
SSC99-IIA-7

Ludovic Apvrille 13th AIAA/USU Conference on Small Satellites

A Java Framework for Spatial Embedded Systems

L. Apvrille†, ††, †††, P. Sénac†, ††, M. Diaz††

† ENSICA, Ecole Nationale Supérieure d’Ingénieurs
de Constructions Aéronautiques

Département Mathématiques appliquées et
Informatique

31056 Toulouse Cedex 5, France
{apvrille, senac}@ensica.fr

+33.5.61.61.86.{87, 77}

†† LAAS-CNRS
Laboratoire d’Analyse et d’Architecture des

Systèmes
7, avenue du colonel Roche

31077 Toulouse Cedex 4, France
{lapvrill, senac, diaz}@laas.fr

+33.5.61.33.62.56

††† This work has been partially supported by :
Alcatel Space Industries

Service DI/IAG/T
26, av J.F. Champollion – BP 1187

31037 Toulouse Cedex, France
Ludovic.Apvrille@space.alcatel.fr

+33.5.34.35.49.88

Abstract - Satellite constellations will soon play a fundamental role in global broadband and
heterogeneous communication architectures. These constellations will offer ubiquitous access to
interactive multimedia services. Spatial embedded systems must evolve accordingly to provide a
robust real time support, including a dynamically extensible runtime environment. In other words,
these systems must allow new services or features to be dynamically loaded and linked to the
embedded software. Object technology answers the need for dynamically extensible systems. But can
it also answer the constraints of embedded real-time systems ? First experiments with Java indicate
that an efficient real time scheduling of Java tasks can be implemented on top of a real-time kernel.
The paper also brings solutions for an efficient and robust memory management
Thus, the paper shows that it is realistic, proficient and cost effective to use object technology for
designing the new generation of real-time embedded systems.

Introduction

As communication needs increase, constellations
of L.E.O. (Low Earth Orbit) satellites [14]
definitely seem to be an efficient answer for the
fast deployment of a global broadband
telecommunication infrastructure. In the near
future, global Internet connectivity will be
available using small handset terminals that will
connect mobile users to the nearest constellation
satellite networks available. Thus, the selected
satellite will either directly transmit information
from a mobile terminal to a ground station
connected to earth based networks and vice

versa, or route it to a next satellite for
constellations supporting ISL (Inter-Satellite
Links).
Because of their high cost, the reliability and
validity of these systems is a fundamental issue.
Moreover, the constellations’ estimated life
duration combined to the steady evolution of
ground networking technology, entails the need
for integrating reconfiguration capabilities in
telecommunication satellites. These features can
greatly benefit from advanced high level
software runtime environments which can be
dynamically extended with new capabilities and
that free software designers from hardware
concerns. Ideally, such advanced software

Ludovic Apvrille 13th AIAA/USU Conference on Small Satellites
2

environments should take charge of many
functions traditionally operated by hardware or
by low level hardware-dependent software.
The natural solution for such adaptive systems
would be to encapsulate capabilities in
autonomous modules that could be dynamically
loaded into the system. This feature could be
offered by object-oriented technology. However,
object oriented technology has not been
intensively experimented in the field of
distributed hard real-time spatial embedded
systems. Therefore, this paper studies and shows
how object technology can be used to respect
embedded spatial communication systems hard
real-time constraints.
The paper is organized as follows: section 2
identifies the problems related to real-time
communication systems which are embedded
within satellites. Section 3 describes how the
Java language can be used in such a context.
Java’s strengths and shortfalls are carefully
analyzed within the general framework of
embedded software constellations. Section 4
involves the discussion of experiments. The Java
Virtual Machine used in our experiments, is
located on top of a VxWorks Real-Time
Operating System. The latter is expected to
schedule Java tasks conforming to RMA or EDF
policies. To decide whether this objective is met
or not is made possible by analysis tools
available with the RTOS. In practice, major
problems were identified at the JVM garbage
collector level. Section 5 discusses whether the
necessary memory management adaptations
should be implemented at the application level or
within the underlying layers.
Finally, conclusions and future work directions
are presented in Section 6.

