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ABSTRACT

Robust Computational Tools for Multiple Testing with Genetic Association Studies

by

William L. Welbourn, Jr., Doctor of Philosophy

Utah State University, 2012

Major Professor: Dr. Christopher Corcoran
Department: Mathematics and Statistics

Resolving the interplay of the genetic components of a complex disease is a challenging endeavor.

Over the past several years, genome-wide association studies (GWAS) have emerged as a popular

approach at locating common genetic variation within the human genome associated with disease

risk. Assessing genetic-phenotype associations upon hundreds of thousands of genetic markers using

the GWAS approach, introduces the potentially high number of false positive signals and requires

statistical correction for multiple hypothesis testing. Permutation tests are considered the gold

standard for multiple testing correction in GWAS, because they simultaneously provide unbiased

Type I error control and high power. However, they demand heavy computational effort, especially

with large-scale data sets of modern GWAS. In recent years, the computational problem has been

circumvented by using approximations to permutation tests, but several studies have posed sampling

conditions in which these approximations are suggestive to be biased.

We have developed an optimized parallel algorithm for the permutation testing approach to

multiple testing correction in GWAS, whose implementation essentially abates the computational

problem. When introduced to GWAS data, our algorithm yields rapid, precise, and powerful mul-

tiplicity adjustment, many orders of magnitude faster than existing employed GWAS statistical

software.

Although GWAS have identified many potentially important genetic associations which will

advance our understanding of human disease, the common variants with modest effects on disease

risk discovered through this approach likely account for a small proportion of the heritability in

complex disease. On the other hand, interactions between genetic and environmental factors could
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account for a substantial proportion of the heritability in a complex disease and are overlooked

within the GWAS approach.

We have developed an efficient and easily implemented tool for genetic association studies, whose

aim is identifying genes involved in a gene-environment interaction. Our approach is amenable to

a wide range of association studies and assorted densities in sampled genetic marker panels, and

incorporates resampling for multiple testing correction. Within the context of a case-control study

design we demonstrate by way of simulation that our proposed method offers greater statistical

power to detect gene-environment interaction, when compared to several competing approaches to

assess this type of interaction.

(326 pages)
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PUBLIC ABSTRACT

Robust Computational Tools for Multiple Testing with Genetic Association Studies

The mapping of the human genome and the completion of the Human HapMap project over
the past decade have significantly altered how research is conducted with respect to the genetic
epidemiology of human disease. Study designs and analytic approaches have evolved rapidly from
investigations involving relatively few targeted candidate genes to hypothesis-free genome-wide as-
sociation studies, where thousands – and now even millions – of single molecular mutations are
simultaneously analyzed to identify regions of the genome that may influence disease. As labora-
tory techniques continue to improve and costs decrease, the volume of genetic data will inexorably
rise, and robust tools for data management, statistical analysis, and computation will likewise need
to keep pace.

Multiple hypothesis testing is the core problem in analyzing data from a genome-wide asso-
ciation study (GWAS). A conventional GWAS, focused on genetic risk factors leading to disease
incidence, samples some number of disease and non-diseased subjects, genotypes these subjects for
a common set of genetic mutations, and then carries out an individual hypothesis test of the asso-
ciation between each marker and disease status. Correction for multiple testing in GWAS typically
relies upon the Bonferroni multiple testing procedure. With ever-growing panels of markers (the
standard panel currently employs one million markers), this approach engenders numerous problems.
First, it is overly conservative, both because of the sheer number of tests as well as the Bonferroni
ideal that all tests are mutually independent. The growing density of marker panels results in marker
loci that are more physically proximate, yielding hypothesis tests that have some dependence struc-
ture. Second, the commonly used corrected significance level on the order of 10−8 provides an
extreme critical region for which the relative error of asymptotic approximations is large. Third,
while approximations can be avoided by using a permutation distribution, such an approach is com-
putationally challenging and has not been widely implemented or used. This is particularly critical
in the context of alternative multiple correction procedures that solve the dependence problem, for
which permutation distributions are hypothetically available but in practice are seldom used, if ever.
Fourth, the distribution of test statistics across the various multiple testing approaches depends on
additional features of the data, most prominently on what is referred to as the minor allele frequency
(MAF), or the proportion of genetic loci for a given marker within the sampling population that
carry the least frequent marker variant.

This research project has led to the development and implementation of a parallel processing
algorithm which allows exceptionally rapid computation of the permutation distribution for multiple
testing procedures that correct for dependence between tests. This eliminates the need for large-
sample approximations, which have been found in prior studies to have poor operating characteristics
under some common circumstances. This parallel processing approach relies upon existing hardware
and software commonly available in desktop personal computers, allowing for efficient and cost
effective computational tools to the research community. In addition, we have leveraged these
efficient permutation tools in order to implement MAF-corrected exact tests, to eliminate bias for
multiple testing procedures that arise in particular when the MAF is small. We have further extended
these tools to other analytic problems in large-scaled genetic association settings, such as tests for
gene-environment interactions.

William L. Welbourn, Jr.
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Symbols (Triangle and Cross) Depict the Observed Number of Type I Errors for the

Respective MinP and Šidák MTPs under Q
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CHAPTER 1

INTRODUCTION

Epidemiology is the study of the distribution and determinants of health-related states or events

(i.e., health, disease, and health behavior) within human populations. Its aim is discovering disease

etiology for prevention in populations. This is accomplished by studying populations which are

comprised of healthy and diseased individuals, and identifying environmental and genetic risk factors

which serve as intermediates to disease onset.

Genetic epidemiology, a specific focus within the discipline of epidemiology, is the evaluation of

the role of inherited genetic causes toward the incidence of disease within families and populations.

Its aims lie with the detection of the genetic inheritance pattern for a particular disease, restricting

ones’ attention to the gene(s) encompassing the disease etiology, and locating positions within the

DNA sequence associated with disease risk. This is accomplished by: (1) demonstrating the existence

of a genetic association with the disease; (2) reporting the size of the genetic effect, relative to non-

genetic contributable factors within the disease etiology; and (3) identification of the gene(s) involved

in the disease etiology. For more than 20 years, family-based linkage studies have been a common

analytical tool in carrying out the aforementioned three step procedure [1]. However, over the course

of the past few years, a new approach has entered the picture to tackle this procedure, called the

genome-wide association study (GWAS).

1.1 The Genome-wide Association Study

Linkage studies investigate the genetic inheritance within families (pedigrees), applying the

principles of recombination, with the goal of identifying the approximate chromosomal location of a

major gene – a major gene is any gene individually associated with pronounced phenotypic effects.

More specifically, to identify regions within chromosomes which are shared by family members with

the same phenotypic trait, and thus are likely to contain the disease susceptibility genes. This

approach has led to the discovery of mutations (mostly rare dominant or recessive) for more than

1,600 diseases, and has been particularly successful in identifying the genetic basis of many human

diseases in which the disease penetrance resembles a simple Mendelian model. Examples include

Huntington’s disease and Cystic Fibrosis [2].
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However, many diseases such as cancer and cardiovascular disease are complex, and character-

ized by a multifactorial etiology. Genes, along with environmental factors, likely interact within

a complex causative pathway, ultimately leading to the incidence of disease [3]. The presence of

multiple independent and/or interacting disease genes and environmental factors leads to significant

problems for genetic linkage analysis. Specifically, linkage studies suffer a loss of statistical power

in the presence of such genetic heterogeneity [4]. While the loss of statistical power in the presence

of genetic heterogeneity is a considerable limitation of linkage studies, a more substantial limitation

in these studies lies with the large resolution of chromosomal regions (often comprising hundreds

of genes) shared among family members, in which it can be difficult to narrow the linkage signal

sufficiently to identify a disease susceptible gene [5].

Association studies are routinely used by epidemiologists to investigate the relationship between

an exposure and a disease. With the completion of the Human Genome Project in 2003 [6] and the

development of gene sequencing techniques such as the Polymerase Chain Reaction (PCR), it is now

possible to amplify (i.e., clone) specific regions of the human genome, for which these exposures may

now include genotypes at one or more susceptibility, candidate, or marker loci. The goals of genetic

association studies will differ, depending on ones’ knowledge about the given disease. For example,

once a susceptibility locus (e.g., BRCA1 for breast cancer) has been determined and amplified, the

goals include estimating the relative risk (RR) and penetrance associated with specific mutations

and testing for interaction with environmental exposures or other genes [7]. On the other hand, if a

candidate locus has been identified (e.g., the androgen receptor for prostate cancer), the primary goal

is testing the null hypothesis of no association between the locus and the disease [8]. Finally, if little

is known about specific loci for the disease (e.g., multiple sclerosis), multiple tests of association with

finely spaced markers (e.g., the GWAS approach) may be used to screen the genome for candidate

regions with the anticipation of detecting linkage disequilibrium (LD)1 with markers close to one or

more disease susceptible loci (DSL) [8].

The [population-based] GWAS approach is revolutionary, insofar as it permits investigation

of the entire genome at levels in genetic resolution previously unattainable, among thousands of

unrelated individuals, and does not require apriori specification of hypotheses regarding genetic-

phenotypic associations (hereinafter, the term genome is assumed synonymous with that of the

human nuclear genome). These studies utilize high-throughput genotyping technologies to assay the

1LD is the association between the alleles of two SNP loci located near each other on a chromosome, such that
they are inherited together more frequently than expected by chance [5].
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most common genetic variant, the single nucleotide polymorphism (SNP), and relate these variants

to diseases or health-related traits [5]. A SNP is the most common form of genetic variation in the

genome, in which a single nucleotide base substitution (mutation) has led to two forms (alleles) of a

DNA sequence which differ by a single nucleotide (e.g., the nucleic acid adenine (A) is substituted in

lieu of cytosine (C) at the locus). Statistically speaking, a SNP – whose respective alleles are defined

from the base pairs adenine and cytosine, say – can be seen as a three level ordinal categorical variable

comprised of the genotypes AA, AC, and CC. While significant advances in genotyping technology

within recent years has been a key ingredient to providing data for conducting the analysis within

a GWAS, the motivation for these studies can be traced back to two papers from 1996.

The articles of [2] and [9] argued that common variants may underlie many common diseases,

the variants in which would be more easily determined using population-based association studies

rather than family-based linkage analysis, even in the most extreme case of interrogation of every

gene within the human genome [2], and that all common variants within the human genome should

be identified [9]. These proposals led to the International HapMap Project (IHP), whose aim was

indexing common genetic variants within the human genome [10]. The IHP – in conglomeration

with advances in genotyping technology – has enabled the GWAS approach to be feasible, leading

to discovery of common genetic variants associated with diseases such as coronary heart disease

[11,12,13] and type II diabetes [14,15].

The primary aim of the GWAS approach is to locate positions within the genome which pertain

to common variants2 associated with risk to a disease trait [16]. To carry out this task, hundreds

of thousands of SNP markers (called tagging SNPs, or tSNPs) are selectively sampled3 from across

the human genome and typed amongst a large random sample of diseased (cases) and healthy

(controls) individuals.4 Allele and genotype frequencies for each of these SNP markers are compared

– commonly, by way of the Cochran-Armitage Trend test [17,18] (see e.g., [19,20,21,22]), assuming

the multiplicative risk model [23] (equivalent to the additive – on the log-odds scale – genetic model

of inheritance (GMI)) – between cases and controls; an over-representation of alleles or genotypes

within one of these groups at a locus is suggestive of a genotype-phenotype association. Aside from

2Pertaining to a SNP, a variant (allele) is common if its frequency upon the chromosomes within the study
population is at least 5%.

3As a result of LD between alleles in close proximity within the genome, not all SNP loci need be typed to
capture the majority of common variation within the genome; tSNPs act as proxies to cover the common variation of
all SNPs within the genome.

4We have described the retrospective case-control GWAS sampling design, by far the most commonly employed
GWAS design. As such, henceforth unless otherwise specified, GWAS is assumed to adhere to the case-control study
design.
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chance, confounding, and data anomalies, a statistically significant genotype-phenotype association

at a SNP locus indicates: that the SNP itself carries the risk variant allele (direct association); or

the SNP is in LD (i.e., close proximity within the genome) with the SNP carrying the risk variant

allele (indirect association). In other words, a direct/indirect association in a GWAS implies the

precise/approximate position within the genome pertaining to a DSL.

Due to the fine genetic resolution of the SNP, the GWAS approach is applicable to virtually any

complex disease, irrespective of one’s knowledge of the underlying genetic components associated

with disease risk. For example, as mentioned above BRCA1 is a disease susceptible locus for breast

cancer, but recent GWAS investigations have determined additional novel DSLs for this disease (see

e.g., [24,25]). This makes the GWAS approach a very powerful tool for deciphering the underlying

genetic component of complex disease etiology.

1.2 Gene-Environment Interaction

Resolving the interplay of the genetic components of complex diseases is a challenging endeavor,

and the architecture of the genetic etiology for these diseases essentially remains a mystery [26].

Although current GWAS have identified many potentially important genetic associations which will

advance our understanding of human disease [27], the common variants with modest effects on disease

risk discovered through GWAS apparently do not account for all of the heritability in these diseases.

In fact, there is a growing consensus that a majority of the heritability in these diseases cannot be

assessed by GWAS [26, 28, 29, 30]. Interactions, such as gene-gene (epistasis) or gene-environment

(GxE), could account for a significant proportion of the heritability in complex diseases and cannot

be detected by the GWAS design of testing for solely genetic main effects.

Many common, complex diseases are believed to be a result of the collective effect of genetic

factors, environmental factors, and their interactions [3, 31, 32, 33, 34]. To be clear in discussion,

here a genetic factor is broadly defined as any metric which can be used to model genetic variation

within the human genome, with the specific aim of associating the variation with risk of disease. For

example, the genotypes at a SNP locus can be used to test for a genotype-phenotype association,

with the goal of locating specific genotype groupings which are more/less predisposed to disease risk.

An environmental factor, on the other hand, is broadly defined as: an exposure, either physical (e.g.,

temperature, UV radiation from the sun), chemical (e.g., airborne pollutants, such as particulate

matter), or biological (e.g., a bacterial infection); a behavioral pattern (e.g., diet, smoking); or, a life

event (e.g., injury). Evidence supports the existence of GxE interactions for many complex diseases,
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including mental health disorders [35,36], cardiovascular and metabolic disease [37,38,39,40,41,42],

infectious disease [43, 44], and trauma and injury [45]. We study GxE interactions for several

reasons [46]: they can illuminate fundamental biological mechanisms involved within disease etiology;

they can be important for risk prediction and for evaluating the benefit of changes in modifiable

environmental exposures; and, failure to adequately account for GxE interaction in a genetic analysis

can mask the effects of both genetic and environmental factors [47,48,49,50,51], thereby making it

difficult to detect associations using standard genetic or epidemiologic approaches. Studying GxE

interactions can lead to a better understanding of the complete etiology of disease, inclusive of both

distinct and interacting pathways comprised of genetic and environmental factors. Identifying GxE

interactions enables one to target, develop, and prescribe preventative measures to individuals at

particularly high risk of disease; these interventions are designed to maximize health and minimize

disease.

1.2.1 Types of Interaction

Loosely stated, here the term interaction can imply one of two things: statistical interaction,

or biologic interaction [52, 53]. We have statistical interaction when the relationship between two

variables is dependent upon the levels of a third variable. We refer to the third variable as an effect

modifier for the relationship of the two variables of interest. Biological interaction, on the other hand,

refers to the synergism between/among discrete pathways relating to the maintenance of homeostasis

or the expression and progression of a physiological condition [53]. Each of these concepts is central

to studying GxE interaction. Gene-environment interaction is essential to biological interaction,

insofar as the goal of studying GxE interaction lies with the discovery of novel biological mechanisms

– involving both genetic and environmental factors – which are associated with risk of disease. On

the other hand, statistical interaction is needed to quantify the presence of biological interaction and

is essential to accurately model the true underlying joint effect of genetic and environmental factors

in their risk toward disease. Unless otherwise specified, here the term GxE interaction is assumed

within the context of statistical interaction.

Gene-environment interactions can exhibit several different patterns of association. To illus-

trate, we consider a binary disease trait (phenotype), a binary environmental factor, and a three-level

genetic factor. The three-levels for the genetic factor correspond to the three genotypes at some

SNP locus – measured in terms of the number of copies of the minor allele (the minor/major allele

is the less/more frequently occurring allele at the locus within the population) an individual carries
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at the locus – whose respective major and minor alleles are denoted by A and a. For clarity in

presentation, we consider the additive GMI for the SNP marker. If the environmental factor is an

effect modifier for the genotype-phenotype relationship, then [for our setup] essentially three pat-

terns for GxE interaction are tangible: (a) the risk of disease is positively (or, negatively) associated

with the number of minor alleles one carries at the locus, where the size of this effect is greater

upon the population of exposed individuals. This pattern of GxE interaction is commonly referred

to as complementary [53, 54]. For example, an allele upon one of the genes related to familial hy-

percholesterolemia (FH), say the LDL-receptor (LDLR) gene [55] (genetic factor), might increase

susceptibility to atherosclerosis by increasing the production of LDL cholesterol. Furthermore, a

diet enriched in high levels of saturated fat (environmental factor) could contribute to an increased

risk of atherosclerosis by increasing blood serum levels of LDL. These genetic and environmental

factors complement each other to increase risk for atherosclerosis; (b) the risk of disease is positively

(or, negatively) associated with the number of minor alleles one carries at the locus, where the size of

this effect is greater upon the population of unexposed individuals. This pattern of GxE interaction

is commonly referred to as antagonistic [53,54]. For example, mutations upon the β and γ subunits

of the epithelial sodium channel (ENaC) gene (genetic factor) have been associated with increased

risk of resistant hypertension [56]. Whereas, engaging in moderate physical activity for the majority

of the days during a given week (environmental factor) is associated with decreasing lifetime risk of

hypertension [53]. These genetic and environmental factors antagonize each other in their risk to-

ward hypertension; or, (c) the risk of disease is positively (or, negatively) associated with the number

of minor alleles among the population of exposed individuals, and the risk of disease is negatively

(or, positively) associated with the number of minor alleles among the population of unexposed indi-

viduals. Here, we refer to this pattern of GxE interaction as cross-interaction [3], although it has at

least two alternative naming conventions in the literature (e.g., called ‘flip-flop’ interaction by [26],

and called crossover interaction by [57, 58]). For example, a well-established and replicated GxE

interaction for risk of asthma or allergic disease is that resulting from the genotype of a promoter

polymorphism (SNP rs2569190; thymine and cytosine allele variants) upon the mononuclear cells

(CD14) gene (genetic factor) and exposure to microbes (environmental factor) [26]. Several studies

(see [26]) found the thymine allele variant to be associated with increased risk for asthma among

exposed subjects, whereas the cytosine allele variant was found to be associated with increased risk

for asthma among unexposed subjects. These genetic and environmental factors cross-interact in
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their effect toward risk of disease. Figure 1.1 illustrates the three patterns of GxE interaction for

our setup, where – in terms of the additive GMI – the vertical axis for the plot within each panel

could represent, for example, the log odds of disease.

Fig. 1.1: Types of Gene-Environment Interaction upon a Genetic Factor (SNP) with Respective
Major and Minor Alleles A and a, and a Binary Environmental Factor. The Blue Line in (a-
c) Corresponds to Risk in Exposed Individuals; the Red Line Corresponds to Risk in Unexposed
Individuals.

1.3 Approaches for Multiple Hypothesis Testing in Genetic Association Studies

Consider a genetic association study in which several genetic and environmental variables are

collected upon a sample of study subjects, where we assume a binary response (phenotype) is

recorded for each subject. Such data may arise, for example, from a [cohort] GWAS investigating

genetic markers (genetic factors; SNPs) associated with incidence of AIDS among subjects diagnosed

with HIV-1 disease [59]: in this case, the response is the indicator (yes or no) for development of

AIDS, and the goal is to locate those genetic markers for which the proportion of subjects developing

AIDS differs amongst the genotypes upon each of the markers. Restated as a problem in multiple

hypothesis testing (MHT): the simultaneous test for each genetic marker of the null hypothesis of no

association between the marker and disease (AIDS) incidence. In some circumstances, more specific

null hypotheses may be of interest. For example, the null hypothesis of no GxE interaction across the

sampled genetic markers and some common environmental factor. Nonetheless, an MHT problem is

prevalent amidst such investigations, and unless appropriate measures are taken to account for the

multiplicity problem, the chance of committing some Type I errors (i.e., rejecting a particular null

hypothesis in favor of the false alternative hypothesis) increases.

