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Abstract

Increasing interest in small spacecraft has fostered a variety of new mission concepts.  Within this
busy framework, one particular family of mission concepts is taking shape – spacecraft formations.
Formation flying entails the organized collection of satellites in a region of space to do a certain job.
Missions of this kind pose some interesting design challenges.  Most notably, active control of a formation
is a fairly popular topic.  The aim of such research is to devise a means of stabilizing a loosely bound
system while conserving valuable resources.  Another area, which seems to be lagging in attention, is the
area of formation assembly.  Formation assembly involves getting the vehicles to some rendezvous point
prior to actually constructing the formation.  Equal care should be taken with system resources at this stage.
In this paper, a brief overview of these formation flying concepts will be given.  The discussion will then
focus on analyzing a hypothesized formation assembly strategy.  The emphasis will be on using precious
resources such as time and fuel as a performance metric for the strategy under various conditions.  The
derived relations will provide insight about what one might expect to achieve operationally when
attempting to assemble a group of satellites.

Introduction

Aerospace engineers endeavor to use new
technologies in order to develop more intricate
space missions.  When applied, these missions help
to meet the ever-increasing complex goals of
advancing technology.  One example of this type of
symbiosis is spacecraft constellations, or large
groups of similar spacecraft.  Recent advances in
technology have reduced the size and lowered the
power consumption of electronic components and
sensors.  This has made it feasible to mass-produce
and launch fleets of small space vehicles.  Size is
an issue, since a smaller satellite will generally cost
less, require fewer resources to build and operate,
and can be more easily mass-produced than a
single, large satellite.  Constellations can also have
some performance benefits over their larger,
singular counterparts, especially when it comes to
issues such as area of coverage and reliability.
When launched, fleets of these small vehicles can
be used to meet other technological demands of
society, such as the increased demand for sharing
information and data around the planet.

Within the scientific community, there is
great interest in a particular subset of spacecraft
constellation missions.  That subset is the one of
spacecraft formations.  Spacecraft formations are

associations of space vehicles that arrange
themselves so as to perform a particular function.
Each individual vehicle is an important part of a
larger system.  Individual vehicles may operate
independent of their counterparts, but all vehicles
must operate and communicate together to achieve
the overall goals.  When spacecraft are arranged in
a particular formation as part of their intended
mission, they are said to be participating in
“formation flying.”  Formation flying has a wide
range of useful applications.   Examples include
stereoscopic measurement of the Earth’s
atmosphere and its surface, interferometric imaging
of deep-space objects, and gathering real-time data
of field quantities, such as the Earth’s magnetic
field.

But, challenges do exist.  First and
foremost is the challenge of knowing and
controlling the absolute and relative positions of
the spacecraft within the formation.  Certainly the
task of precisely determining a spacecraft’s
location is a formidable one, but this problem is
then compounded by the need to communicate that
position to all other spacecraft in the group (and in
turn interpret their positions) and then act
appropriately on that information.  Solving for the
absolute and relative attitudes of the spacecraft
poses similar problems.  Another important topic,
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and one that will be a focus of this discourse, is
that of resource management.

Resource management is essentially the
attempt to know (and if possible, control) the
consumption and distribution of mission-critical
quantities.   Examples of these quantities include
power, fuel, mission time, and CPU memory.  It is
important to have such information available, since
a failure or lack of resources on one vehicle may
prevent a formation from achieving its overall
mission.  This is especially the case when
considering a resource like fuel, which cannot be
replenished.  In order to prepare, the design team
must carefully analyze its estimated resource
constraints, and then choose appropriate operations
plans or algorithms.  For example, hypothesize two
control algorithms under a specific flight condition.
In algorithm 1, spacecraft A uses 4 units of fuel
while spacecraft B uses 1 unit.  In algorithm 2,
both spacecraft use 3 units.  Algorithm 1 is
attractive because it uses less overall system fuel (5
units vs. 6 units), but algorithm 2 distributes fuel
usage evenly, which may be more desirable if the
given flight condition is to be encountered multiple
times.  Otherwise, spacecraft A will run out of fuel
before B (unless it is designed to carry more fuel,
but that’s a different topic).

The Space Systems Development
Laboratory (SSDL) at Stanford University provides
an excellent atmosphere in which to encounter and
analyze these types of problems.  The main aim of
SSDL is to provide students with a broad range of
space system engineering skills.  This includes the
design and construction of small, innovative
spacecraft.  Researches are also conducted in the
fields of spacecraft operations and space systems
simulations.  Beginning students in the lab are
given the opportunity to work as part of an all-
student design team on a Satellite Quick-Research
Testbed, or SQUIRT satellite.  These satellites
integrate commercial off-the-shelf type
components into a platform capable of
demonstrating new and innovative spacecraft
technologies.  Advanced students are then able to
work on more complex, detailed satellite projects,
such as the Orion program.

