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We report the first (to our knowledge) field demonstration of simultaneous wind and temperature measure-
ments with a Na double-edge magneto-optic filter implemented in the receiver of a three-frequency Na Dop-
pler lidar. Reliable winds and temperatures were obtained in the altitude range of 10–45 km with 1 km
resolution and 60 min integration under the conditions of 0.4 W lidar power and 75 cm telescope aperture.
This edge filter with a multi-frequency lidar concept can be applied to other direct-detection Doppler lidars
for profiling both wind and temperature simultaneously from the lower to the upper atmosphere. © 2009
Optical Society of America

OCIS codes: 280.3640, 010.3640, 290.1310, 010.3920, 120.0280, 300.6210.

Simultaneous profiling of wind and temperature
from the lower to the upper atmosphere is a capabil-
ity urgently needed for whole-atmosphere research
and wave-coupling studies from the wave source re-
gion in the lower atmosphere to the wave impact re-
gion in the middle and upper atmospheres. Doppler
lidars based on Fabry–Perot interferometers and io-
dine filters have achieved wind [1–3] or temperature
[4] measurements but not both, unless a temperature
channel is added to the wind lidar. This is because
only one frequency is used in the lidar transmitter,
leading to a single ratio for either wind or tempera-
ture derivation. In an earlier publication [5], we pro-
posed to incorporate a Na double-edge magneto-optic
filter (Na-DEMOF) into the receiver of a three-
frequency Na Doppler lidar. The three frequencies of
the lidar would result in three independent ratios,
enabling simultaneous wind and temperature mea-
surements from the troposphere to the stratosphere
[5]. Combined with the Na Doppler lidar measure-
ments in the mesosphere and lower thermosphere
(MLT) [6], it is possible to profile both wind and tem-
perature from the lower to the upper atmosphere. In
this Letter, we implement the hot-cell Na-DEMOF
that we developed and characterized in [5] into the
receiver of the Colorado State University (CSU) Na
Doppler lidar. The initial sky tests demonstrate the
wind and temperature profiling from 5 to 50 km with
this multi-frequency edge-filter technique.

Illustrated in Fig. 1 is the experimental setup used
in the first sky test on 16 October 2008 at Fort Col-
lins, Colorado (40.6°N, 105°W). The CSU Na Dop-
pler lidar is a dye-ring-laser-based system [6] that

operates at three frequencies sequentially: fa
=−651.4 MHz and f±= fa±630 MHz relative to the Na
D2 line center near 589 nm. The laser beam (�20 mJ
per pulse at 50 Hz) is split and then transmitted to
the atmosphere in three directions for vector wind
measurements. Three telescopes are pointed to these
three directions to collect backscattered photons. The
east-pointing telescope (20° off-zenith) with a diam-
eter of 75 cm was chosen as our test channel (�17%
laser power). The light collected by the telescope is
coupled to a multimode fiber with a 1.5 mm core that
directs the light to the Na-DEMOF receiver chain. As
described in [5], the Na cell in medium magnetic field
acts as a double-edge filter, so different absorptions
are experienced by the left- and right-circular polar-
ization components of the light that passes through
the polarizer (P1). Exiting the cell, the intensity ratio
of these two components is a sensitive function of

Fig. 1. Experimental setup for the field tests of a hot-cell
Na-DEMOF with the three-frequency Na Doppler lidar.
The Na cell temperature is stabilized within ±0.1°C at
160°C, and the magnetic field is 1350 Gauss.
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Doppler wind and temperature [5]. To measure this
ratio, these two components are converted to two
crossed linear polarizations by the follow-up quarter-
wave plate and then separated by the polarized beam
splitter (P2) to two photomultiplier tubes (PMTs)
running in photon-counting mode. The PMT signals
are discriminated and fed to the computer multichan-
nel scaler card for data acquisition (DAQ). The bin
width was set to 0.5 �s, corresponding to a range res-
olution of 75 m. Typical lidar raw data for this test
are shown in Fig. 2(a). Since the lidar returns at each
of the three frequencies are split into two channels
corresponding to the left- and right-circular polariza-
tions, we ultimately obtain six channels of signals.
The relative strengths of these signals resemble what
we expected from the simulation in [5]. In general,
we have photon counts NR−�NRa�NR+�NL+�NLa
�NL− around 220 K and 0 m/s, where L and R rep-
resent the left and right channels, while �, �, and a
denote the lidar operating frequencies of f+, f−, and fa.
The decrease of signals below 3 km is due to the re-
duced overlap between the receiver field of view and
the lidar beam divergence.