To illustrate, consider testing m mutually independent sets of null and alternative hypotheses,

each at the prescribed pointwise αp level of significance, some αp ∈ (0, 1). Let V be the random

variable corresponding to the number of Type I errors committed in testing these m sets of hypothe-
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ses. When testing multiple null hypotheses, there are many definitions of the Type I error rate. In

terms of the random variable V , [60] describe four most standard definitions for the Type I error

rate: the per-comparison error rate (PCER), defined as the expected value of the number of Type

I errors divided by the number of hypotheses (i.e., PCER = E(V )/m); the per-family error rate

(PFER), defined as the expected number of Type I errors (i.e., PFER = E(V )); the false discovery

rate (FDR) of [61], the expected number of Type I errors among the rejected null hypotheses (i.e.,

FDR = E(Q), where: Q = V/R if R > 0 and 0 if R = 0; and R is the random variable corresponding

to the number of rejected null hypotheses); and the family-wise error rate (FWER) is defined as the

probability of some Type I error, Pr (V ≥ 1). A multiple testing procedure (MTP) is said to control

a particular Type I error rate at level α, provided that the error rate is less than or equal to α when

the given procedure is applied to produce a list of rejected null hypotheses [60]. For example, the

FWER is controlled at level α, provided that the implemented MTP produces a FWER satisfying

the inequality FWER ≤ α. Without loss of generality suppose all m null hypotheses are in fact

true – in MHT terminology, we refer to this as the complete null hypothesis [60], the collection of

hypotheses in which is denoted H0. When the tests are independent, it can be shown that

FWER = Pr(V ≥ 1|H0) = 1− (1− αp)m.(1.1)

As an example, we consider m = 100 and αp = 0.05. It is, FWER = 0.994, for which committing

some Type I error is nearly certain. For any fixed αp, we see that (1.1) is increasing in m. Figure

1.2 displays the assumed FWER across m for several choices of αp, under the assumption that

each of the m mutually independent null hypotheses are tested at level αp under the complete null

hypothesis, where m = 1, . . . , 100.

It is important to note that the expectations and probabilities for the four Type I error rates

defined above, are conditional on the true underlying data distribution for the explanatory and

response variables involved [60]. In particular, these computations depend upon the specific hy-

potheses within the collection H0 which are actually true. Herein, a partial null hypothesis, denoted

by Hp
0 , is defined to be any subset of H0. Let H̃p

0 denote the specific partial null hypothesis, whose

elements warehouse the actual true null hypotheses over H0. Hence, the FWER, for example is

given by

FWER = Pr
(
V ≥ 1|H̃p

0

)
.(1.2)
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Fig. 1.2: Plot of the Family-wise Type I Error Rate (FWER) Versus the Number of Mutually
Independent Tested Null Hypotheses (m), under the Complete Null (CN) Hypothesis, Where Each
Null Hypothesis Is Tested at the αp Pointwise Significance Level, m = 1, . . . , 100.

A fundamental, often ignored distinction, is that between strong and weak control of a Type

I error rate [60, 62]. An MTP is said to control the Type I error rate (for which it is intended to

control) at level α in the strong sense (strongly), if the Type I error rate is controlled at said level

for every possible partial null hypothesis [60,62]. For example, the FWER is controlled strongly at

level α if

Pr (V ≥ 1|Hp
0) ≤ α ∀Hp

0 ∈ P (H0) ,(1.3)
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where P (·) denotes the power set of the collection (·). On the other hand, we say that an MTP

controls the Type I error rate at level α in the weak sense (weakly), if it controls the Type I error

rate at said level only under the complete null hypothesis [60,62].

The complete null hypothesis, in general, is not realistic and weak control is unsatisfactory. For

example, in a GWAS it is very unlikely that H̃p
0 ≡ H0 (i.e., all null hypotheses are in fact true). That

is, among the thousands (or, millions) of tested null hypotheses of no association between genotype

and phenotype, it is unreasonable to assume that the genotype for each-and-every SNP locus to not

be associated with the disease trait of interest. Realistically, the genotypes for some of the loci will

be associated with the disease trait, while genotypes for other loci will not be. However, we do not

know which loci fit within H̃p
0 , nor withinH0\H̃p

0 . This implies that H̃p
0 is an unknown proper subset

of H0. Since H̃p
0 is unknown, weak control of the Type I error rate at level α provides no assurance

that the actual Type I error rate is being controlled at level α and is therefore unsatisfactory.

Strong control of the Type I error rate at level α, on the other hand, is a very desirable property,

insomuch as it allows one to conveniently compute the Type I error rate assuming the complete null

hypothesis to be true, knowing forthright the actual Type I error rate cannot exceed the value α.

That is, strong control ensures that the actual Type I error rate (e.g., the actual FWER (1.2)) is

controlled at level α, even though the calculation of the Type I error rate is under the assumption

that H0 is true.

Finally, we note that one typically decides among three types of multiple testing procedures:

single-step, step-down, and step-up procedures [60]. In single-step procedures, equivalent multiplicity

adjustment is carried out for all null hypotheses. That is, H
(j)
0 is evaluated using a critical value

which is independent of the results among the tests of other null hypotheses. For the sake of

discussion, we use H
(j)
0 to denote a test of the null hypothesis of no association between genotype

and phenotype for the jth sampled SNP locus within the context of GWAS, for j = 1, . . . ,m. Here,

j indexes the m GWAS SNP loci. Examples of single-step multiple testing procedures include

the Bonferroni, Šidák, and the permutation-based maxT approach implemented within popular

GWAS software (e.g., PLINK [63]). Although all multiple testing procedures described henceforth

are assumed single-step based, we do mention here that stepwise (i.e., step-down and step-up)

procedures can improve statistical power while preserving the Type I error rate, insofar as rejection

of H
(j)
0 is based upon the outcomes of the other tested null hypotheses [60].
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1.4 Parallel Computing

To this end, we have introduced several approaches to assessing associations upon complex

diseases, and introduced various approaches to tackling their induced MHT problem. The underlying

studies of these approaches are typically comprised of exceptionally large samples of data. For

example, within a GWAS it is not uncommon to be analyzing hundreds of thousands of SNP markers

upon thousands of study subjects [21, 22]. The analysis of these immense data sets, demands both

high computational power and appropriate tools for its implementation. Parallel computing is an

approach well suited to deliver high computational power for the analysis of such data sets. Within

this section, along with its corresponding subsections, we introduce the notion of parallel computing

upon the graphical processing unit (GPU) of the personal computer, and outline the requirements

(tools) for its implementation.

It is this author’s opinion that the dynamic evolution of the personal computer is one of the

most intriguing phenomenon occurring within today’s research practices. In particular, the recent

(mid-late 2006) birth of each of the multi-core central processing unit (CPU) and the programmable

manycore GPU. Each of these advancements for the personal computer lends improvement in

computational power and reshapes the way one is required to think about solving complex problems.

It is through advancements in computing architecture such as these, which allows one to delve into

the analysis of ever increasingly more complex subject matter. Whether it be analyzing the tertiary

structure of a protein (proteomics) or one’s attempt at locating genetic markers which are associated

with an increased risk for a disease trait (genetic epidemiology), the field of genetics accurately fits

within the domain of analyzing complex subject matter. The demand for computational power in

this field is steadily increasing. As genetic technology continues to advance (e.g., through finding

more efficient methods to ascertain genetic information; development of methods which allow one

to obtain more genetic information) the demand for computational power increases.

1.4.1 The Programming Paradigm for the Future of High Performance Computing

upon the Personal Computer

As defined by Almasi and Gottlieb (1989), parallel computing is a form of computation in

which many calculations are carried out, where a large problem is broken down into two or more

smaller problems, and these smaller problems are simultaneously solved [64]. As opposed to solving

the larger problem as it exists (serial computing), the act of simultaneously solving the partitioned
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smaller problems can lead to the ascertainment of computational results at a quicker rate. For

example, suppose it is desired to compute the sum of the initial four counting numbers. We could

solve this problem by: summing the initial two counting numbers together; add the resultant to the

third counting number; and add the resultant to the fourth counting number. Note that this solution

does not adhere to the Almasi and Gottlieb definition of parallel computing (i.e., this solution is

serial computing), the computations in which incorporate a total of three sums, each sum in which

entails the storing – say to computer system memory – of the corresponding resultant of said sum.

In other words, this serial solution requires a total computational time equal to the aggregation of

performing three pairwise sums and the storing of three elements (i.e., positive integers).

On the other hand, noting that addition is commutative, to compute the sum of the initial four

counting numbers, we could break this problem down into two disjoint smaller problems (i.e., adher-

ing to the Almasi and Gottlieb definition of parallel computing), each handled by an independent

thread:5 the sum of the first two counting numbers, denoting the resultant by s1; and the sum of

the third and fourth counting numbers, denoting the resultant by s2. These two disjoint problems

are simultaneously solved, so that to this end, the computational time is equal to the aggregate

of one sum and the storing of one element to system memory. The desired result is obtained by

summing the two resultants, s1 and s2. Thus, overall the parallel computing solution has required

a total computational time equal to the aggregation of two sums and the storing of two elements.

All else being equal, the computational time required by the serial solution is 1.5 times that of the

parallel solution. Therefore, when compared to serial computing, parallel computing can lead to

the ascertainment of computational results at a quicker rate. Note that the actual speedup of the

parallel program – over that of the corresponding serial program – is dependent on the proportion

of the programming code written in a parallel context. This phenomenon is known as Amdahl’s

Law [66].

Parallel computing is not a novel notion and has been employed for many years, mainly in

high performance computing (e.g., computer clusters and supercomputers), but interest has grown

recently at the personal computing level due to physical constraints (e.g., heat dissipation and elec-

tricity consumption) of microprocessors (CPUs) [67]. These constraints essentially prevent increases

in frequency scaling (a measure of the speed of a microprocessor). In fact, the computer industry has

accepted that future performance increases in CPUs must largely come from increasing the number

of cores within the CPU, rather than making a single core go faster [67]. Indeed, to circumvent these

5Threads are sequential processes that share memory [65].
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physical constraints, CPU manufacturers, such as Intel and Advanced Micro Devices (AMD), have

recently (mid 2006) developed the multi-core CPU for the personal computer. One can envision

each core of a multi-core CPU: analogous to existing as a single-lane upon a multi-lane highway; its

assigned computations are performed independently of other cores, which allows for uninterrupted

computational flow from-and-to system memory. Thus, all else being equal (e.g., CPU clock speed,

memory speed, etc.) the multi-core CPU comprised of c cores is capable of performing c times as

many computations per unit time as that of the single-core CPU of yesteryear. The act of unlocking

the full capabilities of the multi-core CPU, reduces to parallel computing. That is, the personal

computer user streams specially written programming code to the multi-core CPU, thereby activat-

ing the cores within said CPU. In brief, the adaptation of parallel computing upon the personal

computer consists of two essential components: a multi-core CPU (or, as we will encounter within

§1.4.2, manycore GPU); and specialized programming code. Without the latter, the multi-core

CPUs of the future are no more useful than the single core CPU of yesteryear. Therefore, parallel

computing is indeed the programming paradigm of the future for high performance computing upon

the personal computer.

1.4.2 Parallel Computing upon the NVIDIA Manycore GPU

Since many personal computers possess a GPU which is independent of the CPU, there are

essentially two competing ways – hardware specific – in which to program in parallel upon the

personal computer, either by way of programming specifically to: the multi-core CPU; or, the

manycore GPU. Here, we motivate the utility of the manycore GPU over the multi-core CPU as

the specific hardware utilized for parallel computing upon the personal computer. In order to do

this, let us first briefly outline the required components for parallel computing upon the personal

computer:

1. A computer warehousing at least one of a multi-core CPU or manycore GPU;

2. Ability for the user to program within a high-level programming language (e.g., C, C++,

FORTRAN);

3. A specialized toolkit – computer hardware (i.e., CPU or GPU) and programming language

specific – which provides the user a set of extensions (to harness the parallel computing nature

of the hardware) to the high-level programming language; and
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4. A compiler capable of compiling the specialized parallel programming code, where parallel

programming code is defined as any code written through the collaboration between (2) and

(3) above.

Henceforth, any references to CPU and GPU are synonymous with multi-core CPU and [NVIDIA]

manycore GPU, respectively.

There is an array of reasons, justifying programming in parallel upon the GPU over that of

the CPU. First, whereas the CPU is currently – as of December 2011 – limited to comprise six

cores (Intel Westmere/Gulftown processors), the GPU can contain upwards of 1024 cores (NVIDIA

GeForce GTX 590). This surplus in core units over the CPU, in-and-of-itself, makes the GPU the

more attractable resource for parallel computing upon the personal computer. Moreover, even with

hyper-thread – each processing core being able to concurrently process multiple threads – support,

the Westmere/Gulftown CPUs are merely capable of processing twelve (12) threads (i.e., operations)

concurrently [68]. On the other hand, each of the sixteen (16) multiprocessors upon the NVIDIA

GeForce GTX 580 GPU can concurrently process 1536 threads, so that the maximum number of

active threads concurrently processed upon this GPU is 24576 [68,69].

Second, the NVIDIA corporation’s – a worldwide leader in graphics card manufacturing – Com-

pute Unified Device Architecture (CUDA) toolkit, designed for parallel computing upon NVIDIA

GPUs, is provided free of charge and readily downloadable from the NVIDIA website.6 Moreover,

the CUDA toolkit contains the aforementioned required parallel components for each of (3) (pro-

gramming language extensions) and (4) (compiler), thereby providing: a consolidated means by

which to ascertain said two parallel components; maximum compatibility between the parallel pro-

gramming code and the compiler utilized to compile said code; and maximum compatibility with

its targeted computer hardware. In contrast, obtaining a toolkit for parallel programming upon

the CPU is either through a third-party (relative to the CPU manufacturer) – such as Open Multi-

Processing (OpenMP) or Open Computing Language (OpenCL) – or, essentially not free of charge.

In utilizing a third-party toolkit, one introduces the potential for incompatibility between each of:

the parallel programming code; the compiler; and the targeted computer hardware. These ideas

hold true since the toolkit is geared toward several possible intended hardware profiles, and the

compiler is ‘third-party’ to the toolkit. As of December 2011, although CPU manufacturer Intel has

6Available: http://www.nvidia.com/object/cuda_get.html.

http://www.nvidia.com/object/cuda_get.html.
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released several toolkits (e.g., the Intel Parallel Studio Suite software) there is a fee associated with

obtaining the software, of which the minimum MSRP is $799.7

Third, the computational speed of the GPU is substantially greater than that of the CPU. As

of May 2011, the computational ability of the fastest NVIDIA GPU (NVIDIA GeForce GTX 580

GPU) was over 1.5 teraflops (one teraflop (TFLOP) = one trillion floating point operations per

second) [69]. Whereas, at the same point in history, the computational ability of the fastest CPU

(Intel Westmere CPU) was less than 13% of that for this GPU [69]. Fourth, the bandwidth – the

quantity of information being able to be moved per unit time – of the memory for the GPU is much

greater than that of the CPU. As of May 2011, the memory bandwidth of the GPU (∼ 195 gigabytes

per second) was about 450% greater than that of the fastest CPU (NVIDIA GeForce GTX 580 GPU

versus the Intel Westmere CPU) [69].

Finally, the computational power of the GPU is readily scalable. Whereas the top-end moth-

erboards for personal computers offer support for a single CPU, many of these motherboards are

comprised of multiple graphics card expansion slots. This implies that one can introduce multiple

GPUs upon these motherboards, thereby scaling – the factor of which is essentially equal to the

number of GPUs warehoused within the personal computer (see §2.6 for an illustration of this no-

tion) – the computational power of the GPU over the CPU. In particular, the ASUS P6T7 WS

SuperComputer motherboard8 supports up to four NVIDIA GeForce GTX 580 GPU graphics cards,

providing upwards of six teraflops (1.5 TFLOPs for each GPU) of GPU computing performance.

1.4.3 The NVIDIA CUDA Programming Model

In November 2006, the NVIDIA corporation introduced their Compute Unified Device Ar-

chitecture (CUDA), “A general purpose parallel computing architecture that leverages the parallel

compute engine in NVIDIA GPUs to solve many complex computational problems in a more efficient

way than on a CPU” [69, 70]. Here, we interface CUDA with the C programming language, which

is called CUDA C programming [69]. CUDA C programming is heterogenous computing, insofar

as it involves running code on two different platforms – each embedded within the same personal

computer system – concurrently: a host system with a CPU; and one or more devices (frequently

graphics adapter cards) with CUDA-enabled NVIDIA GPUs. This is accomplished by way of the

CUDA data processing flow:

7Retrieved from http://software.intel.com/en-us/articles/buy-or-renew/, December 30, 2011.
8Retrieved from http://usa.asus.com/product.aspx?P_ID=9ca8hJfGz483noLk&templete=2,

December 30, 2011.

http://software.intel.com/en-us/articles/buy-or-renew/
http://usa.asus.com/product.aspx?P_ID=9ca8hJfGz483noLk&templete=2
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1. Copy data from host memory to device (known also as global) memory;

2. Host instructs the device to process data;

3. The device executes in parallel upon its cores; and

4. The results are copied from device memory to host memory.

At its core are three key abstractions – a hierarchy of thread groups, shared memory, and bar-

rier synchronization – which are simply exposed to the programmer as a minimal set of language

extensions.

CUDA extends upon the C language by allowing the user to write C [device] functions, known as

kernels. As opposed to regular C functions being executed once, when invoked kernels are executed

N times upon the device in a parallel manner by N different CUDA threads. In other words, a single

kernel call of N threads is analogous to simultaneously executing N iterations of a [solely serial based]

C function. Threads are organized (i.e., grouped) – at the host level – into a grid of thread blocks.

Threads are indexed and identified by the device through the threadIdx CUDA resource control

variable, while blocks are indexed by way of the blockIdx CUDA resource control variable. At the

simplest level, this within-blocks thread index is one-dimensional (maximum of three-dimensions), for

which threads are identified by the CUDA resource control variable threadIdx.x (the ‘.x’ references

the first dimension of the threadIdx control variable). Similarly, the simplest within-grid block

index is one-dimensional (maximum of three-dimensions), for which blocks are identified by the

CUDA resource control variable blockIdx.x. The number of one-dimensional thread blocks of the

CUDA grid – assigned by the user at time of kernel execution at the host level – is referenced within

the device by way of the CUDA resource control variable gridDim.x; the number of one-dimensional

threads per thread block of the CUDA grid – maximum value of 1024 upon the NVIDIA GeForce

GTX 470 GPU, the GPU used by this author, assigned by the user at time of kernel execution

at the host level – is referenced within the device by way of the CUDA resource control variable

blockDim.x. Table 1.1 displays a CUDA grid of gridDim.x = B one-dimensional thread blocks,

each block comprised of blockDim.x = T one-dimensional threads.

Thread blocks are required to execute independently – it must be possible to execute them

in any order, in parallel or in series. This independence requirement allows thread blocks to be

scheduled in any order across any number of cores as depicted by Table 1.1, enabling programmers

to write code that scales with the number of cores. Threads within a block can cooperate by sharing
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Table 1.1: A CUDA Grid of B Thread Blocks, Each Block Comprised of T Threads.

Grid of gridDim.x× blockDim.x = B × T Threads
Thread Block 1 (blockIdx.x = 0) · · · Thread Block B (blockIdx.x = B − 1)

Thread ID (threadIdx.x) Thread ID (threadIdx.x)
0 · · · T − 1 · · · 0 · · · T − 1

data through a medium called shared memory, and the user can place barrier synchronization points

within the kernel to coordinate memory accesses. More precisely, one can specify synchronization

points in the kernel by calling the CUDA syncthreads() intrinsic function; syncthreads() acts

as a barrier at which all threads in the block must wait before any is allowed to proceed. Shared

memory is expected to be much faster than global device memory – “any opportunity to replace

global memory accesses by shared memory accesses should therefore be exploited” [69].

The CUDA architecture is built around a scalable array of multithreaded Streaming Multipro-

cessors (SMs). When a CUDA program on the host CPU invokes a kernel grid, the blocks of the grid

are enumerated and distributed to multiprocessors with available execution capacity. The threads of

a thread block execute concurrently on one multiprocessor, and multiple thread blocks can execute

concurrently on one multiprocessor. As thread blocks terminate, new blocks are launched on the

vacated multiprocessors. A multiprocessor is designed to execute hundreds of threads concurrently.

To manage such a large amount of threads, it employs a unique architecture called Single-Instruction,

Multiple-Thread (SIMT).

The SIMT within the multiprocessor creates, manages, schedules, and executes threads in groups

of thirty-two (32) parallel threads called warps. Individual threads composing a warp start together

at the same program address, but they have their own instruction address counter and register

state and are therefore free to branch and execute independently. The term warp originates from

weaving, the first parallel thread technology [68]. When a multiprocessor is given one or more

thread blocks to execute, it partitions them into warps that get scheduled by a warp scheduler for

execution. The way a block is partitioned into warps is always the same; each warp contains threads

of consecutive, increasing thread IDs with the first warp containing thread 0. For further details,

the reader is encouraged to review the document at http://developer.download.nvidia.com/

compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf.

http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
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1.4.4 Example

As a simple example of an arithmetic problem which can be solved in a parallel manner within

the CUDA C programming environment, consider summing over the elements contained within

the SNP profile for the ith study participant, gi, where gi – and its corresponding elements, gji,

j = 1, . . . ,m – are defined within §2.2.1, some i = 1, . . . , n, and for notational clarity and simplicity

of explanation we assume that m = 210 = 1024. We denote the resultant of this sum by si. It is,

si =

m∑
j=1

gji.(1.4)

To compute this sum – in serial within a high-level programming language – we could follow the

procedure of Algorithm 1.1.

Algorithm 1.1 Serial Sum

si ← 0. {Initialize the value of si to zero}.

for j = 1 to m do

si ← si + gji. {Increment the value of si by that of gji}.

end for

To carry out the recipe outlined in Algorithm 1.1 within the C programming language environ-

ment, we could invoke Code Snippet 1.1. For this code note that: after each of the m iterations of the

for loop, the resultant s (i.e., si) is updated with the value g[j] (i.e., g{j+1}i, j = 0, . . . ,m−1); the

(k+ 1)st iteration of the loop does not begin until the kth iteration has completed, k = 1, . . . ,m− 1.

Thus, a total of m arithmetic operations are performed at m distinct points in time. This code is

an example of a particular scan operation, called sequential scan [71,72].