The Orion mission is a low-cost mission
aimed at developing a system of three satellites
[Ref 2].  The trio of space vehicles will be capable
of performing a formation flying mission.  The
project team will identify and implement
technology available to achieve this goal.  A low-
cost, low-power, multi-channel GPS receiver will

be used to determine each satellite’s absolute
position and attitude.   The exchange of position
and attitude data will be handled by a special cross-
link communication system.  Pre-planned,
organized maneuvers and formation control
algorithms will be commanded at a high-level from
the ground, and will be governed locally by real-
time, autonomous flight control software.
Formation adjustments and control thrusts will be
performed by a cold-gas jet propulsion system.
The Orion system will demonstrate repeatability by
assembling and disbanding the prescribed
formation a number of times over the projected
one- to two-month mission lifetime.  The Orion
mission objectives and resource constraints have
provided some of the motivation behind the
investigations presented here.

Research Focus

To summarize, the interest in using an
economy of scale in space missions has been cited.
The interpretation is that it is desirable to mass-
produce and launch large quantities of smaller
spacecraft to accomplish the same job as a single,
large spacecraft.  In this manner it is possible to
lower costs while increasing other desirable system
characteristics such as robustness and area of
coverage.  Furthermore, it has been noted that
organized, formation flying clusters of small
spacecraft would provide a useful tool for scientific
exploration and military surveillance. Individual
vehicles would form the disconnected parts of a
larger, “virtual” spacecraft.  A communications
scheme, rather than a data bus, provides the
connection between parts.  The Stanford Orion
project aims to verify these assertions by
successfully flying a set of small space vehicles in
a controlled formation.

Once the motivation behind constellations
of small satellites has been suitably justified,
attention may be turned towards some of the more
detailed issues.  Certainly one of the most obvious
challenges has to be that of actively controlling the
spacecraft.  The effect of the space environment on
these distributed systems will be a new avenue to
explore.  As will be shown later, small variations in
orbit size between spacecraft will correspond to
slight variations in orbital period. Minute
differences in atmospheric drag and gravitational
forces encountered by individual spacecraft can
build up over time.  A single, large spacecraft
would account for these perturbations as part of its
dynamic behavior.  A system of smaller vehicles
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has no physical connections, and therefore exhibits
a much less desirable behavior: it flies apart! In
addition, determining the position of all satellites
appears to be a difficult process at best. However,
as suggested earlier, technology advances offer a
great deal of aid.  The Global Positioning System
(GPS), a constellation of 30 earth-orbiting
satellites, can be used to determine absolute
position to near-meter-level accuracy.  Application
of this technology to satellite formations in low-
Earth orbit (LEO) can provide the sensing
precision and accuracy needed.  Moreover, low-
power flight computers with high-capacity
throughput are becoming available.  This affords
each spacecraft the processing ability required to
run complex control algorithms.  Both of these
solutions are part of the baseline design for the
Orion mission.

A fair amount of work is being conducted
in the field of formation flying and control.  On the
other hand, an equally important area that seems to
elude attention is formation assembly.  Formation
assembly is intended to describe the process of
collecting the constellation of satellites to a given
region of space just prior to constructing any
formation.  For the Orion mission, collecting the
three satellites together prior to executing the
formation flying experiment is expected to
consume a fairly large portion (up to 20%) of the
system fuel.  Or, as an example, consider a
collection of satellites deployed from a launch
vehicle.  These satellites may not immediately
assemble into a formation, as the ground operators
may desire a “check-out” phase or other period of
time which will give the system a chance to slowly
drift apart.  Or, consider the fact that a collection of
satellites may be deployed from TWO launch
vehicles.  Surely there can easily be a significant
difference in the deployment orbits that will require
a suitable assembly strategy.  Also, consider then
the cost of maintaining a formation.  For the Orion
mission, maintaining a simple formation for less
than an orbit is estimated to consume up to 15% of
the system fuel.  Presumably, a more advanced
formation flying mission will require numerous
scientific measurements over a much longer period
of time.  As a result, the formation must be
maintained for that period (and so consuming large
amounts of resources), or else, after each
experimental measurement, the formation control
is broken and the system is allowed to drift or enter
some other type of “cruise” configuration.  Since a
cruise configuration would seem to consume fewer
resources, an efficient re-assembly algorithm
would help to increase the mission lifetime.  In this

respect it is clear that studying effective and
efficient ways to rendezvous satellite systems will
be very useful.

