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/


CAUSES AND CONSEQUENCES OF PLANT SPATIAL PATTERNS IN NATURAL 

AND EXPERIMENTAL GREAT BASIN PLANT COMMUNITIES 

 

by 

 

Andrew P. Rayburn 

 

A dissertation submitted in partial fulfillment  
of the requirements for the degree 

 
of 

DOCTOR OF PHILOSOPHY 

in 

Ecology 

Approved: 

 

_____________________    _____________________ 
Eugene W. Schupp     Peter Adler 
Major Professor     Committee Member 
 
_____________________    _____________________ 
Mevin B. Hooten     James MacMahon 
Committee Member     Committee Member 
 
_____________________    _____________________ 
Thomas A. Monaco    Mark R. McLellan 
Committee Member    Vice President for Research and 
      Dean of the School of Graduate Studies 
 

UTAH STATE UNIVERSITY 
Logan, Utah 

 
2011



ii 
 
 

 

 

 

 

 

 

 

 

Copyright  ©  Andrew P. Rayburn 2011 

All Rights Reserved 



iii 
ABSTRACT 

 
 

Causes and Consequences of Plant Spatial Patterns on Natural and  
 

Experimental Great Basin (USA) Plant Communities 
 
 

by 
 
 

Andrew P. Rayburn, Doctor of Philosophy 
 

Utah State University, 2011 
 
 

Major Professor: Dr. Eugene W. Schupp 
Department: Wildland Resources 
 
 
 The processes by which plant spatial patterns are formed, and the effects of those 

patterns on plant community dynamics, remain important areas of research in plant 

ecology.  Plant spatial pattern formation has been linked to many ecological processes 

that act to structure plant communities at different spatiotemporal scales. Past studies of 

pattern formation are common, but recent methodological advances in data collection and 

analysis have permitted researchers to conduct more advanced observational studies of 

pattern formation in space and time.  While studies of the effects of plant spatial patterns 

were formally rare, they have increased in the last decade as new types of experiments 

and analysis have been developed to better understand the myriad effects of plant patterns 

on community dynamics. My dissertation research examined both the causes and 

consequences of plant spatial patterns in the context of natural and experimental Great 

Basin semi-arid plant communities. In both cases, I implemented novel methodologies 

for data collection, experimental design, and data analysis in an attempt to address 
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current gaps in knowledge related to the processes by which plant spatial patterns are 

formed, as well as the effect of plant spatial patterns on community dynamics. The results 

inform both basic and applied plant ecology, and set the stage for further research on the 

causes and consequences of plant spatial patterns in semi-arid plant communities. 

 (161 pages) 
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PUBLIC ABSTRACT 

 
 

Causes and Consequences of Plant Spatial Patterns on Natural and  
 

Experimental Great Basin (USA) Plant Communities 
 
 

by 
 
 

Andrew P. Rayburn, Doctor of Philosophy 
 

Utah State University, 2011 
 
 

There are many ways to describe plant communities and the different plant 

species of which they are comprised. One approach is to study the spatial patterns of 

plants; that is, the physical arrangement or distribution of plants within the community. 

Plant spatial patterns are often described in terms of the two-dimensional location of 

individual plants (e.g., latitude and longitude), analogous to the (x,y) coordinates of the 

Cartesian grid. Plant patterns result from important ecological processes that structure 

plant communities, including competition between plants for limited resources like water 

and light, the effects of fire and other forms of disturbance, and the response of plants to 

being eaten by livestock and other herbivores. 

From 2006-2011, in pursuit of my Ph.D. at Utah State University, I conducted 

four relatively inexpensive field experiments to study both the causes and consequences 

of plant spatial patterns in semi-arid shrub communities in the Great Basin region of the 

western United States. These experiments were performed with the help of many 

different collaborators, ranging from undergraduate technicians, fellow graduate students, 

federal scientists, and professors from national and international institutions. These 
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experiments were both observational and manipulative in nature; for three of the 

experiments, I and my collaborators collected and analyzed observational data on natural 

plant communities, while the fourth experiment involved the construction and 

measurement of artificial plant communities designed to test the effects of different plant 

spatial patterns. These experiments were designed to address important questions in the 

field of plant ecology, based on my review of the existing scientific literature in 2006. 

In the course of my research, I and my collaborators were able to develop and/or 

implement novel methodologies for data collection and analysis that we anticipate will be 

used in the future by other researchers. Two dissertation chapters have already been 

accepted for publication in the peer-reviewed literature, and we anticipate that the 

remaining chapters will be published soon. Our results inform both basic and applied 

plant ecology, and set the stage for future research on the causes and consequences of 

plant spatial patterns. 
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CHAPTER I 

INTRODUCTION 
 
 

The spatial patterns of plants in natural plant communities are rarely random; 

instead, plants are often spaced closer or farther away from one another than would be 

expected by chance (Stoll & Prati 2001; Maestre et al. 2005; Rayburn et al. 2011). The 

causes and consequences of these patterns remain important topics in plant ecology 

(Raventós et al. 2010). 

The processes that generate plant spatial patterns in natural communities include 

plant-plant interactions (Phillips & MacMahon 1981; Skarpe 1991; Valiente-Banuet et al. 

2006), environmental heterogeneity (Schenk et al. 2003; Perry et al. 2009), seed dispersal 

(Schurr et al. 2004), and disturbance (Rebollo et al. 2002; Bisigato et al. 2005; Rayburn 

& Monaco 2011).  

There is an extensive history of observational research that has sought to explain 

the formation of plant spatial patterns by connecting observed patterns to ecological 

processes. Observational pattern studies have tended to involve the collection of some 

form of spatial data on the pattern(s) of one or more species within a community, 

followed by statistical analysis that seeks to describe the patterns of the plants of interest. 

Results are then linked to the ecological process(es) by which the patterns are 

hypothesized to have formed. Oftentimes, observed patterns have been linked to either 

positive or negative plant interactions that have the potential to structure local plant 

neighborhoods (Phillips & MacMahon 1981, Valiente-Banuet & Verdú 2006; Rayburn & 

Monaco 2011). For example, regular plant spatial patterns are often interpreted as a sign 
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of intense competition between plants for limited resources (Kenkel 1998; Stoll & 

Bergius 2005; Rayburn & Monaco 2011). In contrast, more aggregated patterns 

(especially interspecific aggregations) are interpreted as evidence of neutral or positive 

plant interactions (Eccles et al. 1999; Kéfi et al. 2007; Valiente-Banuet & Verdú 2008). 

Aggregated plant patterns have also been linked to patchy distributions of soil resources, 

especially in shrub-dominated communities (Schenk et al. 2003; Tirado & Pugnaire 

2003; Perry et al. 2008; Perry et al. 2009). Disturbance via grazing is also recognized as 

playing a significant role in spatial pattern formation (Adler et al. 2001; Seifan & 

Kadmon 2006, Rayburn & Monaco 2011). Depending on the framework of the study, 

observational studies of plant spatial patterns may be able to differentiate the effects of 

multiple processes on pattern formation (Fajardo & McIntire 2007; Rayburn & Monaco 

2011). For example, Rayburn & Monaco (2011) used a combination of precise spatial 

data and a priori hypotheses to approximately separate the effects of intraspecific 

competition and grazing on pattern formation along a chronosequence of grazed Great 

Basin grasslands. Past observational studies have utilized various methods of data 

collection (Phillips & MacMahon 1981, Boose et al. 1998; Schurr et al. 2004), however 

these techniques were often time-consuming in the field, as well as being prone to 

significant measurement error that could bias statistical analysis (Freeman & Ford 2002; 

Rayburn et al. 2011). With the advent of new methodologies in recent years for 

experimental design (Fajardo & McIntire 2007; Rayburn & Monaco 2011), data 

collection (Strand et al. 2006; Rayburn et al. 2011) and analysis (Wiegand & Moloney 

2004; Wiegand et al. 2007; Schiffers et al. 2008; Raventós et al. 2010), the power of 
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observational studies of plant spatial patterns to link observed patterns to ecological 

processes has grown. 

While studies of the causes of plant spatial patterns are common, studies of the 

consequences of plant spatial patterns are relatively rare (Tilman & Kareiva 1997; 

Murrell &. 2001; Stoll & Prati 2001; Maestre et al. 2005; Turnbull et al. 2007). Rarer still 

are empirical field studies in which the actual patterns of plants are manipulated in order 

to test for the effects of plant patterns on community dynamics and/or species coexistence 

(Turnbull et al. 2007). Numerous theoretical studies have modeled the effects of spatial 

structure on plant populations and communities (Czárán & Bartha 1992; Silvertown et al. 

1992; Pacala & Deutschman 1995; Bolker et al. 2003; De Boeck et al. 2006; Turnbull et 

al. 2007). For example, Silvertown et al. (1992) used a cellular automaton model to 

simulate the effect of different spatial arrangements on the competitive interactions 

between grass species, and concluded that spatial pattern may have a profound effect on 

determining the outcome of interspecific competition. More recently, De Boeck et al. 

(2006) examined the effect of spatial aggregation of plants on below-ground resource 

uptake, while Turnbull et al. (2007) used field-parameterized neighborhood models to 

examine the effects of spatial structure on the dynamics of annual plant communities. 

These and other theoretical studies have conclusively demonstrated that plant spatial 

patterns may have substantial impacts on population and community dynamics, but that 

relationships between plant patterns and ecological processes may be complex and 

depend crucially on the details associated with realistic communities (Turnbull et al. 

2007). 
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Similar results have been obtained from observational studies of the effects of 

plant spatial patterns, which have tended to focus on the effects of pattern on plant 

interactions. Tirado & Pugnaire (2003) examined the spatial distribution of two semi-arid 

shrubs to test if aggregation of the smaller shrub in patches of the larger shrub was a 

consequence of a positive interaction between the two species. The results suggested that 

transplanted individuals of the smaller shrub species had high survival rates, more fruits 

and flowers, and higher seed mass in patches versus in the open. Hegazy et al. (2005) 

looked at spatial patterns in relation to alleopathy, finding that the degree of clustering of 

a desert annual affected its alleopathic potential on surrounding annual and perennial 

desert plants. 

Once rare, empirical tests of the effects of plant spatial patterns are becoming 

more common. Schmid & Harper (1985) found that regular versus aggregated planting 

patterns had little to no influence on the competitive relationship between two species of 

perennial grasses with different growth forms. Bergelson (1990) found that the spatial 

distribution of an annual grass dramatically influenced the per capita seedling production 

of interspecific competitors. Tyler & D’Antonio (1995) showed that both survivorship 

and growth of shrub seedlings increased with increasing distance from near neighbors, 

while MacMahon (1997) discussed how clustered plantings of shrubby vegetation on 

mine reclamation sites led to increased growth and more successful establishment. More 

recent studies have generally focused on the testing the effects of intraspecific 

aggregation on species interactions and coexistence (Stoll & Prati 2001; Monzeglio & 

Stoll 2005; Mokany et al. 2008; Lamošová et al. 2010). These studies have presented 

convincing evidence that intraspecific aggregations may benefit weaker competitors by 
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reducing the frequency of interspecific interactions and potentially slowing competitive 

exclusion (Stoll & Prati 2001; Monzeglio & Stoll 2005; Mokany et al. 2008). For 

example, Stoll & Prati (2001) and Monzeglio & Stoll (2005) found that the spatial 

distribution of individual plants significantly affected the competitive environment within 

artificial plant communities, such that weaker competitors increased their fitness while 

stronger competitors were suppressed when grown in neighborhoods of conspecifics. The 

general conclusion that has emerged from empirical tests of the effects of plant spatial 

patterns, that plant spatial patterns may significantly affect both community and 

population dynamics, reinforces the findings of past theoretical and observational 

research. Questions remain, however, as to effects of plant spatial patterns in realistic 

communities since past experiments have focused on only annual vegetation over short 

temporal scales (e.g. Stoll & Prati 2001; Monzeglio & Stoll 2005; Turnbull et al. 2007).  

There is also still substantial uncertainty as to the effects of plant spatial patterns 

on other aspects of community dynamics, such as the distribution of abiotic plant 

resources, such as soil moisture (Bhark & Small 2003; Cantón et al. 2004), and light 

(Martens et al. 2000; Valladares 2003; Mokany et al. 2008). The pattern of above-ground 

vegetation may be a crucial determinant of the distribution of light and soil moisture 

(Martens et al. 2000; Valladares 2003; Cantón et al. 2004) that in turn may critically 

affect both community and population dynamics (Harper 1997; Valladares 2003; Armas 

& Pugnaire 2005), yet few studies have manipulated plant spatial patterns in order to test 

the effect of different patterns on resource distribution (Bolker et al. 2003). One 

exception is the study by Martens et al. (2000) that tested the effects of canopy spatial 

pattern on the distribution of understory light along a grassland-forest gradient. In many 
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communities, such as semi-arid grasslands, much remains unknown as to how different 

vegetation patterns affect the distribution of plant resources.  

The studies that comprise my Ph.D. dissertation address both the causes (data 

chapters 2-4) and the consequences (data chapter 5) of plant spatial patterns in the context 

of natural and experimental semi-arid Great Basin (USA) plant communities. The studies 

were designed to test novel methodologies for experimental design, data collection, and 

data analysis, and address current gaps in knowledge related to both spatial pattern 

formation and the effects of plant spatial patterns on community dynamics. 

In the first data chapter, published in 2011 in the journal Plant Ecology, my co-

authors and I developed a GPS-based methodology for the rapid collection of precise 

spatial data on species and location of 2358 shrubs in a semi-arid Great Basin shrubland. 

We used recently-developed univariate and bivariate spatial statistics to test for 

aggregation within the shrub community and found strong statistical evidence of fine-

scale aggregation (1) independent of species, (2) within species, and (3) between two 

species pairs. Our approach will be useful for rapidly collecting precise spatial data in 

plant communities, and has various applications related to research, management and 

conservation. 

In the next chapter, my co-author and I reanalyzed the shrub spatial data from the 

first chapter using a novel set of statistical methodologies designed to investigate spatial 

patterns of species diversity. We found significant fine-scale variation in diversity 

patterns, suggesting that two of the five shrub species had subtle effects on local 

neighborhood diversity within the well-mixed shrub community. Our approach may be 

used in other communities to describe multispecies spatial patterns, to quantify species-
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specific effects on diversity patterns, and to link patterns to community-structuring 

processes. 

In the third chapter, published in 2011 in the journal Rangeland Ecology and 

Management, my co-author and I used a novel approach to test for the effects of 

intraspecific competition and grazing on pattern formation along a chronosequence of 

grazed semi-arid Great Basin grass communities. Similar to methodologies presented in 

the first data chapter, we used a survey-grade GPS to quantify grass spatial patterns in 

stands that differed only in time since planting (9 – 57 yrs), as well as in a 57 yr old 

grazing exclosure to examine pattern formation in the absence of grazing. We detected 

fine-scale regularity, likely a sign of interference via resource competition, in all stands 

including the exclosure. Broader-scale aggregation, which we attributed to the effects of 

prolonged grazing disturbance, was only detected in the oldest grazed stand. Our results 

suggested that competition acts over finer spatial and temporal scales than grazing in 

structuring these stands, and reinforced the importance of both processes in structuring 

semi-arid communities. 

In the final data chapter, I report the results of a unique multi-year field 

experiment conducted by myself and my co-author in which we tested the effects of 

community-scale plant spatial patterns and fine-scale aggregation on both biotic (above-

ground biomass and relative growth rate) and abiotic components (heterogeneity of light 

and soil moisture) of experimental semi-arid grassland communities comprised of a 

strongly competitive introduced bunchgrass and a relatively weaker native Great Basin 

bunchgrass. We found that spatial treatments had profound effects on biomass production 

and relative growth rates of both species, but were different for each species and likely 
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linked to each species’ competitive ability. Treatments also affected the heterogeneity of 

light and soil moisture, and the effects of treatment on both biotic and abiotic aspects of 

community dynamics were generally different across years. 
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CHAPTER II 

USE OF PRECISE SPATIAL DATA FOR DESCRIBING SPATIAL  

PATTERNS AND PLANT INTERACTIONS IN A DIVERSE  

GREAT BASIN SHRUB COMMUNITY1 2 

 
Abstract 
 

Community-structuring processes continue to be of great interest to plant 

ecologists, and plant spatial patterns have been linked to processes including disturbance, 

dispersal, environmental heterogeneity, and plant interactions. Under the assumption that 

the analysis of the spatial structure of plant communities can help to elucidate the type 

and importance of the predominant community-structuring processes, many studies have 

analyzed point pattern data on various plant species. A variety of methods have been 

devised to acquire point pattern data for individual plants, however the classic tradeoff 

between the speed of acquisition and the precision of spatial data has meant that large and 

precise datasets on plant locations are difficult to obtain. 

The primary goal of this study was to develop a GPS-based methodology for the 

rapid collection of precise spatial data on plant locations in a semi-arid shrubland in the 

Great Basin, USA. The secondary goal was to demonstrate a potential application of this 

approach by using recently developed univariate and bivariate spatial statistics to test for 

aggregation within the shrub community, as observed in other semi-arid shrublands.  We 

efficiently mapped 2358 individuals of five shrub species with a spatial error of ≤0.02 m, 

                                                 
1 This chapter is co-authored by Andrew P. Rayburn, Katja Schiffers, and Eugene W. 
Schupp. 
2 © The Authors. 2011. The full text of this article is published in Plant Ecology 212:585-
594. 
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and found strong statistical evidence of fine-scale aggregation (1) independent of species, 

(2) within species, and (3) between two species pairs. Our approach is useful for rapidly 

collecting precise point pattern data in plant communities, and has other applications 

related to population modeling, GIS analysis, and conservation. 

 
Introduction 
 

Processes that structure plant communities continue to be a primary focus of plant 

ecological research (Stoll & Prati 2001; Armas & Pugnaire 2005; Mokany et al. 2008). 

For example, the role of plant-plant interactions in structuring communities and affecting 

species coexistence remains uncertain despite extensive experimental and theoretical 

research. This is especially true for arid and semi-arid plant communities where debate 

over the existence, direction, and magnitude of interactions persist (Phillips & 

MacMahon 1981; Fowler 1986; Armas & Pugnaire 2005; Brooker et al. 2008; Mokany et 

al. 2008).  

Theoretical models have demonstrated that the spatial structure of plant 

communities may influence a wide variety of ecological processes, such as intra- and 

interspecific competition between plants (Phillips & MacMahon 1981; Tielbörger & 

Kadmon 2000; Schenk et al. 2003; Tirado & Pugnaire 2003; Armas & Pugnaire 2005). 

Although there are fewer experimental tests of the effect of spatial structure (Stoll & Prati 

2001; Monzeglio & Stoll 2005), there is convincing evidence that intraspecific 

aggregation of plants in experimental communities can promote species coexistence 

(Stoll & Prati 2001; Monzeglio & Stoll 2005; Mokany et al. 2008). The patterns of plants 

in communities have also been linked to the distribution of soil resources (MacMahon 
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1997), the effect of disturbances such as grazing (Rebollo et al. 2002), and plant 

population dynamics (Fowler 1986; Franco & Nobel 1988; Valiente-Banuet et al. 2006). 

 Ecological processes in turn affect the spatial pattern of the affected individuals. 