Code Snippet 1.1.

s = 0;

for(j = 0; j < m; j++)

s += g[j];�

On the other hand, to compute the sum (1.4) in a parallel manner within the CUDA C pro-

gramming environment, we could follow the procedure of Algorithm 1.2.
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Algorithm 1.2 Parallel Sum

1. (Host) Copy the elements gji, j = 1, . . . ,m, from a host memory object to a device memory

object, as follows. Suppose the elements gji, j = 1, . . . ,m, reside within the host memory

object (vector) h data (of data type, say unsigned int). Here, for a given memory object,

we use the prefixes h, d, and s to reference host memory, device memory, and shared memory,

respectively. Now, a CUDA kernel can only access device or shared memory objects, and

cannot directly access the elements within a host memory object (e.g., h data). So, to proceed,

we must: create (or, allocate) a device memory object which will warehouse the elements of

h data, say d data, and copy the elements of h data to d data. To carry out these respective

tasks, we invoke the following two lines of code

cudaMalloc((void **) &d data, m * sizeof(unsigned int));

cudaMemcpy(d data, h data, m * sizeof(unsigned int), cudaMemcpyHostToDevice);

2. (Host) Invoke a kernel comprised of one block (B = 1) and T = 512 threads, as follows. We

first note that per [69], a kernel is defined using the global declaration specifier, where

the return data type is required to be void. Next, note that our kernel requires two parameter

specifications: the device object d data, so that the kernel can access and operate upon the

corresponding elements within this object; and, a device object, say d result, which will

warehouse the value of (1.4). Overall, our kernel declaration – whose name is SNP Add – is

global void SNP Add(unsigned int *d data, unsigned int *d result)

Finally, to call this kernel, we must specify the number of blocks (B) and number of threads

per block (T ). This is carried out by way of the execution configuration, <<< B, T >>>. The

following code is used to call our kernel

SNP Add<<< 1, 512 >>>( (unsigned int *) d data, (unsigned int *) d result);

3. (Device) Each thread of the kernel – indexed by threadIdx.x = 0, . . . , T − 1 – loads (copies)

two elements from the collection {g1i, . . . , gmi}, say g{2threadIdx.x+1}i and

g{2threadIdx.x+2}i, to shared memory. Denote these elements by the shared memory object

s sum. The following code declares the shared memory object s sum, copies the elements from

the device memory object d data to said shared memory object, and synchronizes the threads

within the block. The thread synchronization is critical, since more than a single thread warp
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is being invoked within our kernel call (in fact, a total of 16 warps (each warp comprised of

32 threads) comprises 512 threads of a block) – we cannot proceed with calculating our sum

until all data is loaded into shared memory; threads of different warps cannot communicate

with one another.

shared unsigned int s sum[1024];

s sum[2*threadIdx.x] = d data[2*threadIdx.x];

s sum[2*threadIdx.x + 1] = d data[2*threadIdx.x + 1];

syncthreads();

4. (Device) Perform the sum within the shared memory object s sum:

for k = 1 to 10 do

d← 210−k. {Set the stride value between paired elements}.

if threadIdx.x < d then

s sum[threadIdx.x]← s sum[threadIdx.x]+s sum[threadIdx.x + d]. {Increment

the sum}.

end if

Synchronize threads. {Wait for each thread to finish its corresponding task before con-

tinuing}.

end for

5. (Device) Note that the element s sum[0] contains the desired sum. If threadIdx.x = 0, then

store said element to the device memory address d result[0].

6. (Host) Copy the device memory associated with d result to host memory, storing the result

within the object h result.

To carry out the recipe outlined within Algorithm 1.2, we could invoke Code Snippet 1.2. The

reader should take note that each thread executes the entire code presented within the ‘DEVICE

KERNEL’ portion of said code snippet – this is an important point, which when overlooked, could

distort ones’ interpretation of the code from the actual interpretation thereof. Note that the loop

within this code is comprised of a mere ten (10) iterations, compared to the 1024 iterations within

the serial code of Code Snippet 1.1. Hence, all else being equal, obtaining the sum of (1.4) by way

of parallel computing is a much more efficient approach than that of serial computing.
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Code Snippet 1.2.

// DEVICE KERNEL //

global SNP Add(unsigned int *d data, unsigned int *d result)

{
// INITIALIZE SHARED MEMORY //

shared unsigned int s sum[1024];

// INITIALIZE VARIABLE d (STRIDE FOR ELEMENT REDUCTION) //

unsigned int d;

// LOAD PAIRS OF ELEMENTS INTO SHARED MEMORY //

s sum[2*threadIdx.x] = d data[2*threadIdx.x];

s sum[2*threadIdx.x + 1] = d data[2*threadIdx.x + 1];

// SYNCHRONIZE THREADS //

syncthreads();

// PERFORM SUM W/IN SHARED MEMORY //

for(d = blockDim.x; d > 0; d >>= 1)

{
if(threadIdx.x < d)

s sum[threadIdx.x] += s sum[threadIdx.x + d];

syncthreads();

}

// WRITE OUT RESULT TO GLOBAL MEMORY //

if(threadIdx.x == 0) d result[threadIdx.x] = s sum[threadIdx.x];

} // END KERNEL //

/////////////////////////////////////////

// WITHIN main() SECTION //

// ALLOCATE DEVICE MEMORY FOR OBJECTS d data AND d result //

cudaMalloc((void **) &d data, m * sizeof(unsigned int));

cudaMalloc((void **) &d result, 1 * sizeof(unsigned int));

// COPY HOST MEMORY TO DEVICE MEMORY //

cudaMemcpy(d data, h data, m * sizeof(unsigned int), cudaMemcpyHostToDevice);

// INVOKE KERNEL <<< BLOCKS, THREADS PER BLOCK >>> //

SNP Add<<< 1, 512 >>> ((unsigned int *) d data, (unsigned int *) d result);

// COPY RESULT UPON DEVICE MEMORY TO HOST MEMORY //

cudaMemcpy(h result, d result, 1 * sizeof(unsigned int), cudaMemcpyDeviceToHost);�
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1.5 Outline of the Chapters

Insofar as GWAS is essentially a non-hypothesis driven approach (i.e., it interrogates the

genome, by way of the sampled SNP panel, searching for potential DSLs), it unleashes an extraor-

dinary multiple hypothesis testing problem. Within Chapter 2 we argue that control of the FWER

is most befitting for the GWAS MHT problem (§2.1.1), describe recently proposed approaches to

controlling the FWER in genetic studies, including their limitations when applied to large scaled

studies such as GWAS (§2.1.1), introduce our proposed parallel processing approach to abolishing

the computational burden when applying the so-called maxT and minP permutation based multiple

testing procedures for control of the FWER within a GWAS (§2.1.2), propose data management

tools for efficient utilization of the data when processing a permutation null distribution (§2.3), pro-

pose a parallel algorithm for exceptionally rapid implementation of the maxT and minP permutation

multiple testing procedures upon a GWAS data set (§2.4), outline a methodology for clustering the

parallel algorithm (§2.5), demonstrate proof of concept by way of applying our tools against a small

proportion of the SNP markers encompassing a GWAS data set (§2.6), benchmark our proposed

tools to some of the existing software packages for analyzing GWAS data (§2.7), and provide a

summary (§2.8).

GWAS relies upon the common-disease common-variant (CDCV) hypothesis of Lander (1996)

[9], which asserts that some of the genetic risk to common diseases is due to several common risk

variants; individually the variants alter the risk of disease by a minor amount, but collectively

they could increase risk substantially [16]. However, not all genetic effects within complex disease

etiology are due to common allele variants, some [moderate-risk] genetic effects could be due to rare

allele variants. In the past, these loci were difficult to identify, insomuch as they do not possess a

large enough effect to display a clear Mendelian inheritance pattern (i.e., linkage mapping is not an

effective tool at finding these loci), and too rare to be efficiently identified by association approaches.

Nonetheless, these variants deserve more extensive attention, because only recently are we beginning

to identify them in a systematic fashion by way of exome and genome sequencing [16]. We would

like to extend upon GWAS and test the null hypothesis of no genotype-phenotype association upon

SNPs which are either suggestive (i.e., based upon the sampled data) or known (e.g., by way of the

dbSNP database [73]) to possess rare variant alleles. However, to detect such associations, we argue

within Chapter 3 that corrections to currently employed GWAS statistical inference techniques are

required; we propose a methodology for these corrections (see §3.4).
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Within Chapter 3 we introduce the notion that the methodological approaches described within

§2.1.1 have lost sight of the central dilemma encompassing multiple testing correction in GWAS

(§3.1), highlight the näive approach of reliance upon asymptotic assumptions for the Cochran-

Armitage Trend test (CATT) statistic within the scope of the GWAS MHT problem (§3.2), under

certain regularity conditions abolish the asymptotic assumptions and correctly identify the test

statistics null distribution for the CATT statistic (§3.2.1), illustrate that control of the FWER for

the CATT statistic is dependent upon several parameters of a GWAS sample and its underlying

population (§3.2.2), illustrate that the asymptotic chi-square assumption for the CATT statistic

can lead to improper control of the FWER within a GWAS (§3.2.3). As hinted to above, unless

corrected, this notion is particularly detrimental for future genetic association studies whose sampled

SNP panels are comprised of some loci possessing rare variant alleles. We propose a methodology

which abolishes the asymptotic assumption for the CATT statistic under the null hypothesis of

no genotype-phenotype association across SNP loci (§3.4). When implemented in practice, this

method yields proper control of the FWER for the CATT statistic within a GWAS. As it turns out,

the realized implementation of this methodology in practice, introduces a difficult computational

problem. Within §3.5 we propose a methodology to reduce the computational problem. By way

of simulation and real GWAS data, within §3.6 we provide proof of concept for the synergistic

methodologies proposed within Sections 3.4 and 3.5. Finally, we provide a brief summary (§3.7).

Lastly, a novel tool for detecting gene-environment interaction is proposed within Chapter 4.

We begin (§4.1.1) by describing the conventional approach to assessing this type of interaction upon a

single genetic marker, introduce the challenges imposed when assessing this type of interaction upon

multiple genetic markers, and highlight some alternative approaches to assessing both gene-gene and

gene-environment interaction within genetic association studies. As illustrated within Chapter 3,

reliance upon an asymptotic approximation to the test statistics null distribution within the realm

of multiple hypothesis testing can lead to improper control of the Type I error rate. Within §4.1.2,

we sketch our approach to testing for gene-environment interaction, of which addresses the multiple

testing problem by embracing the appropriate permutation null distribution for the test statistics

null distribution. We outline the implementation of our methodology within §4.2–§4.4, highlight our

permutation approach to the multiple testing problem (§4.5), propose an efficient algorithm (Algo-

rithm 4.1) for sampling from the permutation null distribution of the test statistics null distribution

(§4.5.3), propose an exact approach to assessing gene-environment interaction upon a single sampled
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genetic marker and a binary environmental factor (§4.6), and propose a network algorithm (Algo-

rithm 4.2) for implementing the aforementioned exact approach (§4.6.1). To demonstrate proof of

concept, we conduct a simulation analysis (§4.7) and implement our method upon two case-control

samples (§4.10). Within §4.8, we delve into the ‘special’ cross-interaction pattern of GxE interac-

tion; within §4.9 we investigate control of the FWER for our proposed approach at detecting GxE

interaction under partial null hypotheses; and, we end the chapter with a brief summary and our

future directions (§4.11).



CHAPTER 2

COMPUTATIONAL TOOLS FOR MULTIPLE HYPOTHESIS TESTING IN GENOME-WIDE

ASSOCIATION STUDIES

2.1 Introduction

Current statistical inference problems in genome-wide association studies (GWAS) routinely

involve the simultaneous test of hundreds of thousands (or, even millions) of null hypotheses. This

testing problem entails inference for high-dimensional joint distributions of complex and unknown

dependence structures among the sampled genotype and phenotype data. In turn, this leads to

complex dependence structures among the test statistics arising from the simultaneous testing of

the null hypotheses. Ignoring the dependence structure among the test statistics can lead to a loss in

statistical power within a GWAS. The core methodological and computational issue encompassing

GWAS is multiple hypothesis testing (MHT). Within this chapter, we discuss approaches to tackling

the GWAS multiple hypothesis testing problem, compare and contrast their operating characteristics

and computational performance, and develop a parallel programming algorithm to implement the

permutation maxT and minP multiple testing procedures (MTPs).

2.1.1 Approaches to Controlling the FWER in Genome-wide Association Studies

Of the four types of Type I error rates defined within §1.3, it seems strong control of the FWER

at level α to be most befitting for application within a GWAS. This is due to the fact that MTPs

based upon the PFER are generally more conservative (i.e., leads to an increased reporting of Type

II errors) than those based upon the FWER [60]; MTPs based upon the PCER are generally less

conservative than those which control either the FWER or FDR, but tend to ignore the multiplicity

problem altogether [60]. Furthermore, while MTPs based upon the FDR tend to achieve greater

statistical power than those based upon the FWER – particularly, when the ratio of false null

hypotheses (m1) to the total number of tested null hypotheses (m) is large (i.e., the ratio m1/m

is large) – in general they can result in a high probability for the occurrence of one or more false

positives (i.e., an inflated FWER) [74]. Although it is highly unlikely that all tested null hypotheses

in a GWAS are in fact true (i.e., it is unlikely that m1 ≡ 0), it is likely that the ratio m1/m is

exceptionally small, far less than 1%. Under these conditions, control of the FDR is close to weak
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control of the FWER [61]; strong control of the FWER is close to the best methods for weak control

of the Type I error rate [75, 76]. In light of the above, strong control of the FWER seems most

befitting for application within a GWAS, and likely explains why many – not all (see e.g., [77]) –

methodological approaches for multiple testing in GWAS have focused upon control of the FWER.

As such, all multiple testing procedures discussed within Chapters 2 and 3 of this manuscript are

assumed to control, in the strong sense, the FWER at some user specified level α.

As indicated above, there are issues specific to GWAS designs which influence both how inves-

tigators control for Type I errors and the decision of which MTP to be most useful for control in

the adopted Type I error rate. In a multiple hypothesis testing MHT problem such as a GWAS, the

likelihood of committing some Type I errors increases (i.e., the FWER increases), as we have illus-

trated above through expression (1.1). The goal of the MHT problem is to control some Type I error

rate in the strong sense, say the FWER, while simultaneously maximizing statistical power to reject

false null hypotheses. To control the FWER at a predefined level, say α, one implements a multiple

testing procedure. The choice of implemented MTP is critical – an overly conservative MTP could

result in overlooking genetic markers which are truly associated with the disease under investigation

(i.e., an excessive Type II error rate); an overly liberal MTP, on the other hand, could result in

excessive false positives (i.e., an excessive Type I error rate). The Bonferroni MTP is, by far, the

most exploited MTP within a GWAS (for recent articles, see e.g., [78,79,80,81,82,83,84]) for strong

control of the FWER at level α, presumably due to its simplicity of application – for a GWAS

comprised of m markers, at the FWER α level one rejects a null hypothesis if its corresponding

pointwise p-value does not exceed the ratio α/m.

While the Bonferroni MTP is simple to implement, it ignores LD (see footnote 1 within §1.1 for

a review of the LD definition) among the sampled SNP markers. As a consequence, in the presence

of correlated SNP markers this MTP is overly conservative [20, 21, 22, 85]. So as to maximize

the efficiency of a GWAS, SNPs are often selectively sampled to be nearly free of LD (i.e., to

avoid ascertaining redundant information, SNPs should be selected to be essentially statistically

independent). In spite of this, some degree of correlation typically exists within the sampled genetic

data [20]. Permutation-based MTPs, such as the so-called maxT and minP approaches of [62], are

widely considered most powerful for strong control of the FWER at level α within a GWAS, insofar

as these MTPs account for the correlation structure amongst the sampled data [22]. We outline the

maxT and minP MTPs in more detail within §2.2.4, but point out here that they remain largely
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unimplemented due high computation effort upon a GWAS data set (see e.g., [20,21,86,87,88]). For

example, performing the necessary number of permutations (100K) upon a typical GWAS data set

containing 2500 cases and 2500 controls and m = 500K SNP markers using standard software (e.g.,

PLINK [63]) can take upwards of four CPU years to complete [21]. To alleviate this computational

burden, there have been several recent algorithms proposed to approximate the GWAS permutation-

based maxT and minP gold standard.

When correlation exists upon the tested null hypotheses – by way of LD upon the sampled SNP

markers – there is less variation among their corresponding test statistics than if the null hypotheses

were mutually independent. This decreases the likelihood of extreme test statistics [20]. With

correlated tests, we gain information about the plausibility of a particular null hypothesis based

upon the tests of other null hypotheses. One alternative approach to permutation MTPs for control

of the FWER in GWAS exploits the correlation structure upon the sampled markers. It is based

upon estimating the LD within the data. Then, utilizing the LD estimates in turn to estimate

the effective number of tested independent null hypotheses (Meff) and modifying the Šidák MTP1

replacing the value m within said MTP with the less conservative estimate Meff. By exploiting the

correlation within the sampled data, this approach results in a less conservative MHT correction

than the Šidák MTP [so also the Bonferroni MTP] (i.e., Meff < m); the approach results in a low

computational requirement when compared to permutation MTPs. Cheverud (2001) pioneered this

approach, and proposed estimating LD from the eigenvalues of the Pearson correlation matrix for

the sampled SNP markers [89]. Subsequently, several author’s proposed alternative methods for

estimating Meff [86, 88, 90]. However, these methods remain conservative when compared to using

the actual permutation null distribution [21,22]. Moreover, [91] and [92] illustrated that the effective

number of tested independent null hypotheses varies across p-value levels, thereby demonstrating

that the Meff approach can be inaccurate.

A second alternative approximation approach to permutation MTPs for control of the FWER is

based upon the framework of the multivariate normal distribution (MVN). The joint distribution of

the test statistics under the complete null hypothesis for many statistical tests commonly employed

within a GWAS – such as the Cochran-Armitage Trend Test – follows an asymptotic MVN [93,94].

The articles of [93] and [94] proposed simulating replicates of the test statistics from this asymptotic

MVN under H0 (the complete null hypothesis), and ascertaining adjusted p-values by way of com-

paring the test statistic replicates with those of the observed data. The proposal of [20] increased

1For large values of m – as is the case for GWAS – the Šidák and Bonferroni MTPs are nearly equivalent.
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the efficiency of this approach, by direct numerical integration over the MVN probability density

function (PDF) under H0. When applied to data sets of the size of candidate gene studies (i.e., a

panel of a few hundred SNPs), these methods have been shown to be as accurate as permutation

MTPs (less than 1% average error in adjusted p-values) [20]. However, when applied to GWAS data

sets, the accuracy of these methods suffer. Utilizing the Wellcome Trust Case Control Consortium

(WTCCC) data [13], [21] demonstrated that these MVN methods only remove about two-thirds of

the error in the adjusted p-values relative to the Bonferroni MTP. Due to numerical limitations of

integrating over high-dimensional MVN PDFs, these methods require the user to partition the data

into small LD blocks (of hundreds of markers each) and integrate the MVN PDF within each LD

block. Insomuch as inter-block correlation is ignored, these MVN approaches lead to conservative

multiplicity correction. To address this problem, [21] proposed a resampling method called SLIDE (a

Sliding-window approach for Locally Inter-correlated markers with asymptotic Distribution Errors

corrected). However, accuracy and computational efficiency for this approach depends on the size

of the window: a large window leads to increased accuracy and decreased efficiency, while a small

window leads to decreased accuracy and increased efficiency.

Overall, several permutation approximation methods have recently been proposed, with the in-

tent of: (1) controlling the FWER; (2) avoiding the exceptional computational effort of permutation

MTPs; and (3) obtaining greater statistical power over the Bonferroni MTP. The accuracy in these

methods seems to be increasing, although some concerns linger. First, there is no agreement to a

standard alternative method. In fact, there is a lack of consistency in the reported results across

the Meff methods. For example, the results of [88] suggest the Meff estimate of [90] to be liberal in

controlling the FWER at the 5% level; the results of [95] suggest control of the FWER at the 5%

level for the Meff estimate of [86], to vary between 3% and 7%, where the variation is dependent

upon LD; and [90] suggest the Meff estimate of [89] is overestimated for some LD structures in the

sampled SNP panel. Second, in order to accurately account for the correlation among the sets of

tested hypotheses, one must do so utilizing the joint distribution of the test statistics. The Šidák

MTP – for which each of the Meff methods make use of in computing their respective pointwise

significance level – does not guarantee control of the FWER for arbitrary distributions of the test

statistics [20, 60]. These methods fail to account for the distribution in the test statistics, and as

such the validity in their respective extension to the Šidák MTP is questionable. Finally, each of

the Meff methods, as well as the MVN methods of [20] and [93], cannot cope with missing SNP
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data. As such, imputation methods (e.g., the K nearest-neighbor algorithm of [96]) are required to

be implemented to fill-in any missing data, which could lead to differential misclassification bias in

their reported results.

In contrast, not only is the permutation based MTP approach the GWAS gold standard, it is

also robust to patterns of missing data [89] and fully accounts for the correlation structure within

the sampled data. The robustness is due to the patterns of missing data being preserved within the

permuted data and is thus also included in estimation of the permutation significance thresholds.