The data-processing procedure for deriving wind
and temperature is not as straightforward as single-
frequency direct-detection Doppler lidars, but rather
close to the ratio techniques applied in the Na Dop-
pler lidars [6]. Using the metrics RW and RT proposed
as Eq. (1) in [5], we compute two ratios from the pre-
processed lidar data: RW from f+ and RT from f− fre-
quencies. On the two-dimensional theoretical calibra-
tion curves given as Fig. 3 in [5] we draw two straight
lines at the two ratios on the horizontal and vertical
axes, respectively. The cross point of these two lines
gives a point on the calibration curves, from which
we infer the line of sight (LOS) wind and tempera-
ture that generate these two ratios. This lookup table
procedure is done for each altitude, and thus we ob-
tain the range-resolved profiles of LOS wind and
temperature. Two major issues in the data processing
are the signal-to-noise ratio (SNR) and the system

calibration. In preprocessing, the raw data are sorted
by frequencies and channels and then integrated to
yield 1 km and 30 min resolutions to improve the
SNR. The photon returns from 130 to 140 km are
used to estimate and subtract the background counts
from the integrated profiles. The theoretical calibra-
tion curves are calculated under ideal conditions,
e.g., the identical optical efficiency for the left and
right channels, the linear response of PMTs to any
count rate, and aerosol-free conditions; however, the
actual situation deviates from these ideals. Thus,
careful calibration is needed in order to derive the
two ratios RW and RT properly. We introduce two
types of calibration factors in our analysis: the factor
A to account for the different optical efficiencies in
the two detection channels, and the B factors to ac-
count for PMT nonlinearity for different channels
with different count rates. We manually rotate the
quarter-wave plate by 90° to compare the photon
counts of the same signal detected by the two differ-
ent channels; thus the calibration factor A is found to
be 4.07. As for the B factors, they should be, in prin-
ciple, derived from an independent PMT calibration.
Lack of a calibrated light source prevents us from do-
ing so. For this demonstration, we calibrate the mea-
surements to the radiosonde data at Denver (39.8°N,
104.9°W), 88 km distant from CSU, by introducing
two altitude-independent scaling numbers: one for
NR+ and another for NR−. Through minimizing the
standard deviations between the lidar and radio-
sonde data in the altitude range of 8–12 km, these
two numbers are determined to be 1 and 1.15, respec-
tively. The retrieved LOS wind and temperature for
this first field test are plotted in Fig. 3. The low quan-
tum efficiency (QE, �2% at 589 nm) of the two PMTs
(EMI 9214B) is the main cause for the measurements
being limited to �16 km.

To extend the measurement range, we used a PMT
(Hamamatsu H7422) with high QE ��40% � and split
more laser power ��0.4 W� to boost up the signal lev-
els in the followup field tests on 11 December 2008

Fig. 2. (Color online) Raw lidar data profiles obtained on
(a) 16 October 2008 with two PMTs and (b) 11 December
2008 with one PMT. Vertical resolution is �z=75
�cos�20° �=70 m.