Regular patterns have been historically viewed as the result of intense competition for 

limited resources, such as available water or soil resources (King & Woodell 1973; 

Phillips & MacMahon 1981; Skarpe 1991). Random patterns may be a direct result of 

ecological processes such as habitat heterogeneity (Tirado & Pugnaire 2003), or may 

emerge temporarily when aggregated patterns shift to regular patterns because of density-

dependent mortality (Prentice & Werger 1985). Aggregated patterns are actually quite 

common, especially in more diverse plant communities (Perry et al. 2009). Intraspecific 

aggregation has been attributed to environmental heterogeneity (Schenk et al. 2003; Perry 

et al. 2009), seed dispersal (Schurr et al. 2004), and plant interactions, (Phillips & 

MacMahon 1981; Eccles 1999; Tirado & Pugnaire 2003). In more arid communities, 

interspecific aggregation of forbs, grasses, and juvenile woody plants around larger 

shrubs and trees is often interpreted as evidence of facilitation (e.g. review by Brooker et 

al. 2008). In physically stressful environments, plants that facilitate one another often do 

so by ameliorating harsh abiotic conditions (e.g. reducing evapotranspiration) (Haase 

1996; Armas & Pugnaire 2005). Communities that are structured by positive plant 

interactions often have plant spatial patterns that are characterized by multispecific plant 

aggregations (Eccles et al. 1999; Kéfi et al. 2007; Valiente-Banuet & Verdú 2008).  

As a result of the link between spatial patterns and ecological processes, studies of 

plant patterns have often been conducted under the assumption that the results of pattern 

analysis can give information on the predominant ecological processes in these 
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communities. In this context it is important to state that in principle it is not possible to 

derive a process from a pattern, since the same spatial structure can be a result of 

different processes (Schurr 2004; McIntire & Fajardo 2009). However, ecologically 

informed a priori hypotheses on the spatial pattern itself can be statistically tested and 

can help to approach an understanding of the underlying processes. For example, Fajardo 

& McIntire (2007) analyzed spatial patterns of forest growth to evaluate multiple 

competing hypotheses regarding the importance of competition and microsite variability 

in Pinus ponderosa plantations.  

Generally pattern studies involve the collection and analysis of spatial data on one 

or more species within a community, and the common approach has been to test for 

regular, random, or aggregated plant spatial patterns of the species of interest. A wide 

variety of methods have been devised to map individual plants within communities, 

including quadrat sampling (Phillips & MacMahon 1981), progressive mapping (Rohlf & 

Archie 1978; Boose et al. 1998), triangulation (Schurr et al. 2004), and remote sensing 

and interpretation of aerial photography (Strand et al. 2006). All mapping methodologies 

have some associated level of spatial measurement error that should be quantified and 

reported. This error, a function of the precision of the methodology, may have profound 

effects on subsequent data analysis and interpretation. In a study of the effect of data 

quality on the results of point pattern analysis via second order spatial statistics, Freeman 

& Ford (2002) concluded that measurement error produced by mapping techniques and 

equipment significantly affected the detection of both inhibition and aggregation within 

plant communities. Specifically, the authors noted that the effect of measurement errors 

were inversely proportional to the scale of interaction between mapped plants, such that 
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measurement errors could obscure fine-scale inhibition while also causing an 

overestimation of the scale of aggregation. 

Certain methodologies, such as the use of a tape measure and hand compass or an 

off-the-shelf GPS unit, may have associated spatial errors of ≥ 1m that may render 

inappropriate any fine-scale (e.g. < 1m) analysis of plant spatial patterns. More precise 

methods have been used to map vegetation (Schenk et al. 2003), but may require multiple 

field personnel and/or surveyor-established control points in addition to being time-

consuming and cumbersome in the field (Lavine 2003). The challenges associated with 

mapping plant communities using more precise methodologies means that large sample 

sizes may be difficult to obtain, or that larger areas may be difficult to exhaustively map. 

Large sample sizes may be crucial, since small sample sizes may have large standard 

deviations that prevent meaningful comparisons with null models during spatial analysis 

(Perry et al. 2008). An ideal mapping methodology would be both rapid and precise in 

order to minimize spatial error and enable efficient collection of larger sample sizes 

appropriate for significance testing and generalizing results back to the community at 

large. 

In this study, our primary objective was to develop a relatively novel approach to 

obtaining large datasets of high-quality spatial data in Great Basin shrub-dominated plant 

communities in the Western United States. This GPS-based approach is both rapid and 

highly precise, requires only a single person to operate, and is feasible in any terrestrial 

plant community without significant tree cover where individual plants are discernable. 

Our secondary objective was to demonstrate one potential application of this 

methodology by using second-order spatial statistics to investigate the spatial structure of 
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the shrub community. Under the general hypothesis that the shrub community under 

study would be characterized by localized aggregation, a common feature of other semi-

arid shrublands (Schenk et al. 2003; Tirado & Pugnaire 2003), we used a recently 

developed spatial statistic (Schiffers et al. 2008) to test if shrubs were significantly 

aggregated (a) independent of species; (b) within individual species (intraspecific 

aggregation); and (c) between species (interspecific aggregation). 

 
Methods 
 
 
Data Collection 
 

The study site was located on a grazing allotment in a mixed Great Basin shrub 

community east of the Vernon Hills in the southern end of Rush Valley, Tooele Co., UT, 

USA (longitude -112.36125, latitude 40.10253). A total of five shrub taxa were present, 

representing the two plant families Asteraceae and Chenopodiaceae: Wyoming big 

sagebrush (Artemisia tridentata Nutt. ssp. wyomingensis Beetle & Young ; Asteraceae), 

broom snakeweed (Gutierrezia sarothrae (Pursh) Britton & Rusby; Asteraceae), 

spineless horsebrush (Tetradymia canescens DC.; Asteraceae), winterfat 

(Krascheninnikovia lanata (Pursh) A. Meeuse & Smit; Chenopodiaceae), and shadscale 

saltbush (Atriplex confertifolia (Torr. & Frém.) S. Watson; Chenopodiaceae). G. 

sarothrae is often considered a sub-shrub, but we followed other authors in including 

both shrubs and sub-shrubs in spatial analysis (Haase et al. 1996; Schenk et al. 2003). 

Other species present on-site included Indian ricegrass (Achnatherum hymenoides (Roem. 

& Schult.) Barkworth), bottlebrush squirreltail (Elymus elymoides (Raf.) Swezey), 
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halogeton (Halogeton glomeratus (M. Bieb.) C.A. Mey), cheatgrass (Bromus tectorum 

L.), and various annual forbs.  

A 39m by 39m plot was established in September 2008 and divided into 3-m 

strips to facilitate data collection. The location and species of all shrubs in the plot were 

collected using the ProMark3 GPS system, a survey-grade GPS unit that enables both 

rapid and precise data collection. As used in this study, the ProMark3 is composed of a 

base unit mounted on a fixed height tripod near the plot and a rover unit mounted on a 

fixed height pole equipped with a bubble level. Once the base unit was activated, static 

survey data were continuously collected for the base point at one second intervals. The 

rover unit was placed at the main stem of each shrub, generally in the middle of the shrub 

canopy, and data were collected for five seconds with a one second collection interval. 

Base and rover data were processed against data from National Geodetic Survey 

Continuously Operating Reference Stations (CORS) using GNSS Solutions software (v. 

3.10.01, Magellan Navigation 2007). 

 
Data Analysis 
 

Spatial analysis was performed in R (R Development Core Team 2007) using 

both base functions and the spatstat package for spatial analysis of point patterns (v. 

1.14-7, Baddeley & Turner 2005). Density surfaces created for the plot-level and species-

specific point patterns strongly suggested that shrubs were inhomogeneously distributed 

across the study region. In order to account for this heterogeneity while simultaneously 

testing for aggregation, we implemented the recently developed K2 statistic (Schiffers et 

al. 2008). While Ripley’s K and the pair correlation statistic g are commonly used in 
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analyses of point pattern data, these statistics are based on the assumption that the point 

pattern is homogenous in space (i.e., has a constant intensity across the study region; 

Schiffers et al. 2008). Actual variation in intensity across the study area can result in 

“virtual aggregation,” in which bias in the estimated K- or g-statistics indicates stronger 

positive autocorrelation than actually exists and obscures critical pattern information at 

finer scales at which individual plants compete for water and soil resources (Wiegand & 

Moloney 2004; Schiffers et al. 2008). 

The K2 statistic is essentially the first derivative of the g statistic, and K2(r) 

estimates are obtained by calculating the slope of the estimated g statistic over a range of 

scales from r + ∆r to r – ∆r: 

 

( ) ( ) ( )
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∆

−−+
=  

 

Similar to the O-ring statistic (Wiegand & Moloney 2004), and in contrast to Ripley’s K, 

the K2 is noncumulative; i.e., the spatial pattern at finer scales does not influence the K2 

statistic at broader scales as is the case with cumulative spatial statistics like Ripley’s K 

(Blanco et al. 2008).  

The statistical significance of ( )r2K̂  values can be evaluated relative to pointwise 

Monte Carlo simulation envelopes, constructed with the envelope function in the spatstat 

package. Pointwise envelopes indicate the critical points for a Monte Carlo test that is 

performed using a fixed value of r, where the null hypothesis (e.g. Complete Spatial 

Randomness, or CSR) is rejected if the estimate of ( )r2K̂  lies outside the envelope at the 

given value of r (Baddeley & Turner 2005). Significantly positive values of ( )r2K̂  
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indicate the upper limit of the scale range at which the pattern is regular; significantly 

negative values indicate the upper limit of the scale range at which the pattern is 

aggregated (Schiffers et al. 2008). Simulation envelopes differ from confidence 

envelopes, and have been criticized for potentially leading to type I errors when values of 

the evaluated function (e.g. K2) are close to values of the simulation envelopes 

(Loosemore & Ford 2006; Blanco et al. 2008). This is less of a concern when using 

noncumulative statistics (Loosemore & Ford 2006; Blanco et al. 2008); however, the 

significance of small departures from the null model should be interpreted with caution 

(Blanco et al. 2008). For this analysis, we constructed approximate 95% simulation 

envelopes using the 10th highest and lowest values of K2(r) from 199 simulations of 

CSR. While more sophisticated null models are available, we chose the straightforward 

null model of CSR for the sake of simplicity. 

Similarly, we used the K2 statistic to test for aggregation within each of the five 

shrub species individually. In order to test for interspecific aggregation, we used the 

software package Programita (Wiegand & Moloney 2004) that allowed for the fitting of 

bivariate O-ring statistics coupled with appropriate null models to look for evidence of 

spatial structure between all pairs (i,j and j,i) of shrub species present in the plot. That is, 

all species pairs were analyzed as two distinct pairs, the distribution of species i relative 

to species j and the distribution of species j relative to species i, for a total of 20 pairs. 

The O-ring statistic evaluates the expected number of points of a pattern at increasing 

distances (r) from an arbitrary point of a pattern. When used with an appropriate null 

model and permutation procedures, positive and negative deviations of ( )rÔ ji  indicate 

second-order aggregation and regularity, respectively, between points of type i and j in a 
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point pattern dataset. Like the K2 statistic, the O-statistic is noncumulative and therefore 

less prone to type I errors related to the construction of simulation envelopes. Two 

contrasting types of null models are commonly fitted to bivariate point analyses: 

independence and random labeling (Wiegand & Moloney 2004). Testing for 

independence in a bivariate setting is more complicated than fitting a CSR null model to 

a univariate process. The second-order structure associated with each pattern must be 

preserved in the course of null model simulation, but the dependence between the two 

patterns must be removed. Applying a random shift to pattern j while holding fixed 

pattern i overcomes this hurdle and allows for a test for spatial structure between points 

of type i and j. In this study, bivariate O-statistics were calculated for all pairs of shrub 

species, with random shifts set as the null model. In each case, the locations of shrub 

species i were held constant, while the locations of shrub species j were randomized (Nsim 

= 199; 10th highest and lowest values of ( )rÔ ji  used to construct simulation envelopes) in 

order to test for significant spatial structure between the two species.  

 
Results 
 
 The GPS-based methodology was used to map the location and identity of 2358 

individual shrubs within the study plot (Fig. 1). Data collection required approximately 

16 field hrs, with data-post processing requiring an additional 1-2 hrs. After post-

processing, the spatial error (calculated in GNSS solutions using the least squares 

method) associated with x,y coordinates of shrubs was calculated to be ≤0.02 m. A. 

tridentata was the most common shrub in the plot, followed by T. canescens, G. 

sarothrae, A. confertifolia, and K. lanata (Table 1). Mean shrub density was 1.56 
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shrubs/m2, while densities of individual shrub species ranged from 0.19 shrubs/m2 to 0.61 

shrubs/m2 (Table 1).  

 Spatial analysis revealed strong evidence of aggregation, independent of species 

(Fig. 2a). This pattern was observed even after controlling for the effect of A. tridentata, 

the most abundant shrub (data not shown). Aggregation was present at scales < 0.50m, 

and there was no evidence of either aggregation or regularity at larger scales. There was 

also strong evidence of intraspecific aggregation in two shrub species, A. tridentata and 

K. lanata, at scales of < 0.50m (Fig. 2b, e). There was also suggestive evidence of 

aggregation in A. confertifolia at a similar scale, while there was suggestive evidence of 

both regularity and aggregation in G. sarothrae (at 0.10m < r < 0.25m and r = 0.50m, 

respectively; Fig. 2c,e). By suggestive, we mean that the values of the K2 function were 

close to the values of the null model, and that results should be interpreted with caution 

(Blanco et al. 2008). There was no evidence of either aggregation or regularity in T. 

canescens (Fig. 2f). 

There was evidence of interspecific aggregation for only two of the 20 pairs of 

species. A. tridentata was aggregated relative to A. confertifolia, and A. confertifolia was 

aggregated relative to G. sarothrae (Fig. 3). For both species pairs, aggregation was 

detected at a scale of approximately 0.2 m. There was suggestive evidence of regularity 

between A. tridentata and A. confertifolia and aggregation between A. confertifolia and 

G. sarothrae at larger scales.  
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Discussion 
 
 
Data collection and analysis 

Analysis of plant spatial patterns is a popular technique in plant ecology, but there 

are challenges associated with rapidly obtaining large samples of precise plant locations. 

Historically, the classic tradeoff related to spatial data collection has been between speed 

and precision. In this study, however, the use of the ProMark3 survey-grade GPS system 

allowed for the rapid and precise collection of species and location data for more than 

2300 shrubs of five species in a semi-arid, mixed shrub community in the Great Basin 

portion of the western U.S. Although past authors have provided convincing evidence of 

statistically significant plant spatial patterns, larger and more precise datasets could lead 

to better generalizations about the larger plant communities and processes at work 

therein. An additional advantage of the ProMark3 is that the base unit may be located 

several kilometers (up to ~15 km under ideal conditions) away from the site of data 

collection, and multiple rover units can be used at the same time with a single base unit. 

Furthermore, the mobility of the rover unit means that data may be collected along 

uneven topography that might otherwise render spatial data collection difficult or 

unfeasible altogether. Drawbacks include the usual difficulties with using GPS under tree 

canopies, the initial expense of purchasing the system, and the need to post-process the 

data (albeit a relatively simple process usually requiring less than an hour). Given the 

difficulties of collecting large spatial datasets in mixed-species communities, however, 

the speed and precision associated with the ProMark3 GPS system outweigh the few 

disadvantages. Barring significant tree cover, the methodology presented here can be 
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easily adapted for a wide variety of plant communities where individual plants are 

distinguishable.  

Since the primary goal of this study was to demonstrate the speed and precision 

by which point pattern data may be collected via a GPS-based methodology, we chose 

not to collect size class data on shrubs within the study plot. Our approach is similar to 

other recent studies of plant spatial patterns in which the assumption is made that plant 

locations are adequately represented as zero-dimensional points (Perry et al. 2009). Size 

class data is often an important component of spatial datasets, and is used to test more 

sophisticated hypotheses related to plant interactions (Wiegand et al. 2006). Such data 

could be collected by a second observer working in tandem with the GPS person or at a 

later date by using the resultant community map as a guide to relocate and measure 

individual plants.  

The collection and analysis of precise spatial data represents only one of the 

potential applications for the GPS-based community mapping methodology. For 

example, long-term plots could be established in shrubland communities across the 

western U.S. in order to evaluate the effects of climate change on plant spatial patterns, 

species coexistence, and population dynamics across ecological gradients and/or in 

communities with different species compositions. Precise spatial data would allow for the 

monitoring of recruitment and mortality necessary for population modeling, and changes 

in plant spatial patterns could be linked to ecological processes such as disturbance, plant 

interactions, and fluctuations in environmental heterogeneity. From a management 

perspective, our methodology could be used to accurately map the locations of rare or 

threatened plants across large expanses of terrain, in order to facilitate relocation and 
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measurement of individual plants as part of monitoring and conservation programs. An 

additional advantage of our approach is that the spatial data integrate seamlessly with 

GIS software, meaning that additional data (such as elevation, road networks, and land 

cover) could be included in vegetation analyses. 

 
Patterns and process 
 
 The aggregated shrub spatial patterns observed in this study of a semi-arid shrub 

community may be the result of multiple ecological processes. Although carefully 

designed observational and experimental studies are required to clearly elucidate the 

processes creating plant spatial patterns, previous studies suggest that disturbance, 

dispersal, environmental heterogeneity and/or facilitation may have led to the aggregated 

spatial structure in the shrub community under study. 

For example, the potential role of grazing in creating and maintaining shrub 

spatial patterns in semi-arid shrublands cannot be overlooked (Kéfi et al. 2007). In this 

study, five shrub taxa were present within the plot, which itself is part of an active 

grazing allotment. While A. tridentata, G. sarothrae, and T. canescens are generally 

regarded as poor forage for livestock, A. confertifolia and K. lanata are widely grazed in 

Great Basin shrublands (Elmore 1976). There is a substantial body of literature that has 

examined the effect of grazing on spatial heterogeneity (e.g. Adler et al. 2001; 

HilleRisLambers et al. 2001; Seifan & Kadmon 2006; Blanco et al. 2008). A recent study 

tested the role of grazing in spatial pattern formation in a Mediterranean scrub ecosystem 

by correlating 40 years of shrub pattern data with grazing intensity (Seifan & Kadmon 

2006). The degree to which grazing influenced shrub aggregation was thought to be a 
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result of the relative palatability of shrubs as compared to other plants in the community, 

and the degree of interference or facilitation between adult shrubs and other plants. In 

addition, indirect effects of grazing (such as trampling of seedlings and soil compaction) 

may also have significant and different effects on shrub spatial patterns.  

Another alternative hypothesis to explain the widespread aggregation in this study 

is localized seed dispersal around parents resulting in seed limitation away from existing 

adults. Although seed shadows from primary dispersal are not known for these species, 

secondary movement across the surface is extensive (Chambers 2000), suggesting that 

short-distance dispersal is unlikely to explain the pattern. Even with extensive secondary 

movement, however, seeds might be disproportionately captured at the edge of the litter 

accumulating beneath shrubs, resulting in aggregations of recruits around existing adults. 

In addition, environmental heterogeneity (e.g. patchy distribution of soil 

resources) may lead to the formation of aggregated shrub spatial patterns (Schenk et al. 

2003; Tirado & Pugnaire 2003; Perry et al. 2008; Perry et al. 2009). Patchy resource 

distribution may occur as the result of the latent distribution of soil resources, or as a 

result of plant-soil interactions such as those that lead to the formation of “islands of 

fertility” (Schlesinger et al. 1990).  

Lastly, aggregated shrub patterns in water-limited plant communities are often 

attributed to facilitation within and between shrub species. While the analysis of plant 

spatial patterns cannot fully explain the complexities of plant interactions, patterns that 

significantly deviate from random have often been used to infer the type and magnitude 

of plant interactions for one or more species within different plant communities. As 

researchers have continued to use spatial analysis to seek answers about the role of plant 
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interactions in water-limited regions, it has become increasingly apparent that facilitation 

plays a critical role in structuring certain arid and semi-arid plant communities. 