In addition, as genotyping technology continues to evolve, one is able to sample DNA sequences

within the human genome at increasingly finer resolution. This implies future genetic samples will

arguably incur increasing presence of correlation among markers within the sample. Thus, continued

implementation of the Bonferroni MTP within future genetic association studies, will lead to an

increase in the reporting of Type II errors. Therefore, it is imperative that permutation MTPs

be implemented within current and future genetic association studies. Over the past three years,

significant progress has been made toward resolving this notion. For example, [85] has developed a

Java based software called PRESTO, which is markedly faster than PLINK [63]. When performing

1K permutations upon a 450K SNP sample of 2938 controls and 1749 cases of Crohn’s disease,

PRESTO was approximately eighteen times faster than PLINK at performing this task. More

recently, [22] developed a software called PERMORY, which is exceptionally faster than PLINK.

For example, when performing 10K permutations upon a simulated balanced (i.e., equal numbers

for each of cases and controls) GWAS sample of size 6000 participants and 500K SNP markers,

PERMORY completed this task in 1.9 hours. In contrast, extrapolated run times within PLINK

were projected by the authors to be 43 days. Based upon this simulated data set, PERMORY is

shown to be on the order of approximately 550 times faster than PLINK.

There is however, a significant problem with the PERMORY approach. Namely, it is not clear

how to handle missing genotype data with this approach, since the authors fail to include this notion

within the description of their algorithm. In fact, within section 2.4 of the article, the author’s have

miss-stated a critical fact regarding permutation upon the maxT MTP in the presence of missing

genotype data. Namely, the author’s claim that the permutation of phenotype elements (i.e., the

random shuffling of the elements upon the response vector y – see §2.2.1 for definition of y) does not

change the marginal totals of the 2×3 table (Table 2.1; see §2.2.1–§2.2.3 for appropriate definitions of

terms) at locus j. However, this notion is not true for the maxT MTP, when some loci are comprised
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of missing genotype data. Because the authors fail to handle missing genotype data within their

algorithm, the PERMORY approach is essentially incomplete.

2.1.2 An Efficient Approach for Processing the Permutation Null Distribution of the

MaxT and MinP Multiple Testing Procedures

We propose an optimized maxT/minP permutation algorithm for conducting multiple hypothe-

sis tests of the null hypothesis of no genotype-phenotype association within large SNP panel genetic

association studies entailing a binary disease trait (e.g., a GWAS sample), denoted GPER.2 Whereas

previous maxT permutation algorithm approaches (e.g., PLINK, PRESTO, PERMORY) make use

of the central processing unit (CPU) of the personal computer (PC), our approach is novel in that

we exploit offloading the computational burden of the permutation procedure to the graphics pro-

cessing unit (GPU). Not only does this approach abolish the computational problem for the maxT

and minP MTPs, it illustrates the utility of the GPU within the framework of a statistical applica-

tion. This approach incorporates parallel computing, arguably the programming paradigm for the

future of high performance computing (HPC) upon the personal computer (see §1.4.1), and is the

key ingredient for many of the algorithms developed henceforth within this dissertation. Moreover,

we develop an algorithm for clustering GPER upon multiple GPUs – each GPU residing within a

single personal computer – of which we demonstrate a linear scaling in the computational power of

GPER over the single GPU implementation.

We provide the underlying details of the GPER algorithm (Algorithm 2.1) within §2.4. Here,

we proceed with introducing some notation which will be used throughout the remainder of this

manuscript (§2.2), and outline two data management techniques for efficient application of GPER

(§2.3).

2.2 General Notation

2.2.1 Data Setup for a GWAS

Consider a GWAS in which data is collected upon m genetic markers among n study partici-

pants, where a binary response (trait) is recorded for each participant. For example, such a GWAS

data set could have arisen from sampling n0 controls and n1 cases (where n1 = n− n0) from some

2Named from the acronym GPU and the word permutation, emphasizing the utility of the graphics processing
unit (GPU) in the algorithm.
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population, whereupon for each participant we obtain – by way of, say, blood samples – genotypes

for a collection of m genetic markers. The data can be succinctly represented, utilizing a single

vector (warehousing the binary responses) and a single matrix (warehousing the genotypes across

participants and SNP loci). Indeed, the data for the ith participant consists of: the binary response

yi, where

yi =

 1, if the participant is a case (diseased)

0, if the participant is a control (healthy, non-diseased);
(2.1)

and SNP profile, gi = (g1i, . . . , gmi)
′, where gji denotes the genotype of the jth SNP locus for

participant i. In turn, the genotype at any SNP locus is defined in terms of the number of copies

for the minor allele (the less frequently occurring allele at the locus within the population – zero,

one, or two) at the locus. That is, for j = 1, . . . ,m, and i = 1, . . . , n,

gji =


2, if participant i carries two copies of the minor allele at SNP locus j

1, if participant i carries one copy of the minor allele at SNP locus j

0, if participant i carries no copies of the minor allele at SNP locus j.

(2.2)

For notational clarity, we organize the n SNP profiles by the m×n matrix G = (g1 · · ·gn) (referred

to as the genotype matrix), whose row and column indices identify SNP loci and participants, re-

spectively; we denote the vector of binary responses for the n study participants by y = (y1, . . . , yn),

referred to as the response vector.

2.2.2 The Genetic Model of Inheritance – Statistical Model

Here, let Gj and Y denote, respectively, the random variables which correspond to the genotype

for SNP locus j, j = 1, . . . ,m, and binary response. Within a GWAS, we are interested in testing

the null hypothesis of no association between Y and Gj , which we denote by H
(j)
0 . There are several

ways in which we can define the alternative hypothesis for the existence of an association between Gj

and Y . Each of these approaches encompass the notion known as the genetic model of inheritance.

A genetic model of inheritance (GMI) for a biallelic SNP locus, describes how the risk of disease

is expected to change as the number of copies in the minor allele changes. In the circumstance

for which we do not know the GMI between Gj and Y – and, rarely do we know the GMI (this

notion especially holds true for diseases with little known etiology) – the GMI under the alternative
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hypothesis is specified as the general model [97]. On the other hand, if we know the GMI between

Gj and Y under the alternative hypothesis, then – in coherence with the literature – it is assumed to

lie among one of the three models: (1) additive; (2) recessive; or (3) dominant [63,97]. As mentioned

within §1.1, by far the most commonly assumed GMI in GWAS is that of the additive model [23],

and for the sake of clarity in discussion is the GMI we assume here.

The additive GMI assumes the change in the log-odds of disease is linear for a one-unit change

in the number of copies for the minor allele at SNP locus j; equivalently, a one-unit increase in

the number of copies of the minor allele at the locus, leads to an additive change in the log-odds

of disease. Mathematically, if πjk = Pr (Y = 1|Gj = k), for k ∈ {0, 1, 2} = G, the additive GMI

assumes the behavior in the πjk satisfy the simple logistic regression model

log (Odds (πjk)) = β0j + β1jk ∀k ∈ G,(2.3)

where β0j and β1j are population parameters. Therefore, in terms of model (2.3), the test of H
(j)
0

– against the two-sided alternative hypothesis (denoted H
(j)
a ) under the additive GMI – can be

expressed by

H
(j)
0 : β1j = 0

H
(j)
a : β1j 6= 0.

(2.4)

2.2.3 The Cochran-Armitage Trend Test

By combining the elements upon the jth row of the genotype matrix with those of the response

vector, we can cross-classify the sample of data for Gj and Y , as depicted by a 2×3 contingency table

(Table 2.1). To test the null hypothesis of no association between Gj and Y in GWAS, a commonly

applied test statistic is based upon the Cochran-Armitage trend test (CATT) [19, 20, 21, 22], which

can be expressed by [98]

Tj =
n
(
n
∑
k∈G nj1kvk − n1

∑
k∈G njkvk

)2
(n0)(n1)

(
n
∑
k∈G njkv

2
k −

(∑
k∈G njkvk

)2) ,(2.5)

where vk, k ∈ G, denotes the score for genotype Gj = k – used to specify the specific tested trend

in the πjk under H
(j)
a – and nj1k and njk are the respective genotype counts in cases and the entire

sample. Particularly, taking (v0, v1, v2) = (t, t+1, t+2), for some real number t, the CATT statistic
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can be used to test H
(j)
0 against H

(j)
a under the additive GMI. Here, the reader may be speculating

to the reason(s) for using the CATT in testing H
(j)
0 , and not directly performing inference upon

the slope parameter of the simple logistic regression model (2.3) (e.g., conducting a likelihood ratio

test (LRT), score test, or Wald-based test under H
(j)
0 [99]). Indeed, under H

(j)
0 , the CATT statistic

(2.5) is equivalent to Rao’s Score test statistic in testing the hypotheses given by (2.4) upon said

logistic regression model. We provide a formal statement and proof of this notion as Proposition

A.1 within Appendix A.

Table 2.1: Cross-classification of Disease Status and Genotype for SNP Locus j.

Number of Copies of Minor Allele
0 1 2 Totals

Cases nj10 nj11 nj12 n1

Controls nj00 nj01 nj02 n0

Totals nj0 nj1 nj2 n

2.2.4 The MaxT and MinP Multiple Testing Procedures

Let tj and pj = Pr
(
Tj ≥ tj |H(j)

0

)
, denote respective realizations of Tj (2.5) and the pointwise

p-value in testing H
(j)
0 . Given an MTP, the adjusted p-value in testing H

(j)
0 , denoted p̃j , is the

nominal level of the entire test procedure at which H
(j)
0 would just be rejected, given the values of

all test statistics involved (see e.g., [60, 62]). That is,

p̃j = inf
{
α ∈ [0, 1] : H

(j)
0 is rejected at nominal FWER = α

}
,(2.6)

where the nominal FWER is the α level at which the MTP is performed. For control of the

FWER, while simultaneously accounting for the joint correlation among the vector of test statistics

(T1, . . . , Tm), [62] proposed the single-step minP adjusted p-value (hereinafter, minP adjusted p-

value) for null hypothesis H
(j)
0 , p̃j(minP), defined by

p̃j(minP) = Pr

(
min

1≤k≤m
Pk ≤ pj |H0

)
,(2.7)

where Pk denotes the random variable for the pointwise p-value in testing null hypothesis H
(k)
0 ,

k = 1, . . . ,m. Alternatively, one may consider multiplicity correction based upon the single-step

maxT adjusted p-values (hereinafter, maxT adjusted p-value), defined in terms of the test statistics
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(T1, . . . , Tm) themselves [60,62]:

p̃j(maxT) = Pr

(
max

1≤k≤m
Tk ≥ tj |H0

)
.(2.8)

It is noted here that the maxT and minP MTPs control the FWER in the weak sense [60], the

notion in which is essentially absent within the GWAS literature – particularly, the articles by [85]

and [22] fail to make mention of this notion. Strong control of the FWER holds under the property

of subset pivotality (see pg. 42 of [62]). The distribution of pointwise p-values (P1, . . . , Pm) is said to

possess subset pivotality, provided that the joint distribution of the random vector
{
Pj : H

(j)
0 ∈ Hp

0

}
is identical, for all Hp

0 ∈ P (H0) [60], where – as previously defined within §1.3 – Hp
0 denotes a partial

null hypothesis over H0 and P(·) denotes the power set of (·). It turns out that subset pivotality

holds among the pointwise p-values for the Cochran-Armitage Trend test statistics (see pg. 157

of [62]), for which we attain strong control of the FWER within the maxT and minP MTPs upon

utilizing the Cochran-Armitage Trend test in testing H0.

When the distributions of T(m) and P(1) are unknown, the maxT and minP adjusted p-values

can be estimated by resampling [60, 62], where T(k) and P(k) denote the kth order statistics for

the respective vectors (T1, . . . , Tm) and (P1, . . . , Pm). Here, in accordance with the PERMORY

approach, we consider permuting the response vector, y, a total of R times [22]. Then, in accordance

with Box 2 of [60], within the rth permutation, r = 1, . . . , R:

1. Randomly shuffle (i.e., permute) the elements of the response vector y. Permuting the elements

of y – while simultaneously preserving the structure of the genotype matrix G – creates

a situation in which y is independent of G
(
i.e., we are simulating H0

)
and preserves the

correlation structure and distributional properties of the SNP profiles (gi) within G.

2. Compute the test statistic for null hypothesis H
(j)
0 , tj,r. If implementing the minP MTP, then

compute the pointwise p-value corresponding to tj,r, pj,r = Pr
(
Tj ≥ tj,r|H(j)

0

)
.

3. If implementing the maxT MTP, then locate the maximum of the tj,r, denoted by t(m),r. If

implementing the minP MTP, then locate the minimum of the pj,r, denoted by p(1),r.

The maxT and minP permutation adjusted p-values are given by

p̃∗j(maxT) =

∑R
r=1 I

(
t(m),r ≥ tj

)
R

,(2.9)
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and

p̃∗j(minP) =

∑R
r=1 I

(
p(1),r ≤ pj

)
R

,(2.10)

respectively, where tj and pj denote the respective realizations of Tj and Pj under H
(j)
0 for the

observed (non-permuted) data and I(·) is the indicator random variable returning the value of one

if the argument (·) is true and zero otherwise.

2.3 Data Management Techniques for Efficient Processing of the MaxT and MinP

Permutation Null Distributions

Here, we propose two data management strategies for efficient parallel processing of GWAS data

upon the maxT and minP permutation null distributions: §2.3.1 outlines a technique for ordering the

data (prior to performing any statistical inference), while §2.3.2 develops an approach for optimized

CUDA kernel execution.

2.3.1 Strategic Ordering of the Elements upon the Response Vector

Undoubtedly, the development of an efficient parallel algorithm for processing the permutation

null distribution of the maxT (or, minP) MTP requires considerable strategic thought. There

would seem to be two perspectives to the strategy: (a) locating routines (e.g., arithmetic operations,

conditional arguments, looping routines, etc.) upon the programming code, whereby omission of

which would enhance efficiency while simultaneously preserving computational integrity; and (b)

data management techniques to improve computational efficiency. Within this section, and the

subsequent section to follow, we will look into the latter of these two approaches.

Within step 1 of the [60] procedure (§2.2.4), it was stated that the elements upon the response

vector y are to be randomly shuffled (note that this approach is consistent with the proposal of [22]);

within step 2 of the GPER pseudocode (see §2.4 to follow), we state that the columns upon a modified

version of the genotype matrix G are to be permuted. On the surface, it appears that the procedures

encompassing these two statements are contradictory. As it turns out, the underlying statistical

analysis encompassing computation of (2.9) or (2.10) is invariant to our choice of permutation –

the elements of the response vector (y) or the columns upon the genotype matrix (G). As such,

for the maxT and minP MTPs, here we assume the columns upon G are to be permuted in lieu of

the elements upon y. Note that upon each random permutation of the columns upon G, step 3 of
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the GPER pseudocode (§2.4), essentially demands that we construct a 2 × 3 contingency table (as

depicted by Table 2.1) for each of the m SNP loci. We will demonstrate that by strategically choosing

a specific ordering for y prior to implementing GPER, one can abate a considerable proportion of

the required computations in generating these 2× 3 tables.

In our choosing to permute the columns upon the genotype matrix (as opposed to the elements

of the response vector) within GPER, this implies that the locations for the elements comprising

the response vector y are fixed throughout the duration of the GPER implementation. In turn, this

implies – prior to implementation of GPER – we can choose the ordering of the elements of y to our

liking, and simply rearrange the columns of the genotype matrix in accordance to the ordering we

choose for y. That is, suppose we choose to swap elements yi and yi′ within the response vector y,

i 6= i′ = 1, . . . , n. Note that by also swapping SNP profiles gi and gi′ within the genotype matrix,

the observed data remains intact. Let y∗ be our designated choice for the ordering of y, defined by

any ordering of y satisfying

y∗ = (y(1), . . . , y(n0), y(n0+1), . . . , y(n)),(2.11)

where recall n0 equals the number of controls within our sample, and where

y(i) = 1− I(i ≤ n0) ∀i = 1, . . . , n.

Thus, the initial n0 elements of y∗ represent the controls for our random sample of n participants; the

final n1 elements of y∗ represent the cases of our random sample. Let G∗ be the resulting genotype

matrix, ascertained by swapping the columns within G in such a way so that the subscripts for the

SNP profiles within G∗ align with those of y∗. Specifically, for every k = 1, . . . , n, there exists a

unique i = 1, . . . , n, such that if yk ∈ y and yk = y(i) ∈ y∗, then the kth column of G, namely gk, is

the ith column of G∗ (denoted g∗i ).

Next, note that for each j = 1, . . . ,m, and each k ∈ G, the sums

njk =

n∑
i=1

I(gji = k)︸ ︷︷ ︸
sum over jth row of G

=

n∑
i=1

I(g∗ji = k)︸ ︷︷ ︸
sum over jth row of G∗

,(2.12)

are constant, irrespective of the column permutation for G or G∗, where g∗ji is the (j, i)th element
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within G∗. That is, the column margin for the 2× 3 contingency table – formed by combining the

jth row of G with the vector y (or, G∗ with y∗ for that matter), whose elements are given within the

vector (nj0, nj1, nj2) – is fixed by the column permutation design of G or G∗, for all j = 1, . . . ,m.

This implies that the values for the [fixed] column margin of a table, along with the cell counts for a

single row of the table, are sufficient to generate a particular table. In fact, if no missing genotype

data is present upon G, then both the row and column margins are fixed – in this circumstance,

exactly two cell counts within a particular table are sufficient to generate the table.

Now, the “standard” approach to generating a single row upon a particular table would consider

the expression

njtk =

n∑
i=1

I(gji = k)I(yi = t),

evaluated at each k ∈ G, some t ∈ {0, 1}. In short, the standard approach to generating a single

cell upon a row of a table entails an n-fold sum. On the other hand, for any permutation of the

columns upon G∗, it holds

n∑
i=n0+1

I(g∗ji = k)︸ ︷︷ ︸
nj1k

= njk −
n0∑
i=1

I(g∗ji = k)︸ ︷︷ ︸
nj0k

∀j = 1, . . . ,m; k ∈ G.(2.13)

Thus, given the values upon the column margin of a table, this expression implies that exactly one

of the summands (within the expression) over the response vector y∗ – evaluated at each k ∈ G – is

sufficient to generate the jth 2× 3 contingency table, irrespective of the column permutation of G∗.

In short, our proposed approach to generating a single cell upon a row of a table – using y∗ and

G∗ – entails a min{n0, n1}-fold sum (because we can choose either summand of (2.13) to evaluate).

Hence, the proportion of computations – necessary to generate a particular table upon implementing

this approach – is essentially min{n0, n1}/n times those upon implementing the standard approach.

Note that the maximum of this proportion is 1/2, occurring upon a balanced (equal numbers of case

and controls) GWAS. Therefore, our proposed data management approach can lead to exceptional

computational savings in constructing 2 × 3 tables when compared that of the standard approach,

upon generating the permutation null distributions for the maxT (or, minP) MTPs. For the sake

of discussion herein we assume that n0 = min{n0, n1}.
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2.3.2 Data Compression

As with the preceding section, here we propose a data management strategy which should

significantly enhance the computational efficiency of GPER. Specifically, we describe a technique

which entails data compression. When implemented, we conjecture that this approach will provide

a considerable boost in computational performance for GPER.

Note that an efficient computational-based program should attempt to minimize the occurrence

of (or, time spent upon) program bottlenecks (i.e., lag times between productive computational

evaluations). Within the CUDA C programming model, apparently program bottlenecks occur

whenever step 3 of the 4-step CUDA data processing flow (see §1.4.3) is not in operation [68].

Hence, an efficient CUDA C program should attempt to minimize its time spent within steps 1, 2,

and 4 of the CUDA data processing flow, thereby avoiding [obvious] program bottlenecks. Albeit,

this notion set aside, program bottlenecks can also occur at step 3 of the CUDA data processing

flow within a CUDA kernel. For example, prior to conducting its computations, kernel threads may

need to copy device memory to shared memory. The time required for copying this memory leads to

a program bottleneck. Hence, for this example, omission of some memory copies within the CUDA

kernel should, in theory, remove program bottlenecks and boost computational performance. In

fact, [68] states – referring to kernel optimization strategies – “Kernel access to global memory also

should be minimized by maximizing the use of shared memory on the device. Sometimes, the best

optimization might even be to avoid any data transfer in the first place by simply recomputing the

data whenever it is needed.” Here, we employ such a strategy within GPER by way of decompressing

(i.e., recomputing (or, recovering)) the compressed data which is read-in to the kernel from device

memory. We begin describing our data compression technique within the latter of the two paragraphs

which follow; we describe our data decompression technique within Algorithm B.4 (see lines 12-31

of the pseudocode upon step 2 therein) of §B.1.2 of Appendix B.

When applying a permutation-based MTP – such as maxT (or, minP) – to correct for the

multiple hypothesis testing problem encompassing the CATT statistic (2.5), by far the most compu-

tational problem lies with implementation of step 3 of the GPER pseudocode (see §2.4 to follow) –

collapsing the randomly ordered columns upon G∗ into a total of m 2× 3 contingency tables. This

is due to the fact that construction of the control row upon these tables demands the evaluation

of M = m ×min{n0, n1} = m × n0 elements over G∗. Now, a CUDA C approach to constructing

the control row, for a given permutation upon the columns of G∗, could lie with invoking a kernel
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comprised of m blocks of T threads, some T , where each block constructs said row of the 2 × 3

table for a particular SNP locus. In fact, the kernel we develop within §B.1.2 essentially adheres

to this notion. Note that the number of device-to-shared memory copies within the kernel for this

approach is M . While this approach is tenable, provided that the magnitude of M is reducible, it

is likely not optimal. This is due to the fact that reduction in the value of M , leads to a reduction

in device-to-shared memory copies within the kernel; according to [68], this notion adheres with the

CUDA C performance optimization strategies.