For example, if two satellites need to
rendezvous, one solution is to perform an
enormous fuel burn on one satellite. The vehicle
quickly zips over to the other satellite, and then
stops.  This method is very effective (short time to
complete) but horrendously inefficient (large fuel
consumption).  On the other hand, the first satellite
can expend no fuel and continue to drift away until
someday it has drifted a complete lap around the
Earth, meets up with the second satellite, and with
a minute puff of fuel, completes its rendezvous
maneuver.  This method is extremely efficient from
a fuel standpoint. However, it is not very effective,
since the maneuver takes long enough for pigs to
actually evolve wings.  In any case, formation
assembly can be boiled down to a case of ensuring
that critical system resources are expended
cautiously.  These system resources may include
fuel, power, memory, and mission time.

In this study, the focus will be on
developing analysis tools for fuel consumption and
rendezvous time for a particular formation
assembly strategy.  Drawing upon the earlier
discussion, it will be assumed that assembly will
take place in a LEO environment, and that all
participating spacecraft are, more or less, identical.
The produced results will attempt to show the
relationships between the consumption of fuel and
time and the choice of the assembly point for the
given algorithm.  Results can be applied to an
Orion-like mission to see if the estimated fuel
requirements and mission time are satisfied.  But
first, there is need of some mathematical tools to
accomplish this goal.

Analysis

Orbital mechanics is a widely studied
subject.  It will be assumed by and large that the
reader is familiar with some of the basic concepts
associated with the field.  However, a brief
description of some important parameters is in
order, followed by a review of some important
orbital equations that will serve as useful analysis
tools.

Consider a satellite in orbit around some body,
such as the Earth.  If the origin of a three-axis
inertial frame is placed at the center of the Earth,
the position and velocity of the satellite relative to
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that origin can be represented.  The three-
dimensional vectors of position and velocity
completely determine the satellite’s orbit.  The
magnitudes of these vectors determine the orbital
energy, and the cross product of the vectors set the
angular momentum.  The six quantities contained
in these two vectors are not the ones most often
used to describe an orbit, however.  Instead, six
other quantities, known as the Keplerian elements,
are employed.  The Keplerian elements are a set of
six numbers that describe the size, shape, and
orientation of an orbit in space relative to the
central body.  They can be derived from a given
initial position and velocity.  To summarize, the
elements are (see Figure 1):
• Semi-major axis (a) – All closed orbits are

ellipses.  The value of a is equal to half the
length of the ellipse’s long axis.  Thus, a
determines the size of an orbit

• Eccentricity (e) – This is a measurement of
how elongated the orbital ellipse will be.
Eccentricity therefore determines the shape of
an orbit.  A zero value of e means the orbit is
circular.

• True anomaly (ΘΘ) – This parameter measures
the angle in the plane of the orbit between the
radial vector of the satellite’s location, and that
same vector when the satellite is at its closest
approach to the orbiting body (known as the
periapse).

• Inclination (i), Argument of periapse (ωω), and
Right ascension of the ascending node (ΩΩ) –
these three angles determine the orientation of
the orbit in three-dimensional space.

2a

r

a(1-e)

ΘΘ

 Figure 1 – An example orbit

Figure 1 illustrates the first three parameters
mentioned.  The focus of the analysis will be on
planar orbits, without regard to orientation.  Thus,
only the first three parameters are relevant to the
discussion, especially a.

The first tool to be used was provided by a
German astronomer, Johannes Kepler, in the early
17th century.  Note that the orbital parameters
mentioned above bear his name.  Kepler’s main
contribution was a set of three “empirical” laws
that described the motions of the planets.  Note that
these laws are not truly empirical, as each was
found later (by Newton) to have a basis in physics.
Kepler’s third law states that  “the squares of the
orbital periods of the planets are proportional to the
cubes of their mean distances to the sun.”  [Ref 1].
As mentioned, this law was later derived from
physical principles, and shown to be true for all
orbited bodies (not just the sun).  The mathematical
representation of this law is:

2t = 4 2π
µ

3a (1)

Here, t is the orbital period, a is the semi-major
axis length, and µµ is a gravitational constant.  The
value of µµ is different for each body orbited (i.e.
Earth, Mars, the Sun).  The value of µµ for the Earth
is 3.986 x 105 km3/sec2.  A derivation of this
relation can be found in most books on orbital
mechanics, such as reference x.

The second tool to be used is a well-
known relation in the field of orbital mechanics.  It
is known as the “vis-viva” equation.  The vis-viva
equation is derived from the fact that the total
mechanical energy in a closed orbit is conserved.
This equation relates the magnitude of an object’s
velocity to its radial distance from the orbited
body, and can be written as:

2v = µ(2

r
−

1

a
)  (2)

Here, v is velocity and r is the separation between
the centers of mass of the satellite and the orbited
body. µµ and a are the gravitational constant and
semi-major axis of the orbit, as explained
previously.