Aggregation of shrubs can have dramatic effects on survivorship, reproductive success, 

plant performance, population dynamics, and coexistence of shrub species at multiple life 

stages (Haase et al. 1996; MacMahon 1997; Tirado & Pugnaire 2003). However, 

facilitation is most often detected among heterospecific species pairs and heterospecific 

plant aggregations are often taken as evidence of facilitation (Eccles et al. 1999; Kéfi et 

al. 2007; Valiente-Banuet & Verdú 2008). The degree of intraspecific aggregation that 

was detected by K2 statistic suggests that shrub clusters in the community under study 

are composed largely of conspecific individuals, with the exception of A. tridentata being 

aggregated relative to A. confertifolia and A. confertifolia being aggregated relative to G. 

sarothrae. Our results suggest that facilitation is not a dominant pattern-forming process 

in the study community. 

Interference may also influence shrub patterns within the community, although 

little evidence of regular plant spatial patterns was detected. Regular patterns are often 

interpreted as evidence of fine-scale interference between plants, a process that for more 

than a century has been viewed as an important factor governing plant distribution 

patterns in water-limited plant communities (Fowler 1986; Armas & Pugnaire 2005; 

Miriti 2006). Only G. sarothrae showed any evidence of intraspecific regularity, and then 

only at a relatively fine spatial scale. G. sarothrae individuals were aggregated at a 

slightly broader spatial scale, implying that plants of this species form small, regularly 

spaced clusters. Interspecific regularity was detected between A. tridentata and A. 

confertifolia, but at scales greater than the scale at which aggregation was detected (r = 
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0.80 m and r = 1.2 m, see Fig. 2a). This result suggests that pairs or clusters of these 

species are somewhat regularly spaced, implying a shift in pattern forming processes over 

short distances. For example, it could be that net effect of plant-plant interactions 

switches as a function of distance; over short spatial scales there may be net facilitation, 

but with increasing distances from another shrub facilitation weakens while competition 

for water and soil resources may remain a strong force due to the extensive root systems, 

resulting in a switch to net interference. 

Each of the above mentioned processes (disturbance, dispersal, environmental 

heterogeneity, and plant interactions) may have acted individually or in concert with 

other processes to produce the spatial patterns detected in this study. The incorporation of 

shrub size class data would allow for more sophisticated spatial analysis that could better 

elucidate the role of individual processes, and field experiments addressing the effect of 

each process on shrub spatial structure may also be required. 

 
Conclusion 
 

In this study, the use of the ProMark3 survey-grade GPS system allowed for the 

rapid and precise collection of shrub spatial data in a semi-arid, mixed-shrub community 

within the Great Basin in the western United States. The resulting point pattern was 

analyzed in R and Programita using spatial statistics that included the recently developed 

K2 statistic, coupled with null models and permutation procedures that allowed for 

significance testing. Analysis revealed that aggregation was the predominant spatial 

pattern associated with shrubs, independent of species. Furthermore, intraspecific 

aggregation was observed in four of the five study species. Interspecific aggregation was 
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also observed, although only two of 20 shrub pairs were aggregated. These results 

demonstrate the utility of combining new data collection techniques with both traditional 

and novel spatial analyses, and also suggest future studies to determine the ecological 

processes by which shrub aggregation is produced in the study community.  
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Table 1. Summary statistics for shrub spatial data by taxon. Nspecies = sample size per 

species; Proportion = % of total; λspecies = density (shrubs / m2). Ntotal = 2358. 

 
 
Species 
 

 
Nspecies 

 
Proportion 

 
λspecies 

A. tridentata 
 

918 0.39 0.61 

A. confertifolia 
 

307 0.13 0.20 

T. canescens 
 

602 0.26 0.40 

K. lanata 
 

179 0.08 0.19 

G. sarothrae 
 

352 0.15 0.23 
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Fig. 1  Map of study plot (39m x 39m), showing locations of all shrub individuals (upper 

left) and maps detailing the locations of individuals from each of the five shrub species. 
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Fig. 2  K2 plots for a) all species combined; b) Artemisia tridentata; c) Atriplex 

confertifolia; d) Krascheninnikovia lanata; e) Gutierrezia sarothrae; and f) Tetradymia 

canescens. Dotted lines indicate 95% Monte Carlo simulation envelopes (nsim = 199). 

Significant aggregation is indicated by negative peaks in the solid black line that extend 

beyond the boundaries of the simulation envelopes, while regularity is indicated by 

positive peaks extending beyond the boundaries.   



39 

 

Fig. 3  Plots of bivariate O-ring statistics for two species pairs with significant spatial 

structure; a) A. tridentata relative to A. confertifolia; b) A. confertifolia relative to G. 

sarothrae. Values of x-axis are in 0.1m increments. Gray lines are 95% Monte Carlo 

simulation envelopes (nsim = 199). Both plots show significant aggregation of shrub 

species pairs at a distance of approximately 0.20m (above the upper simulation 

envelope). In plot a), there is also suggestive evidence of regularity at larger scales, while 

in plot b) there is suggestive evidence of aggregation at larger scales. 
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CHAPTER III 

 
INDIVIDUAL SPECIES-AREA RELATIONSHIPS AND SPATIAL 

  
PATTERNS OF SPECIES DIVERSITY IN A GREAT  

 
BASIN, SEMI-ARID SHRUBLAND 

 
 

Abstract 
 

Traditional biodiversity metrics operate at the level of a plant community but do 

not capture spatial variation in diversity from a ‘plant’s-eye view’ of a community. 

Recently-developed statistics consider the spatial patterns of plants as well as the number 

and distribution of species in local plant neighborhoods to quantitatively assess 

multispecies spatial patterns from a “plant’s-eye view.” We used one such statistic, the 

individual species-area relationship (ISAR), to assess spatial patterns of species diversity 

in a Great Basin (USA) semi-arid shrubland through an analysis of a spatial dataset on 

shrub species and locations. In conjunction with appropriate null models, the ISAR 

blends species-area relationships with second-order spatial statistics to measure the 

expected species richness in local neighborhoods of variable size around the individuals 

of a focal species within a community. We found that, contrary to a previous analysis 

using more traditional methods, the community was well-mixed with a typical shrub 

surrounded on average by 4.9 shrub neighbors of 2.1 species at a neighborhood scale of 

1.0 m. We also found statistically significant fine-scale variation in diversity patterns, 

such that neighborhoods of two species were more diverse than expected by a 

heterogeneous Poisson null model that accounted for larger-scale habitat heterogeneity. 

However, this effect was caused by intraspecific aggregation of these species and was not 
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due to positive interspecific association. Contrary to previous findings in other semi-arid 

shrublands, our analysis suggests that the spatial pattern of the shrub community was not 

significantly structured by interspecific facilitation. This result supports growing 

evidence for balanced species patterns of adult plants in multispecies communities. Our 

approach may be used in other communities to describe complex multispecies spatial 

patterns, quantify species-specific associations with diversity patterns, and to generate 

hypotheses regarding relationships between patterns and community-structuring 

processes. 

 
Introduction 
 

Classic measures of biodiversity consider species richness and evenness at the 

level of a plant community, while giving little weight to diversity at the scale of 

individual plant neighborhoods (Shimatani and Kubota 2004, Wiegand et al. 2007a). For 

example, the traditional species-area relationship (SAR) describes how the number of 

species in a community changes with sampling area (He and Legendere 2002) and can be 

considered a location-related summary characteristic because it is determined with 

reference to sampling points that are chosen independently of plant locations (Illian et al. 

2008). However, many processes that structure plant communities (e.g. plant interactions) 

occur over fine scales such as local plant neighborhoods (Illian et al. 2009), which 

suggests conducting analyses from the “plant’s-eye view” (Turkington and Harper 1979, 

Law et al. 2009). Community-level analyses may therefore obscure interesting patterns in 

diversity that may be fundamental to understanding plant-plant interactions (Wiegand et 

al. 2007a), dispersal mechanisms (Wiegand et al. 2009), species coexistence (Illian and 
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Burslem 2007, Law et al. 2009), or in developing vegetation management strategies 

(Shimatani 2001). Recently, novel statistics have been developed that allow for more 

advanced analyses of the spatial patterns of diversity. These statistics consider the pattern 

of individual plants as well as the number and distribution of species, combining diversity 

metrics and point pattern analyses in order to quantitatively assess aspects of multispecies 

spatial patterns from the “plant’s-eye view” (Shimatani 2001, Shimatani and Kubota 

2004, Wiegand et al. 2007a). These techniques also address the long-standing challenge 

in spatial ecology of describing multispecific plant patterns without resorting to 

numerous bivariate statistics (Wiegand et al. 2007a,b, Illian et al. 2009), and are being 

used to elucidate new connections between diversity patterns and ecological processes in 

plant communities such as mixed hardwood forests (Shimatani 2001), subtropical rain 

forests (Shimantani and Kubota 2004), tropical rain forests (Wiegand et al. 2007a) and 

high-diversity semi-arid shrublands (Illian et al. 2009). Such work is an important 

contribution to the efforts of ecologists to understand the processes that structure 

communities and promote species coexistence in the face of global declines in 

biodiversity (Illian and Burslem 2007, Illian et al. 2009).  

One of the most promising new spatial statistics is the individual species-area 

relationship (ISAR; Wiegand et al. 2007a). ISAR is the expected number of species 

within circular areas of radius r around a randomly chosen individual of the target species 

t. The function was termed the individual species-area relationship because, in contrast to 

the SAR, the sampling areas of the ISAR are centered on the locations of a focal species. 

The SAR is thus linked to the species richness within neighborhoods around a focal 

species (called in the following “neighborhood diversity”) and therefore is a “point-
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related” summary characteristic (Illian et al. 2008) that summarizes important 

characteristics of diversity from the “plant’s-eye view.” For a species pool (1,…,S), the 

ISAR can be estimated as: 

∑
=

−=
S

j
tj rPrISAR

1
)].,0(1[)(   (1) 

Ptj(0, r) is the emptiness probability that species j was not present in the circles with 

radius r around individuals of the target species t. If a = πr2, then the ISAR function can 

be expressed in terms of circular area a to resemble the common species-area relationship 

(Wiegand et al. 2007a). The ISAR function has been used to assess species associations 

in tropical forests (Wiegand et al. 2007a), but can be adapted to other plant communities 

in which plants occur as discrete individuals whose pattern can be mapped. 

The ISAR function can be used to detect spatial patterns in diversity from the 

perspective of individual plants and to relate them to underlying mechanisms. Species 

that accumulate an over-representative proportion of species richness in their local 

neighborhoods have been termed diversity “accumulators,” while species with less 

diverse neighborhoods than expected have been termed diversity “repellers” (Wiegand et 

al. 2007a). The shape of the ISAR function can be influenced by three basic mechanisms: 

plant-plant interactions, plant-environment interactions, and the spatial pattern of the 

focal species. Analyzing plant patterns using the ISAR function and appropriate null 

models can disentangle the effects of each factor to some extent, giving insight into 

ecological processes acting to structure the community under study. For example, if net 

interactions between a focal species and other species are positive relative to the focal 

species’ effect on itself, then the focal species would likely have more diverse 
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neighborhoods than expected by chance; conversely, net negative interactions between a 

focal species and other species would likely result in less diverse neighborhoods than 

expected by chance. In the case of weak or balanced positive and negative interactions, 

local neighborhoods would not be expected to depart from neutral ISAR curves (Wiegand 

et al. 2007a). However, the ISAR does not isolate specific pairwise interactions; therefore 

a species may appear on balance to be “neutral” even when some of its pairwise 

interactions are strong. Such effects can only be captured with complementary pairwise 

analyses (e.g.Wiegand et al. 2007a,b).  

Similar effects on the ISAR function can be observed if the neighborhood 

diversity in the preferred habitat of the focal species is above or below average due to 

plant-environment interactions. As is common practice with spatial pattern analyses, the 

use of appropriate heterogeneous null models can account of the effects of habitat 

association (Wiegand and Moloney 2004, Wiegand et al. 2007a). The pattern of the focal 

species may also influence the shape of the ISAR function if the focal species is locally 

dominant (reducing neighborhood diversity), or if there is a strong univariate effect [i.e., 

Ptt(r) in equation 1]. This effect may be diagnosed and accounted for by calculating the 

ISAR function with and without counting the focal species, in order to determine if 

observed accumulator effects are artifacts of focal species pattern as opposed to signals of 

interspecific aggregation and potentially facilitation. 

We used the ISAR framework to analyze spatial patterns of species diversity and 

to better understand pattern-forming processes in a semi-arid shrubland in the Great 

Basin region of the western U.S. Globally, the processes that structure semi-arid 

shrublands in space and time are key areas of research, especially processes that influence 
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species coexistence in more diverse shrublands (e.g. Tirado and Pugnaire 2003, Illian et 

al. 2009, Perry et al. 2009, see chapter 2). Non-random spatial patterns are common 

features of semi-arid shrublands (e.g. Schenk et al. 2003, Tirado and Pugnaire 2003, 

Illian et al. 2009, see chapter 2), and are often attributed to ecological processes 

presumed to influence pattern formation, community dynamics, and species coexistence 

(Tirado and Pugnaire 2003, Seifan and Kadmon 2006, Perry et al. 2009, Illian et al. 

2009). For example, interspecific aggregations of plants are often interpreted as a result 

of positive plant interactions that are generally considered to play a prominent role in 

semiarid plant community dynamics because of harsh climate and scarce resources in 

these environments (Schlesinger et al. 1990, Kéfi et al. 2007, Pugnaire et al. 2011). ISAR 

analysis provides a means to test if the spatial pattern of shrubs in the semi-arid shrub 

community under study conserves a signal of positive plant interactions. After accounting 

for the effects of habitat association and focal species density, less diverse shrub 

neighborhoods than expected by the null model would suggest that shrub neighborhoods 

were largely monospecific and were structured by processes leading to intraspecific 

aggregation. More diverse shrub neighborhoods than expected would suggest the 

community under study was structured more by processes leading to positive 

interspecific associations (e.g. facilitation). Each scenario has important implications for 

shrub species coexistence in the semi-arid shrubland under study. 
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Materials and Methods 
 
 
Study system 

 
The study site was located on a grazing allotment in a semi-arid Great Basin shrub 

community in the southern end of Rush Valley, Tooele Co., UT, USA (UTM coordinates 

386086.9 E, 4442770.5 N). Five co-dominant shrub taxa were present: Artemisia 

tridentata Nutt. ssp. wyomingensis (Beetle & Young), Gutierrezia sarothrae (Pursh) 

Britton & Rusby, Tetradymia canescens (DC.), Krascheninnikovia lanata (Pursh) A. 

Meeuse & Smith, and Atriplex confertifolia (Torr. & Frém.) S. Watson. A 39 m × 39 m 

plot was established on level ground in September 2008, and the highly accurate (± 2 cm 

spatial error) locations of all shrubs (N=2,359) were determined using a survey-grade 

GPS system (Fig. 4, see chapter 2 for details on site characteristics and data acquisition).  

 
ISAR analysis 
 

Inference for a given focal species t had to be made conditionally on the spatial 

pattern of all other species since the goal was to reveal if individuals of the focal species 

were associated with species richness in their neighborhoods. For this purpose, only 

individuals of the focal species were relocated using appropriate null models (see below), 

and neighborhood diversity in their new locations was measured and compared with the 

observed neighborhood diversity.  

Because not all shrub patterns in the study community were homogeneous (Fig. 4, 

see chapter 2), heterogeneous null models were required to approximately separate first 

and second-order effects. With a homogeneous Poisson null model (complete spatial 

randomness or CSR, Wiegand and Moloney 2004) each location in a study plot would 
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have the same chance to receive a relocated individual. This null model is thus sensitive 

to both potential first-order effects of habitat association of the focal species and potential 

second-order effects such as plant interactions. However, the heterogeneous Poisson null 

model can be used to account for larger-scale habitat association (Wiegand et al. 2007a,b) 

such that individuals are relocated not over the entire plot but only within a smaller 

neighborhood with radius R in which direct plant-plant interactions are expected to occur. 

This null model therefore accounts for broader-scale variability in habitat suitability 

(because the entire neighborhood will have approximately the same suitability), but 

potential effects of small-scale plant-plant interactions are removed by randomly 

relocating of plants within their R neighborhood. However, this test assumes separation 

of scales (Wang et al. 2010) and cannot therefore separate fine-scale habitat association 

from plant interactions. In our study, we selected a neighborhood size of R = 4 m that was 

somewhat larger than the expected range of direct shrub-shrub interactions. For the 

technical implementation of this null model, see Wiegand et al. (2007a,b).  

Following the methodology of Wiegand et al. (2007a), we calculated the ISAR for 

each of the five shrub species up to a maximum distance (rmax) of 4.0 m with a spatial 

resolution of 5 cm. To test for the effects of focal species dominance, we repeated each 

ISAR analysis with and without including the focal species. This distance range was 

dictated by the choice of the neighborhood radius R = 4 m in the heterogeneous Poisson 

null model; at larger distances the ISAR will not capture significant effects because larger 

scale effects are held constant by this null model. The 4 m distance was sufficient to 

encompass both immediate shrub neighborhoods and the surrounding area, allowing for 

the examination of how diversity patterns changed with increasing distance from the 
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center of shrubs. In order to determine if local shrub neighborhoods were significantly 

more or less diverse than expected by chance, we constructed Monte Carlo simulation 

envelopes based on 199 simulations of the heterogeneous Poisson null model. If the 

empirical ISAR(r) was larger at a given scale r than the fifth highest ISAR(r) from 199 

null model simulations, the species was regarded as having a more diverse local 

neighborhood at scale r than expected by the null model (approximate α = 0.05) 

(Wiegand et al. 2007a). If the empirical ISAR(r) was smaller at a given scale r than the 

fifth lowest ISAR(r) from the 199 null model simulations, the species was regarded as 

having a less diverse local neighborhood at scale r than expected by the null model. 

Minor deviations (i.e., weakly significant results) of the estimated ISAR(r) relative to the 

simulation envelopes were interpreted with caution due to the problem of simultaneous 

inference (Loosmore and Ford 2006). To avoid this problem when assessing the fit of the 

empirical ISAR curves for the null model over the 0-4 m distance interval, we used 

goodness-of-fit (GoF) tests based on Cramer von Mises statistics (Loosmore and Ford 

2006, Perry et al. 2006, Wiegand et al. 2007a). 

In order to facilitate interpretation of the results of the ISAR analysis, we 

analyzed the pattern of all shrubs with the pair correlation function g(r) (PCF; Stoyan and 

Stoyan 1994, Illian et al. 2008), which provides an intensity-normalized estimate of 

neighborhood density. The PCF can be defined by the quantity λg(r) that is the expected 

number of points within distance r from the points of the pattern, where λ represents the 

point intensity (i.e., the number of points divided by area). Finally, we calculated the 

cumulative distribution function D(r) (also termed Diggle’s G) of the distances r to the 

nearest neighbor of each shrub (Illian et al. 2008). 
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Results 
 
 
Community-level spatial structure 
 

The shrub density within the study plot was 1.56 individuals/m2, meaning that 

each individual shrub had an average of 0.67 m2 of space. The mean distance to the 

nearest neighbor was 0.37 m, and all shrubs had their nearest neighbor within 1 m (Fig. 

5B). Analysis of the pattern of all shrubs independent of species with the PCF revealed 

that local neighborhood densities were elevated by factor of 1.8 at a neighborhood scale 

of 20 cm, resulting in a density of 2.7 individuals/m2 (Fig. 5A). This local clustering 

disappeared at scales approximately > 1 m. The pattern of all shrubs showed some 

heterogeneity at broader scales which are visible as gaps (Fig. 4). This is indicated by 

PCF values greater than the expected value of 1 at larger distances.  

The ISARs for the five species were relatively similar (Fig. 5D) with differences 

usually not above 0.3 species within the explored ≤ 4 m neighborhoods (Fig. 5C). At 

neighborhoods > 2.5 m the difference among ISAR curves declined because most 

individuals were neighbored by individuals of all species. Neighborhood diversity 

increased up to 1.25 m almost linearly before saturating at 4 m neighborhoods (Fig. 5D). 