How Object Technology Meets Spatial System
Requirements

As the L.E.O. satellite visibility period is short
and because of the low latency applications that
aim to use the constellations’ services, high level
real-time networking services will have to be
introduced in satellite constellations. These
services will have to evolve according to ground
needs, and so they should be dynamically
configurable without any service interruption.
Moreover, to respond shorter time delays, the
dynamic system will also have hard real-time
constraints: real-time configuration, real-time
switching, real-time filtering, real-time routing
and classical real-time satellite functionalities

(antenna positioning, etc.). All these embedded
real-time features will contribute to efficiently
support interactive distributed multimedia
applications.
Such real-time constraints have caused satellite
manufacturers to use classical solutions to design
telecommunication satellites. In order to resist to
cosmic rays, embedded hardware systems are
specific, thus are very expensive and perform
poorly. Hence, only very basic functionalities are
realized by the software, still using hardware
components rather than software components.
A usual satellite application is composed of
about 10 tasks: periodic tasks which periods are
close to 1 second and asynchronous tasks with
very short reaction time (less than 100 µs in
response to a hardware interruption).
Consequently, manufacturers have chosen to
fully control their code and use a simple
proprietary kernel or even a sequencer. The
software part of the application is developed in
assembler language for low level hardware
access and in C, Ada 83 and 95.
Such specific choices are possible for a single
GEO satellite but not for a whole constellation of
satellites; new functionalities are hard to
implement using embedded systems based on
specific and hardware oriented technology.
Moreover, very few development and test tools
exist for such hardware platforms, reducing the
reliability of the developed system. Using
specific hardware entails the use of proprietary
kernels. All the above mentioned problems
deeply impact the methodology design of
satellite constellations where cost and reliability
problems are tenfold.
Designers of communication satellites therefore
consider using standard technology. Standard
hardware coupled with advanced fault-tolerant
systems could efficiently support spatial
constraints. These standard architectures allow
commercial runtime kernels to be used.
However, by using on-shelf technology,
manufacturers have to cope with a rapidly
evolving market, really not compatible with
constellation software development and
maintenance. A very pertinent response to this
problem comes from an environment based on
virtual software platforms which insure a good
isolation between software and hardware. This
technique potentially allows new satellites to
benefit from hardware progress without
impacting software. The dynamic extension of
satellite’s functionalities could be obtained using
highly modular software environments that allow

Ludovic Apvrille 13th AIAA/USU Conference on Small Satellites
3

software components to be dynamically
downloaded. This consideration potentially
makes object oriented technology a good
candidate for the design of the new generation of
communication satellites embedded software.
The combination of a hardware-independent
platform and an object oriented environment
leads us to define and experiment a Java
framework. Indeed, the use of an independent
hardware and object oriented software makes it
possible to dynamically add new Java objects
that replace old functionalities (a routing
algorithm for example) or ensure new services.
Moreover, in this new general framework, a
global constellation can be considered as a real-
time distributed system [1] on which mobile
codes [9] (objects) can migrate from satellite to
satellite for constellations supporting ISL or
from satellite to ground control station.

Java’s Strengths and Shortfalls for Embedded
and Real-Time Applications

Java, a New Language

Java [10] is a brand new (1995) object-oriented
language. Its syntax very close to C/C++ makes
it easy of access for many programmers. But the
main Java characteristic is its JVM (Java Virtual
Machine) a software platform.
Java is a platform-independent language, first
used mainly by applet developers, and originally
not designed with real-time applications in mind.
Nevertheless, many Java native features could be
particularly useful for embedded distributed
systems.

Java in Embedded Systems

First, Java is portable from one platform to
another with a proprietary JVM without any Java
bytecode (the Java assembler code)
recompilation. Portability facilitates embedded
system integration into an already developed
heterogeneous system, just like an evolving
constellation.
Second, Java is free of pointers. This
dramatically increases the system’s robustness.
Moreover, a garbage collector periodically runs
to erase unused objects from memory. The
garbage collector also fights against memory
fragmentation.
Third, Java permits C code integration (JNI
mechanism) mainly for low-level functions,
drivers and BSP (Board Support Package), as

described in [4]. Other language code just like
assembler code can also be called from the C
code.
Finally, Java code can dynamically be loaded.
This can serve fairly well the need for adaptive
applications [9]. As the old Java code is
garbaged, this ensures there is enough memory
for new downloaded code as long as its memory
footprint is not higher than the one of the
previous code.