Of particular interest is the specific
mechanical energy of an orbit, or the sum of the
kinetic energy and (negative) gravitational
potential energy per unit mass.  The vis-viva
equation is particularly useful in calculating this
conserved quantity:

ε =
2v
2

−
µ
r

= µ(
1

r
−

1

2a
) −

µ
r
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or ε =
−µ
2a

(3)

The specific energy of an orbit is given by
equation (3).  It is evident that orbital energy is
determined wholly by the size of an orbit (i.e. the
parameter a), and vice-versa. So, if a thrust or
perturbation force added or subtracted from the
total energy of an orbit, a would change
accordingly.  From equation (1) it is evident that
there will be a corresponding change in the orbital
period.  Recalling that differences in orbital period
are the source of permanent drift in formation
flying, it is clear that a significant change in orbital
size or energy is to be avoided.  So what produces
such change?

To Earth
Referenc e
frame

v

F

P = F •• v

Figure 2 – Illustration of Force-Energy
relationship

Consider again an inertial frame of
reference centered at the Earth’s core.  A space
vehicle is traveling with a velocity vector v relative
to this frame of reference, and experiences an
external force F.  This force may be an
environmental or other perturbing force, or it may
be due to a thrust generated internally by the
vehicle.  Simple physics dictates that the power, or
the rate at which energy is added to the space
vehicle, is given by the dot product of F and v.
Clearly, if F and v are perpendicular, then no
energy is added to the orbiting body.  Thus, no
change in orbit size or period will occur.  However,
it is clear that in-track force components
(components of force acting in the direction of
travel) will cause a change in orbit energy, and
therefore, the period.  So, if the spacecraft is
tracking a particular reference point, an in-track
force component will cause the spacecraft to drift
away from that point.  This indicates that only
thrusts and disturbances that occur along the in-
track direction will contribute to permanent drift.
All other contributions (forces in the out-of-plane
and radial directions) will produce drifts that are

cyclical.  For this reason, the following analysis
will ignore dynamics occurring out of the orbital
plane.  The discussion will focus on in-plane
dynamics and maneuvers.

The problem at hand will therefore be set
up as shown in Figure 3.  The target assembly point
C moves along a circular reference orbit of radius
R as measured from the center of the Earth.  Since
the discussion is limited to in-plane orbit changes,
there are four positions, relative to C, that a space
vehicle may have: (I) a higher orbit and lagging
behind C, (II) a higher orbit and leading C, (III) a
lower orbit and leading C, and (IV) a lower orbit
and lagging C.  The goal for each condition is the
same.  This goal is to maneuver through space in
such a way as to match the position and velocity of
C.  Whatever method used to achieve this goal can
be applied to individual spacecraft, as this is a
single-vehicle problem.  The formation assembly
problem, taking all vehicles into account, then
becomes one of choosing an appropriate assembly
point (orbit).

C

R
R

Region I
Region II

Region IVRegion III

S

δδ

Figure 3 – The formation assembly problem

Before solving this problem, the assembly
strategy must be defined more clearly.  Since
assembly is assumed to take place in a LEO
environment, it will also be assumed that the
spacecraft orbits, as well as the target orbit, are
circular.  This is a fairly reasonable approximation
for LEO orbits, and will serve to make calculations
a bit easier.  In addition, it will be assumed that all
orbit adjustments will be relatively small ones.
The endeavor here is not to analyze the problem of
gathering vehicles separated by half a cosmos.  The
previous arguments made about orbit injection and
re-assembly after cruise will be honored, which
means that the concern will be with slight orbit
variations.  As will be seen later, this assumption
also allows the most of the working equations to be
linearized.  Finally, in order to keep pace with the
desire to efficiently use resources, it will be
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assumed that all orbit transfers will be Hohmann
transfers.  A Hohmann transfer (H-transfer) is a
two-impulse-burn orbit transfer that uses the
minimum amount of fuel. [see Ref 1,3]  This is true
for transfers between circular orbits, which has
been assumed.  In an H-transfer, the satellite
completes exactly one half of an elliptic orbit that
intersects both the original and target orbit.