On average, shrubs in the study area had in small neighborhoods more heterospecific than 

conspecific neighbors. At a neighborhood of 1 m, for example, a given individual shrub 

was surrounded by approximately 5.9 shrub neighbors (the value of λK(r) at 1 m) that 

represented approximately 2.5 species (Fig. 5D). Within a 2.9 m neighborhood, a given 

individual shrub was surrounded by approximately 45 shrubs neighbors that represented 

approximately 4.75 species, or 95% of the total diversity. These results suggested that the 
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community was comprised of small, heterospecific clusters and was well-mixed at fine 

spatial scales.  

 
Species-specific comparisons with null models 

Because the differences between the observed ISAR function and that of the 

simulations of the heterogeneous Poisson null model were in general small, we present in 

the following not ISAR(r) but the difference ISAR(r) – ISARexp(r), with ISARexp(r) 

representing the expectation under the null model. There was strong evidence that K. 

lanata had more diverse local neighborhoods (at r < 2 m) than expected (Fig. 6A, P < 

0.01). K. lanata showed a non constant intensity within the study plot with some gaps in 

its distribution (Fig. 4, see chapter 2), but the detection of the accumulator effect under 

the heterogeneous null model suggests that habitat association contributes only weakly to 

the local accumulation of species richness in K. lanata neighborhoods. Repeating the 

same analyses without considering the focal species in the calculation of the ISAR curve 

revealed no significant departures from the null model (Table 2, Fig. 7). Thus, the 

accumulator effect for K. lanata was likely the result of its own fine-scale aggregation 

(significant at r < 0.5 m, see chapter 2) because the nearest conspecific neighbors of K. 

lanata individuals were on average located closer than expected by the null model. 

Similar results were obtained for A. tridentata ssp. wyomingensis, but the effect of 

environment appeared weaker and significantly positive values obtained from the ISAR 

analysis occurred at smaller scales (r < 0.9 m) with a clear peak at 0.4 m (Fig. 6B). The 

GoF test was again highly significant (P < 0.01, Table 2). As with K. lanata, calculation 

of the ISAR curve without the focal species revealed no significant departures from the 
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null model (Table 2, Fig. 7), thus the accumulator effect for A. tridentata ssp. 

wyomingensis was likely the result of its own fine-scale aggregation (significant at r < 0.5 

m; see chapter 2). 

There were no significant departures from the null model for T. canescens and 

thus no evidence of the species having more or less diverse local neighborhoods than 

expected (Fig. 6C, P > 0.05). There was weak evidence that both G. sarothrae and A. 

confertifolia had more diverse local neighborhoods than expected at r ≈ 0.5 m (Fig. 6D 

and Fig. 6E respectively; P < 0.05). However, these departures from the null model were 

not significant as assessed by the GoF test over the 0-4 m interval (Table 2).  

 
Discussion 
 

Traditional univariate and bivariate spatial statistics are commonly used in 

ecology to investigate plant spatial patterns and to make inferences on ecological 

processes that structure plant communities (Wiegand and Moloney 2004, Perry et al. 

2006, Law et al. 2009). Univariate statistics can describe plant patterns independent of 

species as well as patterns of individual species, while bivariate statistics may at best 

describe the patterns of all pairwise species pairs relative to one another. Neither of these 

approaches considers the distribution of species within a community directly, nor are they 

sufficient in revealing more complicated plant patterns that are increasingly linked to 

community-structuring processes. As a result, traditional univariate and bivariate spatial 

statistics do not effectively summarize diversity patterns at the community level, meaning 

that critical information related to community structure and species coexistence may fail 

to be captured (Illian and Burslem 2007, Wiegand et al. 2007a).  
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This issue is especially relevant in semi-arid shrublands, in which plant 

aggregations are a common feature (Tirado and Pugnaire 2003, see chapter 2, but see 

Wiegand et al. 2006) and with few exceptions are most often described in terms of all 

plants in a study region independent of species (see chapter 2) or in terms of one species 

relative to another (e.g. Wiegand and Moloney 2004, Perry et al. 2009, see chapter 2). 

Aggregated plant patterns in semi-arid shrublands have been variously attributed to 

facilitation (Tirado and Pugnaire 2003, Pugnaire et al. 2011), habitat heterogeneity (Perry 

et al. 2009), disturbance (Seifan and Kadmon 2006) and localized seed dispersal (Schurr 

et al. 2004), yet plant aggregations likely encompass more than 1-2 species selected for 

analysis (e.g. Kéfi et al. 2007, Valiente-Banuet and Verdú 2008). 

In this study, analysis of a highly accurate spatial dataset on the species and 

location of 2,359 shrubs in a semi-arid shrubland revealed significant fine-scale variation 

in spatial patterns of species diversity. This variation was not captured in a previous 

analysis of the data using univariate and bivariate spatial statistics, which suggested that 

the community was characterized by low-diversity or monospecific clusters of individual 

shrub species (see chapter 2). This conclusion was not supported by our analysis, which 

showed that the community under study was well-mixed, and that individual shrubs were 

surrounded by an average of 4.9 shrubs of approximately 2.5 species within 

neighborhoods of 1 m. Use of the ISAR statistic and appropriate simulation procedures 

revealed subtle associations of individual species with respect to neighborhood diversity. 

Local neighborhoods of two species (K. lanata and A. tridentata ssp. wyomingensis) were 

more diverse than expected by the heterogeneous Poisson null model that accounted for 

larger-scale environmental effects. The difference between the observed neighborhood 
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diversity and that expected under the null model was not dramatic (≈ 0.2 species; Fig. 5) 

but statistically significant. However, we found that the accumulator effect of these two 

species was likely due to intraspecific (but not interspecific) aggregation, i.e., their 

nearest conspecific neighbor was located closer than expected by the null model. A. 

tridentata ssp. wyomingensis was the most common shrub species in the study plot (918 

individuals, or 39% of all shrubs), while K. lanata was the least common (179 

individuals, or 8% of all shrubs) (see chapter 2). Fine-scale (<0.5 m) intraspecific 

aggregation was detected for both species at fine scales in a previous study of this 

community, with the peak of aggregation for K. lanata occurring at finer scales than A. 

tridentata ssp. wyomingensis (~0.1 m and ~0.3, m respectively; see chapter 2). For A. 

tridentata ssp. wyomingensis, both its density within the study plot and the fine-scale 

nature of its intraspecific aggregation explain the detection of an accumulator effect when 

the ISAR analysis was conducted while retaining the focal species. For K. lanata, the 

initial detection of an accumulator effect was likely caused by the finer-scale nature of its 

intraspecific aggregation. Past research suggests the aggregated pattern of A. tridentata 

ssp. wyomingensis we observed could have resulted from local dispersal (Young and 

Evans 1989) and/or protection of conspecific seedlings from livestock by mature A. 

tridentata ssp. wyomingensis shrubs (Owens and Norton 1992). Aggregated dispersal 

may also partially explain the observed aggregation of K. lanata (Booth 2005). 

Our analysis suggests that the spatial patterns of the semi-arid shrub community 

under study were not characterized by signals from positive plant interactions between 

shrub species. This was somewhat surprising, as interspecific facilitation is a common 

feature of semi-arid shrublands (Tirado and Pugnaire 2003, Valiente-Banuet and Verdú 
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2008), especially those characterized by multispecific plant aggregations (Eccles et al. 

1999, Kéfi et al. 2007, Valiente-Banuet and Verdú 2008). Similar negative results have 

been reported by studies on interspecific spatial patterns in tropical forests, savannas, or 

shrublands  (e.g. Wiegand et al. 2006, Lieberman and Lieberman 2007, Wiegand et al. 

2007a,b, Perry et al. 2009, Silva et al. 2010, Getzin 2011). On the first view, such results 

that report absence of expected effects may look uninteresting and insignificant; however, 

the rise of neutral theories (Hubbell 2001) has turned attention to the absence of 

interactions as one of the fundamental structural elements of ecological communities of 

adult plants. Recently, McGill (2010) showed in a synthesis of major theories of 

biodiversity that all relied on the assertion of absence of species interactions, and that 

models assuming no spatial interactions have been very successful at making predictions 

that match empirical data. Results such as ours, reporting absence of strong species 

interactions, have possibly been suppressed giving the dominant view that species 

interactions are central to ecology. A considerable challenge of spatial ecology is 

therefore to provide explanations for balanced spatial structures in plant communities. 

However, Wiegand et al. (2006) found that the shrub component of a Patagonian shrub-

grass steppe was randomly structured. They hypothesized that density-dependent 

processes such as competition and facilitation may occur mostly at early growth stages of 

individual shrubs and therefore could not be detected in their spatial analysis. The same 

argument may hold in this study, since the lack of shrub size-class data precluded 

analyses of juvenile shrub patterns relative to adults.  

Clearly, carefully designed field experiments will be required to confirm the role, 

if any, that positive plant interactions and other processes play in structuring the 
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community under study. Our approach may be used in other plant communities to 

determine if individual species are disproportionately associated with diversity patterns. 

For example, shrublands occupy much of the Western United States and are subject to 

management initiatives that seek to better understand processes related to productivity, 

invasive species, species diversity, and disturbance (e.g. SAGESTEP; 

http://www.sagestep.org/). The results of this and similar studies may inform 

management plans that seek to increase and maintain target levels of species diversity, 

since species that tend to accumulate diversity may become key targets for conservation 

or restoration efforts. 

 
Conclusion 
 

Recently developed statistics assess spatial patterns of species diversity, allowing 

for the determination of species-specific associations with neighborhood diversity within 

a given community. These techniques are especially useful in understanding species 

dynamics in diverse communities, in which traditional spatial statistics fail to capture the 

full range of variation in patterns derived from spatial data. We applied one such 

technique (ISAR) in an analysis of shrub spatial data from a semi-arid shrub community 

in order to better understand species-specific associations with diversity patterns, and 

found balanced interspecific patterns instead of the expected positive associations that are 

expected in semiarid communities. The growing evidence for balanced interspecific 

patterns of adult members of plant communities represents a challenge for spatial 

ecology. We anticipate that such approaches will be increasingly used in the future in a 
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variety of plant communities in order to both describe complex, multispecies spatial 

patterns and to link patterns to community-structuring processes. 
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Table 2. Rank of the Goodness-of-Fit (GoF) test for the observed ISAR function with 

respect to the 199 simulations of the heterogeneous Poisson null model. Ranks > 195 

indicate a significant departure from the null model (P = 0.05), indicating more diverse 

plant neighborhoods than expected by chance. 

Species 
 

rank GoF test 
 

rank GoF test without 
focal species 

K. lanata 200 145 
A. tridentata 200 30 
T. canescens 176 8 
G. sarothrae 192 163 
A. confertifolia 140 47 
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Figure 4. Map of study plot (39m x 39m), showing locations of all shrub individuals 

(upper left) and maps detailing the locations of individuals from each of the five shrub 

species. Figure adapted from Rayburn et al. (2011). 
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Figure 5. Analysis of the pattern of all shrubs and ISAR functions of individual species. 

(A) Pair correlation function g(r) of the pattern of all shrubs (dots), simulation envelopes 

of a heterogeneous Poisson null model with neighborhood R = 4 m (black solid lines) and 

expectation of the null model (grey line). (B) Distribution functions D(r) of the distances 

r to the nearest neighbor. Symbols as in A. (C) Maximal difference among individual 

species area relationships of the five species. (D) Individual species area relationships of 

the five species (lines; species not labeled). 
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Figure 6. Results of ISAR analyses for (a) K. lanata, (b) A. tridentata ssp. wyomingensis, 

(c) T. canescens, (d) G. sarothrae, and (e) A. confertifolia. Bold lines show ISARobs(r)-

ISARexp(r), the observed ISAR function minus the expectation of the heterogeneous null 

model (the average of the ISAR of the 199 null model simulations), grey dashed lines 

show the simulation envelopes (being the 5th lowest and highest values of the ISAR of the 

199 simulations of the null model) minus the expectation of the null model. The ISAR 

function included the effect of the focal species. 
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Figure 7. Results of ISAR analyses excluding focal species for (a) K. lanata and (b) A. 

tridentata ssp. wyomingensis. Bold lines show ISARobs(r)-ISARexp(r), the observed ISAR 

function minus the expectation of the heterogeneous Poisson null model (the average of 

the ISAR of the 199 null model simulations), grey dashed lines show the simulation 

envelopes (being the 5th lowest and highest values of the ISAR of the 199 simulations of 

the null model) minus the expectation of the null model. 
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CHAPTER IV 

 
LINKING PLANT SPATIAL PATTERNS AND ECOLOGICAL PROCESSES IN 

GRAZED GREAT BASIN PLANT COMMUNITIES1 2 

 
Abstract 
 

Observational studies of plant spatial patterns are common, but are often criticized 

for lacking a temporal component and for their inability to disentangle the effect of 

multiple community-structuring processes on plant spatial patterns. We addressed these 

criticisms in an observational study of Great Basin (USA) shrub-steppe communities that 

have been converted to a managed grazing system of planted crested wheatgrass 

(Agropyron cristatum (L.) Gaertn.) stands. We hypothesized that intraspecific 

interference and livestock grazing were important community-structuring processes that 

would leave unique spatiotemporal signatures. We used a survey-grade GPS to quantify 

crested wheatgrass spatial patterns along a chronosequence of four stands that differed 

only in time since planting (9 – 57 yrs), as well as in a 57 yr old grazing exclosure to 

examine pattern formation in the absence of grazing. Three replicate survey plots were 

established in each stand, and a total of 6 197 grasses were marked with a spatial error of 

≤ 2 cm.  The data were analyzed using L-statistics, and hypothesis testing was conducted 

using Monte Carlo simulation procedures. We detected fine-scale regularity, frequently 

considered a sign of interference via resource competition, in all stands including the 

exclosure.  Coarser-scale aggregation, which we attributed to the effects of prolonged 

                                                 
1 This chapter is co-authored by Andrew P. Rayburn and Thomas A. Monaco. 
 
2 © The Authors. 2011. The full text of this article is published in Rangeland Ecology and 
Management 64:276-282. 
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grazing disturbance, was only detected in the oldest grazed stand. Our results suggest that 

interference acts over finer spatial and temporal scales than grazing in structuring these 

stands, reinforcing the importance of interference in semi-arid communities. Analysis of 

exclosure data suggests that, in the absence of grazing, crested wheatgrass stands 

organize into a statistically regular pattern when primarily influenced by interference. In 

the presence of prolonged grazing, crested wheatgrass stands become more 

heterogeneous over time, likely a result of seedling mortality via disturbance by cattle. 

 
Introduction 
 

Research on plant spatial patterns is often conducted to better understand the 

interplay between patterns and ecological processes affecting individual plants and plant 

communities (Stoll and Prati 2001; Armas and Pugnaire 2005; Mokany et al. 2008; Law 

et al. 2009). Such processes include competitive or facilitative interactions between 

individual plants (Kenkel 1988; Stoll and Prati 2001; Murrell 2009), the effect of 

environmental heterogeneity on plant survival, growth, and distribution (Tirado and 

Pugnaire 2003; Maestre et al. 2003; Schenk et al. 2003), and disturbance (Adler et al. 

2001; Bisigato et al. 2005). For example, statistically regular plant spatial patterns are 

often assumed to result from intense local competition for limited resources (e.g., Kenkel 

1988). 

Observational studies involving snapshot sampling (a single set of observations 

without a temporal component) of plant spatial patterns have been frequently conducted 

(e.g., Phillips and MacMahon 1981; Skarpe 1991; Schenk et al. 2003). However, attempts 

to link the observed patterns to community-structuring ecological processes have been 
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criticized on the grounds that such studies lack a temporal component and that dynamic 

ecological processes operate over space and time simultaneously (Lepš 1990; Law et al. 

2009). A related criticism is that multiple interacting processes may generate similar 

plant patterns, and that observational studies of plant pattern formation may be unable to 

disentangle the effects of multiple processes without additional experimental studies that 

may be difficult or impossible in the field (McIntire and Fajardo 2009). Recent 

observational studies of pattern and process have overcome these hurdles by using 

combinations of a priori hypotheses, ecologically informed expectations, and precise 

spatial analyses that elucidate both the nature of emergent patterns and the scale over 

which the patterns are detected (e.g., Wiegand et al. 2007; McIntire and Fajardo 2009). 

However, without a temporal component, there is substantial uncertainty as to the 

relationship between pattern and process over time (Law et al. 2009).  

One potential way to include a temporal dimension in snapshot studies is to study 

sites that are as similar as possible in environmental and edaphic characteristics, but that 

vary along a temporal gradient, or chronosequence. If all sites are exposed to the same 

suite of pattern-forming processes, and if patterns have unique spatial signatures, then a 

study of sites along the chronosequence may reveal how the processes influence the 

pattern through time. In this manner, it would be possible to conduct observational 

studies of plant patterns that nearly equal the power of controlled experiments and which 

more directly link the observed patterns to community-structuring processes. In this 

study, we sought to demonstrate this approach across a chronosequence of grazed crested 

wheatgrass (Agropyron cristatum (L.) Gaertn.) stands in southeastern Idaho, USA, to 

examine pattern formation and stand dynamics through time in response to two 
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ecological processes: intraspecific interference via resource competition and grazing 

disturbance.  

First introduced into the United States from its native range in Russia in 1898 by 

N. E. Hansen as a promising pasture grass, crested wheatgrass plantings began in the 

Great Basin region of the western U.S. in the 1930s (Hull and Klomp 1966; Rogler and 

Lorenz 1983). Crested wheatgrass has many desirable characteristics, such as being a 

strong competitor against troublesome invasive species such as downy brome (Bromus 

tectorum L.) (Aguirre and Johnson 1991; Chatterton and Harrison 2003), high grazing 

tolerance (Sharp 1986; Angell 1997), drought tolerance (Caldwell and Richards 1986; 

Sharp et al. 1992), long life (Hull and Klomp 1966), and high seed production (Marlette 

and Anderson 1986). To date, millions of hectares of big sagebrush (Artemisia tridentata 

Nutt.)-steppe ecosystems have been seeded with crested wheatgrass in the Great Basin to 

rehabilitate damaged wildlands and to provide forage within managed grazing systems 

(Rogler and Lorenz 1983; Pellant and Lysne 2005). Although there is substantial 

variability across present-day Great Basin crested wheatgrass stands related to soils, time 

since planting, planting method, land use history, and disturbance history, there are 

subsets of stands that are very similar in most respects except that they differ in age since 

planting.  

Crested wheatgrass was historically planted in monoculture (Fig. 1), although 

more recently it has been included in seed mixtures with native grasses and forbs to 

facilitate more diverse communities (Pellant and Lysne 2005). Although seedling 

mortality often occurred as a result of poor seedling emergence and survival, grazing 

(Balph and Malechek 1985; Salihi and Norton 1987), or competition with existing plants 
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(Hull and Klomp 1967), newly established stands of crested wheatgrass had a distinctly 

regular pattern similar to agricultural fields.  

In years following establishment, these stands were subject to a variety of 

community structuring processes that may have influenced the spatial pattern of grasses, 

such as dispersal and seedling establishment and grazing disturbance. For example, Balph 

and Malechek (1985) reported that cattle avoided walking on the tussocks of established 

crested wheatgrass plants, preferring instead to move through tussock interspaces. Salihi 

and Norton (1987) reported extremely high seedling mortality in the same study area, 

which they attributed to the effects of trampling as cattle moved through interspaces 

between tussocks, where over 90% of seedlings emerged. In addition to trampling, high 

levels of grazing may lead to reduced vigor and even mortality of mature crested 

wheatgrass plants (Pellant and Lysne 2005).  