Java for Real-Time Applications

The Java language has also many interesting
features for real-time applications.
First, the Java platform integrates its own
scheduler. Thus, the Java API Thread class
allows to program tasks that are scheduled by the
Java runtime system. The internal scheduler
works with fixed priority tasks. Each executing
task runs until either a higher priority task is
available for running (on preemptive systems),
or until it yields or stops, or its time allotment
expires (on time-slicing systems). For two tasks
of the same priority, a round-robin system is
applied.
The Java language also has thread objects
synchronization capabilities.

Main Java Limitations for Spatial Real-Time
Systems

Though Java has many great capabilities for real-
time embedded applications and more specially
for spatial real-time embedded applications, on
the other side, it also has important limitations
[7] now to be described.
First, the interpreted Java bytecode generally
poorly performs compared to C. Hopefully, JIT
(Just In Time) compilers can drastically increase
Java’s speed, getting it close to non optimized
C++ compiled code. Many research groups
including Sun [18] are currently working on Java
performance improvements.
Secondly, it is not clear if the scheduling
functionalities can handle hard real-time
scheduling and short response time found in
spatial applications. It should also be noticed that
the Java runtime scheduler remains quite
platform dependant.
Spatial applications need a perfect deterministic
memory management. So usually, real-time
spatial applications avoid dynamic memory
allocation. With the fully object oriented JRE
(Java Runtime Environment), such a politic

Ludovic Apvrille 13th AIAA/USU Conference on Small Satellites
4

seems unsuitable. Moreover, the whole software
platform (JRE + librairies) increases the system’s
memory footprint.
The last main problem in embedding Java is its
poor hardware control API. Hence, Java spatial
applications requires C code which impedes
system portability [6] and full object
applications.

Java on Top of a Real-Time Kernel

Java, as described above has real-time embedded
advantages. But both scheduling and memory
management could be obstacles for the use of
standard Java in spatial application. These two
limitations are not Java specific for such
problems have already been mentioned in the
general framework of object oriented technology
[5]. Nevertheless, the object oriented technology
and dynamic features of the language make it a
potentially excellent solution for satellite
constellations. Finding solutions to transform its
shortfalls (real-time
memory
management,
memory footprint,
tasks scheduling) into
strength is a task full
of stakes.
Sun proposes two
solutions for
embedded systems:
Personal Java [19]
and Embedded Java
[17]. Both are mainly
composed of specific
APIs and tools meant
to reduce the software
platform memory footprint. Both solutions
require a Real-Time Operating System (RTOS).
Another solution also proposed by Sun consists
in executing Java code on a specific processor
[12]. This solution has few chance of being used
for spatial applications as it has never been
proved to be cosmic rays resistant.
A commercial kernel associated with object
technology has already been proved to be
efficient for multimedia application systems
support in distributed systems [3]. A perfect real-
time scheduler could bring real-time scheduling
guarantees to Java tasks. This should be done if
the JRE, instead of being a layer between the
Java application and the operating system was a
module of the kernel, changing Java threads into

first class citizens as other kernel threads (see
Figure 1).
The chosen RTOS should propose a fully
modular Java compliant on-shelf solution.
Among the widely used and supported real time
kernels (LynxOS, pSOS, Chorus, VxWorks, …)
and less classical real-time Java solutions (PERC
[13] and jBED [8]), we have chosen to
experiment with VxWorks because of its 100%
Java certificate. Moreover, a whole Java solution
that comes with this kernel, called Tornado For
Java [21], gives functionalities close to those of
Embedded Java. All the other VxWorks features
(analysis tools etc.) also actively participate in
fast development cycles.

A Java-based Experimentation Platform

The so settled spatial experimentation platform is
composed of:
• a well-known hardware component

(PowerPC) because of its potential good
resistance to
cosmic rays –
with 8 Mb RAM.
• A trusty
commercial real-
time kernel
(VxWorks).
• A high level

object-oriented
programming
environment

(Java).
• Development

tools (crossed-
development) and
test tools made by

third parties.
The whole solution refers to on-the-shelf
technology (see Figure 2), from the hardware
layer to the application layer which reduces
system’s cost and greatly increases system’s
reliability.
All the potential limitations previously described
now have to be tested. First, very short response
time and real-time task scheduling in the payload
software is essential for the new generation of
spatial broadband communication systems.
Therefore, we have to prove first that it is
possible with a real-time kernel to schedule Java
tasks in order to respect hard real-time
broadband communication constraints.