Now, the value of M can be reduced, provided that the value(s) for at least one of its factors

can be reduced. The values for each of these factors can be reduced by way of combining elements

within G∗. Specifically, merging any two columns of G∗ would decrease the value of M to M −m;

merging any two rows of G∗ would decrease the value of M to M −min{n0, n1}. The permutation

of the columns upon G∗ for GPER (see step 2 of the GPER pseudocode §2.4) prohibits the merging

of columns within this matrix. Thus, we propose reduction in the value of M , by way of merging

(i.e., compressing) rows within the genotype matrix G∗. Here, we consider merging ρ rows upon G∗

(denoted as a row merge operation) to form a single row upon an updated genotype matrix, where

without loss of generality it is assumed that the value of m is divisible by that of ρ.3 If G∗t denotes

the vector of observations pertaining to row t of G∗, and m′ = m/ρ denotes the total number of

row merge operations upon G∗, then for s = 1, . . . ,m′, we merge the ρ vectors G∗(s−1)ρ+1, . . . ,G
∗
sρ

to form the sth row of the updated genotype matrix G(∗ρ), such that

g
(∗ρ)
si =

sρ∑
j=(s−1)ρ+1

4j−(s−1)ρ−1g∗ji ∀i = 1, . . . , n,(2.14)

where g
(∗ρ)
si denotes the (s, i)th element of G(∗ρ). Assigning missing genotype values to the numer-

ical value of three (3), it can be shown (see Proposition A.2 of Appendix A) that each possible

value of g
(∗ρ)
si , namely g

(∗ρ)
si = 0, 1, . . . , 4ρ − 1, corresponds to a unique specification of the vector(

g∗{(s−1)ρ+1}i, . . . , g
∗
{sρ}i

)
. Hence, for all s = 1, . . . ,m′, it follows that the vector

(
g

(∗ρ)
s1 , . . . , g

(∗ρ)
sn

)
is sufficient for the vectors G∗(s−1)ρ+1, . . . ,G

∗
sρ. In turn the m′×n matrix G(∗ρ) is sufficient for G∗.

This implies that the number of device-to-shared memory copies – upon the kernel discussed within

the preceding paragraph – is M/ρ for the proposed compressed genotype matrix G(∗ρ), compared

3Note: in the circumstance for which m is not divisible by the value of ρ, one can simply augment G∗ so that
m (upon the augmented matrix) is divisible by ρ. For example, concatenating G∗ with the [appropriate number of]
n-vector(s), each vector equal to say (2, 2, . . . , 2), will not affect the statistical results from implementation of GPER.
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to M memory copies for the genotype matrix G∗. Therefore, in accordance with [68], the utility of

G(∗ρ) within the kernel used to construct the 2× 3 tables is optimized over that of using G∗.

2.4 The GPER Algorithm

The GPER algorithm is based upon the NVIDIA CUDA [69, 70] for C GPU parallel compute

engine4 (for details see §1.4.3). A simple pseudocode for the GPER algorithm implementation is

given by Algorithm 2.1 as follows:

Algorithm 2.1 GPER

1. As the data for G(∗ρ) are being read-in to system memory, compute the column margins for

each of the m 2× 3 contingency tables – cross-classifying genotype and phenotype across the

loci (Table 2.1). Note: this will require the decompression of the data warehousing G(∗ρ) –

use the result of Proposition A.3 (see Appendix A) to decompress the data. Initialize r to the

value of one.

2. Permute the columns of G(∗ρ).

a. Generate random numbers by way of a parallel Mersenne Twister pseudorandom number

generator [100].

b. Order these random numbers (i.e., shuffle the columns of G(∗ρ)) by way of parallel Bitonic

sort [101,102]. For an example, see Table B.1 within Appendix B.

3. Collapse the randomly ordered data into m 2× 3 contingency tables across the rows of G(∗ρ)

by way of parallel reduction. For an example of parallel reduction, see Figure B.1 within

Appendix B.

a. Formulate cell counts for, say, the control row upon each of the tables (i.e., second row

of Table 2.1) by way of a parallel data reduction routine. The case row for each of the

tables can be formulated, by way of subtracting the appropriate control row from its

[permutation invariant] column margin across the m loci – in fact, formulation of the case

row upon each of the tables is not necessary, as the column margin and the control row of

the table are sufficient for calculating (2.5) under the additive GMI (see equivalent form

of the CATT statistic under the additive GMI, (A.3)).

4See http://www.nvidia.com/object/cuda_home_new.html.

http://www.nvidia.com/object/cuda_home_new.html
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4. Compute the test statistics tj,r in a parallel manner. If implementing the minP MTP, then

also compute the p-values pj,r in a parallel manner.

5. Find and store the maximum test statistic (t(m),r – maxT) or minimum p-value (p(1),r – minP).

a. Locate this value by implementing a parallel scan (see Table B.2 within Appendix B for

an example). If r = R, then proceed to step 6 below; otherwise, increment the value of

r by one and proceed to step 2 above.

6. Within a statistical software package, say R (version 2.13.1; July 2011) [103], sort the collec-

tion
{
t(m),r

}
r=1,...,R

(maxT) or
{
p(1),r

}
r=1,...,R

(minP) into increasing order. Denote the kth

ordered value of
{
t(m),r

}
r=1,...,R

and
{
p(1),r

}
r=1,...,R

, by tperm
(k) and pperm

(k) , respectively. At the

α level in the FWER, reject H
(j)
0 if tj ≥ tperm

(d(1−α)Re) (maxT) or pj ≤ pperm
(bαRc) (minP), where

d·e and b·c are the respective ceiling and floor functions for the argument (·). Amongst the

rejected null hypotheses, compute the adjusted p-values by way of expression (2.9) or (2.10).

For clarity in presentation, we provide details for the implementation of parallel algorithms – to

carry out the respective procedures of steps 2-5 of the aforementioned GPER pseudocode – within

§B.1.1-§B.1.4 of Appendix B (see Algorithms B.1-B.6).

2.5 Clustering GPER

One elegant feature of a resampling based computational procedure (e.g., the maxT MTP)

applied against a large-scaled sample is its natural affinity to a parallel algorithm. This is due to

the independent characteristics of one data set resample to the next, and so also to the large number

of statistical tests performed. GPER is itself a parallel algorithm. What we describe here, is a

methodology to implement this parallel algorithm in a parallel manner upon more than a single

NVIDIA GPU. That is, GPU clustering. By implementing GPER upon a cluster of GPUs, one

can, in theory, essentially gain a linear increase – the scale in which is dependent upon the number

of GPUs comprising the cluster – in computational power over the single GPU implementation.

Consider a desktop computer system comprised of a CPU (host) and G [identical] NVIDIA

GPUs (devices), each GPU of which warehouses, say C CUDA cores, where it is assumed that

G > 1. There would seem to be two approaches to GPU clustering upon such a computer system:

(1) implement a single host thread (i.e., single core of the CPU) to communicate with each of the
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GPU devices; or (2) implement a total of G host threads, each of which communicates with a distinct

GPU device.

Here, we first consider the latter approach. A significant disadvantage to this approach is that

it requires multiple host threads to be simultaneously invoked upon the computer system. When

compared to a single host thread CUDA C application, a multiple host thread application requires

tracking of several host threads, thereby requiring extra overhead of the user. Nonetheless, there

are two apparent approaches to implementing multiple host threads upon the computer system:

(a) consider a CUDA C program which incorporates a single host thread, and suppose that one

has compiled the program into a .exe file. Furthermore, upon execution, suppose the program

integrates a data read (e.g., from an ASCII file) which assigns (maps) the host thread to a specific

CUDA enabled GPU device. Here, a total of G host threads may be invoked by simply executing

the .exe file a total of G times over, where the ASCII file is manipulated prior to each execution,

such that each host thread maps to a distinct GPU device. This approach is somewhat tedious,

due to the required manipulation of the ASCII file between successive .exe file executions; or, (b)

implement OpenCL within the CUDA C program, by way of integrating the NVIDIA Parallel Insight

software5 with that of the Microsoft Visual Studio 2010 software.6 However, there is a substantial

problem with this approach. Namely, whereas the ‘Standard’ version of the former software is readily

obtained free of charge, there is a fee associated with obtaining the latter software. Although each

of the approaches outlined within this paragraph could invoke a CUDA cluster, they each have a

formidable drawback: the former through overhead in the ASCII file manipulation between .exe file

executions; the latter through an associated cost in software attainment.

On the other hand, the approach of (1) above is much simpler due to the fact that it requires the

invocation of merely a single host thread, as opposed to multiple host threads. Due to its simplicity,

we would like to implement this approach within the CUDA C programming environment. Prior

to doing this, a critical issue must be addressed. Namely, we must confirm that the CUDA toolkit

possesses the ability for a single host thread to communicate with multiple GPU devices. As it

turns out, this approach is essentially not feasible upon historical installments of CUDA toolkits

(i.e., prior to the current version 4.0), as no support for this notion is provided upon the applicable

toolkit. However, this is no longer the case with version 4.0 of the toolkit, as a single host thread

can communicate with all GPU devices within the computer system [69]. In short, a host thread can

5see http://developer.nvidia.com/nvidia-parallel-nsight.
6see http://www.microsoft.com/visualstudio/en-us/products/2010-editions.

http://developer.nvidia.com/nvidia-parallel-nsight
http://www.microsoft.com/visualstudio/en-us/products/2010-editions
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set (assign) the device it operates on at any time by calling the CUDA cudaSetDevice() function,

where the parameter for this function is the device number. By assigning a particular device to

the host thread, the user is able to allocate device memory and invoke kernel launches upon the

device [69]. Figure 2.1 illustrates a single-host thread induced cluster of G GPUs.

Fig. 2.1: A Single-Host Thread Induced Cluster of G GPUs. Each Arrow Originating from the Host
and Terminating upon a Particular GPU, Depicts Control over the GPU by the Host; Each Arrow
Originating from a Particular GPU and Terminating upon a Collection of C Threads, Depicts Control
of C Simultaneous Operations Invoked upon the GPU. In Theory, a Total of G×C Computations
Can Operate at a Given Point in Time upon the Cluster.

For a given GWAS data set of n subjects and m biallelic SNP markers, suppose R permutations

of the column labels upon G(∗ρ) are desired. Without loss of generality, let us presume that R =

k ×G, for some k ∈ N. Since we assume the G GPUs are identical (see opening paragraph of this

section), it follows that distributing k iterations of steps 2–5 of the GPER algorithm to each GPU,

results in a theoretical realized speedup in GPER of 100(G − 1)% when compared to a computer

system warehousing exactly one of these GPUs. The distribution and implementation of the k

iterations of steps 2–5 of the GPER algorithm to each of the G GPUs, precisely describes the

procedure for parallelizing (i.e., clustering) GPER.
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2.6 Application

To illustrate the computational power of the GPER algorithm upon a live GWAS data set, we

applied R = 20480 maxT permutations7 of our algorithm against 45168 SNP markers of chromosome

(CHR) 1, for a GWAS investigating Bipolar disorder (BD) amongst individuals of European ancestry,

comprised of n0 = 1034 controls, n1 = 1001 cases of BD, and m = 769672 SNP markers.8 Details

for these data can be found within the articles [105,106]. For data compression, we chose the value

of ρ to be four (4), so that our genotype matrix G(∗4) was of dimension 11292×2035. This choice in

ρ is the maximum allowed to accommodate the simplest of C data types for the elements comprising

G(∗ρ), namely unsigned char (8 bits per element), and maximizes memory management (see Table

2.2).

Table 2.2: Memory Storage Characteristics of the m′ × n Genotype Matrix G(∗ρ) for Select Values
of ρ.

Required† C Data Type Number of Required†

for Each of the Bits of Memory
ρ Elements Within G(∗ρ) to Warehouse G(∗ρ)

1 unsigned char 8×m× n
2 unsigned char 4×m× n
4 unsigned char 2×m× n
8 unsigned short 2×m× n
16 unsigned int 2×m× n
†As an absolute minimum.

The asymptotic-based Cochran-Armitage Trend test statistic was used to test the null hypothesis of

no genotype-phenotype association at each SNP marker, where the additive genetic model of inher-

itance was assumed under the two-sided alternative hypothesis across SNP loci. As benchmarking

tools for our algorithm, we applied R = 1000 maxT permutations within the PLINK software (ver-

sion 1.07; October 2009) [63] and 20480 permutations within the PERMORY software (version 1.0;

October 2010) [22], against these data.9 All tests were performed upon the same desktop computer

system,10 whose specifications are listed within Table 2.3.

7The GPER algorithm performs blocks of 1024
(
= 210

)
maxT permutations. Here, R = 20× 210.

8This value of m was obtained after SNP filtering. See e.g., [104] for details to SNP filtering in GWAS.
9The following PLINK options were invoked for this test: --tfile --model-trend --cell 1 --mperm 1000 The

--model-trend option executes the Cochran-Armitage Trend test for testing the null hypothesis of no genotype-
phenotype association at each marker, with the additive genetic model of inheritance assumed under the two-sided
alternative hypothesis across SNP loci.

10Unless specified otherwise, said computer system is used to conduct all computational analyses of this Disser-
tation.
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Table 2.4 summarizes the results of this benchmarking test, where these data indicate the

clustered (upon two GPUs) GPER algorithm is greater than 1500 times faster than PLINK (extrap-

olated result) and more than 12 times faster than PERMORY, when conducting multiple testing

correction by way of the maxT MTP. Equivalently, upon this GWAS subset of data, our clustered

GPER algorithm is projected to perform more than four years worth of PLINK maxT computations

in slightly less than one day.

Table 2.3: Specifications of the Components for the Desktop Computer System Used in the Bench-
mark Tests.

System Component Description
CPU Intel Core i7 920 Quad Core 2.66GHz

System Memory 3GB DDR3 1600MHz
GPUs and RAM 2×NVIDIA GeForce GTX 470 1280MB GDDR5†

Operating System Windows XP Home 32bit
CUDA Toolkit Version 4.0, May 2011

C Programming Frontend Microsoft Visual C++ 2010 Express
CUDA C Compiler nvcc (part of the CUDA Toolkit)

†Each GPU is comprised of 448 cores, each core operating at a clock speed of 750MHz.
See http://www.nvidia.com/object/product_geforce_gtx_470_us.html for further details.

Table 2.4: Summary of the Realized Speedup over PLINK and PERMORY for the GPER Algorithm,
upon Implementing R = 20480 Permutations Within GPER/PERMORY and R = 1000 Permuta-
tions Within PLINK to 45168 SNP Markers upon Chromosome 1 of a Bipolar GWAS Dataset
Comprised of n0 = 1034 Controls and n1 = 1001 Bipolar Cases.

Number of Speedup of
Number of Permutations Computational Time (minutes) GPER Over

Active GPUs Per Active GPU GPER PLINK PERMORY PLINK† PERMORY
1 20480 1.27 47.88 8.4 770x 6x
2 10240 0.64 47.88 8.4 1530x 12x

†Extrapolated estimate.

http://www.nvidia.com/object/product_geforce_gtx_470_us.html
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2.7 Performance Benchmarking

To gain a perspective for the computational performance of GPER applied to varying sam-

pling characteristics of GWAS data sets – particularly, dynamics encompassing sample size and

case/control balanced11 nature of the sample – we simulated subsets of GWAS data sets of varying

sample sizes and varying balancing effects upon the underlying cases and controls, where the fixed

marker density m = 40K was used across the simulations. For each data set, 4K SNP loci (of

the 40K total) were simulated under assumed Hardy-Weinberg equilibrium (HWE) among popula-

tion genotype frequencies, upon each of the ten (10) minor allele frequencies (MAF; the frequency

within the population of the rarer occurring allele at a particular locus) residing within the collection

{0.01, 0.02, . . . , 0.10} (see the simulation setup within §3.2.4.1 for a justification in the use of this

collection of values). For each data set, R = 10240 random permutations were applied within GPER

and PERMORY and R = 1000 permutations were applied within PLINK.12

Table 2.5: Computational Time to Perform R = 10240 Permutations Within GPER and PER-
MORY, and R = 1000 Permutations Within PLINK.

Computational Time (minutes) GPER Speedup Over
Cases (n1) Controls (n0) GPER PLINK PERMORY PLINK† PERMORY

1000 1000 0.6 43.0 5.1 785x 8x
900 1100 0.5 42.3 5.9 830x 10x
800 1200 0.5 42.1 5.4 890x 10x
1500 1500 0.8 64.7 7.3 790x 8x
1350 1650 0.8 63.9 7.2 835x 8x
1200 1800 0.7 62.8 7.1 880x 9x
2000 2000 1.2 89.7 7.9 775x 6x
1800 2200 1.1 88.8 8.3 840x 7x
1600 2400 1.0 87.1 7.6 910x 7x

†Extrapolated estimate.

Table 2.5 summarizes the results from this simulation. In all simulations GPER significantly

outperformed each of the PLINK and PERMORY softwares, as demonstrated by the figures depicted

within the final two columns of the table. Interestingly, for any fixed balancing characteristic of the

sample (i.e., 40%, 45%, or 50% cases within the sample), the relative performance of PERMORY

to GPER seems to improve as the sample size increases, as shown by the apparent decreasing trend

in the figures upon the final column of the table; exactly the opposite notion seems to hold true for

11A balanced/unbalanced GWAS sample is comprised of equal/unequal numbers of cases and controls.
12All simulations conducted within this section assume: the value of ρ to be four (4); the asymptotic-based

Cochran-Armitage Trend test statistic to be used to test the null hypothesis of no genotype-phenotype association
at each SNP marker, where the additive genetic model of inheritance is assumed under the two-sided alternative
hypothesis across SNP loci; and, GPER implemented upon a single GPU.
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the relative performance of PLINK to GPER for increasing sample size (column 6). Moreover, as

expected (per the methodology of §2.3.1), these data suggest that the computational performance

of GPER increasingly improves as the sample becomes increasingly unbalanced, as demonstrated

by the decreasing trend in computational time for a fixed sample size (column 3). Furthermore,

although this notion seems to also be true of PLINK (column 4) – and, PERMORY (column 5)

when n = 3000 – it is more lucid for GPER. For example, let us consider the samples of n = 4000.

In comparing the relative timing of the unbalanced sample comprised of 40% cases (row 9) to that

of the balanced sample (row 7), we find these values to be: 0.83 for GPER; 0.97 for PLINK; and

0.96 for PERMORY. This suggests that the relative efficiency of GPER to each of PLINK and

PERMORY increases as the sample becomes increasingly unbalanced.

To examine the performance of GPER applied against m-size marker panels resembling that of

GWAS, we simulated GWAS data sets of varying sample sizes for balanced GWAS samples, assuming

marker densities of m = 500K and m = 1M, under two different scenarios governing the underlying

MAFs of the markers. The first (denoted simulation scenario 1), was identical to that given above,

where each marker panel was simulated uniformly over the collection of MAFs {0.01, . . . , 0.10}. For

the second (denoted simulation scenario 2), we noted that, by algorithm design, the computational

performance of PERMORY is suggestive to be dependent upon the distribution of MAFs comprising

the GWAS sample. Namely, in theory, the computational performance of PERMORY is accelerated

upon GWAS samples comprising a large proportion of markers with minute MAF. Thus, when

applied against GWAS marker panels comprised of MAF distributions resembling that of the former

simulation, the performance of PERMORY could be overstated from its anticipated performance

in practice. Hence, to obtain an idea for the relative performance of GPER to PERMORY upon

GWAS samples – comprised of marker panels assuming MAFs over the entire domain thereof – we

simulated MAFs upon marker panels uniformly over the collection {0.01, . . . , 0.50}. Overall, for

GPER we anticipated no difference in performance between the two simulation scenarios, since by

design, the GPER algorithm does not depend upon the MAF distribution of the markers. However,

as previously elucidated to, when compared to the former simulation scenario, we anticipated the

computational performance of PERMORY to be lower within the latter scenario.

Table 2.6 summarizes the computational time to perform R = 10240 maxT permutations within

GPER and PERMORY, across the marker panel densities and sample sizes for the two simulation

scenarios. In all simulations, GPER significantly outperformed the PERMORY software, as demon-
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Table 2.6: Computational Time to Perform R = 10240 Permutations Within GPER and PER-
MORY, Across Several Balanced GWAS Sample Sizes, Marker Densities, and Distribution of SNP
Minor Allele Frequencies.

Computational Time (minutes)
Marker Density MAF Range Sample Size GPER† PERMORY
m = 500K 0.01− 0.10 n = 2000 7.0 (8x) 62.6

n = 3000 10.9 (7x) 90.9
n = 4000 15.6 (6x) 110.1

m = 500K 0.01− 0.50 n = 2000 7.0 (16x) 118.7
n = 3000 10.9 (16x) 180.1
n = 4000 15.6 (13x) 218.7

m = 1M 0.01− 0.10 n = 2000 14.0 (8x) 120.6
n = 3000 22.0 (7x) 175.8
n = 4000 31.2 (6x) 240.9

m = 1M 0.01− 0.50 n = 2000 13.9 (20x) 294.1
n = 3000 21.9 (14x) 345.3
n = 4000 30.4 (12x) 394.3

†Parenthetic values represent speedup over PERMORY.

strated by the figures presented within the final two columns of the table. In addition, a similar – to

that of the simulation conducted above with m = 40K – increasing trend in relative computational

performance of PERMORY to GPER for increasing sample size is apparent here. Nonetheless, even

for n = 4000, GPER was at least six (6) times faster than PERMORY. Moreover, as expected,

the computational performance of PERMORY appears to depend upon the distribution of MAF

amongst the SNP sample. Taking the SNP density m = 500K, for example, when compared to

simulation scenario 1, PERMORY required essentially twice the time to complete the maxT per-

mutations upon simulation scenario 2. The computational performance of GPER, on the other

hand, is impervious to the distribution of MAF upon the SNP sample. Overall, based upon these

simulations, GPER appears to be the computational tool of choice for use in the maxT MTP upon

GWAS data.