∆∆VA

∆∆VB

Figure 4 – A Hohmann transfer

Now comes the task of solving the
problem at hand.  First, consider region II (refer to
Figure 3).  The space vehicle resides in a circular
orbit above the reference orbit by a small amount δ
(Let δ > 0 indicate that the orbit is higher than the
reference orbit).  Also, the vehicle leads the
assembly point by a small amount S (Let S > 0
indicate a satellite lead in the direction of orbit).
Clearly, the reference point is catching up to the
spacecraft, and so the fuel-optimal strategy will be
to wait until the reference point is in such a
position that a single H-transfer can be made down
to the assembly point.  The following method
shows how to calculate the desired performance
metrics:

First, consider the lead angle of the spacecraft.
Since S is part of a circular arc, the angle
subtended is S

R+δ
≈

S

R
. Let θ be the measured from

the initial assembly point radial line to the space
vehicle radial line.  Let θC be measured likewise
for the assembly point itself.  Define α as the
critical lead angle.  When the lead angle is α, an H-
transfer to the target orbit will result in a
rendezvous between the satellite and the assembly
point.

Thus, at time t = 0,

θ (0) = α and Cθ (0) = 0

After the H-transfer (elapsed time tH),

θ ( Ht ) = α + π and

Cθ ( Ht ) = θC

•
Ht

where θC

•
 is the angular rate of the circular

reference orbit.  The goal is to match these two
angles, whereby the value of α may be determined:

θ = Cθ ⇒ α =θC

•
Ht −π (4)

For a circular orbit, a = R = constant.  It is also
known that for an object traveling along a circular
path, the speed is equal to the angular rate
multiplied by R.  Using this knowledge and
equation (2) gives:

v = µ(
2

R
−

1

R
) = RθC

•

⇒ θ
•

C =
µ
R3 (5)

The H-transfer time is simply one-half of an orbit
whose semi-major axis is the average of the
original and target orbits:

tH =
1

2

4π 2

µ
a3 2 = π

(R +δ 2)3

µ

= π R3

µ
(1+ δ

2R
)3 2

Invoking the assumption of small orbit changes, it
is clear that δ is very small compared to R.  As
such, this equation can be made linear in δ by
approximating the expression, using the first two
terms of a Taylor series expansion:

δ
R

<< 1 ⇒ tH ≈ π
R3

µ
(1 +

3δ
4R

)  (6)

Combining equation (4), (5), and (6) gives the
value of α:

α = π (1+
3δ
4R

) − π =
3π
4

δ
R

(7)
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This value of α defines the point at which the H-
transfer will take place.  Recall that in this region,
the assembly point is overtaking the satellite (S is
decreasing).  The mandate of the chosen algorithm
is to wait until the separation angle reaches this
mark and then conduct the appropriate transfer.
But what does this mean for the chosen
performance metrics?  The relationships between δ,
S, fuel consumption and rendezvous time must be
derived.

The total rendezvous time for a transfer in
this region is equivalent to the H-transfer time plus
the time required for the system to attain the
appropriate configuration.  The initial angular
separation (determined by S) less α is the angle
through which the assembly point must “catch up”
for this configuration to occur.  The rate at which
this angular separation is reduced is determined by
the difference in angular rates between the two
orbits.  Mathematically:

tRDVZ = tH +
S

R
−α

θ
•

C −θ
•  (8)

Using the small orbit change approximation, it can
be shown that:

θ
•

=
µ

(R + δ )3 =
µ
R3 (1+

δ
R

)−3 2

= µ
R3

(1 − 3δ
2R

)

(9)

Subtracting this result from equation (5) and
plugging in to equation (8) gives:

tRDVZ = tH +
S − 3πδ 4

R

R3

µ
2R

3δ

= R3

µ
(
π
2

+ 3π
4

δ
R

+ 2S
3δ

)

(10)

This is the solution for total rendezvous time under
the conditions δ > 0 and S > 3πδ/4.  Take special
notice of the latter constraint.  If this condition is
violated, the second term in equation (10) will
produce a negative time contribution.  This is a
physical impossibility.  The interpretation of this
constraint is that there exists, for each δ, a positive
separation lead S for which no H-transfer solution

is possible.  In other words, the initial separation
angle is already less than α.

The rendezvous time is only the first
performance metric.  The metric for fuel usage will
now be solved.  When executing orbit maneuvers,
some force is applied to the spacecraft so as to
change its velocity.  The term for this change is
“delta-V”, or ∆v.  Since fuel is expended in this
effort, delta-V is a way to represent the amount of
fuel needed by a spacecraft to perform a given
action.  Propulsion systems are often described by
the total amount of delta-V they can supply.