Figure 1 : a Java Platform Layer vs a Java
Platform Module

Ludovic Apvrille 13th AIAA/USU Conference on Small Satellites
5

Figure 2 : Towards On-shelf Technologies

Experimenting Java Tasks Scheduling on
VxWorks

Experimentation Methods

A two-step approach has been adopted for
studying real-time Java tasks scheduling on top
of a real-time
kernel. The first
step consists in
using well known
models to obtain
results based on an
analytical model.
That model gives
the ideal and
optimum results that
should be obtained
(theoretical
scheduling politics,
theoretical utilization
factor and so on). The second step is an
experimental validation of the first one based on
a realistic satellite simulation platform. The first
test is composed of tasks compliant with the
theoretical model, whereas the second test uses a
set of tasks whose scheduling profile is similar to
the one found in communication satellites.
Testing Java tasks scheduling implies to use
advanced test tools dealing with quite low time
resolution. First a Tornado tool, WindView [20]
performs graphical systems events analysis.
Secondly, our own programmed tool allows fast
scheduling politics analysis. Both tools use
kernel instrumentation and Java task
instrumentation. Third, an advanced
instrumentation has been written in assembler
language, using the timer register of the
PowerPC. This method is specially designed for
accurate context switching time measurement.
All these tools used in a low priority mode were
found to be minimally intrusive.

Experimentation of Analytical Models

Evaluating Java tasks scheduling on VxWorks
first implies to prove that it is possible to define
a scheduling model which Java tasks will always
follow. Consequently, the test-bed should first
demonstrate that every kind of disturbing
elements in the system (for instance a fault
happening in a task) would not modify the
system so that critical deadlines could be missed.
Secondly, some events answer time should be
bounded. This issue entails that system’s

overhead and task switching time must be as low
as possible and in any case be bounded. This
leads us to consider the utilization factor as a
mean for analyzing system overhead.
Two well-known and representative classes of
real-time scheduling have been used: RMA (Rate
Monotonic Algorithm), EDF (Earliest Deadline

First) algorithm. As
these scheduling
algorithms are
simple, they generate
a very light overhead.
With the chosen

RMA
implementation

(static priorities are
applied to tasks), the
scheduling policy
overhead is null, as

once a priority is applied
to a task, nothing else

has to be done on system events (switching or
else). Concerning the EDF algorithm
implementation (dynamic priorities), the
overhead is quite low: the test shows that on our
tasks scheduling, the time used for reevaluating
priorities is not really significant compared to the
evaluated elements. In fact it is only significant
when testing task switching time. So better
accurate switching time are calculated only with
the RM algorithm.
The utilization factor and scheduling policies are
tested with the two algorithms.
Different kind of tasks are used for the test. The
system is composed of 2 to 8 tasks, that perform
basic calculation. Thus, they are independent
from each other according to what the two
algorithms assert. Two-tasks applications
allowed accurate tests whereas 8-tasks
applications are more representative of classical
communication satellite applications. All these
Java tasks are first modeled using the UML
language [2]: they all inherit from the
PeriodicTask class which itself extends the
standard Thread class. Then, the tasks are
programmed using the Java language. The
scheduler is also considered as an application
task and therefore extends the Java Thread class.
The RMAScheduler class and EDFScheduler
class inherit from the Scheduler class. So both
schedulers and tasks are Java task objects. They
are all scheduled by the real-time VxWorks
scheduler. Thus, both RMA and EDF algorithms
are Java programmed.