Crested wheatgrass spatial patterns are also likely influenced by intraspecific 

interference (rather than interspecific interference, as many of the stands have persisted 

as near-monocultures for decades after establishment; Hull and Klomp 1966; Marlette 

and Anderson 1986; Kindschy 1991). Interference via resource competition between 

individual grasses for water and nutrients has been reported for established crested 

wheatgrass stands and in controlled experiments (Keller and Bleak 1974; Salihi and 

Norton 1987; Olsen and Richards 1989; Asay and Johnson 1997). For example, Salihi 

and Norton (1987) found that crested wheatgrass seedlings in both grazed and ungrazed 

stands most often emerged in bare soil >10 cm from established grasses. The same study 

found that emergent seedlings that were farther away from established grasses also had 

the highest rate of survival. Intense intraspecific interference is most likely contributing 
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strongly to the regularly spaced plant patterns that are a hallmark of certain mature 

crested wheatgrass stands in the Great Basin (Fig. 8A). 

In this study, we sought to quantify long-term changes in grass spatial patterns to 

better understand how these processes have acted over space and time to structure crested 

wheatgrass stands in the Great Basin. Evaluating the relationship between plant spatial 

patterns and community-structuring processes within these stands is timely as managed 

grazing systems worldwide are challenged with changing bioclimatic, edaphic, and socio-

economic pressures (Asner et al. 2004). Our expectations took the form of a priori 

hypotheses as advocated in recent publications regarding appropriate inferences made 

from observational studies of plant spatial patterns (e.g. McIntire and Fajardo 2009).  

Our general hypothesis was that interference and disturbance were important 

ecological processes determining grass spatial patterns, but that each would leave unique 

spatiotemporal signatures and act at different spatial scales owing to the specific nature of 

each process. This hypothesis was based on the assumption that intense intraspecific 

interference between grasses would likely lead to regularity between crested wheatgrass 

plants at a scale that reflects the zone of interactions between individual plants, as has 

been observed in other plant communities structured by competition (e.g., Kenkel 1988). 

Based on relatively scarce information in the literature, and on our own observations of 

interplant distances within a grazing exclosure (mean nearest neighbor distance measured 

between centroids = 0.17 ± 0.004 m, N = 285 grasses), we specifically predicted that fine-

scale regularity would be detected at a scale of <0.2 m. Conversely, we predicted that 

disturbance via cattle would be expected to lead to aggregation, at a scale that reflected 

the movement and grazing patterns of cattle across the stand. As noted above, previous 
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studies have reported that cattle tended to avoid tussocks of mature crested wheatgrass, 

and walk instead in the interspaces between grasses. Based on field observations of grass 

interspaces and cattle movement throughout the study plots, we specifically predicted that 

aggregation would be detected at a larger scale than regularity (>0.2 m). Relative to the 

temporal dimension, we predicted that spatial signatures of both processes would be 

detected in older stands, but that aggregation would not be detected in younger stands 

owing to a lack of stand development and lack of prolonged grazing disturbance. 

 
Methods 
 

The study stands of crested wheatgrass were located in Oneida Co., southeastern 

Idaho, USA. Two grazed stands (Bowhuis and South Black Pine) were located within ~2 

mi of one another on public land administered by the Bureau of Land Management (US 

Department of the Interior), as was the grazing exclosure we included in the study to 

control for the effects of grazing on pattern formation. The third grazed stand (North 

Carter) was located ~14.5 mi away within Curlew National Grasslands, which is 

administered by the Forest Service (US Department of Agriculture).  

Prior to plot establishment, the age of each stand was determined either from 

previous published work (Williams 2009) or from interviews with local management 

agency staff. Stands varied in time since planting (9, 37, and 57 yrs) but were similar in 

terms of site preparation prior to planting, planting method, disturbance history, and 

Ecological Site descriptions (ESDs; USDA 2010) (Table 3). In addition, ESDs indicate 

that all four stands historically supported Wyoming big sagebrush- bluebunch wheatgrass 

(Pseudoroegneria spicata [Pursh] A. Löve) plant communities. Replicate stands were not 
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available in the region, since many stands had previously burned and/or had been 

established and managed using different methods. The exact grazing history for each 

stand was difficult to determine; however, all grazed stands in the study have experienced 

high stocking rates and intensive grazing annually since their establishment (Williams 

2009). The stand in which the exclosure was located was planted at the same time as the 

South Black Pine stand, while the grazing exclosure itself was constructed approximately 

40 yrs ago. The inclusion of additional, younger exclosures in the study would have been 

preferable; however, no other exclosures existed in the region. While domestic cattle and 

sheep were not permitted into the exclosure, wildlife could freely enter by leaping the 

fence or through gaps in the fence. None of the study stands have experienced fire since 

they were seeded with crested wheatgrass. Stands were characterized by flat topography, 

uniformity in vegetation height, and little to no woody vegetation.  

Three 5 m x 5 m plots were established in each grazed stand, as well as in the 

exclosure. Within each plot, all perennial vegetation was identified and mapped using the 

ProMark3 GPS system, a survey-grade GPS unit that enables both rapid and precise data 

collection (see chapter 2). GPS data were collected at the approximate centroids of each 

plant. Plots were essentially monocultures, with no other perennial or woody species 

present and only scattered annual vegetation. 

Field GPS data was post-processed using GNSS Solutions software (v. 3.10.01, 

Magellan Navigation), and the resulting x,y coordinates of plants had an estimated spatial 

error of ≤ 2 cm. Coordinates were exported for statistical analysis in R (v. 2.10.0, R 

Development Core Team) using both base functions and the spatstat package for spatial 

analysis of point patterns (v. 1.14.7, Baddeley and Turner). We calculated the common 
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second-order spatial statistic Ripley’s K (Ripley 1981), which evaluates the number of 

points within a certain distance (r) of a randomly chosen point relative to expectations 

based on the density of points in the study area  The approximately unbiased estimator 

for K(r) is 

 

                                         )(ˆ rK  = n-2A∑∑wij
-1Ir(uij)                                           

(1) 

 

where n is the number of plants in the study plot, A is plot area, Ir is a counter variable, 

uij is the distance between events i and j, and wij is a weighting factor to correct for edge 

effects (Haase 1995).  A variety of null models and edge corrections may be implemented 

for K-statistics, depending on the nature of the analysis.  Significant deviations of the K-

statistic indicate either regularity or aggregation at scale r in a spatial point pattern 

dataset, assuming an appropriate null model has been fit.  K-statistics are often square-

root transformed (L(r) = √[K(r)/π]] following Besag 1977) to stabilize variance, and 

plotted using (L(r) − r) against r since this derived function has an expectation of 0 for all 

values of r under the null hypothesis of complete spatial randomness (CSR) (Skarpe 

1991).  

We evaluated the crested wheatgrass spatial data using a CSR null model coupled 

with reduced sample edge correction and Monte Carlo permutation procedures 

(Nsim=199) for hypothesis testing. The CSR null model was appropriate as there were no 

obvious first-order effects influencing patterns of crested wheatgrass. 
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Results 
 

A total of 6 197 grasses were mapped across the twelve study plots. Grass 

densities varied from 7.1 grasses/m2 to 34.3 grasses/m2, and densities were generally 

higher in the older grazed plots versus the young grazed plots and the exclosure plots 

(Table 3). Significant fine-scale (r < 0.2 m) regularity was detected in all nine grazed 

study plots (Fig. 9A-I), with broader-scale (r > 0.6 m) regularity detected in one of the 9 

yr old study plots (Fig. 9E). Significant fine-scale regularity was also detected in all three 

exclosure plots (Fig. 9J-L), albeit across a broader scale in two of the three plots (r ≈ 0.0 

– 0.8 m and r ≈ 0.0 – 0.6 m; Fig. 9J & L). Significant aggregation was only detected in 

the older grazed plots. In two plots within the oldest stand, significant aggregation was 

detected at broader scales than regularity (r ≈ 0.1 – 0.4 m and r ≈ 0.1 – 0.8 m; Fig. 9H & 

I).  There was also suggestive evidence of significant aggregation in two plots within the 

intermediate-aged stand (r ≈ 0.2 m and r ≈ 0.2 m; Fig. 9E & F). By suggestive, we mean 

that the values of the L-statistic were extremely close to the values of the null model, and 

that results should be interpreted with caution (Blanco et al. 2008). 

 
Discussion 
 

Observational studies of plant spatial patterns are common, but have been 

criticized on the grounds that they lack the power of experimental studies for connecting 

pattern and process in plant communities. Ideally, one would conduct a complete 

spatiotemporal experiment in which the type and magnitude of ecological processes were 

known and in which established plots or study regions were monitored over a sufficiently 

long period of time to track population data in addition to changes in plant spatial 
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patterns. Examples of these kinds of studies are rare, however, owing in no small part to 

the difficulties in establishing such experiments, and have tended to focus on the effects 

of aggregation on species coexistence (Stoll and Prati 2001; Monzeglio and Stoll 2005; 

Mokany et al. 2008).  

 In this study, we sought to address past criticisms of observational studies by 

using an approach designed to disentangle the long-term effects of grazing disturbance 

and intraspecific interference via resource competition on plant patterns in grazed Great 

Basin crested wheatgrass stands. We hypothesized that competition would rapidly lead to 

fine-scale regularity between individual grasses, while grazing would likely lead to 

aggregation at coarser spatiotemporal scales. Our GPS-based approach allowed us to 

precisely quantify grass spatial patterns, allowing us to test for unique spatial signatures 

of grazing and competition using second-order spatial statistics. By collecting spatial data 

on grass patterns across a chronosequence of similar stands, we enhanced our 

understanding of the temporal scales at which the processes under study act to structure 

the community. We suggest that this methodology could be useful in other community 

types where multiple ecological processes are under study and long-term field 

experiments are not tractable.  

 Our results strongly suggest that crested wheatgrass stands are simultaneously 

structured by both interference and grazing, albeit at different spatiotemporal scales. At 

fine spatial scales, we detected significant regularity between individual plants in all 

plots, which we attribute to strong local competitive interactions for water and nutrients. 

This regularity is likely not simply a relict of the initial pattern of planting; as substantial 

rearrangement (relative to linear rows) of crested wheatgrass plants was apparent in even 
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the youngest plots. Previous studies have found that crested wheatgrass stands could 

quickly thicken and spread relative to the initial pattern of planting (Weintraub 1953; 

Hull and Klomp 1966; Hull and Klomp 1967), likely due to high levels of seed 

production in crested wheatgrass (Marlette and Anderson 1986) coupled with interspaces 

between planted rows that provided room for seedling establishment. As space for new 

recruits became more limited, it is likely that intraspecific competition for resources 

quickly became an important community structuring process. Competition is likely more 

intense in the exclosure, as evidenced by the detection of regularity across broader scales 

in exclosure plots as compared to grazed plots.   

At coarser spatial scales, we detected significant aggregation in two of the three 

oldest crested wheatgrass plots examined, which we attribute to the effects of sustained 

disturbance by cattle. Grazing disturbance can have profound effects on the spatial 

pattern of vegetation (Adler et al. 2001; Adler and Hall 2005; Henkin et al. 2007). 

Depending on the characteristics of species being grazed, grazing intensity, and on the 

other biotic and abiotic characteristics of the community, grazing is known to influence 

the spatial structure of the grazed species (Seifan and Kadmon 2006), plant interactions 

within the community (Murrell et al. 2001), biomass production (Seifan and Kadmon 

2006), and plant mortality (Salihi and Norton 1987; Huntly 1991). 

In our study, the observed aggregation in the oldest stand was likely the result of 

decades of cattle moving through interspaces between established crested wheatgrass 

tussocks, leading to increased seedling mortality in the interspaces as observed in past 

studies of grazed crested wheatgrass stands (Balph and Malechek 1985; Salihi and 

Norton 1987). This effect is exacerbated in older stands, as crested wheatgrass tussocks 
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become more elevated relative to the surrounding substrate (Balph and Malechek 1985). 

In young stands without significant tussock development, cattle are likely to step more 

randomly throughout the stand; as tussocks form, cattle are more likely to step in the 

interspaces to avoid the uneven terrain associated with the tussocks. These interspaces 

undergo additional soil compaction, resulting in a positive feedback mechanism as soil 

compaction increases the elevation of surrounding tussocks, which in turn increases non-

random movement of cattle through the stand (Balph and Malechek 1985) and 

subsequent aggregation. The creation of cattle trails in crested wheatgrass stands 

represents the extreme case of the above scenario, as soil is very compacted on trails and 

few if any seedlings are present. In the absence of trails, however, significant patchiness 

may form in crested wheatgrass stands as a result of non-random movement of cattle and 

subsequent grazing, trampling, and soil compaction (Fig. 8B). 

 
Implications 
 

Grazing disturbance and interference both appear to shape spatial patterns of 

crested wheatgrass stands in the northeastern Great Basin, USA. Understanding how 

these important ecological processes operate through time provides new insight into how 

land users or managers can assess site conditions and develop strategies to trigger 

desirable vegetation changes. Our results suggest measurements of plant spatial patterns 

could augment rangeland-monitoring programs, which typically only measure plant cover 

or density. For example, assessment of plant spatial patterns may assist contemporary 

efforts to diversify crested wheatgrass communities (Cox and Anderson 2004; Pellant and 

Lysne 2005). In this context, identifying spatial patterns should better inform managers 
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who need to better predict competitive interactions between plants when reducing crested 

wheatgrass dominance with mechanical and chemical methods. Thus, rapid recovery of 

crested wheatgrass from seed banks within 2–3 yrs after reduction treatments (Hulet et al. 

2010) and differential interference between crested wheatgrass and native species as 

seedlings (Gunnell et al. 2010) may depend not only on the specific management 

approach employed, but also on how grazing and interference affect site-specific plant 

spatial patterns.  

Our observation of significant fine-scale regularity between individual plants in 

all plots confirms that interference interactions for water and nutrients are intense in 

crested wheatgrass stands. In the absence of grazing, interference intensity likely 

increases as regularity persisted across broader scales in exclosure plots as compared to 

grazed plots. Our results also indicated that sustained disturbance by cattle in older stands 

creates significant aggregation, albeit at broader scales than regular patterns caused by 

interference. 
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Table 3.  Characteristics of the four crested wheatgrass study stands measured in 25 m2 

plots. All stands had identical pre-seeding treatments (plowing), seeding methods (drill), 

and post-seeding treatments (none). Three sites (Bowhuis, South Black Pine, Exclosure) 

share identical Ecological Site descriptions (ESD code R028AY024ID), while the ESD 

for the remaining site (North Carter) has potentially greater annual precipitation and 

coarser soils (ESD code R028AY025ID). 

 
Stand Plot Density 

(plants/m2) 
Stand 

age 
(years) 

Mean annual  
ppt. (mm) 

Soil texture Disturbance 
history 

North 
Carter 

  9 280 – 330 Gravelly  
silt loam 

Grazed 
yearly 

 1 16.4     
 2 18.1     
 3 7.1     
Bowhuis   37 203 – 355 Silt loam Grazed 

yearly 
 1 33.4     
 2 29.2     
 3 34.3     
South Black 
Pine 

  57 203 – 355 Silt loam Grazed 
yearly 

 1 25.8     
 2 16.4     
 3 30.0     
Exclosure   57 203 – 355 Silt loam Ungrazed 
 1 11.4     
 2 14.6     
 3 11.2     
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Figure 8.  2010 photographs of 57 yr old crested wheatgrass stand in Oneida County, ID; 

(A) visually regular pattern associated with mature, ungrazed stand, and (B) example of 

aggregation in grass distribution within an adjacent, grazed stand. Photographs by A. 

Rayburn. 
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Figure 9.  L-function plots for (A-C) North Carter (9 yr grazed), (D-F) Bowhuis (37 yr 

grazed), (G-I) South Black Pine (57 yr grazed), and (J-L) Exclosure (57 yr grazed). Solid 

lines represent the estimated L-statistics plotted as (L(r) − r). Dotted lines represent 

Monte Carlo simulation envelopes (Nsim=199). Values of (L(r) − r) greater than the upper 

simulation envelope indicate significant aggregation relative to the null hypothesis of 

complete spatial randomness (e.g. plot H), while values less than the lower simulation 

envelope indicate significant regularity (e.g. plot A). Horizontal axis values represent the 

scale (r, in meters) over which the pattern was tested.  Plots are not displayed at r > 1.0 m 

because plants are assumed to interact only at fine-scales (r < 1.0 m). 
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CHAPTER V 

PLANT SPATIAL PATTERNS AFFECT COMMUNITY DYNAMICS  

IN EXPERIMENTAL SEMI-ARID PERENNIAL  

GRASSLAND COMMUNITIES 

 
Abstract 
 
 A central goal of plant ecology is to elucidate the processes that structure plant 

communities in space and time. Plant spatial patterns are known to influence community-

structuring processes, yet few empirical studies have directly addressed the effects of 

these factors on community dynamics using realistic experimental communities. Our 

objective was to test the effects of both community- and neighborhood-scale plant spatial 

patterns on biotic and abiotic components of experimental semi-arid grassland 

communities. We manipulated spatial patterns of two co-occurring semiarid perennial 

grasses: a common cultivar of the strongly competitive crested wheatgrass (Agropyron 

cristatum) and Snake River wheatgrass (Elymus wawawaiensis), a relatively weaker 

competitor. Treatments consisted of interspecific mixtures of the two species in 12 

combinations of community-scale spatial patterns (regular, random, and two types of 

aggregation) and neighborhood-scale aggregation (no aggregations, small aggregations, 

and large aggregations). Patterns were generated using spatial simulation software, and 

precisely replicated in the field to produce realistic experimental communities. Two years 

of data were collected on above-ground production and relative growth rates of 

approximately 2000 grasses. Variability in light (PAR) and soil moisture were also 

quantified. There were significant main effects of treatment and year on mean biomass 
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independent of species and for both species individually. There were also significant 

effects of treatment on relative growth rates for both species in 2009. Mean biomass and 

mean RGR of both species were highest in plots with community-scale regularity and no 

neighborhood-scale aggregation, suggesting a strong effect of interspecific competition 

that was magnified for the weaker competitor E. wawawaiensis especially in the second 

year. Lastly, there were significant effects of treatment and year on the variability of both 

PAR and soil moisture, suggesting that plant spatial patterns influence the heterogeneity 

of key plant resources at a community-scale. In the case of PAR, more heterogeneous 

light environments were observed in more aggregated treatments, and variability in both 

PAR and soil moisture was greater in the second study year. Our research represents one 

of the largest manipulative field studies testing the effects of plant spatial patterns, and 

provides new information on the role of plant patterns in structuring semi-arid plant 

communities. 

 
Introduction 
 

Of the numerous factors that influence the dynamics of plant communities in 

space and time, spatial patterns of vegetation have significant effects on plant growth, 

interactions, survival and reproduction as well as the distribution of limited abiotic 

resources (Stoll and Prati 2001; Valladares 2003; Perry et al. 2009). Plant spatial patterns 

in many natural communities are often non-random, being either over-dispersed (regular) 

or aggregated to some degree at one or more spatial scales (Stoll and Prati 2001; Maestre 

et al. 2005; see chapter 2). Patterns may be scale-dependent; for example, plants may be 

aggregated at relatively broad scales within a community (Klausmeier 1999; Wiegand et 
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al. 2007; see chapter 2), yet fine-scale plant neighborhoods within the same community 

may be characterized by other non-random patterns (Lortie et al. 2005; Wiegand et al. 

2007; see chapter 2). Aggregated patterns are especially common in arid and semi-arid 

communities (Went 1942; Sala and Aguiar 1996; Rayburn et al. 2011) due to factors such 

as positive plant interactions (Haase et al. 1996; Valiente-Banuet and Verdú 2008), 

disturbance (Seifan and Kadmon 2006; see chapter 4), seed dispersal (Schurr et al. 2004), 

and habitat heterogeneity (Tirado and Pugnaire 2003; Perry et al. 2008; Perry et al. 2009). 

Statistically regular patterns have also been observed in water-limited plant communities 

(Phillips and MacMahon 1981; Skarpe 1991; see chapter 4) and are often interpreted as 

the result of intense intra- or interspecific competition for soil moisture and nutrients 

(Kenkel 1998; Stoll and Bergius 2005; Rayburn and Monaco 2011).  