For the region II problem, two impulsive
burns must be evaluated and added.  Equation (2)
will be very useful in this regard.  For the first
impulsive burn, the satellite is traveling in a
circular orbit, and will slow down by a small
amount so that it is on the Hohmann transfer
ellipse.  The change in velocity is:

∆v1 =
µ

R + δ
− µ(

2

R +δ
−

1

R + δ 2
)   (11)

The first term is the spacecraft’s speed just before
the burn, and the second term is the spacecraft’s
speed at the same point just after the burn.  Note
that the appropriate value for the transfer ellipse’s
semi-major axis has been provided. It is usually a
stated assumption that impulsive transfers are
modeled as “instantaneous” changes in velocity.
This is not true, but it is a good approximation as
long as the burn time is short compared to the
transfer time.

The second impulsive burn can be
analyzed in the same manner:

∆v2 = µ(
2

R
−

1

R + δ 2
) −

µ
R

  (12)

The total change is then:
∆v = ∆v1 + ∆v2

=
µ
R
{(1 +

δ
R

)−1 2 − (1 +
δ
R

)−1 2 (1 +
δ

2R
)−1 2

+(1 + δ
R

)1 2 (1 + δ
2R

)−1 2 − 1}

This can be linearized to:
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∆v = µ
R
{(1 − δ

2R
) − (1− 3δ

4R
) + (1 + δ

4R
) −1}

=
µ

R3
δ
2

(13)

This is the solution for the fuel
consumption metric for the conditions δ>0 and
S>3πδ/4.   Note that while the rendezvous time
depends on the initial separation, the fuel
expenditure does not.  This is due to the fact that S
is immaterial to the actual orbit transfer; the H-
transfer will be executed at a point determined
solely by δ.  On the other hand, the length of time
it takes to get to that point is determined by S.

Now let us consider region IV (see Figure
3).  In this region, a behavior similar to region II
occurs, except this time, it is the spacecraft that is
overtaking the rendezvous point.  Rigor might
demand that a discussion similar to the previous
one be presented, but some quick arguments can
save time and effort.

In region IV, S, δ < 0.  What does this
change form the previous discussion?  Since the
spacecraft is overtaking the assembly point, there is
obviously a point at which the spacecraft can
simply H-transfer up to the target. However, there
will now be some sign changes.  The initial
conditions become:

θ (0) = −α and Cθ (0) = 0

After the H-transfer, the space vehicle will be at:

θ ( Ht ) = π − α

and so the solution to α will be:

α = π − θ
•

C tH ⇒ α =
−3π

4

δ
R

but since δ < 0, it is clear that this is the same
solution as before.  Similarly, the denominator in
equation (8) will change sign, since the angular rate
of the spacecraft is now larger than that of the
assembly point.  But, this is accompanied by a sign
change in the numerator, since the initial lag angle
is now given by:

3πδ 4 − S

R
(14)

instead of 
S − 3πδ 4

R
 (recall that S < 0 also)

Thus, the rendezvous time in this case is also given
by:

tRDVZ = R3

µ
(
π
2

+ 3π
4

δ
R

+ 2S

3δ
) (10)

The one item that does change is the constraint
condition.  Expression (14) must be positive in
order to ensure that the H-transfer point has not
already been passed.  As a result, the constraint on
S now becomes S < 3πδ/4, with δ < 0.

It is clear that for a region IV maneuver,
the orbital energy must increase.  Inspection of
equations (12) and (13) makes it equally clear that
as a result, the expressions for the delta-V burns
are still correct, but will change sign.  The post-
burn velocity now becomes the pre-burn velocity,
and vice-versa.  As a result, the total delta-V for a
region IV maneuver is:

∆v =
µ

R3 (−
δ
2

) (15)

This is the same solution as equation (13), since
δ < 0.

Now the remaining regions can be solved.
Consider a spacecraft in region I (see Figure 3).  In
this circumstance, the vehicle is above the
reference orbit and lags the assembly point (δ > 0
and S < 0).  In this case, it is clear that S will
continue to increase as time goes on, unless an
attempt is made to catch up.  In order to
accomplish this, the vehicle must H-transfer to an
orbit inside the orbit of the assembly point.  This is
the only way it can hope to catch.  An H-transfer
can then be made back out to the assembly point.
The main question, though, is how much inside the
target orbit should the first transfer be?

At this point it becomes necessary to
modify the assembly strategy slightly.  Whereas in
regions II and IV, the general approach was to save
fuel (i.e. coast to a point in orbit ready-made for an
H-transfer), the approach for region I (and III) will
be to save time.  The first impulse burn will put the
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spacecraft on an H-transfer orbit that will carry it
inside the orbit of the assembly point.  Upon
arrival, the spacecraft will be located precisely at a
critical lag angle (as per region IV).  A transfer
could be made to a different inner orbit, but such
an exchange might require the satellite to coast to
the H-transfer point.  With the proposed strategy,
the first transfer takes the vehicle directly there.  In
addition, this method requires only three impulsive
burns instead of four.