Ludovic Apvrille 13th AIAA/USU Conference on Small Satellites
6

Three application elements must be evaluated:
correct scheduling of tasks according to the
chosen model, the switching time and the
utilization factor.
The two scheduling policies have been tested
using multiple scenarios. For each one, we check
if the tasks are scheduled according to the
theoretical model. As evoked previously, the
system’s overhead analysis is based on the
utilization factor, denoted µ, which is given by
the following formula (equation 1):

1
1

≤= ∑
=

=

ni

i i

i

p

c
µ (1)

where :
• ci is the maximal execution time of task Ti

• pi is the period of task Ti

• n is the number of tasks

By minimizing the period pi of each task, it is
possible to increase the utilization factor. This
can be done progressively until the system is no
longer scheduled correctly. We assert that the
maximum system utilization factor for this set of

tasks according to the chosen model is reached
when the decrease of any period, pi, entails that
the considered set of tasks cannot be correctly
scheduled. Tools tell us whether the system is
correctly scheduled. Therefore, by analyzing the
system each time a period task is changed,
generally lowered, the maximum utilization
factor can be found.
We compared the performances of these 2
scheduling policies using the Solaris Kernel and
VxWorks real-time kernel. This kind of
comparison is hard to realize on two systems
which are composed of different
microprocessors, different JRE and of course
different kernels. These differences imply that
the same tasks don’t last the same time on each
system. However, by using the utilization factor
experiment, the evaluation is easier to perform
because the system’s overhead measurement is
not related to the global performance of the
considered platform.
As expected, better results were obtained with
VxWorks system than with Solaris.
The tests on VxWorks show that as long as a set
of tasks can be scheduled according to the
analytical model, the effective scheduling done
by the real-time kernel will always work as

Figure 3 : Java Tasks Scheduled by the VxWorks Kernel

Ludovic Apvrille 13th AIAA/USU Conference on Small Satellites
7

expected. Figure 3 shows the perfect Java task
scheduling on the VxWorks system . Conversely,
on the Solaris kernel, even when working with a
minimal set of formally schedulable processes in
a privileged mode, scheduling errors appear.
These scheduling errors demonstrate the
negative impact of system overhead on the
scheduling algorithm.
Another test evaluated the switching time. On
the Solaris system, the results were quite bad
whereas on the VxWorks system the results
obtained are compatible with hard real-time i.e.
less than 100 µs.
The three curves (see Figure 4) depict the
utilization factor experiment results.

• RMA utilization factor results under Solaris
are identical to those of RMA VxWorks.
They are in-fact close to the theoretical
maximum, as a necessary condition of the
RM algorithm is that the system is certain to
be scheduled if (equation 2):

µ = ≤ −
=

=

∑ c

p
ni

ii

i n
n

1

12 1()/ (2)

During the test, this assertion was almost
always verified on both systems (Solaris,
VxWorks). The obtained curve is, in fact
closer to a line than the theoretical curve. Of
course, on both systems, the set of tasks
with a utilization factor really higher than

)12(/1 −nn are scheduled correctly
(sufficient condition). But the curve shows
the worst situation obtained.

• Secondly, we notice that the system
performs better with the EDF algorithm on
the VxWorks system than on the Solaris

system. Moreover, it is more resistant to high
number of tasks than the Solaris system, due
partially to the fact that context switching
time is higher on Solaris systems and so the
overhead increases faster than on VxWorks
systems, when the tasks number increases.

The results are, in fact, very good using the EDF
model on VxWorks because the graph shows the
worst case. But in most situations (other set of
tasks), the utilization factor was higher than the
two EDF curves show.
So, with the help of a formal approach, the tests
permit us to conclude that the system is very
efficient in scheduling Java tasks. Thus, the
results demonstrate that scheduling Java tasks on

top of a real-time kernel like VxWorks is as
efficient as scheduling other classical tasks:
scheduling Java tasks on a real-time kernel is
compatible with standard hard real-time
scheduling.