There is an extensive history of research on the formation of plant spatial patterns 

(e.g. Haase et al. 1996; Tirado and Pugnaire 2003; Rayburn and Monaco 2011). Less 

common are studies of the effects of plant spatial structure on population and community 

dynamics (Tilman and Kareiva 1997; Murrell et al. 2001; Stoll and Prati 2001; Dunstan 

and Johnson 2003; Maestre et al. 2005; Turnbull et al. 2007). Plants interact almost 

exclusively with local neighbors (Harper et al. 1997), so the fine-scale spatial patterns of 

plants in local neighborhoods may in large part determine the direction and magnitude of 

plant interactions (Pacala 1997; De Boeck et al. 2006; Turnbull et al. 2007) and 

potentially species coexistence (Stoll and Prati 2001; Murrell and Law 2003; Monzeglio 

and Stoll 2005). Numerous theoretical studies have tested the prediction that spatial 

structure impacts plant populations and communities (e.g. Czárán and Bartha 1992; 

Pacala and Deutschman 1995; Bolker et al. 2003; De Boeck et al. 2006; Turnbull et al. 
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2007). In addition, many observational studies have sought to link plant spatial patterns 

to plant community and population dynamics (e.g. Schurr et al. 2004, Fajardo and 

McIntire 2007; Rayburn and Monaco 2011). Empirical tests of the effects of plant spatial 

patterns were formerly rare (Tilman and Kareiva 1997; Stoll and Prati 2001; Dunstan and 

Johnson 2003), but have  increased in number within the last decade (e.g. Stoll and Prati 

2001; Tirado and Pugnaire 2003; Monzeglio and Stoll 2005; Turnbull et al. 2007; 

Mokany et al. 2008; Lamošová et al. 2010). 

General conclusions emerging from these manipulative experiments have 

supported predictions from theoretical and observational research: non-random spatial 

structure may critically influence many aspects of community and population dynamics. 

However, substantial work remains to understand the effects of plant spatial patterns in 

realistic communities (Turnbull et al. 2007), especially since many past manipulative 

experiments have focused on annual vegetation over short time scales (e.g. Stoll and Prati 

2001; Monzeglio and Stoll 2005; Turnbull et al. 2007). Perennial grasses comprise a 

substantial portion of terrestrial vegetation, especially in arid and semi-arid regions 

(Daubenmire 1970; West et al. 1979; West 1983; West 1988; Pellant and Lysne 2005; 

Jones 2008). The effects of grass spatial patterns on plant interactions, recruitment, 

mortality, invasion, and production in these communities are still poorly understood, 

although some progress has recently been made (e.g. Mokany et al 2008; Lamošová et al. 

2010). 

While vegetation patterns influence a range of biotic processes in plant 

communities, they also influence the fine-scale heterogeneity of key abiotic resources 

such as soil nutrients (Schlesinger et al. 1996), soil moisture (Bhark and Small 2003; 



92 
Cantón et al. 2004; Bhark and Small 2003), and light (Martens et al. 2000; Valladares 

2003; Mokany et al. 2008). However, studies that manipulate plant spatial patterns are 

somewhat rare (see above) and rarer still are studies that assess the effect of plant spatial 

patterns on abiotic resources such as light and soil moisture (Bolker et al. 2003, but see 

Martens et al. 2000 and Maestre et al. 2005). As a result, there is still substantial 

uncertainly as to the specific effects of plant spatial patterns on environmental 

heterogeneity in both space and time. 

In water-limited plant communities, soil moisture may be a critical resource 

whose spatiotemporal distribution significantly affects community structure and 

dynamics (Harper 1977, Rodriguez-Iturbe et al. 1999; Cantón et al. 2004). For example, 

fine-scale heterogeneity in soil moisture distribution almost certainly influences 

competitive interactions between plants in water-limited communities with similar 

strategies for obtaining soil moisture (Pacala and Tilman 1994; Rodriguez-Iturbe et al. 

1999). The spatial pattern of plants in a community may influence the distribution of soil 

moisture via direct and indirect pathways, including patterns of infiltration (Bhark and 

Small 2003) and plant water use (Mokany et al. 2008). 

Another potentially limiting resource is light, which provides the energy used by 

plants in photosynthesis and signals used in photoregulation of plant growth and 

development (Valladares 2003). In more arid environments, there is usually plentiful or 

excess PAR at the canopy due to photosynthetic limitations imposed by water stress 

(Martens et al. 2000; Valladares 2003). Light may still be limiting, however, in the 

understory beneath arid or semi-arid vegetation and may exhibit significant fine-scale 

heterogeneity (Breshears et al. 1997, 1998; Martens et al. 2000). In more arid 
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communities, the distribution of understory light is especially important in influencing 

microhabitat variables (e.g. soil and leaf temperatures, soil moisture and evaporation) that 

significantly affect a range of plant processes such as seedling establishment, 

germination, plant growth, and plant interactions (Martens et al. 1997; Martens et al. 

2000; Valladares 2003). Plant spatial patterns are especially important determinants of 

understory light distributions near ground level (e.g. Mokany et al. 2008), and striking 

differences in microhabitat variables are often observed over very small spatial scales 

such as adjacent canopy and intercanopy patches (Schlesinger et al. 1996; Breshears et al. 

1997; 1998).  

In this study, our goal was to test the effects of plant spatial patterns on both 

biotic and abiotic aspects of semi-arid community dynamics using realistic experimental 

communities comprised of mixtures of two cool-season (C3) Great Basin perennial 

bunchgrasses, a cultivar of the introduced crested wheatgrass (Agropyron cristatum (L.) 

Gaertn.) and the native Snake River wheatgrass (Elymus wawawaiensis J. Carlson & 

Barkworth). Our specific objectives were to test the effect of community- and 

neighborhood-scale patterns on (1) above-ground biomass production (independent of 

species and for each species individually) and relative growth rates (for each species 

individually), and (2) variability of both light (photosynthetically active radiation; PAR) 

near ground-level and soil moisture in the upper 10 cm of the soil. We hypothesized that 

both biomass and RGR would be higher in plots regularly-spaced at the community-scale 

with random neighborhoods. We also hypothesized that community-scale biomass and 

RGR would be significantly reduced in the second year, especially for the presumably 

weaker competitor E. wawawaiensis. Conversely, we hypothesized that both light and 
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soil moisture would be more heterogeneous in plots with community-scale aggregation, 

especially in those plots with plants also aggregated at the neighborhood-scale. We also 

hypothesized that both light and soil moisture would be more heterogeneous in the 

second year, due to plant maturity. 

 
Methods 

 
 

Study site 
 
This experiment was conducted at a field site near Millville, Utah, USA (lat 

41˚39’N, long 111˚48’W, 1370 m elevation). The soil at the site is a Ricks gravelly loam 

(coarse-loamy over sandy or sand-skeletal, mixed, superactive mesic Calcic 

Haploxerolls) (Bhattarai et al. 2008). Long-term mean annual precipitation (30 yr) 

averaged for three local weather stations was 480 mm (Leonard et al. 2008). 

 
Study species 

 
First introduced as a promising range grass to the Western U.S. in the 1930s, 

varieties of A. cristatum have been planted widely throughout the region (Hull and 

Klomp 1966; Pellant and Lysne 2005). A. cristatum exhibits a high level of both grazing 

(Sharp 1986) and drought tolerance (Caldwell and Richards 1986), and is strongly 

competitive with both other species (Aguirre and Johnson 1991; Pellant and Lysne 2005; 

Henderson and Naeth 2005) and itself (Salihi and Norton 1987; see chapter 4). In this 

experiment, we used the common ‘Hycrest’ cultivar (A. cristatum x A. desertorum 

[Fischer ex Link] Shultes, henceforth referred to as Hycrest crested wheatgrass), a hybrid 

crested wheatgrass that survives under greater competition and lower precipitation while 
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producing more biomass as compared to other crested wheatgrass cultivars (Asay et al. 

1985). 

Snake River wheatgrass (Elymus wawawaiensis J. Carlon & Barkworth) is found 

primarily in the Salmon, Snake, and Columbia River drainages of the Pacific Northwest, 

although E. wawawaiensis is commonly planted throughout the Intermountain region of 

the Western U.S. for forage in addition to restoration and reclamation projects (Jones 

2008). Formally thought to be a variety of bluebunch wheatgrass (Pseudoroegneria 

spicata [Pursh] A. Löve), E. wawawaiensis was first recognized as a distinct taxon by 

Carlson (1986) based on cytological data. E. wawawaiensis is both drought and grazing 

tolerant, with an extensive root system and fair to good seedling vigor (Jones et al. 1991; 

Jones and Neilson 1997; Ogle et al. 2008). E. wawawaiensis is generally more 

productive, has higher seed production, and is easier to establish than many native Great 

Basin grasses (Carlson and Dewey 1987; Jones et al. 1991). In this experiment, we used 

the original ‘Secar’ cultivar of E. wawawaiensis (Ogle et al. 2008). 

While we could find no published studies in which the competitive ability of E. 

wawawaiensis was directly evaluated relative to any cultivars of A. cristatum, E. 

wawawaiensis is almost certainly competitively inferior to A. cristatum. Numerous 

studies have found that A. cristatum is a superior competitor relative to other native Great 

Basin semi-arid bunchgrasses, including P. spicata, to which E. wawawaiensis is similar 

enough in form and function to be used as a surrogate in range plantings (Jones 2008; 

Mukherjee 2010). Seedlings of E. wawawaiensis are known to be less competitive than A. 

cristatum seedlings, and competition from weeds and aggressive introduced grass species 

(e.g. A. cristatum) may cause seedling mortality and stand failure (Ogle et al. 2008). E. 
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wawawaiensis may also be more susceptible to plant pathogens than A. cristatum (Griffin 

1992). In a mixed community, there is a strong potential for interspecific competition 

between the two species since they essentially occupy the same niche (identical 

photosynthetic pathway [C3], similar stem and leaf architecture, canopy height, growing 

season). However, the actual dynamics of interspecific interactions between the two 

species are unknown, mirroring the broader gap in knowledge regarding the role of plant 

interactions in structuring arid and semi-arid plant communities (Phillips and MacMahon 

1981; Fowler 1986; Armas and Pugnaire 2005; Brooker et al. 2008; Mokany et al. 2008). 

 
Experimental design 

 
Site preparation began in fall 2007, and included application of herbicide to 

control weeds and tilling to homogenize the soil. Seedlings of both species were 

germinated and grown to seedling stage in a greenhouse during the winter of 2008.  

Ninety-six 2.5m x 2.5m experimental plots were established in spring 2008. We 

manipulated plant spatial patterns at both the community (plot) and neighborhood scales. 

Treatments consisted of a factorial combination of four types of community-scale 

patterns (Poisson random, regular grid, a fixed pattern of aggregation, and a variable 

pattern of aggregation) and three levels of neighborhood-scale aggregation (no 

aggregation, small aggregations, large aggregations) resulting in 12 treatments (Table 4), 

each with eight replicates, assigned in a completely randomized design to the 96 plots. In 

plots without community-scale aggregation, the inner 2 m x 2 m region of each 6.25 m2 

plot was sampled to reduce edge effects. In plots with community-scale aggregation, total 

plot-size was effectively scaled down to 2 m x 2 m due to centering of the aggregated 
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pattern within the plot, and the inner 1.5 m x 1.5 m region was sampled to reduce edge 

effects (Table 1). Plants falling within the excluded plot edges were considered edge 

plants (see below). 

All spatial patterns were computer-generated using functions from the splancs and 

spatstat packages for R (R Development Core Team 2007). Aggregations were generated 

through simulated realizations of a Matérn cluster process using the spatstat package. 

Each plot contained a total of 36 plants (18 of each grass species), and individual plants 

of each species were randomly assigned to points with some constraints (e.g., a balanced 

number of each species within each neighborhood-scale aggregation; see Table 1). The 

effective density of grasses (5.8 / m2 in plots without community-scale aggregation, and 9 

/ m2 in plots with community-scale aggregation) was determined by experimental 

constraints and by scant published reports of Great Basin perennial grass densities in 

intact communities (see chapter 4). 

 Seedlings were transferred to the field in May 2008, and planted using a wooden 

frame that allowed for accurate replication (± 2 cm) of computer-generated spatial 

patterns. Plots were mapped to facilitate relocation and measurement of individual 

grasses in both years of the experiment. Supplemental water was applied for one month 

after planting. During that time, dead plants were counted as pre-experiment mortality 

and replaced with extra greenhouse stock. Throughout the experiment, newly recruited 

seedlings of the study species were removed, as were annual weeds and grasses. 
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Data collection 

 
Aboveground biomass of each individual plant was non-destructively harvested at 

the peak of the growing season in late June of 2009 and 2010. Plants within plot edges 

were also harvested, although the biomass was discarded. Mortality was also recorded, 

but was extremely low (~1%) for the duration of the study and was not included in 

statistical analyses. For each plant, biomass was dried for approximately three weeks at 

60˚C in drying ovens and subsequently weighed to the nearest hundredth of a gram. Total 

biomass for both species was calculated for each year, and mean biomass for each species 

was calculated for each plot in each year. Relative growth rate (RGR) was calculated for 

each plant from 2008 to 2009 and from 2009 to 2010 using an estimate of 0.1g for 2008 

seedling weight and biomass values recorded for each individual plant in 2009 and 2010. 

Mean RGR was then computed for each species in each plot in each year. 

 PAR (μmol m-2s-1) was quantified using an AccuPAR model LP-80 PAR/LAI 

Ceptometer (Decagon). PAR was sampled at six locations in each plot, three on the west 

side of the plot and three on the south side of the plot, in the early afternoon on a 

cloudless day. At each sampling location, the probe was positioned approximately 2.5 cm 

above ground level. Each of the six measurements per plot represented the average of 

eighty sensors equally spaced along the 80 cm length of the probe. The coefficient of 

variation (a relative index of variability; Schlesinger et al. 1996) for PAR (CVPAR) was 

calculated for each plot from the six measurements. 

 Soil moisture (%) in the upper 10-cm of the soil profile was quantified using an 

ML2x ThetaProbe Soil Moisture Sensor coupled to a HH2 Moisture Meter (Delta-T 

Devices). Percent soil moisture was sampled to a depth of 10 cm at nine locations within 
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a 3 x 3 grid that spanned the interior of each plot. The coefficient of variation for soil 

moisture (CVmoist) was calculated for each plot from the nine individual measurements. 

For both light and soil moisture sampling, measurements were taken at the same locations 

for both years on cloudless days prior to biomass sampling in late June 2009 and 2010. 

 
Statistical analyses 

 
Prior to analysis, three plots were removed from the dataset due to encroachment 

by invasive weeds and significant disturbance by small mammals. One additional mean 

CVmoist value was removed from the dataset since it was an unexplained outlier. The 

effects of treatment, time, and the treatment × time interaction on mean species biomass, 

species RGR, CVPAR and CVmoist were analyzed using a split-plot in time approach. Data 

analyses were conducted using the GLIMMIX procedure in SAS/STAT software in the 

SAS system for Windows (version 9.2, SAS Institute 2008). Transformations (square-

root) of the response variables were only required in the case of the abiotic response 

variables (CVPAR and CVmoist) to stabilize the variance and to improve the normality of 

the residuals. Post-hoc contrasts and pair-wise mean comparisons were computed as 

needed to provide insight into patterns of significance; family-wise Type I error was 

controlled using the Tukey-Kramer method. All means are subsequently reported ± one 

S.E., with mean values and S.E.s of CVPAR and CVmoist back-transformed to the original 

scale. 
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Results 
 
 
Above-ground biomass 

 
Independent of species, total harvested biomass across all plots increased by 

68.1% from 67.76 kg in 2009 to 113.89 kg in 2010. Mean harvested biomass independent 

of species was greater in 2010 than in 2009 for all treatments, and the treatment × year 

interaction was significant (Table 6, P=0.0046). Treatment rankings varied minimally 

between years, although the increase in biomass differed among treatments. Pooled 

across years, there were strongly significant effects of treatment on mean biomass 

independent of species (P<0.0001, Table 6, Fig. 10a) with significant differences 

observed between certain treatments (Table 5). The highest mean biomass was observed 

in plots with regular spacing at the community-scale and no neighborhood-scale 

aggregation (treatment 4), while the lowest mean biomass was observed in plots 

aggregated at both community and neighborhood scales (treatment 12) (Table 5). The 

main effect of year on mean harvested biomass was also strongly significant (P<0.0001; 

Table 6); mean biomass increased by 69.4%, from 34.46 ± 0.76 g/plot in 2009 to 58.39 ± 

1.58 g/plot (Fig. 10b).  

Total harvested biomass of E. wawawaiensis decreased by 2.7% from 14.47 kg in 

2009 to 14.08 kg in 2010. The treatment × year interaction was significant (P=0.0143, 

Table 6); mean harvested biomass was greater in 2010 than in 2009 for some treatments, 

while for other treatments the opposite was true.  Because of the confounding nature of 

the interaction, we determined that it was invalid to interpret the main effects of 

treatment and time on mean harvested biomass of E. wawawaiensis (Fig. 11). However, 



101 
in both years mean harvested biomass appeared to be highest in plots with regular 

spacing at the community-scale and no neighborhood-scale aggregation (treatment 4).  

Total harvested biomass of Hycrest crested wheatgrass increased by 85.6% from 

53.29 kg in 2009 to 98.90 kg in 2010. The treatment × year interaction was significant 

(P=0.0484, Table 6): mean harvested biomass was greater in 2010 than in 2009 for all 

treatments, and treatment rankings varied minimally between years. Pooled across years, 

there were significant effects of treatment on mean biomass of Hycrest crested 

wheatgrass (P<0.0001, Table 6, Fig. 10e) with significant pairwise differences observed 

between certain treatments (Table 5). As in the analysis independent of species, the 

highest mean biomass was again observed in plots with regular spacing at the 

community-scale and no neighborhood-scale aggregation (treatment 4), and the lowest 

mean biomass was observed in plots aggregated at both community and neighborhood 

scales (treatment 12) (Table 5). The main effect of year on mean biomass of Hycrest 

crested wheatgrass was significant (P<0.0001, Table 6); mean biomass increased by 

83.9% from 54.66 ± 2.11 g/plot in 2009 to 100.53 ± 2.78 g/plot in 2010 (Table 5, Fig. 

10f). 

 
Relative growth rates 

 
For relative growth rates of E. wawawaiensis, there was a significant treatment × 

year interaction (P=0.0255, Table 6); post-hoc tests (see Methods) revealed a significant 

effect of treatment on mean RGR of E. wawawaiensis in 2009 (P=0.0206, Table 6, Fig. 

12a) with significant differences observed between some treatments (Table 5), but no 

evidence of treatment effects in 2010 (P=0.2895, Table 6). In 2009, the highest mean 
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RGR for E. wawawaiensis was observed in plots with regular spacing at the community-

scale and no neighborhood-scale aggregation (treatment 4), while the lowest mean RGR 

was observed in plots with regularly spaced small aggregations (treatment 5), the same 

pattern as seen in mean biomass (Table 5). Pooled across treatments, there was a 

significant effect of year (P<0.0001, Table 6) as the mean relative growth rate of E. 

wawawaiensis declined from 4.39 ± 0.078 in 2009 to -0.041 ± 0.077 in 2010 (Fig. 12b).  