The first order of business is to discover
the relationship between the inner and outer orbits.
Start with the initial conditions:

θ (0) =
S

R
and θC (0) = 0 (16)

After the first H-transfer, the angular positions are:

θ (t
H 1) = π +

S

R
  and  θC (tH1 ) = θ

•
C tH1 (17)

The desire is for the difference between these two
angles at the arrival time to be equal to the
corresponding critical angle for the inner orbit:

θC (tH1 ) − θ( tH 1) = α =
−3π

4

ε
R

(18)

Here ε is the separation between the intermediate
inner orbit and the final target orbit.  It is analogous
to δ in the region IV problem.  Once again, the
travel time is the semi-period of the transfer
ellipse:

tH1 = π
(R + ε 2 +δ 2)3

µ

= π R3

µ
(1+ ε

2R
+ δ

2R
)3 2

       = π R3

µ
(1+ 3ε

4R
+ 3δ

4R
) (19)

Combining this relation and equations (5), (17),
and (18) yield the equation

π (1 +
3ε
4R

+
3δ
4R

) − π −
S

R
= −

3πε
4R

(20)

which can be solved explicitly for ε:

ε = −
δ
2

+
2S

3π
(21)

Again, δ > 0 and S < 0 in this region.  Armed with
this relationship, it is now possible to determine the
relationships for the performance metrics.

Since the activity in this region is simply
to conduct two back-to-back H-transfers, the total
rendezvous time will be the sum of the two transfer
times.  Both of these values are known and have
already been linearized.  They are equation (19)
above, and equation (6) with ε substituted for δ.

tRDVZ = π
R3

µ
(1 +

3ε
4R

+
3δ
4R

+ 1+
3ε
4R

)

= 2π R3

µ
(1 + S

2πR
)

  (22)

In the last step equation (21) has been used to
substitute for ε.  Equation (22) is interesting since
it reveals that under the posed conditions, the total
rendezvous time depends only on S.  Moreover, it
depends very weakly on S.  The ratio S to 2πR is
the ratio between the initial separation and the
circumference of one target orbit!

Calculating the delta-V requirement is
another exercise in careful bookkeeping.  There
will be a total of three impulsive burns to track.
The first burn is the H-transfer from the original
orbit to the intermediate inner orbit.  The second
burn is the immediate transfer from the inner orbit
to the target orbit.  The final burn will match the
position and speed of the assembly point, thus
completing the rendezvous maneuver.  The results:

∆v =
µ

R + δ
− µ(

2

R + δ
− 1

R + δ 2 +ε 2
)

+ µ(
2

R + ε
− 1

R + δ 2 + ε 2
)

− µ(
2

R + ε
− 1

R + ε 2
)

+ µ
R

− µ(
2

R
− 1

R + ε 2
)

When linearized, the above expression reduces to:
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∆v =
µ
R3 (

δ − ε
2

)

= µ
R3

(
3
4

δ − S
3π

)

(23)

Again, equation (21) has been employed to
substitute for ε.  Note that when S = 3πδ/4
(corresponding to the critical angle α), that the
solution for region II is retrieved.  Note also the
interesting reversal that has taken place.  In regions
II and IV, delta-V depended only on the orbital
difference δ, while the rendezvous time was a
function of both δ and S.  Now, for region I, it is
clear that rendezvous time depends only on S,
while delta-V relies instead on both parameters.

In an effort to avoid needless repetition, it
is true that the equations for region III match those
of region I.  The same symmetry exists between
these two regions as it does for regions II and IV.
It is assumed, of course, that appropriate boundary
limits are applied, namely δ < 0 and S > 3πδ/4.  In
this case it is apparent that the space vehicle leads
the assembly point and is moving away from it,
since the vehicle is in a lower orbit.  The desired
action will be to transfer to an orbit above the final
target orbit.

These equations were developed in an
effort to analyze how fuel and time resources
would be used for the given assembly algorithm.
These equations apply to single vehicles, but make
it possible to tackle some issues of the formation
assembly problem more easily.

Results

To help analyze the results, a MATLAB
script was created to do some calculations and
graph the results.  The results are shown in Figures
5, 6, and 7.  For these results, a 620 km altitude
orbit was examined (R = 7000 km).  The initial
separation distance was chosen to be S = -1000 m.
Note that S is a free parameter, and that the results
allow the behavior of the performance metrics to
be examined for various values of δ.  It is also
possible to examine this behavior for a particular
value of δ and various values of S.  The following
brief remarks will illustrate how the derived
equations can be used to evaluate assembly
operations.