2.8 Conclusions

Multiple hypothesis testing correction is vital within a GWAS, as this ensures the proper report-

ing of false positive genotype-phenotype associations upon the corresponding sampled SNP panel

thereof. When testing multiple null hypotheses, there are many definitions for the Type I error rate.

Within a GWAS, it seems control of the family-wise Type I error rate is most befitting. The MHT

goal is to control the adopted Type I error rate in the strong sense, while simultaneously maximiz-

ing statistical power to reject false null hypotheses. The Bonferroni MTP is a popular approach in
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GWAS for strong control of the FWER. However, when implemented upon a sample of correlated

data, this approach can suffer a loss in statistical power. Meanwhile, the maxT and minP MTPs –

the multiple testing procedures which control the FWER in the strong sense and provide maximum

statistical power amongst all MTPs controlling the FWER – are seldom implemented within these

studies due to their high computational effort.

There would seem to be two general approaches in addressing the computational problem of

the maxT and minP MTPs: accelerate the computational components for these MTPs; or, develop

an efficient approximation approach and improve its accuracy. The past decade has seen research

primarily focused upon the latter approach. We employed the former approach and have developed

GPER, an optimized GPU-based algorithm in conducting multiple tests of association within large-

scaled categorical genetic data. Our algorithm presents a significant improvement in computational

performance over that of the widely utilized GWAS PLINK software, and is on par with the fastest

alternative methods (e.g., PRESTO, PERMORY). However, unlike these methods, our approach

is novel insofar as we exploit offloading the computational burden for the maxT and minP MTPs

to the GPU of the personal computer. Due to frequency (a measure of the speed for a single

processing core) scaling limitations of CPUs, the future of HPC upon the PC is arguably parallel

computing. Parallel computing upon the GPU of the PC is a very efficient approach to tackling

a computational problem, and has begun to see its interface within the statistics discipline (see

e.g., [107, 108]). Our implementation of this approach demonstrates the utility of the GPU in

tackling an exceptionally demanding computational problem to a sampled GWAS data set, but its

utility is not limited to sampled GWAS data (e.g., the Bipolar data set utilized within §2.6). We

utilize GPER within the simulation analysis of the next chapter, in demonstrating two key notions

therein: (1) that ones’ assumption of an asymptotic null distribution for the Cochran-Armitage

trend test statistic under H0, can lead to the gold standard maxT and minP MTP approach yielding

unbalanced multiplicity adjustment in a GWAS; and (2) to provide empirical evidence in support of

the proposed methodology.

We have developed the GPER algorithm, to address the computational issues of the maxT and

minP MTPs within the realm of GWAS. However, by modifying the algorithm, this GPU approach

can be extended to include other computationally demanding areas of statistics. In particular, the

algorithm can be extended to include other parametric multiple hypothesis testing circumstances in

which the maxT or minP MTPs are applicable. For example, our approach can be adapted to mi-
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croarray experiments, where the maxT MTP can be utilized to correct for MHT of differential gene

expression across probesets of a microarray (i.e., MHT correction for parametric t-tests and F -tests;

see [60] for an excellent overview of MHT correction in microarray experiments). Additionally, we

have successfully modified/adapted the GPER algorithm in extending the methodology of [109] to

include the maxT approach thereof (see pg. 5 of this article for the connection of their methodology

to the maxT MTP), for MHT correction when testing for gene-environment interactions. The GPER

algorithm can also be extended to controlling, say the kth-level generalized FWER (gFWER(k)),

k = 1, . . . , n. Control of the gFWER(k) is a generalization of the FWER, where the maxT and

minP MTPs are modified and based upon the respective kth and (n − k + 1)st distributions of the

order statistics for the test statistics (maxT) and p-values (minP) (see e.g., pp. 256–257 of [110]) –

note: taking k = n recovers the FWER and the respective maxT and minP MTPs. Finally, outside

the realm of the maxT and minP MTPs – and extensions to controlling the gFWER(k) thereof –

our GPU approach could be adapted to other resampling based MHT procedures, such as SAM

(see [111] and [112]).



CHAPTER 3

ENHANCEMENTS TO THE STATISTICAL INFERENCE OF GENOME-WIDE

ASSOCIATION STUDIES

3.1 Introduction

There seems to be confusion within the literature regarding the central underlying dilemma

encompassing multiplicity correction within a GWAS. Contrary to the focus of recent methodolog-

ical approaches (i.e., the Meff and MVN approaches described within §2.1.1), this dilemma does

not entail the computational problem – a consequence – which arises from the implementation of

permutation MTPs. Rather, said dilemma is proper application of the implemented multiple testing

procedure; this notion is essentially lost in the GWAS literature. In conducting statistical inference

within GWAS, the asymptotic-based Cochran Armitage Trend test statistic is commonly employed

to test the null hypothesis of no genotype-phenotype association on a per-marker basis. Due to the

extremely small significance level on a per-marker basis, we have found a discrepancy between the

asymptotic chi-square distribution for this test statistic and its true underlying null distribution.

Reliance upon asymptotic assumptions for this test statistic in this regard can result in improper

control of the FWER within a GWAS.

Herein, we develop a methodology to correct the discrepancy between the chi-square distribu-

tion for the asymptotic-based Cochran-Armitage Trend test statistic and its true underlying null

distribution. Furthermore, this method embraces the minP MTP, thereby accounting for correlation

within the sampled data and achieving unbiased strong control of the FWER in a GWAS. Adap-

tation of this methodology in practice has several key positive repercussions, including: correcting

upon improperly obtained statistical results within historical GWAS; and providing multiple hy-

pothesis testing tools, so that statistical inference is properly conducted within current and future

genetic association studies.
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3.2 The Test Statistics Null Distribution for the Multiple Hypothesis Testing Problem

As one will recall, the application of an MTP is comprised of several components [110]. Ar-

guably, the most vital component is correct identification of the test statistics null distribution

(Q0) – the distribution which serves as the basis for determining test statistic regions which lead

to the rejection of posited null hypotheses. Improper identification of Q0 could lead to control in

the FWER at a level other than that intended (see pg. 255 of [110]). When testing hundreds

of thousands of null hypotheses, each against their corresponding two-sided alternative hypothesis,

the test statistic rejection regions (as defined by the implemented MTP) for the Cochran-Armitage

trend test will call for H
(j)
0 to be rejected for large [small] realized values in its corresponding test

statistic [pointwise p-value]. Reliance upon asymptotic (e.g., MVN, chi-square) assumptions for the

distributional properties of the underlying test statistics under H0 in this regard would seem to be

a näive approach – yet, this is common GWAS practice – because in utilizing an asymptotic test

statistics null distribution (Q̃0) for their multiplicity correction, one is assuming the tail region of the

accompanying PDF to be representative of that for Q0. However, the veracity in this assumption

is highly speculative, insomuch as derivation of the test statistic rejection regions under Q̃0 is based

upon a continuous distribution, whereas the underlying distribution of Q0 is actually discrete. That

is, once a case-control sample has been drawn from the population, the margins for the contingency

table – cross-classifying genotype and phenotype at the jth SNP locus – are uniquely determined.

Conditional on these fixed margins at the locus, there is a finite number of realizations for the cells of

the contingency table corresponding to these fixed margin counts. In turn, there is a finite number

of possible test statistic realizations comprising the support of Q0, where it is noted that this notion

is invariant to the adopted choice of test statistic. Because of the discrete nature of Q0, reliance

upon Q̃0 for multiplicity correction when testing hundreds of thousands of null hypotheses, opens

the door to errors in the correction.

3.2.1 The Cochran-Armitage Trend Test Statistic

As mentioned within §2.1.1, for many popular statistical tests employed within a GWAS (e.g.,

the Cochran-Armitage trend test), the vector of test statistics under H0 asymptotically follows an

MVN. If the asymptotic test statistics null distribution (Q̃0) closely approximates the true test

statistics null distribution (Q0), then one can utilize the corresponding PDF of Q̃0 to ascertain an

accurate multiple testing correction. Recall, [20] demonstrate considerable accuracy of the MVN
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approach for small SNP samples (i.e., the size of candidate gene studies; see §2.1.1).

However, due to the extremely small pointwise significance threshold in a GWAS when testing

the null hypothesis H
(j)
0 on a per-marker basis, we observe a discrepancy between Q̃0 and Q0 for

the asymptotic chi-square Cochran-Armitage trend test (CATT) statistic. Reliance upon Q̃0 in

assessing evidence for/against H
(j)
0 in this regard can lead to improper multiplicity correction (see

§3.2.3 for details). For a GWAS sample of n subjects, it is noted that the discrepancy appears to

worsen for an increase in the number of sampled SNP markers (m) and/or a decrease in the minor

allele (the less frequently occurring allele at a locus within the population) frequency (MAF) at any

SNP locus. To this author’s review, the article by [21] is the first to recognize the latter phenomenon

(i.e., the discrepancy between Q0 and Q̃0, dependent upon the MAF; see pg. 4 therein) – although,

we argue within the subsequent paragraph below that the methodology of said article does not

correctly identify Q0. Furthermore, note that discrepancies between Q̃0 and Q0 on a per-marker

basis (i.e., a discrepancy between the χ2
1 distribution and Q0 for the CATT statistic), leads to an

incorrect multiplicity adjustment over the MVN joint-marker multiplicity correction approach [21].

In other words, a discrepancy between Q̃0 and Q0 for the CATT statistic at some SNP loci, leads

to incorrect multiplicity correction under Q̃0 for all SNP loci. In order to illustrate the discrepancy

between Q̃0 (hereinafter, unless otherwise specified, Q̃0 is assumed to denote the χ2
1 distribution)

and Q0, we must first correctly identify Q0 for the CATT statistic under H0.

Regardless of the implemented test statistic for testing H0, correct identification of Q0 within a

GWAS demands accounting for the case-control sampling design of the study. Indeed, in drawing a

case-control GWAS sample, the number of subjects falling within each of the two phenotype strata

is fixed by design; at each SNP locus, the sampled genotypes (e.g., AA, AC, and CC, for a SNP with

adenine (A) and cytosine (C) allele variants) form a multinomial (trinomial) random vector within

each of the phenotype stratum. That is, each row of the 2 × 3 contingency table – tabulating the

sampled data for an arbitrary SNP locus – forms a trinomial random vector. To illustrate, consider

a randomly chosen individual from the study population. At the time of sampling, disease status

(case or control) for this individual is fixed and known, insofar as the study subjects are selected

according to their disease status and further classified according to their exposure status. However,

at the time of sampling, the genotypic information across loci for this individual is blinded to the

researcher, until which time a blood (or, buccal) sample has been hybridized to a microarray chip

and genotyped within the laboratory. Now, since cases and controls are assumed unrelated, at each
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SNP locus we can express the probability of observing the sampled genotypes as the product of

the probability mass functions (PMFs) for two independent trinomial random vectors. Thus, once

the parameters for these random vectors have been specified under H0, the resulting probability of

observing the sampled genotypes – for any realization thereof – at any locus is determined. Hence,

given the values in these parameters under H0, we can generate the exact unconditional distribution

for the CATT statistic at each SNP locus. Therefore, taken collectively across the loci, these exact

unconditional distributions for the CATT statistic define Q0 under H0. In their construction of

Q0, the article of [21] failed to recognize and account for the randomness in the genotype data on a

per-marker basis. For this very reason, their construction of Q0 is not entirely correct.

The parameters for these random vectors are unknown, which presents a problem in completely

specifying Q0. However, under the null hypothesis H
(j)
0 , it can be readily shown (see Proposition A.4

within Appendix A) that the parameter vectors for the random trinomials at locus j are equivalent,

leaving us with two nuisance parameters (since the specification of any two parameters for a trinomial

random variable determines the third) at the locus. Albeit, we can reduce the nuisance parameters

to a single parameter, by noting that under Hardy-Weinberg equilibrium (HWE) – in the absence of

migration, mutation, natural selection, and assortative mating – genotype frequencies are a simple

function of allele frequencies [113]. The aforementioned cited article notes that the underlying

assumptions for HWE appear to hold for most human populations, where deviations from HWE at

particular markers may suggest problems with genotyping, population structure (a general problem

with population based genetic studies), or an association between the marker and disease if the HWE

deviation lies within samples of cases. In fact, the assumption of HWE among population controls is

so widely accepted, that part of the data filtering process within a GWAS sample entails excluding

SNP loci (from inclusion to H0) whose genotypes among sampled controls significantly deviate

from the HWE assumption (see e.g., [104]). Moreover, the article of [114] suggests that the HWE

equation is remarkably robust at providing estimates of genotype frequencies in real populations.

Thus, assuming genotype frequencies at SNP locus j adhere to HWE within the population, we can

specify the single nuisance parameter under H
(j)
0 through the population minor allele frequency at

the locus. Hence, conditional on this minor allele frequency and the fixed numbers of sampled cases

and controls, we can generate the exact unconditional distribution of the CATT statistic for every

realization thereof. In this regard, at locus j, Q0 becomes a function of the assumed population minor

allele frequency at the locus (πj) and the fixed numbers of cases (n1) and controls (n0) for the GWAS
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sample. Henceforth, we denote this unconditional distribution for the CATT statistic under H
(j)
0

by Q
(∗H)
0j (πj , n0, n1). For notational clarity, we reference this null distribution by Q

(∗H)
0j . The only

assumption for the derivation of Q
(∗H)
0j is that genotype frequencies within the population at locus j

adhere to HWE under H
(j)
0 . This assumption is realistic, per the aforementioned argument presented

within this paragraph. Therefore, under HWE among population genotype frequencies at SNP

locus j, it follows that Q
(∗H)
0j correctly identifies Q0 under H

(j)
0 ; and collectively,

{
Q

(∗H)
0j

}
j=1,...,m

,

correctly identifies Q0 under H0.

3.2.2 Control of the FWER Is Dependent upon GWAS Sample Characteristics

Having identified Q0 for the CATT statistic under H0 and assumed HWE among population

genotype frequencies across loci, we can illustrate the notion of the second paragraph within §3.2.1,

namely the discrepancy between Q̃0 and Q0 for said statistic under H0. Figures 3.1 and 3.2 display

the Bonferroni corrected exact unconditional probability of Type I error (UPTE) for the CATT

statistic (hereinafter, the additive genetic model of inheritance is assumed under the two-sided

alternative hypothesis H
(j)
a ) under Q

(∗H)
0j for balanced and unbalanced (two to one ratio of controls

to cases) GWAS samples, respectively (sample sizes of n = 1K (red curves) and n = 2K (blue

curves)), across the domain of the minor allele frequency within the population, πj ∈ (0, 0.5), for

the realization of the CATT statistic F−1

Q̃0
(1− 0.05/m), where m = 10K (heavy dashed curves),

m = 100K (light dashed curves), m = 500K (solid curves), and F−1

Q̃0
(·) is the inverse cumulative

distribution function (CDF) for Q̃0 evaluated at (·). The value F−1

Q̃0
(1− 0.05/m) is the minimum

realization of the CATT statistic at locus j under H0 and Q̃0, for which the Bonferroni MTP calls

for H
(j)
0 to be rejected at the 5% FWER. If Q̃0 was to correctly identify Q

(∗H)
0j under H

(j)
0 , the

colored curves within each of these figures would lie upon the 5% FWER reference line (heavy black

dashed line), across the domain of πj . However, each figure demonstrates the discrepancy between

Q̃0 and Q
(∗H)
0j , since each of the colored curves do not lie upon the reference line. Moreover, we see

that the discrepancy between Q̃0 and Q
(∗H)
0j varies, dependent upon: (1) the minor allele frequency

within the population at locus j (πj). As mentioned within the preceding section, the discrepancy

appears to be exacerbated for small values in πj (less than 0.2 for a balanced GWAS; less than

0.1 for an unbalanced GWAS), as each of the colored curves increasingly separate from the 5%

FWER reference line as πj decreases; (2) the GWAS sample size (n). The discrepancy appears to

be exacerbated for smaller sample sizes, since for any fixed m and πj the corresponding curve for the
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sample size n = 1K, generally lies further away from the 5% FWER reference line than that for the

sample size n = 2K; (3) the number of SNP markers for the GWAS sample (m). The discrepancy

seems to be exacerbated as the marker density increases, since in general for any fixed n and πj the

corresponding curve for m = 500K lies further away from the 5% FWER reference line than that for

m = 100K. A similar observation holds comparing curves m = 100K and m = 10K, and the curves

m = 500K and m = 10K; and (4) by way of directly comparing the two figures, the balanced nature

of the GWAS sample. Therefore, assuming genotype frequencies within the population adhere to

HWE across SNP loci under H0, control of the FWER for the CATT statistic under Q0 is dependent

upon the magnitude in the values of several factors, including πj , n, m, and the ratio of controls

(n0) to cases (n1).

3.2.3 Improper Multiplicity Correction

Insofar as Q̃0 appears to incorrectly identify Q
(∗H)
0j under H

(j)
0 and HWE among population

genotype frequencies at SNP locus j, it would also seem to fail in correctly identifying Q0 under

H0 and HWE among population genotype frequencies across SNP loci. Reliance upon Q̃0 for MHT

correction in this regard can lead to improper multiplicity correction within a GWAS for the Cochran-

Armitage Trend test. When applied upon a GWAS sample, Figures 3.1 and 3.2, respectively, suggest

the Bonferroni – or, because m is assumed large, the Šidák – MTP under Q̃0 is conservative and

liberal/conservative for control of the FWER at the 5% level under H0. For example, the former

figure illustrates that for a balanced GWAS, the Bonferroni MTP under each of H0, Q̃0, and HWE

among population genotype frequencies, is overly conservative in controlling the FWER at the 5%

level amongst a GWAS sample of m mutually independent markers. To illustrate, consider fixed

values for each element within the vector (πj ,m, n), where without loss of generality and for clarity,

we assume m and n are chosen to be values as depicted within the figure. The point lying upon

the appropriate curve – satisfying the fixed values (πj ,m, n) – represents the Bonferroni corrected

UPTE for the CATT statistic under Q0, at realization F−1

Q̃0
(1− 0.05/m), when H0 is in fact true

and each of the m mutually independent markers is sampled from a HWE population with [common]

minor allele frequency πj . Equivalently, this point represents the actual FWER being controlled by

the Bonferroni MTP, for the CATT statistic under Q0, at the realization F−1

Q̃0
(1− 0.05/m) (assumes

all markers mutually independent and possessing common population MAF πj). But, at realization

F−1

Q̃0
(1− 0.05/m), the Bonferroni corrected Type I error rate under Q̃0 (i.e., the assumed FWER

being controlled) for the CATT statistic is equal to 5%. Since the assumed FWER under Q̃0 is larger
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Fig. 3.1: Plot of the Bonferroni Corrected Exact Unconditional Probability of Type I Error for the
Cochran-Armitage Trend Test Statistic at the Realization F−1

Q̃0
(1− 0.05/m) for the χ2

1 Distribution

(Q̃0), Across the Population Minor Allele Frequency for a Balanced GWAS, Assuming Population
Allele Frequencies Adhere to Hardy-Weinberg Equilibrium. Colored Curves: Heavy Dashed Curves,
Light Dashed Curves, and Solid Curves, Assume m = 10K, m = 100K, and m = 500K Tested Null
Hypotheses under H0, Respectively; Red and Blue Curves Assume GWAS Samples of n = 1K and
n = 2K, Respectively. The Assumed FWER under Q̃0 Is 5% (Heavy Dashed Black Line).

for this realization in the CATT statistic than the actual FWER under Q0, the Bonferroni correction

for the CATT statistic under Q̃0 is conservative. Mathematically, we can show that the actual

Bonferroni corrected FWER for the CATT statistic under Q0, at realization F−1

Q̃0
(1− 0.05/m), can

never exceed the supremum of the curve (for the assumed fixed values of m and n) over πj . Since

the supremum for each of the curves within the figure lie below the 5% FWER reference line, the
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Fig. 3.2: Plot of the Bonferroni Corrected Exact Unconditional Probability of Type I Error for the
Cochran-Armitage Trend Test Statistic at the Realization F−1

Q̃0
(1− 0.05/m) for the χ2

1 Distribution

(Q̃0), Across the Population Minor Allele Frequency for an Unbalanced GWAS Comprised of a 2 to
1 Ratio of Controls to Cases, Assuming Population Allele Frequencies Adhere to Hardy-Weinberg
Equilibrium. Colored Curves: Heavy Dashed Curves, Light Dashed Curves, and Solid Curves,
Assume m = 10K, m = 100K, and m = 500K Tested Null Hypotheses under H0, Respectively;
Red and Blue Curves Assume GWAS Samples of n = 1K and n = 2K, Respectively. The Assumed
FWER under Q̃0 Is 5% (Heavy Dashed Black Line).

actual FWER for the CATT statistic under Q0 is strictly less than the assumed 5% level, where this

notion holds across πj . Therefore, the Bonferroni MTP for the CATT statistic under Q̃0 is overly

conservative at controlling the FWER at the 5% level. Adding to the notion of confusion within

the literature, the article of [90] – referring to control of the FWER – states, “For independent
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tests, the Bonferroni (or Šidák) correction provides a simple and accurate control. . . ”; the article

of [20] states, “. . . Bonferroni and Šidák adjustments are valid in the case of independent tests. . . .”