Experimentation First Results on a Large Scale
Spatial Application

The first results need to be validated on a large
scale application that could certify that the real-
time scheduling is compatible not only with
periodic tasks, but also with spatial tasks.
The test environment is composed of a Solaris
workstation simulating a satellite ground station
and the target system simulating a L.E.O satellite
which communicates with several antennas
precisely located on earth. The host and target
communicate using an Ethernet link.
Our system is composed of two on-going tasks,
one periodic task, and five sporadic tasks which
are very close in job and time specification to
other actual projects tasks. Another periodic task
realizes fault injection and a sporadic one
simulates the antennas by generating data

Figure 4 : Evolution of the Utilization Factor in Function of the
Number of Tasks

0

0,2

0,4

0,6

0,8

1

2 8

tasks number

µ
VxWorks EDF

Solaris EDF

Solaris RMA

Ludovic Apvrille 13th AIAA/USU Conference on Small Satellites
8

packets. As mentioned before, most of the tasks
were either periodic or sporadic. Each task is
assigned a static priority to reduce context
switching time overheads.
Simulating this described system is very
interesting as our first tests are in an abstract
formal framework. Thus, it was quite
outstanding to visualize hard real-time spatial
tasks, programmed in Java, being correctly
scheduled and answering in time to urgent
injected events. This simulation platform enable
us to confirm the first results. Moreover most of
the Java synchronization capabilities are tested
and demonstrate their high performance.
But an important noticeable limit to all these
tests must be mentioned: the garbage collector.
During all the tests it is disabled. Is its
unpredictable behavior compatible with the
perfect obtained real-time scheduling ?

Dealing with the Garbage Collector

As demonstrated before, scheduling real-time
Java tasks is very efficient when the garbage
collector is disabled. But deterministic
scheduling cannot be obtained without
deterministic memory management. How could
we deal with both a perfect memory
management and the JRE garbage collector ?
The Java classical “mark and sweep” garbage
collector works in two different phases. First, it
scans the memory finding unreferenced objects
and marking them. Then it frees memory related
to these objects and compacts it.
The Java garbage collector has two functioning
modes. In the asynchronous mode (the default
one) the garbage collector will start each time the
system is idle, or whenever the programmer calls
it explicitly, or whenever there is a request for
memory and none is available. In the
synchronous mode, the garbage will only start on
explicit call or when there is a memory need.
The first mode is the most efficient one for
classical applications as the programmer really
oughtn’t worry about freeing memory. This
mode is mainly compatible with graphical user
interfaces as the garbage collector has enough
time to run between two inputs. But on real-time
embedded applications with hard constraints, is
there a better mode to use and are there garbage
collector options or programming methods to
achieve a deterministic dynamic memory
management ?

First, tests are made to fully analyze how the
collector works. Experimental results are
obtained using the simulation platform
previously described. A thread simulating
communication functions enables us to
experiment with an environment that
dynamically creates and frees objects.
Better results are obtained on the VxWorks
kernel than on Solaris: the VxWorks garbage
collector starts every second according to the
system’s idleness percentage. Each time it runs
for about the same time (60ms), scanning the
memory during approximately 30 ms, and then
sweeping and compacting the memory during
approximately 30 ms. On the Solaris platform,
we got non deterministic results.
Using the synchronous mode, the garbage
collector doesn’t start on both kernel without an
explicit call to the System.gc() method. With
explicit call, results obtained are the same as
mentioned with the asynchronous mode.
Hence, those tests exhibit another important
problem: the garbage collector cannot be
preempted by other Java tasks during its work.
More precisely, it can be preempted during the
first phase (initialization and memory scanning)
but not during the last 30 ms (sweeping and
compacting) which correspond to a very critical
job. Moreover, the garbage collector’s run time
is not theoretically bounded. Non Java tasks with
a higher priority than the garbage collector can
preempt it at any moment. But as portable spatial
applications should be programmed only with
Java tasks, solutions must be found to cope with
this issue.
Two ideas could provide potential solutions to
the memory management problem. The first one
is a programming solution which consists in
allocating memory only during an initialization
phase. The second is to integrate the garbage
collector’s scheduling in the design of the real-
time application.

In the first solution proposed, the main idea is to
authorize dynamic allocations during a single
phase, then run the collector and just after enter a
mode in which garbage collection is prohibited.
The different application states introduced by
such an approach are described in Figure 5. In
the initial state, the system has not been booted
yet. From state 1 to state 2, the kernel boots and
then starts the Java environment from state 2 to
3. Then the spatial application is ready to start.
The first application task, called ReinitMemTask
must allocate every object used further: tasks

Ludovic Apvrille 13th AIAA/USU Conference on Small Satellites
9

Figure 5 : Enforced Application States

objects, of course, and other data objects. Once

the allocations are complete, the garbage
collector is forced to run. Then the application
can begin its normal work.