Figure 5 shows a plot of the total transfer
time versus δ for the described initial condition.
Some of the characteristics of the assembly
strategy can easily be seen.  For instance, when δ is
large and negative, the starting satellite position
will be in region III.  As seen from the analysis
section, the transfer time in regions I and III is
more or less constant.  As δ increases, this implies
that the starting position moves into region IV.
Now a different set of transfer rules will dictate the
spacecraft’s behavior.  As δ nears zero, the coast
time becomes increasingly long (recall that the
difference in angular rates becomes very small).
Then, when δ = 0, the vehicle is in region I and
must catch up according to the other set of
assembly rules.  Figure 5 also gives the first clue
that the chosen algorithm is not an optimal one,
because there is a discontinuity in the graph.
Surely a small change in δ would not suddenly
change the value of rendezvous time by thousands
of seconds. There must be an orbital maneuver that
provides a more gradual change. The algorithm
that was analyzed was chosen partly due to
mathematical convenience, and partly to illustrate
this very point – that there is a need to be aware of
the performance gaps in the operations scheme.
For instance, it might be prudent to append some
other rendezvous scheme for values of δ between –
150 and 0 meters, which would help smooth out
the curve and cover up the poor performance
demonstrated by the current strategy.
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Total transfer time (sec)

Figure 5 – Transfer time as a function of delta
for the initial separation S = -1000 m

Figure 6 is a plot of the delta-V
requirement as a function of δ.  It should be noted
that there may be more than one value of δ which
corresponds to a particular value of delta-V.  This
seems reasonable, and may be expected by
symmetry arguments.  However, a noticeable
discontinuity exists on this chart as well, when
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δ>0.    This is another indicator that there is a
performance gap in the chosen strategy: all of a
sudden, as δ climbs into positive territory, the fuel
usage jumps.
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Figure 6 – Delta-V requirement as a function of
delta for the initial separation S = -1000 m

The most telling graph is Figure 7.  This
chart plots the total transfer time against the
corresponding required delta-V values.  This is a
very useful tool.  Form this chart and for the given
initial condition, a desired transfer time-fuel
consumption pair of values can be selected.  Back-
reference to the previous charts then will dictate
what value of δ should be used.  This last point is
an important one: the ultimate goal of planning an
orbit assembly (either by ground personnel or
autonomously by the space formation) will be in
choosing an assembly point.  Charts like Figure 7
allow the impact on mission resources to be
compared for the various choices.

As an example, consider the assembly
strategy represented in Figure 7, which offers two
choices of delta-V for each choice of transfer time.
It is much more desirable to choose a value of δ
which corresponds to the curvy part of the chart,
since that region will require less fuel over a
shorter time period (incidentally, that portion of the
graph represents a starting position in region IV).
However, a second satellite in this group, using the
same assembly strategy, may not be so lucky.  By
choosing that value of δ for the first satellite, the
second satellite may find that its time-delta-V data
point resides in a performance-poor position on its
own chart.  This is the operational hazard and the
tradeoff must be performed using tools such as
these.
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Figure 7 – Delta-V – Transfer time relationship
for S = -1000 m

Recommendations and Conclusions

It is not truthful to state that this solution
is better than any other solution.  Some of the
assumptions made in the presented model could
easily be refuted when considering other missions.
However, the method of thinking applied here may
be extended to many other formation assembly
strategies.  The emphasis on identifying precious
resources, and being able to analyze how proposed
operations concepts will affect them is the key.

It is worth noting that a great deal of
future work can be derived from this study.  In
order to foster brevity, only one formation
assembly method was solved.  The discussion was
intended to focus on how to derive relationships
between precious resources in order to get an idea
about operational constraints.  No attempt was
made to truly trade-off or “optimize” resources in
an actual formation assembly scenario.  This would
be an excellent avenue to explore.  Also, using the
derived equations and the given method to manage
a large number of satellites (more than two) could
reveal some useful operational insights that were
not reported here.  Furthermore, extending the
reach of this approach to include non-circular
orbits or three-dimensional maneuvering could also
be a valuable contribution.

In summary, the increased interest in
using large numbers of small satellites for space
missions has garnered a great deal of attention.  As
such, one class of missions under this category,
formation flying, has been singled out for study
due to its many potential performance benefits.
While a great deal of effort has been expended
studying methods of controlling a formation of
spacecraft, it was noted that little effort had been
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spent understanding how the vehicles were to
rendezvous in the first place.  This process was
named formation assembly.  It was then shown that
for a reasonable assembly strategy, useful
equations could be derived that described the
consumption of critical system resources.  The
main resources looked at were time and fuel.
Finally, it was concluded that studying these
equations could indicate what assembly-transfer
regions were more beneficial than others.  This
information is useful when attempting to choose a
location to assemble the formation.
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