However, the veracity of these statements are contingent upon the application of sound statistical

inference tools (i.e., correct identification of Q0 under H0), insofar as we have just illustrated that

testing independent hypotheses is not sufficient for accurate control of the FWER.

3.2.3.1 Replication of Association Findings in GWAS

Given the major challenge of deciphering the few true-positive associations from the many false-

positive associations within a GWAS, an important consideration lies upon replication of significant

association findings using independent case-control samples [5, 115]. Criterion for replication of

genotype-phenotype associations in GWAS have recently been published, and include: study of the

same or similar phenotype and population; exhibition of a similar magnitude/direction of effect –

within the same genetic model – upon the same SNP; and similar magnitude of significance upon

the same SNP [5,115].

There are several plausible explanations for the lack of reproducibility of genetic associations

in GWAS, such as population stratification and/or genotyping errors [5, 115]. In addition, lack

of accounting for gene-gene interactions within the search for susceptibility genes upon complex

diseases has been widely suggested to explain difficulties in replicating significant findings in genetic

association studies [116]. For example, recent human and animal studies of complex diseases have

identified susceptibility genes that marginally contribute to a common trait, to a minor extent at

best, but that interact significantly in combined analyses (see e.g., [117,118,119,120,121,122,123,124,

125,126,127,128,129,130]). Several studies have found alleles that have opposite effects depending

on the genetic background [131, 132] (i.e., cross-interaction), which further raises the likelihood of

overlooking epistatic susceptibility genes in single-gene analyses [133]. Finally, lack of accounting

for gene-environment interaction can spuriously lead to a non-significant genetic main effect (e.g.,

cross-interaction – see §1.2) [3, 26,53,134,135,136] and could explain lack of replication.

The above data anomalies, population characteristics, and analysis approaches set aside, one

could also ascertain lack of replication of a genetic association simply due to a chance (i.e., a false-

positive) finding within initial GWAS investigations. Indeed, even under strong control of the FWER

by way of the Bonferroni MTP, many statistically significant associations within a GWAS have not

been replicated, and are believed to be false positives [76]. This disappointing revelation has been

attributed to the use of inconsistent thresholds of significance for multiple testing correction [137].
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However, in light of the constituents presented within §3.2.3, here we argue by example yet another

possible explanation (to this author’s review, absent from the literature) for lack of replication of

association findings in GWAS. Namely, we argue that lack of replication in these genetic associations

could be due to improper selection of Q0.

Consider an unbalanced GWAS of n1 = 400 cases, n0 = 800 controls, and m = 500K SNP

markers. Let p
(AG)
j (here, A is shorthand for asymptotic and G is shorthand for GWAS) and p

(UG)
j

(here, U is shorthand for unconditional) denote the respective pointwise p-values in testing H
(j)
0

with the CATT statistic, under Q̃0 and Q
(∗H)
0j (πj , 800, 400). Suppose upon a SNP locus with MAF

πj = 0.017, it is determined that p
(AG)
j = 0.05/m, so that – upon applying the Bonferroni MTP –

at the 5% level in the FWER there appears to be a statistically significantly genotype-phenotype

association at said locus. Using the computational tools presented within §3.5, it can be shown that

p
(UG)
j = 0.078/m, so that genotype at this SNP locus is in fact marginally statistically significantly

associated with phenotype at the 5% level in the FWER, after MHT correction by way of the

Bonferroni MTP. Nonetheless, current GWAS practice (i.e., assuming Q̃0 for the CATT statistic

under H
(j)
0 and application of the Bonferroni MTP) would flag this marker to be a member of the

sampled SNP panel upon a replication study. Mathematically, it is

0.05/m = p
(AG)
j = Pr

(
Tj ≥ F−1

1

(
1− p(AG)

j

)
|H0, Tj ∼ Q̃0

)
=⇒ 0.078/m = p

(UG)
j = Pr

(
Tj ≥ F−1

1

(
1− p(AG)

j

)
|H0, Tj ∼ Q(∗H)

0j (πj , 800, 400)
)
,

where F−1
1 denotes the inverse cumulative distribution function of the chi-square distribution with

one degree-of-freedom.

Now consider a replication case-control study to be comprised of n1 = 600 cases and n0 =

600 controls. Here, in conjunction with the aforementioned replication criteria of ‘similar signifi-

cance’ between the two studies, we assume the identical (to that of the initial GWAS) pointwise

p-value in testing H
(j)
0 under Q

(∗H)
0j (πj , 600, 600) within the replication study. Namely, we as-

sume p
(UR)
j = 0.078/m (here, R is shorthand for replication study), insofar as the distributions

Q
(∗H)
0j (πj , 800, 400)/Q

(∗H)
0j (πj , 600, 600) correctly identify Q0 upon the initial GWAS/replication

study for this SNP locus (i.e., we assume the marginally statistically significant GWAS association is

replicated). Here, assuming Q̃0 to be the distribution of the CATT statistic under H
(j)
0 (i.e., current

GWAS practice), we find – applying the computational tools of §3.5 – p
(AR)
j = 0.37/m for the repli-

cation study, indicating no statistically significant evidence whatsoever for a genotype-phenotype
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association at the locus, after MHT correction by way of the Bonferroni MTP. Mathematically, it

is

0.078/m = p
(UR)
j = Pr

(
Tj ≥ F−1

2

(
1− p(UR)

j

)
|H0, Tj ∼ Q(∗H)

0j (πj , 600, 600)
)

=⇒ 0.37/m = p
(AR)
j = Pr

(
Tj ≥ F−1

2

(
1− p(UR)

j

)
|H0, Tj ∼ Q̃0

)
,

where F−1
2 denotes the inverse cumulative distribution function of Q

(∗H)
0j (πj , 600, 600). Thus, after

MHT correction by way of the Bonferroni MTP, the assumption of Q̃0 to be the true underlying

distribution of the CATT statistic under H
(j)
0 upon this SNP locus, has led – at the 5% level in

the FWER – to the finding of: a statistically significant genotype-phenotype association within the

GWAS (p
(AG)
j = 0.05/m); no statistically significant evidence to indicate a genotype-phenotype

association within the replication study (p
(AR)
j = 0.37/m). Hence, this example demonstrates that

incorrect choice in Q0 can result in failure to replicate statistically significant genetic associations

in GWAS. Therefore, lack of replication in GWAS associations could be attributed to improper

selection of Q0.

3.2.3.2 Unbalanced Multiplicity Adjustment upon the MaxT MTP

Because the underlying asymptotic chi-square assumption for the CATT statistic appears vio-

lated – in such a way that the test statistics are not identically distributed under H0 (i.e., per §3.2.2,

the distribution of this statistic seems to depend upon several parameters for the GWAS sample and

its underlying population) – the maxT and minP permutation MTPs applied under Q̃0 for the CATT

statistic are inaccurate in their multiplicity adjustment. Effectively, non-identically distributed test

statistics under H0 leads to the maxT multiplicity adjustment being unbalanced [60,62]. Due to the

one-to-one mapping of the CATT statistic to its pointwise p-value under Q̃0 (i.e., the chi-square dis-

tribution with one degree of freedom), this notion also applies to the minP multiplicity adjustment

for said statistic under Q̃0. To this author’s review, no existing GWAS MTP methodological (nor,

applied) article recognizes this phenomenon. There are several reasons to abstain from unbalanced

multiplicity adjustment in GWAS: (1) there is no compelling reason to systematically favor some null

hypotheses over others; (2) assuming HWE holds for population allele frequencies across SNP loci

within the human genome, the unbalanced nature of the maxT and minP MTPs will be dependent

upon the sampled SNP panel of a GWAS, specifically the distribution of the πj among the SNP

panel; and (3) because the UPTE for the CATT statistic appears to be dependent upon the propor-
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tion of sampled cases within the GWAS sample, the unbalanced nature for the maxT adjustment

will also depend upon the proportion of cases within the GWAS sample. Hence, all else being equal,

said adjustment is likely to not be uniform across balanced and unbalanced GWAS investigations.

In this circumstance, the subset of SNPs which are deemed statistically significantly associated with

the phenotype upon a balanced GWAS, is likely to be different than that of an unbalanced GWAS,

leading to a lack of agreement between the two studies.

Furthermore, the unbalanced adjustment of the maxT MTP under Q̃0 is especially problematic

for investigations extending upon GWAS (e.g., investigating SNP loci with common and rare variants

within the same study), because the distortion of Q̃0 from Q0 is exacerbated for minute values in

πj – all else being equal, within a [an] balanced [unbalanced] case-control sample, the distortion

could lead to an inflated Type II [Type I] error rate among SNPs possessing minute values in πj .

In brief, reliance upon Q̃0 for the CATT statistic within a GWAS can lead to improper multiplicity

correction.

3.2.4 A Simulation Study

By way of simulation we can empirically illustrate: the unbalanced multiplicity adjustment for

the maxT MTP under Q̃0; and violation in the assumption for the CATT statistic being distributed

as Q̃0 under H0. To see this, we first note: (a) assuming the CATT statistic is truly distributed by

Q̃0 under H0, it follows that the maxT and minP multiplicity corrections are equivalent [60]; (b) the

pointwise p-value in testing H
(j)
0 under (a) is distributed as U(0, 1); and (c) if the pointwise p-values

are independent and identically distributed as U(0, 1) under H0, the minP and Šidák multiplicity

adjustments are equivalent [60]. Now, consider simulating mutually independent SNP loci under H0,

uniformly across some collection of values for πj . Under such simulation conditions, non-uniformity

in observed Type I errors across the πj for the maxT MTP is suggestive of said MTP providing

unbalanced multiplicity adjustment. Furthermore, an observed discrepancy in the multiplicity cor-

rection between the maxT and the Šidák MTPs is suggestive of violation in the assumption for the

CATT statistic being distributed as Q̃0 under H0.

3.2.4.1 Methods

The illustration of these two notions, requires a sufficient number of observed Type I errors

within the simulated data at each of the assumed values in πj . In turn, this requires the simulation

of a great many data sets. For example, at the FWER 5% level – where for the moment we ignore
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πj – we expect to find five random samples exhibiting at least one Type I error amongst 100 random

samples. Ideally, we would like to observe hundreds of Type I errors, thereby requiring the simulation

of thousands of random samples. Adding πj into the mix, complicates matters and exacerbates the

number of required simulated data sets. For example, at the 5% FWER, we expect to find five data

sets exhibiting at least one Type I error for each value in πj amongst 1K random samples, where the

population minor allele frequencies for the SNP loci are assumed uniformly distributed across ten

values of πj . Indeed, we simulated D = 100K mutually independent case-control GWAS data sets

(samples) under H0, each data set comprised of size n = 1200 and m = 10K mutually independent

SNP loci, in two different ways: in the first (denoted simulation 1 (S1)), we simulated balanced

GWAS samples, each sample comprised of 600 cases and 600 controls; and, in the second (denoted

simulation 2 (S2)), we simulated unbalanced GWAS samples, each sample comprised of a 2:1 ratio

of controls to cases (i.e., n0 = 800 and n1 = 400).1 The chosen ratios of cases to controls upon

the simulated samples, namely 1:1 and 1:2 for S1 and S2, respectively, were purposefully selected to

model those portrayed within the respective Figures 3.1 and 3.2. For each data set, 1K SNP loci (of

the 10K total) were simulated – independent of phenotype labeling, ensuring simulation ofH0 – under

HWE among population genotype frequencies, upon each of the ten (10) πj ∈ {0.01, 0.02, . . . , 0.1}.

This collection of values for πj was purposefully chosen, primarily to empirically illustrate the two

notions of the preceding paragraph, but so also to be representative of a large proportion of MAFs

likely encountered within a GWAS SNP sample. For example, 29.6% of the 45168 SNP markers

(corresponds to 13369 markers) used in the GPER benchmark test (see §2.6) possess observed MAFs

not exceeding 0.1; among the four microarray platforms, upon the four corresponding GWAS SNP

samples investigated by [104], at least 12.8% of the probes upon three of the arrays corresponded

to SNPs whose observed MAFs were less than 0.01. The CATT statistic was used to test each of

the null hypotheses H
(j)
0 , where the additive genetic model of inheritance was assumed under the

two-sided alternative hypothesis. The maxT and Šidák MTPs, assuming Q̃0 under H0, were utilized

to control the FWER within each data set. For each data set, R = 2048 random shuffles of the

phenotype labels were applied within the GPER algorithm (see §2.6) for the maxT MTP. Note

that although each of the D = 100K simulated data sets (for each of S1 and S2) is comprised of

m = 10K SNP loci, by randomly aggregating [without replacement] ten/fifty data sets together we

obtained 10K/2K mutually independent data sets under H0, each data set in which was comprised

of 100K/500K mutually independent SNP loci (10K/50K loci at each πj ∈ {0.01, 0.02, . . . , 0.1}).
1Each simulation entailed generating/analyzing approximately four (4) terabytes (TB) of data.
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Table 3.1: Number of Data Sets Exhibiting Some Type I Error Cross-Classified by Multiple Testing
Procedure (MTP), the Marker Density (m), and Assumed Minor Allele Frequency (MAF; πj),
Within a Population Whose Genotype Frequencies at Each SNP Locus Adhere to Hardy-Weinberg
Equilibrium, Assuming the Cochran-Armitage Trend Test Statistic Is Distributed as Q̃0 under H0.
The True Underlying Family-wise Type I Error Rate (FWER) Is 5%. Assuming Type I Errors Are
Independent of MAF, the Expected Number of Type I Errors by MAF Are 500 (m = 10K), Fifty
(m = 100K), and Ten (m = 500K). 95% Exact Clopper-Pearson Confidence Intervals (CI) Are for
Control in the Overall True Underlying FWER†.

Minor Allele Frequency (πj)
MTP Observed FWER
(m) 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 Totals (95% CI)

maxT
(10K) 107 330 416 548 563 565 580 577 636 592 4914 4.91% (4.8%, 5.1%)

(100K) 3 28 30 52 64 49 57 56 65 65 469 4.69% (4.3%, 5.1%)

(500K) 1 5 7 8 10 9 9 10 12 12 83 4.15% (3.3%, 5.1%)

Šidák
(10K) 61 199 271 356 376 378 381 389 431 394 3236 3.24% (3.1%, 3.3%)

(100K) 2 13 16 27 38 31 29 30 44 41 271 2.71% (2.4%, 3.1%)

(500K) 0 2 4 5 5 4 2 4 5 5 36 1.80% (1.3%, 2.5%)

maxT
(10K) 565 535 506 506 471 486 493 492 511 497 5062 5.06% (4.9%, 5.2%)

(100K) 54 54 50 50 58 54 48 44 45 53 510 5.10% (4.7%, 5.6%)

(500K) 8 12 14 7 15 10 9 10 12 12 109 5.45% (4.5%, 6.5%)

Šidák
(10K) 584 544 533 541 493 503 531 505 530 535 5299 5.30% (5.2%, 5.4%)

(100K) 62 62 56 61 61 63 56 50 48 63 582 5.82% (5.4%, 6.3%)

(500K) 13 16 14 10 17 11 11 12 13 14 131 6.55% (5.5%, 7.7%)
†Initial/final six rows correspond to simulation 1 (S1)/simulation 2 (S2).

3.2.4.2 Results

Table 3.1 displays the number of data sets exhibiting at least one observed Type I error cross-

classified by MTP (maxT or Šidák), the marker density (m), and the assumed minor allele frequency

within the population (πj), at the true underlying 5% FWER, where the initial/final six rows of the

table correspond to results obtained under S1/S2. As expected, in ignoring πj these data support

the notion that the maxT MTP controls the FWER at the 5% level, since the six 95% confidence

intervals across marker densities and the two simulations (i.e., S1 and S2) cover said level in the

FWER.2 Moreover, these data suggest that the maxT MTP is unbalanced in its control of the

FWER at the 5% level, particularly upon S1, since the number of data sets exhibiting some Type I

error is not uniform across the πj , where it is noted that this notion holds irrespective of the marker

density. For example, the number of data sets exhibiting a Type I error for MAFs of 0.01, 0.02,

and 0.05 upon the D = 100K data sets of S1 with marker density m = 10K are 107, 330, and 563,

2Here, the number of data sets exhibiting at least one Type I error is considered a binomial random variable.
Accordingly, each of the 95% confidence intervals, constructed about the true underlying FWER, is a Clopper-Pearson
exact confidence interval.
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respectively. For this marker density, the observed number of data sets exhibiting a Type I error

are 21%, 66%, and 113% relative to that expected (500) for the respective MAFs of 0.01, 0.02, and

0.05.

On the other hand, the data of S2 suggest – for the most part – that the maxT MTP is roughly

balanced in its control of the FWER at the 5% level, since the number of data sets exhibiting some

Type I error is approximately uniform across the πj upon each marker density m. However, upon

marker density m = 10K there is an apparent difference in the balancing nature of the maxT MTP

over MAFs 0.01 and 0.05. Upon this marker density, the number of data sets exhibiting a Type

I error are 565 and 471 for the respective MAFs 0.01 and 0.05. Equivalently, the observed Type

I errors are 113% and 94% relative to that expected (500) for the respective MAFs 0.01 and 0.05.

Overall, these data indicate that the balanced nature for the maxT MTP, in the control of the

FWER at the 5% level, is different between the two simulation scenarios, S1 and S2.

Furthermore, the data of S1 indicate that the Šidák MTP is overly conservative in its control

of the FWER at the 5% level, where the conservatism appears to be positively associated with the

marker density. For example, in controlling the true underlying 5% FWER, the Šidák MTP is least

conservative at marker density m = 10K (observed FWER 3.24%; 95% CI for the true underlying

FWER (3.1%, 3.3%)), whereas this MTP reports an exceptionally conservative observed FWER

of 1.80% (95% CI for the true underlying FWER (1.3%, 2.5%)) at marker density m = 500K.

These observations entailing the Šidák MTP – namely, its conservative nature in controlling the

true underlying 5% FWER – are in direct coherence with those made within the first paragraph of

§3.2.3 for Figure 3.1.

On the other hand, the data of S2 suggest that the Šidák MTP is overly liberal in its control of

the FWER at the 5% level, where the magnitude in the liberal nature of the control in the FWER

appears to be positively associated with the marker density. For example, in control over the true 5%

FWER, this MTP is least liberal at marker density m = 10K (observed FWER 5.30%; 95% CI for

the true underlying FWER (5.2%, 5.4%)), whereas this MTP reports a very liberal observed FWER

of 6.55% (95% CI for the true FWER (5.5%, 7.5%)) upon marker density m = 500K. Analogous to

S1, these observations entailing the Šidák MTP upon S2 – namely, its liberal nature in controlling

the true underlying 5% FWER – are in direct coherence with those made within the first paragraph

of §3.2.3 for Figure 3.2.

Finally, these data suggest a discrepancy in the number of observed Type I errors for the maxT
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and Šidák MTPs across MAF, particularly upon S1, where this notion holds across the marker

density. Upon S1 for example, relative to the Šidák MTP, the observed numbers of Type I errors

at the 0.05 MAF for the maxT MTP are 150% (563/376;m = 10K), 168% (64/38;m = 100K), and

200% (10/5;m = 500K). This discrepancy in observed Type I errors between the Šidák and maxT

MTPs suggests violation in the assumption for the CATT statistic being distributed by Q̃0 under

H0.

Figures 3.3 and 3.4 display simultaneous (i.e., corrected for producing the ten independent

confidence intervals (CI) across πj by MTP) exact Clopper-Pearson 95% CIs for control in the

FWER across πj for the maxT and Šidák MTPs, among the D = 100K simulated data sets for the

respective marker densities m = 10K and m = 500K (a total of 2K data sets thereof, obtained from

randomly aggregating data sets from the D = 100K simulated data sets) upon simulation 1 (S1);

Figures 3.5 and 3.6 display the analogous exact Clopper-Pearson 95% CIs for control in the FWER

across πj upon the maxT and Šidák MTPs upon simulation 2 (S2). All figures assume the true

underlying FWER is 5%, and that the CATT statistic is distributed as Q̃0 under H0 – Note: (1)

the vertical scale is not consistent across these figures; (2) the observed FWER for the maxT and

Šidák MTPs under Q̃0, across πj , are displayed by respective circles and squares; and (3) see §3.6.1

for the description/analysis entailing the minP and Šidák MTPs under Q
(∗H)
0j (π̂j , n0, n1) depicted

within these figures.