In state 5, memory allocation must not be made.
In fact, more memory can be allocated but as the
collector will not run, the application will only
be able to work until memory is full. Obviously
the most efficient way to avoid memory problem
in this state is just not to use at all object
allocations (notably the ‘new’ operator).
If any exception occurs (memory management
exception, memory fault or other), all the
allocations are deleted (state 6) and the
application is reinitialized in state 3. This service
interruption lasts about 4 seconds (non
optimized). Because of satellite visibility
periods, actual manual reboots may last more
than an hour ! Note that in both case all on board
data are lost.
This method implies a perfect knowledge of the
application code for programmers must be able
to a priori know the allocated objects. Moreover,
as the Java exception mechanism uses memory
allocation (a Java exception is a object), its use
must be severely limited to critical cases.
A first version of our embedded satellite
environment has been programmed with all
constraints mentioned above. Though they may

appear very restrictive, they turned out to be
quite easy to respect.
About data storage - our application simulates a
communication routing node -, linked lists are
programmed: objects are allocated in the first
phase, just like arrays that represent all the
needed memory. So, messages are stored in free
objects (we mark our objects whether they are
free or not using marked arrays) and added to
free blocks in arrays. The linked list package
programmed is quite easy to use and very
efficient.
Naturally, this kind of programming method has
limitations: it is not possible to program blindly
(but has it already been possible ?). Thus, the
programmer must pay particular attention to
object allocations and to the use of the exception
mechanism when dealing with pre-existent Java
code (Java standard API for example).

The other main idea experimented to deal with
the garbage collector, is to consider it as an
application task. Indeed, during the first test:
• the garbage collector works as a real task of

the VxWorks system with a low priority,
except that it cannot be preempted during its
critical part.

• Its periodicity and starting time can be finely
tuned.

• Even if its duration cannot be theoretically
bounded, it has never ran more than 70 ms
and during half that time, it can be
preempted. So on a one second periodic
spatial application, urgent event could not be
treated by Java tasks during 3.5% of the
time. Of course, C tasks could deal with
those urgent events.

Accepting those three assertions, the second
solution allows dynamic allocations to be used at
any time, as long as the collector considered as
an application thread is periodically activated.
Thus, from the delays obtained by performance
measures on the garbage collector and by
limiting urgent events to precise time intervals,
classic Java applications using dynamic
allocations could be programmed on top of a
VxWorks kernel.

Both described solutions induce some
limitations. The first one restricts the Java
programming whereas the second one forbids the
processing of urgent tasks during the activation
periods of the garbage collector. Moreover, if
some programming policy is adopted in the Java
code, it seems difficult to define experimentally

Ludovic Apvrille 13th AIAA/USU Conference on Small Satellites
10

the maximum bound for the duration of garbage
collector. Therefore, it seems interesting to take
the better of the two solutions: most allocations
have to be made during an initialization phase
and then the use of the garbage collector should
be severely restricted during the second phase.
Thus, the exception mechanism could be used.
Last, let’s remark that both solutions were
proved to be efficient and reliable enough to be
used, which does not mean they cannot be
improved ! Better solutions would probably be a
mixture of the two, using a real-time garbage
collector - garbage specific memory areas for
example - which would permit to preempt it.
Much work has already been made on real-time
garbage collectors. Currently, no perfect
solutions have been proposed. The one proposed
in this paper has the advantage to have been
specifically tested for spatial embedded system.

Conclusion

This study demonstrates that object technology
and the Java environment can be used to ensure
the real-time constraints needed for the new
generation of broadband communication
satellites are met. Indeed by analyzing the real-
time scheduling behavior and finding better
deterministic memory management solutions, we
have shown that the general robustness and
reliability of Java real-time embedded
applications can be greatly improved. However,
one must not forget that as the hardware used is
not a-priori fully cosmic-ray resistant, advanced
fault-tolerant mechanisms must be added to the
system.
Thus, very simple fault-tolerance mechanisms
have been tested on the simulation platform. A
basic checksum mechanism which consists of
using the Java exception mechanism to repair
mistakes has been added to the memory
management. Hence, in case of major errors, the
application is unavailable for a maximum of 4
seconds only.
The general kernel stability and the application
stability has also been tested by running it for
several days and testing its capacity to the limit
(sending wrong communication packets,...). No
unexplained crashes occurred.
All these studies demonstrates that object
technology is mature enough for real-time
embedded systems. Of course, this simulation
was only the first step of an approach which
must now be validated in space. Future work will
be dedicated to the study of dynamic