Similar results were observed for Hycrest crested wheatgrass; there was a 

significant treatment × year interaction (P<0.0001, Table 6); post-hoc tests (see 

Methods) revealed a significant effect of treatment on mean RGR of Hycrest crested 

wheatgrass in 2009 (P<0.0001, Fig. 12c) with significant differences observed between 

some treatments (Table 5), but no evidence of treatment effects in 2010 (P=0.2443, Table 

6). In 2009, the highest mean RGR for Hycrest crested wheatgrass was observed in plots 

with regular spacing at the community-scale and no neighborhood-scale aggregation 

(treatment 4), while the lowest mean RGR was observed in plots aggregated at both 

community and neighborhood scales (treatment 12), the same pattern as seen in biomass 

(Table 5). Pooled across treatments, there was a significant effect of year (P<0.0001, 

Table 6) as the mean RGR of Hycrest crested wheatgrass declined significantly from 6.00 

± 0.054 in 2009 to 0.56 ± 0.041 in 2010 (Fig. 12d). 

 
Variability of light and soil moisture 

 
For CVPAR, the treatment × year interaction was significant (P<0.0001, Table 6). 

Based on post-hoc tests, we found that the effect of treatment on mean CVPAR was 

significant in 2010 (P<0.0001) and that significant differences existed between only a 
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small subset of treatments (Table 5; Fig. 13a); no evidence of treatment effects was 

detected for 2009 (P=0.1609, Table 6). The most variable light environments were 

observed in plots with aggregated distribution of large aggregated neighborhoods 

(treatments 9 and 12), while the least variable light environments were observed in plots 

with regular distributions of large aggregated neighborhoods (treatment 6) (Table 5). The 

main effect of year on mean CVPAR was significant (P<0.0001, Table 6); mean back-

transformed CVPAR increased by 45.0% from 0.40 ± 0.039 in 2009 to 0.58 ± 0.047 in 

2010 (Fig. 13b). 

For CVmoist, there was no evidence of a treatment × year interaction (P=0.1423, 

Table 6). Pooled across years, there was a significant effect of treatment on CVmoist 

(P=0.0024, Table 6, Fig. 13c). Similar to results for CVPAR, significant differences were 

observed between only a small subset of treatments (Table 5). The most variable soil 

moisture environments were observed in plots with randomly distributed large aggregated 

neighborhoods of grasses (treatment 3), while the least variable soil moisture 

environments were observed in plots with regularly spaced small clusters of grasses 

(treatment 5) and aggregated distribution of smaller aggregated neighborhoods (treatment 

8) (Table 5). The main effect of year on mean CVmoist was significant (P=0.0014, Table 

6); mean back-transformed CVmoist increased by 14.3% from 0.14 ± 0.0041 in 2009 to 

0.16 ± 0.0044 in 2010 (Fig. 13d). 
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Discussion 

 
 

Effect of treatment and time on aboveground  
biomass and RGR 

 
Past empirical studies of plant spatial patterns have generally focused on 

investigating the effect of intraspecific aggregation on species coexistence (e.g. Stoll and 

Prati 2001; Monzeglio and Stoll 2005; Mokany et al. 2008; Lamošová et al. 2010). Given 

a plant community comprised of strong and weak competitors for limited resources, there 

is convincing evidence that intraspecific aggregations reduce the frequency of 

interspecific interactions thus reducing the effect of  superior competitors on inferior 

competitors and slowing competitive exclusion (Stoll and Prati 2001; Monzeglio and 

Stoll 2005; Mokany et al. 2008).   

However, although very few published studies exist that document spatial patterns 

of semi-arid perennial bunchgrasses, intraspecific aggregations of perennial bunchgrasses 

within Great Basin plant communities may be uncommon (Daubenmire 1970; Silvertown 

et al. 1992; Adler et al. 2010) with some exceptions (e.g. purposely established 

monocultures of A. cristatum, see chapter 4). A technical bulletin by Daubenmire (1970) 

contained profile drawings of vascular plants along a transect in a Great Basin shrub-

steppe plant community; perennial grasses appear to have mostly heterospecific 

neighbors. More recently, a study of long-term quadrat data from the Northern Great 

Basin suggest that semi-arid communities dominated by shrubs and grasses are generally 

well mixed at fine scales and characterized by interspecific, versus intraspecific 

neighborhoods (Adler et al. 2010). Furthermore, both species used in this experiment are 

components of diverse seed mixtures used for revegetation and range improvement that 
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have become increasingly popular as attempts are made by land managers to increase 

plant diversity in Great Basin rangelands (e.g. Fansler and Mangold 2010). An 

experimental framework that investigated the effects of intraspecific aggregation for 

these two species could have addressed the effect of intraspecific aggregation on the 

interactions between Hycrest crested wheatgrass and E. wawawaiensis, but the results 

would have been less applicable to Great Basin plant communities. Instead, we utilized 

realistic experimental communities with the two species planted in mixture in order to 

test the effects of interspecific aggregation on community dynamics. While observational 

studies of plant spatial patterns have been conducted in attempts to understand 

community-structuring processes in the Western U.S. (e.g. Phillips and MacMahon 1981; 

Weisberg et al. 2007; see also chapter 2 and chapter 4), we are aware of few other 

empirical tests of the effect of plant spatial patterns on the dynamics of perennial Great 

Basin plant communities (but see MacMahon 1997), and none with perennial grasses. 

Given limited soil resources, both intra- and interspecific competition between 

semi-arid perennial grasses may be intense (Booth et al. 2003; Leger 2008; see chapter 

4). A past observational study of semi-arid range grasses hypothesized that regularity in 

spatial patterns may arise as the direct result of this competition (Rayburn and Monaco 

2011). The results of this study offer empirical support for this theory; pooled across 

years, independent of species and for Hycrest crested wheatgrass, the highest mean 

biomass values were observed in regularly-spaced plots lacking neighborhood-scale 

aggregation (treatment 4), although these values were not always significantly different 

from other treatments. Similar results were obtained for relative growth rates; pooled 

across years, the highest RGRs for both species were observed in regularly-spaced plots 
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without neighborhood-scale aggregation (treatment 4), although again these values were 

not always statistically different from other treatments and the main effect of treatment 

on RGRs was only significant in the first year of the study. Competition was likely 

minimized in these plots relative to plots with more aggregated patterns, leading to 

significantly greater biomass production and, in the first year, significantly greater RGRs. 

In these plots, mean biomass was also influenced by neighborhood scale pattern: mean 

biomass of Hycrest crested wheatgrass in regularly-spaced plots without neighborhood-

scale aggregation was consistently greater than mean biomass in regularly-spaced plots 

with aggregated neighborhoods. These results reveal that, in terms of biomass production 

in regularly-spaced plots, both community- and neighborhood-scale plant spatial patterns 

had effects on biomass production and growth rates. 

Pooled across years, both species performed worse in plots with community-scale 

aggregation (treatments 6-12). Regardless of the neighborhood-scale pattern within these 

plots, there were no statistically significant differences in mean biomass independent of 

species or for Hycrest crested wheatgrass. These results suggest that community-level 

aggregation overwhelmed any effect of neighborhood-scale aggregation, likely because 

most plants in the community experienced aggregated, and therefore denser, local 

neighborhoods independent of our manipulation of neighborhood-scale patterns. 

Interspecific aggregation at the community-scale may have increased the frequency of 

both intra- and interspecific competition, although it is more likely that interspecific 

aggregations increased the magnitude of interspecific interactions, leading to suppression 

of both species and especially of the weaker competitor E. wawawaiensis.  
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Our results also strongly suggest that the effect of different spatial patterns was at 

least partially dependent on the competitive ability of the two perennial grasses. Hycrest 

crested wheatgrass generally performed better than E. wawawaiensis in all treatments and 

in both years, regardless of community-scale or neighborhood-scale spatial patterns. 

While interspecific aggregations lead to reductions in mean biomass and mean RGRs for 

the superior competitor Hycrest crested wheatgrass, reductions in mean RGRs were 

greater for the inferior competitor E. wawawaiensis. These results support recent studies 

of the effects of plant spatial patterns on grassland community dynamics that found that 

treatment effects were dependent on the competitive abilities of the species involved 

(Mokany et al 2008; Lamošová et al. 2010). For example, Mokany et al. (2008) studied 

the effects of spatial aggregation on resource use by native perennial grassland species; 

they found that while spatial aggregation affected the dynamics of light and soil moisture 

use by grasses, the effects were largely species-specific and depended on the relative 

strengths of interspecific versus intraspecific competition. Most recently, Lamošová et al. 

(2010) tested the effect of aggregation on the functioning of experimental assemblages of 

eight perennial grassland species by manipulating both species richness and spatial 

patterns. They found species in monoculture performed better in regular patterns due to a 

reduction in intraspecific competition, but that the performance of species in mixtures 

was dependent on the relative competitive strengths of the individual species. 

Independent of species, there were strong effects of year on biomass; total 

biomass increased by 68.1% and mean biomass across all treatments increased by 69.4% 

from 2009-2010. However, the effects of year on total biomass, mean biomass and mean 
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RGRs were different for each species and were also apparently linked to the species’ 

competitive ability.  

For the competitively superior species Hycrest crested wheatgrass, total biomass 

increased by 85.6% from 2009-2010. Pooled across treatments, there was a significantly 

positive effect of year on mean biomass, which increased by 83.9% from 2009-2010. 

There was also a significantly negative effect of year on mean RGR for Hycrest crested 

wheatgrass, which declined by 90.7% from 2009-2010 yet remained positive in 2010 

(0.56 ± 0.041). In contrast, for the competitively inferior species E. wawawaiensis, total 

biomass actually decreased by -2.70% from 2009-2010. In addition, there was a 

significant effect of time on mean RGR, which declined by 100.9% from 2009-2010, 

approximately equaling zero in 2010. These results provide additional evidence that 

Hycrest crested wheatgrass is competitively superior to E. wawawaiensis, and suggest 

that competitive exclusion of E. wawawaiensis would occur in aggregated plots given a 

longer duration experiment. 

 
Effect of treatment and time on variability of  
light and soil moisture 
 

Of all the potential factors influencing the distribution of light and soil moisture in 

plant communities, the pattern of standing plant cover may be the most important 

(Martens et al. 2000; Valladares 2003; Cantón et al. 2004). In this study, we observed the 

specific changes in the variability of resource distribution wrought by random, regular, 

and aggregated patterns at both community and neighborhood scales. Understanding the 

effects of plant spatial patterns on the heterogeneity of light and soil moisture is 
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important, since resource heterogeneity can have significant effects on community and 

population dynamics (Harper 1997; Armas and Pugnaire 2005; Begon et al. 2006). 

In this study, we found a highly significant effect of treatment on the variability 

of light near ground-level (mean CVPAR). Our results suggest that a more heterogeneous 

distribution of semi-arid bunchgrasses may result in a more variable light environment 

near ground-level. There was also a significantly positive effect of time on mean CVPAR, 

which increased significantly by 45.0% from 2009-2010.  We attribute this effect to the 

increased size and density of grass canopies, especially Hycrest crested wheatgrass, in the 

second year. The treatment x year interaction was also significant for mean CVPAR. 

Although there was a significant effect of treatment on the variability of shallow 

soil moisture (mean CVmoist), the differences between treatments were less clear. While 

the distribution of light is primarily a function of the characteristics of above-ground 

biomass (e.g. plant spatial patterns, plant height, canopy diameter, leaf architecture), the 

distribution of shallow soil moisture may depend on various factors including soil 

characteristics (e.g. particle size and water-holding capacity), species-specific plant 

anatomy and physiology (e.g. root type and distribution, transpiration rates, stomata size), 

other abiotic factors such as wind, and indirect effects of above-ground biomass (e.g. 

reduced evaporation through shade, sunflecks, leaf architecture). There was also a 

significantly positive effect of time on mean CVmoist, which increased significantly by 

14.3% from 2009-2010. As with CVPAR, we attribute this effect to increased above-

ground biomass of grasses (especially Hycrest crested wheatgrass in the second year) that 

likely produced concomitant increases in root biomass and increased variability in soil 

moisture distribution.  
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Generally, more heterogeneous patterns of plant canopy cover lead to more 

canopy and/or root gaps, which may be especially important for colonization by both 

native and invasive species (Bullock 2000; Blair et al. 2010). Competition for light and 

soil moisture may be reduced in gaps between perennial plants in Great Basin plant 

communities, potentially facilitating recruitment of poorly competitive native species but 

also invasion of troublesome annual grasses such as Bromus tectorum L. (cheatgrass). In 

recognition of this possible relationship, we initiated a second experiment in 2010 that 

takes advantage of the spatial treatments used for this study to test for the effect of 

community- and neighborhood-scale spatial patterns on the germination, growth, 

survival, and reproduction of B. tectorum. 

 
Conclusion 
 

Our results demonstrate the effects of community- and neighborhood-scale plant 

spatial patterns on community dynamics within experimental semi-arid perennial 

bunchgrass communities. Both the strong competitor Hycrest crested wheatgrass and the 

weaker competitior E. wawawaiensis performed better in regularly-spaced plots that 

lacked neighborhood-scale aggregation as compared to plots with random or aggregated 

patterns at either scale. In addition, we show that effects may be species-specific and 

strongly linked to a given species’ competitive ability. In general, E. wawawaiensis 

performed more poorly than Hycrest crested wheatgrass in all treatments, especially in 

aggregated treatments where the effects of interspecific competition were presumably 

greater. 
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 Spatial treatments also strongly influenced the distribution of light and soil 

moisture, with more heterogeneous patterns of plants resulting in a more variable light 

environment. The heterogeneity of both abiotic resources also increased in the second 

year of the study, which we attribute to the effect of increased above- and below-ground 

biomass. 

 The results of this study support past research on the effects of plant spatial 

patterns, but are unique in that we used realistic experimental communities comprised of 

interspecific mixtures of co-occurring perennial grasses.  Our findings may lead to a 

better understanding on the effects of plant patterns in water-limited grasslands, with 

additional relevance in the Great Basin region of the Western U.S. where both species 

commonly occur.  

 
References 

Aguirre L, Johnson DA (1991) Influence of temperature and cheatgrass  

competition on seedling development of two bunchgrasses. J Range Manage 

44:347-354 

Adler PB, Ellner SP, Levine JM (2010) Coexistence of perennial plants: an  

embarrassment of niches. Ecol Lett 13:1019-1029 

Armas KH, Pugnaire FI (2005) Plant interactions govern population dynamics in  

a semi-arid plant community. J Ecol 93:978-989 

Asay KH, Dewey DR, Gomm FB, Johnson DA, Carlson JR (1985)  

Registration of ‘Hycrest’ crested wheatgrass. Crop Sci 25:368-369 

Begon M, Townsend CR, Harper JL (2006) Ecology: from individuals to  



112 
ecosystems. Blackwell Publishing Ltd, Oxford, UK 

Bhark EW, Small EE (2003) Association between plant canopies and the spatial  

patterns of infiltration in shrubland and grassland of the Chihuahuan Desert, New  

Mexico. Ecosystems 6:185-196 

Bhattarai K, Johnson DA, Jones TA, Conners KJ, Gardner DR (2008) Physiological and  

morphological characterization of basalt milkvetch (Astragalus filipes): basis for 

plant improvement. Rangeland Ecol. Manage. 61:444-455  

Blair BC, Letourneau DK, Bothwell SG, Hayes GF (2010) Disturbance,  

resources, and exotic plant invasion: gap size effects in a redwood forest. 

Madroño 57:11-19 

Bolker BM, Pacala SW, Neuhauser C (2003) Spatial dynamics in model plant  

communities: What do we really know? Am. Nat. 162:135-148 

Booth MS, Caldwell MM, Stark JM (2003) Overlapping resource use in three  

Great Basin species: implications for community invasibility and vegetation  

dynamics. J. Ecol. 91:36-48 

Breshears DD, Rich PM, Barnes FJ, Campbell K (1997) Overstory imposed  

heterogeneity in solar radiation and soil moisture in a semiarid woodland. Ecol. 

App. 7:1201–1215 

Breshears DD, Nyhan JW, Heil CE, Wilcox BP (1998) Effects of woody  

plants on microclimate in a semiarid woodland: soil temperature and evaporation 

in canopy and intercanopy patches. Int. J. Plant Sci. 153:425–433 

Brooker RW et al. (2008) Facilitation in plant communities: the past, the present, and  

the future. J. Ecol. 96:18-34 



113 
Bullock JM (2000) Gaps and seedling colonization. In: Fenner M (ed) Seeds - The  

Ecology of regeneration in plant communities. CAB International, Wallingford, 

UK, pp 375-395 

Caldwell MM, Richards H (1986) Ecophsiology of crested wheatgrass: a  

comparative study with bluebunch wheatgrass. In: Johnson KL (ed) Crested 

wheatgrass: its values, problems, and myths. Symposium proceedings. Utah State 

University, Logan, UT, USA, pp 165-167 

Cantón Y, Solé-Benet A, Domingo F (2004) Temporal and spatial patterns of soil  

moisture in semiarid badlands of SE Spain. J. Hydrol. 285:199-214 

Carlson JR (1986) A study of morphological variation within Pseudoroegneria spicata  

(Pursh) A. Löve (Poaceae: Triticeae). MS thesis, Oregon State University, 

Corvallis, OR 

Carlson JR, Dewey DR (1987) Characterization of Elymus lanceolatus ssp.  

wawawai and its potential as a range forage grass. In: American Society  

of Agronomy Abstracts. Madison, WI, p 59 

Czárán T, Bartha S (1992) Spatiotemporal dynamic models of plant populations and  

communities. Trends Ecol. Evol. 7:38-42 

Daubenmire R (1970) Steppe vegetation of Washington. Washington Agricultural  

Experiment Station Technical Bulletin 62, Pullman, WA 

De Boeck, H J, Nijs I, Lemmens CMHM, Ceulemans R (2006) Underlying 

effects of spatial aggregation (clumping) in relationships between plant diversity 

and resource uptake. Oikos 113:269-278 

Dunstan PK, Johnson CR (2003) Competition coefficients in a marine epibenthic  



114 
assemblage depend on spatial structure. Oikos 100:79–88 

Fajardo A, McIntire EJB (2007) Distinguishing microsite and competition processes in  

tree growth dynamics: an a priori spatial modeling approach. Am. Nat.165:647- 

661 

Fansler VA, Mangold JM (2010) Restoring native plants to crested wheatgrass  

stands. Restor. Ecol. 19:16–23  

Fowler NJ (1986) The role of competition in plant communities in arid and semi-arid  

regions. Annu. Rev. Ecol. Syst. 17:89-110 

Griffin GD (1992) Pathological effects of Pratylenchus neglectus on Wheatgrasses.  

J. Nematol. 24:442–449 

Haase P, Pugnaire FI, Clark SC, Incoll LD (1996) Spatial patterns in a two- 

tiered semi-arid shrubland in southeastern Spain. J. Veg. Sci. 7:527-534 

Harper JL (1997) Population biology of plants. Academic Press, London 

Hegazy AK, Elfiky A, Kabiel HF (2005) Spatial pattern and mulching effect of  

Anastatica hierochuntica L. on structure and function of some desert plants. In: 

Harper JDI, An M, Wu H, Kent JH (eds) Proceedings of the 4th World Congress 

on Allelopathy. Charles Sturt University, NSW, Australia, pp 21-26 

Henderson DC, Naeth MA (2005) Multi-scale impacts of crested wheatgrass  

invasion in mixed-grass prairie. Biol. Invasions 7:639-650 

Hull AC Jr, Klomp GJ (1966) Longevity of crested wheatgrass in the sagebrush-grass  

type in southern Idaho. J. Range Manage 19:5-11 

Kenkel NC (1988) Pattern of self-thinning in Jack pine: testing the random mortality  

hypothesis. Ecol. 69:1017-1024 



115 
Klausmeier CA (1999) Regular and irregular patterns in semiarid vegetation. Science  

284:1826-1828 

Jones TA (2008) Notice of release of ‘Discovery’ Snake River wheatgrass. Native  

Plants J. 9:99-101 

Jones TA, Nielson DC, Carson JR (1991) Developing a grazing-tolerant native  

grass for bluebunch wheatgrass sites. Rangelands 13:147-150 

Jones TA, Nielson DC (1997) Defoliation tolerance of bluebunch and Snake  

River Wheatgrasses. Agron. J. 89:270-275 

Lamošová T, Doležal J, Lanta V, Leps J (2010) Spatial pattern affects diversity- 

productivity relationships in experimental meadow communities. Acta Oecol. 