Fig. 3. (Color online) Retrieved LOS wind and tempera-
ture on 16 October 2008. The integration time �t is 30 min,
and the vertical resolution �z is 1 km. The wind and tem-
perature errors are about ±1.1 m/s and ±2.2 K at 9.8 km.
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and 9 January 2009. Unfortunately, only one
high-QE PMT was available at the time, so we had to
switch between polarizations every 5 min by rotating
the quarter-wave plate 90° inside the Na-DEMOF.
This allowed PMT1 to detect the two polarizations se-
quentially. A chopper was used to block the strong
low-atmosphere returns to protect the PMT. The ob-
tained raw data in Fig. 2(b) are nearly 100 times
stronger than the first test, and the Na fluorescence
is visible from 80 to 105 km. In the data processing
the calibration factor A is not needed for this setup,
since the same optical path and PMT were used.
But half of the integration time is lost when switch-
ing between the two polarizations. The altitude-
independent scaling numbers are determined to be
1.19 and 2.85 by minimizing the standard deviations
from 25 to 30 km. The derived LOS wind and tem-
perature are successfully extended to nearly 50 km
[Fig. 4]. Between 10 and 30 km, both the retrieved
wind and temperature match the radiosonde data
well, considering these observations are 88 km and a
few hours apart; from 10 to 45 km, they are close to
the model data of the Mass Spectrometer Incoherent
Scatter (MSIS) and the United Kingdom Met Office
(UKMO). This is true for both field tests with the
high-QE PMT. Wavy structures observed in the wind
and temperature below 40 km are likely caused by
dynamic activity in the atmosphere; however, the
large shears above 40 km are likely due to photon
noise. The lower limits of measurement uncertainties
calculated using Eq. (2) given in [5] are shown as
�VLOS and �T in Fig. 4.

These field tests are the first (to our knowledge)
proof of concept for this Na-DEMOF-based multi-
frequency Doppler lidar to measure wind and tem-
perature simultaneously from 10 to 45 km, and fu-
ture work will lead to an extension of this range.
Currently, the deviation of temperatures from the ra-
diosonde below 10 km is due to the presence of aero-
sols. The Mie scattering introduced by aerosols is
preserved in NR− but cut off in NL−, so RT decreases
with stronger Mie scattering, leading to colder tem-

perature if inferred from the aerosol-free calibration
curves. For future improvement, we will form a third
ratio from the signals in frequency fa and use three-
dimensional calibration curves to derive wind, tem-
perature, and aerosol backscatter ratio in the lower
atmosphere. The upper altitude is currently limited
by photon noise to precisions of ±10 m/s and ±15 K.
The low Na lidar power at 589 nm is a drawback of
our technique. Nevertheless, the measurements can
be extended to altitudes above 45 km with a larger
telescope, better receiver design, and new lasers with
higher power at 589 nm. The Nd:YAG-laser-based
Rayleigh lidars have been capable of measuring wind
with spectral analysis using Fabry–Perot or iodine
filters or of measuring temperature with combined
Raman and integration techniques; however, simul-
taneous wind and temperature capability has not yet
been demonstrated for Rayleigh Doppler techniques.
Owing to the combination of the multi-frequency
transmitter and the double-edge magneto-optic filter,
the simultaneous measurements of wind, tempera-
ture, and aerosol in a relatively large altitude range
is a major advantage of Na-DEMOF technique over
these systems.

In conclusion, our field tests demonstrate the si-
multaneous profiling of wind and temperature with a
Na-DEMOF implemented in the receiver of a three-
frequency Na Doppler lidar. Under the current condi-
tions of �0.4 W lidar power and 75 cm telescope, re-
liable winds and temperatures are obtained from
10 to 45 km at resolutions of 1 km and 60 min, in
agreement with radiosonde and model data. Such a
multi-frequency edge-filter technique can be applied
to other direct-detection Doppler lidars for profiling
both temperature and wind. Combining with the
wind and temperature measured by the resonance
Doppler lidar in the MLT region, it is possible to pro-
file wind and temperature simultaneously from the
lower to the upper atmosphere. Such capability could
lead to new scientific endeavors, including various
dynamics studies. To achieve reliable lidar measure-
ments independent of radiosonde calibration, the
photodetectors must be calibrated in future work.

This research is supported by the CIRES Innova-
tive Research Program, the National Science Foun-
dation (NSF) ATM-0545353, ATM-0545262, and
ATM-0545221, NSF CAREER ATM-0645584, and
NSF ATM-0723229.
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Fig. 4. (Color online) LOS wind (left) and temperature
(right) measured on 9 January 2009 at Fort Collins, Colo-
rado. Radiosonde and model winds are projected to LOS.
�z=1 km and �t=60 min.
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