configuration capabilities offered by this
environment and its impact on the real-time
scheduling and memory management. Such an
approach would permit us to dynamically extend
an embedded application while insuring a fully
deterministic real-time behavior. Finally, we aim
to combine our previous work in the area of real-
time system specifications [15] [16], with Object
Technology in order to provide software
engineering methodology and related tools for
designing object based distributed real-time
systems.

References

1. J. Bates. CaberNet Report: “the state of the
art in distributed and dependable
computing”, University of Cambridge, UK,
June 1998

2. K. Bergner, A. Rausch, M. Sihling. “Using
UML for modeling a distributed Java
application”. Technical report. Technische
Universität München, Institut für informatik.
TUM-I9735, July 1997

3. G. Blair et al. “A programming model and
system infrastructure for real-time
synchronization in distributed multimedia
systems”. IEEE journal on selected areas in
communications, vol. 14, n°1, January 1996

4. M. Bunnell, “Mixing Java and C in
Embedded Systems”. Real-time Magazine,
Internet Embedded – 98/1

5. C. Creel, B. Meyer. “Is object technology
ready for the embedded world ?”. JOOP, the
Journal of Object-Oriented Programming,
March/April 1998

6. P.C. Dibble. “Thoughts on the Java subset
APIs”. Real-time Magazine, Internet
Embedded – 98/1

7. P.C. Dibble. “The reality of real-time Java”.
Computer design, August, 1998

8. Esmertec inc., Jbed Whitepaper,
http://www.jbed.com/pages/products/rtos/wh
itepaper/index.html

9. A. Fuggetta, G. P. Picco, G. Vigna.
“Understanding code mobility”. IEEE
transactions on software engineering, vol.
24, N°5, May 1998

10. J. Gosling, H. McGilton, “The Java
Language Environment: a White Paper”, Sun

Ludovic Apvrille 13th AIAA/USU Conference on Small Satellites
11

Microsystems Inc., 1995.
http://java.sun.com/whitePaper/java-whitepaper-
1.html

11. R. Henriksson, “Predictable Automatic
Memory Management for Embedded
Systems”, OOPSLA’97 Workshop on
Garbage Collection and Memory
Management, Atlanta, Georgia, October,
1997

12. H. McGhan, M. O’Connor. “PicoJava: a
direct execution engine for Java bytecode”.
IEEE computer, 0018-9162/98

13. NewMonics Inc., PERC Product
Information,
http://www.newmonics.com/WebRoot/perc.i
nfo.html

14. T. Roussel, J.P. Taisant. “Optimizing space
constellations for mobile satellite systems”.
In JPL, proceedings of the third international
mobile satellite conference, IMSC’93, p163-
168.

15. P. Sénac, F. Fabre, E. Chaput, M. Diaz, “A
Model and Toolkit for the Formal
Specification of Weakly Synchronous
Systems”, Proceedings of the IEEE
Conference on Systems, Man and
Cybernetics, Vancouver, Canada, October
1995.

16. P. Sénac, M. Diaz, E. Chaput, F. Fabre, P. de
Saqui-Sannes - "Un modèle formel
unificateur pour les systèmes temps réel" -
Actes de RTS'96 (Real-Time Systems) -
TEKNEA - Paris - Janvier 1996.

17. Sun Microsystems Inc., EmbeddedJava
application environment,
http://java.sun.com/products/embeddedjava/

18. Sun Microsystems Inc., HotSpot: The Java
HotSpot virtual machine architecture,
http://java.sun.com/products/hotspot/whitepa
per.html

19. Sun Microsystems Inc., PersonalJava
application environment,
http://java.sun.com/products/personaljava/

20. WindRiver systems, WindView 2.0,
http://www.windriver.com/products/html/wi
ndview2.html

21. WindRiver systems, Tornado for Java,
http://www.windriver.com/embedweb/html/t
orn-java.html