36:325-332 

Leger EA (2008) The adaptive value of remnant native plants in invaded communities:  

an example from the Great Basin. Ecol. Appl. 18:1226-1235 

Leonard ED, Monaco TA, Stark JM, Ryel RJ (2008) Invasive forb, annual grass, and  

exotic shrub competition with three sagebrush-steppe growth forms: acquisition  

of a spring 15N tracer. Invasive Plant Sci. Manage. 1:168–177 

Lortie CJ, Ellis E, Novoplansky A, Turkington R (2005) Implications of spatial  

pattern and local density on community-level interactions. Oikos 109:495-502 

MacMahon JA (1997) Ecological restoration. In: Meffe GK, Carroll CR (eds) Principles  

of conservation biology, 2nd edn. Sinauer Associates, Inc., Sunderland, MA, pp 

479-511 

Maestre FT, Escudero A, Martinez I, Guerreros C, Rubio A (2005) Does spatial  



116 
pattern matter to ecosystem functioning? Insights from biological soil crusts. 

Funct. Ecol. 19:566-573 

Martens SN, Breshears DD, Meyer CW, Barnes FJ (1997) Scales of above-  

and below-ground competition in a semiarid woodland as detected from spatial 

pattern. J. Veg. Sci. 8:655–664 

Martens SN, Breshears DD, Meyer CW (2000) Spatial distributions of  

understory light along the grassland/forest continuum: effects of cover, height, 

and spatial pattern of tree canopies. Ecol. Model. 126:79-93 

Monzeglio U, Stoll P (2005) Spatial patterns and species performance in  

experimental plant communities. Oecologia 145:619-628 

Mokany, K, Ash J, Roxburgh S (2008) Effects of spatial aggregation on  

competition, complementarity, and resource use. Austral Ecol. 33:261-270  

Mukherjee JR (2010) Evaluating native wheatgrasses for restoration of sagebrush  

steppes. PhD dissertation, Utah State University, Logan, UT 

Murrell DJ, Purves DW, Law R (2001) Uniting pattern and process in plant  

ecology. Trends Ecol. Evol. 16:529-530 

Murrell DJ, Law R (2003) Heteromyopia and the spatial coexistence of similar  

competitors. Ecol. Lett. 6:48-59 

Ogle DG, Stannard M, Jones TA (2008) Snake River Wheatgrass. USDA NRCS, Boise,  

ID 

Pacala SW, Tilman D (1994) Limiting similarity in mechanistic and spatial models  

of plant competition in heterogeneous environments. Am. Nat. 143: 222-257 

Pacala SW, Deutschman DH (1995) Details that matter: the spatial distribution of  



117 
individual trees maintains forest ecosystem function. Oikos 74:357-365 

Pacala SW (1997) Dynamics of plant communities. In: Crawley MJ (ed) Plant ecology.  

Blackwell Scientific, Oxford, UK,  pp 532-555 

Pellant M, Lysne CR (2005) Strategies to enhance plant structure and diversity in  

crested wheatgrass seedings. US Department of Agriculture, Forest Service 

Proceedings RMRS-P-38, pp 16-33 

Perry GLW, Enright NJ, Miller BP, Lamont BB (2008) Spatial patterns in  

species-rich sclerophyll shrublands of southwestern Australia. J. Veg. Sci. 

19:705-716 

Perry GLW, Enright NJ, Miller BP, Lamont BB (2009) Nearest-neighbor interactions in  

species-rich shrublands: the roles of abundance, spatial patterns and resources. 

Oikos 118:161-174 

Phillips DL, MacMahon JA (1981) Competition and spacing patterns in desert  

shrubs. J. Ecol. 69:97-115 

Rodriguez-Iturbe I, D’Odorico P, Porporato A, Ridolfi L (1999) On the spatial and  

temporal links between vegetation, climate and soil moisture. Water Resour. Res. 

12:3709-3722 

Sala OE, Aguiar MR (1996) Origin, maintenance, and ecosystem effect of  

vegetation patches in arid lands in rangelands in a sustainable biosphere. In:  N. 

West N (ed) Proceedings of the Fifth International Rangeland Congress Vol. 2. 

Society for Range Management, Denver, CO, pp 29-32 

Salihi DO, Norton BE (1987) Survival of perennial grass seedlings under  

intensive grazing in semi-arid rangelands. J. App. Ecol. 24:145-151 



118 
Schlesinger WH, Raikes JA, Hartley AE, Cross AF (1996) On the spatial  

pattern of soil nutrients in desert ecosystems. Ecol. 77:364-374 

Schurr FM, Bossdorf O, Milton SJ, Schumacher J (2004) Spatial pattern formation in  

semi-arid shrubland: a priori predicted versus observed pattern characteristics.  

Plant Ecol. 173:271-282 

Seifan M, Kadmon R (2006) Indirect effects of cattle grazing on shrub spatial  

pattern in a Mediterranean scrub community. Basic App. Ecol. 7:496-506 

Sharp LA (1986) Crested wheatgrass: its values, problems and myths. In: Johnson KL  

(ed) Crested wheatgrass: its values, problems, and myths. Symposium  

proceedings. Utah State University, Logan, UT, USA, pp 3-6 

Silvertown J, Holtier S, Johnson J, Dale P (1992) Cellular automaton models of  

interspecific competition for space – the effect of pattern on process. J. Ecol. 

80:527-534 

Skarpe C (1991) Spatial patterns and dynamics of woody vegetation in an arid savanna.  

J. Veg. Sci. 2:565-572 

Stoll P, Prati D (2001) Intraspecific aggregation alters competitive interactions in  

experimental plant communities. Ecol. 82:319-327 

Stoll P, Bergius E (2005) Pattern and process: competition causes regular spacing  

of individuals within plant populations. J. Ecol. 93:395-403 

Tilman D, Kareiva P (1997) The role of space in population dynamics and  

interspecific interactions. Princeton University Press, Princeton, NJ 

Tirado R, Pugnaire FI (2003) Shrub spatial aggregation and consequences for 

reproductive success. Oecologia 136:296-301 



119 
Turnbull LA, Coomes DA, Purves DW, Rees M (2007) How spatial structure  

alters population and community dynamics in a natural plant community. J. Ecol.  

95:79-89 

Valiente-Banuet A, Verdú M (2008) Temporal shifts from facilitation to competition  

occur between closely related taxa. J. Ecol. 96:489-494 

Valladares F (2003) Light heterogeneity and plants: from ecophysiology to species  

coexistence and biodiversity. Prog. Bot. 64:439-471 

Went FW (1942) The dependence of certain annual plants on shrubs in Southern  

California deserts. B. Torrey Bot. Club 69:100-114 

Weisberg PJ, Lingua E, Pillai RB (2007) Spatial patterns of pinyon-juniper  

woodland expansion in Central Nevada. Range. Ecol. Manage 60:115-124 

West NE (1983) Temperate deserts and semi-deserts. Elsevier, Amsterdam 

West NE, Hea KH, Harniss RO (1979) Plant demographic studies in sagebrush- 

grass communities of southeastern Idaho. Ecol. 60:376-388 

West NE (1988) Intermountain deserts, shrub steppes, and woodlands. In:  Barbour MG,  

Billings WD (eds) North American terrestrial vegetation. Cambridge University  

Press, Cambridge, pp 209-230 

Wiegand T, Gunatilleke CVS, Gunatilleke IAUN, Okuda T (2007) Analyzing the spatial 

structure of a Sri Lankan tree species with multiple scales of clustering. Ecol.  

88:3088–3102 



120 
Table 4. Description of the twelve experimental treatments. For each treatment, notation 

(X/Y) represents the number of plants from each species (E. wawawaiensis and Hycrest 

crested wheatgrass) planted within the entire plot (in plots with neighborhood-level 

randomness) or within each cluster (in plots with neighborhood-level aggregation). In 

cases where neighborhood-scale patterns were aggregated, clusters of grasses were 

randomly distributed, spaced evenly apart, or clustered together according to the 

community-scale pattern.  

 
 Neighborhood-level aggregation 

Plot-level 
pattern 

 

None Small aggregations Large aggregations 

 
Random 

 
Random pattern of 
36 plants (18/18)  
(code = 1) 
 

 
Random pattern of nine 
clusters of four plants 
(2/2)  
(code = 2) 

 
Four clusters of nine 
plants (5/4, 4/5, 5/4, 4/5) 
randomly placed in plot 
(code = 3) 
 

 
Regular 

 
36 plants (18/18) 
planted in a 6 x 6 
grid  
(code = 4) 
 

 
Nine clusters of four 
plants (2/2) placed in 
equally spaced 3 x 3 
grid  
(code = 5) 
 

 
Four clusters of nine 
plants (5/4, 4/5, 5/4, 4/5) 
placed in equally spaced 
2 x 2 grid  
(code = 6) 
 

 
Aggregated  
(fixed; a single 
pattern replicated 
eight times) 

 
Aggregated pattern 
of 36 plants (18/18)  
(code = 7) 
 
 

 
Aggregated pattern of 
nine clusters of four 
plants (2/2)  
(code = 8) 
 

 
Aggregated pattern of 
four clusters of nine 
plants (5/4, 4/5, 5/4, 4/5)  
(code = 9) 

 
Aggregated 
(eight different 
aggregated 
patterns) 

 
Aggregated pattern 
of 36 plants (18/18)  
(code = 10) 

 
Aggregated pattern of 
nine clusters of four 
plants (2/2)  
(code = 11) 
 
 

 
Aggregated pattern of 
four clusters of nine 
plants (5/4, 4/5, 5/4, 4/5)  
(code = 12) 
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Table 5. Comparisons of means between individual treatments for biomass, relative growth rates, CVPAR, and CVmoist. Means with 

unique letters within a column represent significant statistically significant differences. Letters are not shown for mean biomass of E. 

wawawaiensis because of the confounding treatment × time interaction (see Results, Fig. 2). See Table 1 for explanation of 

treatments. Means are reported ± one S.E. (back-transformed in the case of CVPAR and CVmoist).  

Trt Both spp. Hycrest crested wheatgrass Elymus wawawaiensis Abiotic variables 
 

 Biomass  
(g) 

Biomass  
(g) 

2009 RGR Biomass  
(g) 

2009 RGR CVPAR CVmoist 

1 58.81 ± 3.44abc 86.98 ± 5.65abc 6.17 ± 0.15abc 19.52 ± 2.14 4.55 ± 0.25ab 0.44 ± 0.00018ab 0.16 ± 0.00066ab 

 
2 62.29 ± 3.44ab 104.41 ± 5.65ab 6.36 ± 0.15ab 16.95 ± 2.14 4.62 ± 0.25ab 0.42 ± 0.00018ab 0.16 ± 0.00066ab 

 
3 48.86 ± 3.44bcd 77.85 ± 5.65cd 5.91 ± 0.15abc 17.94 ± 2.14 4.38 ± 0.25ab 0.49 ± 0.00018ab 0.17 ± 0.00066a 

 
4 68.19 ± 3.67a 109.70 ± 6.04a 6.61 ± 0.16a 26.64 ± 2.28 5.29 ± 0.27a 0.41 ± 0.00021ab 0.13 ± 0.00066ab 

 
5 36.47 ± 3.44d 64.66 ± 5.65cd 5.61 ± 0.15c 8.48 ± 2.14 3.81 ± 0.25b 0.47 ± 0.00018ab 0.12 ± 0.00066b 

 
6 44.22 ± 3.44cd 80.27 ± 5.65bcd 6.14 ± 0.15abc 14.66 ± 2.14 4.29 ± 0.25ab 0.41 ± 0.00018b 0.15 ± 0.00066ab 

 
7 42.15 ± 3.44d 78.86 ± 5.65cd 6.19 ± 0.15abc 17.21 ± 2.14 4.76 ± 0.25ab 0.46 ± 0.00018ab 0.16 ± 0.00066ab 

 
8 41.20 ± 3.44d 71.10 ± 5.65cd 5.89 ± 0.15bc 9.84 ± 2.14 4.04 ± 0.25b 0.55 ± 0.00018ab 0.12 ± 0.00066b 

 
9 41.01 ± 3.97d 64.93 ± 6.52cd 5.72 ± 0.17bc 13.03 ± 2.47 4.06 ± 0.29b 0.58 ± 0.00027a 0.15 ± 0.00066ab 
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10 41.95 ± 3.44d 64.22 ± 5.65cd 5.96 ± 0.15abc 13.85 ± 2.14 4.53 ± 0.25ab 0.52 ± 0.00018ab 0.13 ± 0.00066ab 

 
11 44.59 ± 3.44cd 72.44 ± 5.65cd 5.90 ± 0.15abc 10.88 ± 2.14 4.14 ± 0.25b 0.54 ± 0.00018ab 0.13 ± 0.00066ab 

 
12 35.50 ± 3.44d 56.59 ± 5.65d 5.55 ± 0.15c 13.52 ± 2.14 4.30 ± 0.25ab 0.58 ± 0.00018a 0.16 ± 0.00066ab 
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Table 6. Summary of statistical results from analysis of effect of treatment and year on 

biomass (independent of species and for species individually) and relative growth rate 

(for each study species), as well as CVPAR and CVmoist.  

Test dfnum dfden F value Pr > F 
Biomass     
     Treatment 11 81 8.74 <0.0001 
     Year 1 81 391.91 <0.0001 
     Treatment x year 11 81 2.74 0.0046 
E.wawawawiensis 
biomass 

    

     Treatment 11 81 4.96 <0.0001 
     Year 1 81 0.16 0.6874 
     Treatment x year 11 81 2.35 0.0143 
Hycrest crested 
wheatgrass biomass 

    

     Treatment 11 81 7.68 <0.0001 
     Year 1 81 509.26 <0.0001 
     Treatment x year 11 81 1.92 0.0484 
E.wawawawiensis 
RGR 

    

     Treatment 11 81 1.29 0.02437 
    Treatment (2009) 11 81 2.22 0.0206 
    Treatment (2010) 11 81 1.22 0.2895 

     Year 1 81 1776.77 <0.0001 
     Treatment x year 11 81 2.15 0.0255 
Hycrest crested 
wheatgrass RGR 

    

     Treatment 11 81 1.29 0.2478 
    Treatment (2009) 11 81 4.12 <0.0001 
   Treatment (2010) 11 81 1.29 0.2443 

     Year 1 81 7828.57 <0.0001 
     Treatment x year 11 81 4.13 <0.0001 
CVPAR     
     Treatment 11 81 2.85 0.0033 
     Treatment (2009) 11 81 1.47 0.1609 
     Treatment (2010) 11 81 4.54 <0.0001 
     Year 1 81 199.74 <0.0001 
     Treatment x year 11 81 3.44 0.0006 
CVmoist     
     Treatment 11 81 2.96 0.0024 
     Year 1 80 10.89 0.0014 
     Treatment x year 11 80 1.52 0.1423 
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Fig. 10.  Boxplots of a) above-ground biomass (AGB) (g) for both species combined by 

treatment, pooled across study years (P<0.0001), b) AGB for both species in each year, 

pooled across treatments (P<0.0001), c) AGB for E. wawawaiensis by treatment, pooled 

across years (P<0.0001), d) AGB for E. wawawaiensis in each year, pooled across 

treatments (P=0.6874), e) AGB for Hycrest crested wheatgrass by treatment, pooled 

across years (P<0.0001), and f) AGB for Hycrest crested wheatgrass in each year, pooled 
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across treatments (P<0.0001). Note that the confounding treatment × time interaction for 

mean biomass of E. wawawaiensis (see Results, Fig. 2) precluded interpretation of main 

effects of treatment and time. 
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Fig. 11. Visual evidence of the the confounding treatment × time interaction for mean 

biomass (g) of E. wawawaiensis (see Results). 
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Fig. 12. Boxplots of a) E. wawawaiensis relative growth rate (RGR) by treatment in 2009 

(P<0.0001), b) E. wawawaiensis RGR in each study year, pooled across treatments 

(P<0.0001), c) Hycrest crested wheatgrass RGR by treatment in 2009 (P<0.0001), and d) 

Hycrest crested wheatgrass RGR in each study year, pooled across treatments 

(P<0.0001). 
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Fig. 13. Boxplots of a) CVPAR by treatment in 2010 (P<0.0001); b) CVPAR in each of the 

study years, pooled across treatments (P<0.0001); c) CVmoist by treatment, pooled across 

both study years (P=0.0024); d) CVmoist in each of the study years, pooled across 

treatments (P=0.0014) 
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CHAPTER VI 

CONCLUSIONS 
 
 

One of the central goals of plant ecology remains to elucidate the processes by 

which plant communities are structured in space and time. Theoretical, observational, and 

empirical studies have in part revealed the complex interplay of plant patterns and 

ecological processes that shape communities. However, both the causes and 

consequences of plant spatial patterns remain important topics of research in plant 

ecology. While there is a rich history of studies that have examined the means by which 

plant spatial patterns are formed through various ecological processes, methodological 

advances in data collection and analysis presented here and in other recent studies 

discussed throughout this dissertation set the stage for more advanced research on pattern 

formation, especially in more arid communities in which plants tend to occur as discrete 

individuals. Future research on pattern formation will almost certainly focus on the 

effects of anthropogenic activities (e.g., disturbance, development, climate change) on the 

formation and maintenance of plant spatial patterns. Conversely, the analysis of dynamic 

plant patterns may bring new insight into the type and magnitude of processes that are 

important in structuring plant communities. 

Future research on the causes and consequences of plant spatial patterns in semi-

arid plant communities will likely benefit from the acquisition of precise spatial data on 

plant species, size, and location (x,y coordinates and elevation) as described in this 

dissertation and elsewhere. In addition, such data will aid spatially-explicit population 
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studies, since mortality, growth, seed production and recruitment may be tracked for 

many individual plants within a community over long temporal scales. 

Besides advancing basic ecological research on connections between plant 

patterns and ecological processes, the research detailed in this dissertation has various 

potential applications related to the management and conservation of semi-arid plant 

communities. The data collection procedure I present in the first data chapter, involving 

the use of field-portable GPS systems to efficiently and precisely obtain spatial data on 

plant species, size, and location, could be utilized by scientists and land managers to 

rapidly map plant communities in support of long-term monitoring objectives, such as 

tracking the status of invasive or rare species and/or plant community dynamics in 

response to disturbance or changes in temperature and precipitation regimes associated 

with current and future climate change. Once precise spatial data has been obtained, 

analyses of spatial patterns of species diversity (data chapter 2) could be conducted to 

determine if any species within a given community has a disproportionate effect on local 

diversity. Species that have such an effect may be important targets of conservation or 

restoration efforts, especially those that seek to maintain or improve plant diversity 

within a community. Precise spatial data may also be used to test hypotheses regarding 

the spatiotemporal scale at which various processes act to structure plant communities 

(data chapter 3), informing both basic and applied ecological research of dynamic 

managed communities. Finally, the results of the novel field experiment described in the 

fourth data chapter provide new insight on effects of plant spatial patterns in mixed 

communities on both plant performance and the distribution of abiotic resources.  My 

results support past research on the effects of plant spatial patterns, but are unique in that 
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the experiment involved well-replicated, realistic experimental communities comprised 

of interspecific mixtures of co-occurring perennial grasses.  Our findings may lead to a 

better understanding on species-specific effects of plant patterns in water-limited 

grasslands, such as those in the Great Basin region of the Western U.S. 

In conclusion, each of the studies that make up this dissertation were conducted to 

address gaps in experimental design, data collection, and/or data analysis.  I hope that this 

work has advanced the study of plant spatial patterns in some small way, and that the 

techniques I have described will be adopted and adapted by future researchers. 
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