With regard to S1 – Collapsing over the values of πj , Figures 3.3 and 3.4 illustrate control in the

5% FWER for the maxT MTP, since each of the 95% CIs (gray color) cover the true underlying 5%

FWER. However, we do note that the observed FWER for this MTP seems a bit conservative for

the marker density m = 500K (4.15%). These figures also illustrate the unbalanced control in the

FWER at the 5% level for the maxT MTP, since the observed FWER tends to deviate from the 5%

expected level across πj . In particular, these data indicate that the maxT MTP tends to control the

5% FWER at a level lower/higher than that expected for small (0.01-0.04)/large (0.05-0.1) values of

πj . Furthermore, these figures suggest control of the FWER between the maxT and Šidák MTPs to

be remarkably different, as seen by the differences in their respective observed FWER across πj – this

notion is particularly true of marker density m = 10K, and so also of marker density m = 500K for

larger values of MAF. In turn, this suggests that Q̃0 is not the true underlying null distribution for

the CATT statistic under H0. Finally, these figures illustrate the exceptionally conservative control

in the 5% FWER for the CATT statistic under Q̃0 within the Šidák MTP, since the observed FWER
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Fig. 3.3: Simultaneous Exact Clopper-Pearson 95% Confidence Intervals (CI) for Control in the
Family-wise Type I Error Rate (FWER) for the Cochran-Armitage Trend Test Statistic under H0,
Across Minor Allele Frequencies (MAFs), πj ∈ {0.01, 0.02, . . . , 0.1}, Within a Population Whose
Genotype Frequencies Adhere to Hardy-Weinberg Equilibrium at Each SNP Locus, Applying Several
Multiple Testing Procedures (MTP), Where the True Underlying FWER Is 5% (Heavy Dashed Black
Line). This Figure Summarizes the Simulation of D = 100K Mutually Independent Data Sets, Each
Data Set Comprised of m = 10K Mutually Independent SNP Loci Simulated under H0 and 1K
Loci Simulated for Each πj ∈ {0.01, 0.02, . . . , 0.1}, upon a Balanced GWAS of Size n = 1200. The
Symbols (Circle and Square) Depict the Observed Number of Type I Errors for the Respective MaxT
and Šidák MTPs under Q̃0; the Symbols (Triangle and Cross) Depict the Observed Number of Type

I Errors for the Respective MinP and Šidák MTPs under Q
(∗H)
0j (π̂j , n0, n1). The Gray CIs Collapse

over All MAFs.
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Fig. 3.4: Simultaneous Exact Clopper-Pearson 95% Confidence Intervals (CI) for Control in the
Family-wise Type I Error Rate (FWER) for the Cochran-Armitage Trend Test Statistic under H0,
Across Minor Allele Frequencies (MAFs), πj ∈ {0.01, 0.02, . . . , 0.1}, Within a Population Whose
Genotype Frequencies Adhere to Hardy-Weinberg Equilibrium at Each SNP Locus, Applying Several
Multiple Testing Procedures (MTP), Where the True Underlying FWER Is 5% (Heavy Dashed Black
Line). This Figure Summarizes the Simulation of 2K Mutually Independent Data Sets, Each Data
Set Comprised of m = 500K Mutually Independent SNP Loci Simulated under H0 and 50K Loci
Simulated for Each πj ∈ {0.01, 0.02, . . . , 0.1}, upon a Balanced GWAS of Size n = 1200. The
Symbols (Circle and Square) Depict the Observed Number of Type I Errors for the Respective
MaxT and Šidák MTPs under Q̃0; the Symbols (Triangle and Cross) Depict the Observed Number

of Type I Errors for the Respective MinP and Šidák MTPs under Q
(∗H)
0j (π̂j , n0, n1). The Gray CIs

Collapse over All MAFs.
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is significantly lower than expected (5%) across the two marker densities.

With regard to S2 – Collapsing over the values of πj , Figures 3.5 and 3.6 illustrate control in the

5% FWER for the maxT MTP, since each of the 95% CIs (gray color) cover the true underlying 5%

FWER. Moreover, for marker density m = 10K, these data suggest that the maxT MTP is roughly

balanced in its control of the 5% FWER across MAF – the exception being at MAF equal to 0.01,

where this MTP is suggestive of being slightly liberal in its control of the FWER at the 5% level.

The latter of the two figures suggests control of the FWER between the maxT and Šidák MTPs

to be remarkably different, as seen by the differences in their respective observed FWER across πj .

This suggests that Q̃0 is not the true underlying null distribution for the CATT statistic under H0.

Finally, these figures illustrate the liberal control in the 5% FWER for the CATT statistic under Q̃0

within the Šidák MTP, since the observed FWER is somewhat higher than expected (5%) across

the two marker densities.

3.2.4.3 Conclusions

Overall, these simulated data help portray the key notions discussed within §3.2.2-3.2.3. First,

based upon application of the Šidák MTP assuming Q̃0 under H0, these data suggest that control

of the FWER at the 5% level is dependent upon the following characteristics of the case-control

sample: the distribution of the minor allele frequency within the sample. This is visually evident

within Figures 3.4 and 3.6 upon marker density m = 500K, since the observed Type I error rate

for this MTP appears to differ across the values in MAF; the marker density m. Here, this is

evident empirically within Table 3.1, since there appears to be a positive association between the

marker density and the magnitude in which this MTP fails adherence with control in the overall

(i.e., ignoring MAF) FWER at the 5% level; and the ratio of controls to cases within the GWAS

sample. This can be seen empirically by way of comparing the appropriate rows within Table 3.1

for a given marker density, or visually by way of comparing: Figures 3.3 and 3.5; Figures 3.4 and

3.6. For example, taking MAF equal to 0.01 and m = 100K, these data suggest that the observed

number of data sets exhibiting some Type I error upon an unbalanced (2:1 ratio of controls to cases)

GWAS of size n = 1200 is 31 times (62/2) that of the corresponding n-size balanced GWAS.

Second, because the overall (i.e., collapsing over πj) number of data sets exhibiting some Type

I error seems to differ between the Šidák and maxT MTPs, irrespective of marker density and

balancing nature of the GWAS sample, these data indicate that Q̃0 is not the correct distribution

for the CATT statistic under H0. This can have serious negative ramifications in the reporting of
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Fig. 3.5: Simultaneous Exact Clopper-Pearson 95% Confidence Intervals (CI) for Control in the
Family-wise Type I Error Rate (FWER) for the Cochran-Armitage Trend Test Statistic under H0,
Across Minor Allele Frequencies (MAFs), πj ∈ {0.01, 0.02, . . . , 0.1}, Within a Population Whose
Genotype Frequencies Adhere to Hardy-Weinberg Equilibrium at Each SNP Locus, Applying Several
Multiple Testing Procedures (MTP), Where the True Underlying FWER Is 5% (Heavy Dashed Black
Line). This Figure Summarizes the Simulation of D = 100K Mutually Independent Data Sets, Each
Data Set Comprised of m = 10K Mutually Independent SNP Loci Simulated under H0 and 1K
Loci Simulated for Each πj ∈ {0.01, 0.02, . . . , 0.1}, upon an Unbalanced GWAS of Size n = 1200.
The Symbols (Circle and Square) Depict the Observed Number of Type I Errors for the Respective
MaxT and Šidák MTPs under Q̃0; the Symbols (Triangle and Cross) Depict the Observed Number

of Type I Errors for the Respective MinP and Šidák MTPs under Q
(∗H)
0j (π̂j , n0, n1). The Gray CIs

Collapse over All MAFs.
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Fig. 3.6: Simultaneous Exact Clopper-Pearson 95% Confidence Intervals (CI) for Control in the
Family-wise Type I Error Rate (FWER) for the Cochran-Armitage Trend Test Statistic under H0,
Across Minor Allele Frequencies (MAFs), πj ∈ {0.01, 0.02, . . . , 0.1}, Within a Population Whose
Genotype Frequencies Adhere to Hardy-Weinberg Equilibrium at Each SNP Locus, Applying Several
Multiple Testing Procedures (MTP), Where the True Underlying FWER Is 5% (Heavy Dashed Black
Line). This Figure Summarizes the Simulation of 2K Mutually Independent Data Sets, Each Data
Set Comprised of m = 500K Mutually Independent SNP Loci Simulated under H0 and 50K Loci
Simulated for Each πj ∈ {0.01, 0.02, . . . , 0.1}, upon an Unbalanced GWAS of Size n = 1200. The
Symbols (Circle and Square) Depict the Observed Number of Type I Errors for the Respective MaxT
and Šidák MTPs under Q̃0; the Symbols (Triangle and Cross) Depict the Observed Number of Type

I Errors for the Respective MinP and Šidák MTPs under Q
(∗H)
0j (π̂j , n0, n1). The Gray CIs Collapse

over All MAFs.
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Type I errors within a GWAS. Taking m = 500K for example, these data indicate that the Šidák

MTP fails to guard against excessive reporting of Type I errors for an unbalanced GWAS (2:1

controls to cases), upon SNP loci possessing a rare (say, less than 0.05) MAF. In this circumstance,

one is likely to be overly reporting false positives. This can lead to increased cost within a replication

study, because one is compelled to ascertain genotype data upon SNP marker(s) which should not

be included as part of the sampled SNP panel for said study. On the other hand, these data indicate

that said MTP is remarkably conservative in its reporting of Type I errors for a balanced GWAS,

upon SNP loci possessing a rare MAF. In this circumstance, one is likely to be understating both

false positives and true associations. This is problematic, insofar as the Šidák MTP is likely to fail to

detect some true genotype-phenotype associations, the associations in which may play an important

role within the causative pathway of the disease under study. In short, for fixed values in n and m,

based upon these data the Šidák – since m is large, so also the Bonferroni – MTP is suggestive of

being inconsistent in its reporting of Type I errors upon SNP loci possessing a rare MAF and this

is unacceptable in practice.

Moreover, not only do these data suggest that the maxT MTP is unbalanced in its control of the

FWER at the 5% level, particularly upon S1, but also that the unbalanced nature in the control of

the FWER is inconsistent between: balanced and unbalanced GWAS samples; and marker densities

upon either of S1 or S2. The former of this notions is problematic, because – all else being equal –

the reporting of false positives could be different between n-sized unbalanced (2:1 ratio of controls to

cases) and balanced GWAS investigations. Taking m = 500K for example, these data indicate that

the number of Type I errors reported within an unbalanced GWAS upon SNP loci with MAF equal

to 0.01, is eight (8/1) times that of a balanced GWAS. The latter of this notions is problematic,

because the nature of the reporting of Type I errors for an MTP should not be dependent upon the

marker density. Taking MAF of 0.01 for the unbalanced GWAS for example, upon marker density

m = 10K (Figure 3.5) the maxT MTP is suggestive to be slightly liberal in its reporting of false

positive associations, whereas upon marker density m = 500K (Figure 3.6) this MTP is suggestive

to be quite conservative in its reporting of Type I errors.

3.3 Towards a Resolution: Robustness of the Hardy-Weinberg Equilibrium Assump-

tion

Control of the FWER is of utmost importance within a GWAS, as this ensures the proper report-

ing of false-positive results. The assumption of Q̃0 under H0 for the CATT statistic within GWAS
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is not realistic and can lead to improper multiplicity correction. As argued within §3.2.3, this can

have serious negative ramifications, including lack of replication of significant genotype-phenotype

associations across GWAS samples investigating a common phenotypic trait. On the other hand,

under HWE among genotype frequencies within the population at SNP locus j, Q
(∗H)
0j (πj , n0, n1)

correctly identifies the distribution of the CATT statistic at the locus under H0. While correct

identification of Q0 under H0 is a major step towards resolving the GWAS MHT problem, in order

to fully resolve the MHT problem we need to implement Q0 within a MTP.

Indeed, per the above arguments, one might propose multiplicity correction for the CATT

statistic underH0 by exploitation of
{
Q

(∗H)
0j

}
j=1,...,m

. However, there is a rather substantial problem

with this approach. Namely, the integrity of pointwise p-values derived under Q
(∗H)
0j is reliant upon

the assumption that population genotype frequencies at SNP locus j adhere to HWE. Pursuant

to the arguments presented within §3.2.1, while it is true that HWE should in general hold within

the population at an arbitrarily sampled SNP locus within the human genome, this notion may not

hold true at every SNP locus throughout the human genome. Given πj , we are interested to know

the extent of the robustness in the distribution Q
(∗H)
0j to deviations in the HWE assumption at the

locus. That is, we would like to know if deviations in genotype frequencies from HWE at a SNP

locus, could lead to different conclusions – relative to genotypes frequencies adhering to HWE –

regarding the UPTE under Q
(∗H)
0j for the CATT statistic.

Consider locus j, with respective major (the more frequently occurring allele at the locus within

the population) and minor alleles A and a. Let πaaj , πAaj , and πAAj , denote the respective population

frequencies for genotypes aa, Aa, and AA. Under HWE at the locus, it holds that πaaj = π2
j ,

πAaj = 2πj (1− πj), and πAAj = (1− πj)2
. Whenever the assumption of HWE fails at the locus, there

are numerous ways in which πaaj , πAaj , and πAAj can be parameterized. The articles of [113,138,139],

for example, each discuss a [common] generalization to the HWE model, of which allows for the

over- or under-representation of heterozygotes (genotype Aa; with respect to that under HWE) at

SNP locus j by way of the inbreeding coefficient (fj). In terms of the coefficient fj , these articles

express the population frequencies for genotypes aa, Aa, and AA, by πaaj = π2
j + πj (1− πj) fj ,

πAaj = 2πj (1− πj) (1 − fj), and πAAj = (1− πj)2
+ πj (1− πj) fj , respectively, so that fj = 0

recovers the HWE model. By inspection of the formulation for πAaj , we see that the difference

(1−fj) is interpreted as the proportion of over- or under-represented heterozygotes (when compared

to HWE) at locus j. It can be shown (see Proposition A.5 of Appendix A) that the range of
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fj is
[
πj (πj − 1)

−1
, 1
]
, which depends on πj . In a GWAS, fj > 0 (i.e., underrepresentation of

heterozygotes at the locus, when compared to HWE) could indicate population stratification or

inbreeding, while fj < 0 (i.e., overrepresentation of heterozygotes at the locus, when compared to

HWE) may indicate problems in genotyping [113,139].

Figure 3.7 displays a contour plot of the Bonferroni corrected UPTE for the CATT statistic

under Q
(∗H)
0j (the dimension represented in color within the plot), across the domain in the pop-

ulation minor allele frequency (πj) and values of the inbreeding coefficient (fj) within the range(
πj (πj − 1)

−1
, 0.5

)
, for a balanced GWAS of n = 1K subjects and m = 500K SNP markers, at

the realization of the CATT statistic F−1

Q̃0
(1− 0.05/m) = 28.4 – the minimum value of the CATT

statistic under Q̃0, the chi-square distribution with degrees-of-freedom equal to one, for which the

Bonferroni MTP rejects H
(j)
0 at the 5% FWER level – where the additive genetic model of inheri-

tance is assumed under the two-sided alternative hypothesis H
(j)
a . This figure is a generalization to

that of Figure 3.1, where we note that the solid red curve depicted within the latter figure is shown

by the colored contours across πj upon the dashed black line within the former figure. If Q
(∗H)
0j is

truly robust to deviations in the assumption of HWE among the genotype frequencies at SNP locus

j, the colored contoured regions within this plot would move in a strictly vertical manner. However,

the plot indicates that this may not be the case, particularly for πj taking values less than 0.2. It

appears that the UPTE for the CATT statistic under Q
(∗H)
0j to be under- and over-stated for respec-

tive values of fj > 0 and fj < 0, particularly for πj assuming values less than 0.2. That is, the utility

of Q
(∗H)
0j appears to be conservative/liberal in its control of the FWER at the 5% level, whenever

fj assumes values greater/less than zero (i.e., deviations from the HWE assumption). Moreover,

because the width in the colored contour regions appears to be shrinking for decreasing values of

πj (specifically, for πj ∈ (0.01, 0.20)), for a given non-zero value in the inbreeding coefficient under

Hardy-Weinberg disequilibrium (HWD) we would expect the inaccuracy of the reported UPTE for

the CATT statistic under Q
(∗H)
0j to increase as πj decreases.

Indeed, Table 3.2 summarizes the Bonferroni corrected UPTE for the CATT statistic at re-

alization F−1

Q̃0
(1− 0.05/m) (Q̃0 is the chi-square distribution with one degree-of-freedom) and 5%

FWER, for a balanced GWAS sample of n = 1K, across several values for each of the population

inbreeding coefficient (fj) and population minor allele frequency (πj). For notational clarity, let

RUPTE denote the observed UPTE for the CATT statistic under HWD relative to that under

HWE, for fixed values in πj , m, and fj 6= 0, where H0 is assumed true. For fixed values in πj and



75

Fig. 3.7: Contour Plot of the Bonferroni Corrected Unconditional Probability of Type I Error for
the Cochran-Armitage Trend Test Statistic under H0 at the Realization F−1

Q̃0
(1− 0.05/m) for the

χ2
1 Distribution (Q̃0) Across the Domain for the Population Minor Allele Frequency (πj ∈ (0, 0.5))

and the Population Inbreeding Coefficient (fj) Within the Range
(
πj (πj − 1)

−1
, 0.5

)
, under a

Generalized Model to HWE for Genotype Frequencies for SNP Loci, Against a Balanced GWAS of
n = 1K and m = 500K SNP Loci. The Assumed FWER under Q̃0 Is 5%. The Heavy Dashed Black
Line Indicates HWE; and the Region Bounded Between the Two Blue Curves Indicates the Values
of fj for Which the Exact Test of the Null Hypothesis of HWE among Sampled Controls Possesses
Less Than 80% Power to Detect Hardy-Weinberg Disequilibrium at the 5% Pointwise Significance
Level.

m, these results indicate a negative association between the RUPTE and fj . Taking πj = 0.1 and

m = 10K for example, the RUPTE is 0.91 and 1.08 at fj = 0.3 and fj = −0.1, respectively; for fixed

values in fj and m, such that fj 6= 0, the results indicate a positive association between the RUPTE
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and πj . Taking fj = 0.3 and m = 10K for example, the RUPTE is 0.98 and 0.91 at πj = 0.2 and

πj = 0.1, respectively; and for fixed values in fj and πj , such that fj 6= 0, the results indicate a

negative association between the RUPTE and m. Taking fj = 0.3 and πj = 0.1 for example, the

RUPTE is 0.91 and 0.83 at m = 10K and m = 500K, respectively. Overall, the results suggest that

the RUPTE is a decreasing function for decreasing πj , and that for any fixed πj the RUPTE is a

decreasing function for increasing m and/or fj . In other words, taking πj ∈ (0, 0.2) and fj > 0,

these data suggest that Q
(∗H)
0j is conservative in its control of the FWER for the CATT statistic

under H
(j)
0 , particularly for πj ∈ (0, 0.02); taking πj ∈ (0, 0.2) and fj < 0, these data suggest that

Q
(∗H)
0j is liberal in its control of the FWER for the CATT statistic under H

(j)
0 . Note that these

observations encompassing the empirical data for this table, are in direct agreement with our visual

observations for Figure 3.7.

Table 3.2: Bonferroni Corrected Unconditional Probability of Type I Error for the Cochran-Armitage
Trend Test Statistic at the Realization F−1

Q̃0
(1− 0.05/m) for the χ2

1 Distribution (Q̃0) – Where the

Two-sided Alternative Hypothesis under the Additive Genetic Model of Inheritance Is Assumed –
Assuming a Balanced GWAS of n = 1K Subjects and m SNP Markers, Across Several Values for
Each of the Population Inbreeding Coefficient (fj) and Population Minor Allele Frequency (πj).

The Assumed FWER under Q̃0 Is 5%.
Number of SNP Markers Power to Reject the Null

fj πj 10K 100K 500K of HWE Among Controls†

0.20 0.045 (0.98)‡ 0.041 (0.97) 0.040 (0.97) 0.99 (0.99)
0.10 0.038 (0.91) 0.033 (0.86) 0.029 (0.83) 0.98 (0.96)

0.3 0.05 0.027 (0.76) 0.019 (0.65) 0.014 (0.58) 0.92 (0.81)
0.02 0.007 (0.41) 0.002 (0.18) < 0.001 (0.13) 0.67 (0.36)
0.01 < 0.001 (0.09) < 0.001 (0.01) < 0.001 (0.01) 0.47 (0.12)
0.20 0.045 (0.99) 0.042 (0.99) 0.040 (0.98) 0.12 (0.05)
0.10 0.040 (0.96) 0.035 (0.93) 0.032 (0.91) 0.11 (0.06)

0.1 0.05 0.031 (0.88) 0.024 (0.83) 0.020 (0.80) 0.12 (0.04)
0.02 0.012 (0.73) 0.005 (0.50) 0.003 (0.47) 0.08 (0.01)
0.01 0.001 (0.46) < 0.001 (0.27) < 0.001 (0.21) 0.07 (0.01)
0.20 0.045 (1.00) 0.043 (1.00) 0.041 (1.00) 7× 10−4 (7× 10−5)
0.10 0.042 (1.00) 0.038 (1.00) 0.035 (1.00) 4× 10−4 (9× 10−5)

0.0 0.05 0.035 (1.00) 0.029 (1.00) 0.025 (1.00) 7× 10−4 (7× 10−5)
0.02 0.017 (1.00) 0.01 (1.00) 0.006 (1.00) 5× 10−4 (1× 10−5)
0.01 0.002 (1.00) < 0.001 (1.00) < 0.001 (1.00) 6× 10−4 (3× 10−6)

-0.1 0.20 0.046 (1.02) 0.044 (1.02) 0.043 (1.04) 0.12 (0.03)
-0.1 0.10 0.045 (1.08) 0.041 (1.09) 0.040 (1.13) < 0.001 (< 0.001)
†Against the two-sided alternative of HWD for the exact test at pointwise significance levels of 10−3

(
10−4

)
.

‡Unconditional probability of Type I error; parenthetic values are unconditional probabilities of Type I error
relative to that under HWE for the given value of πj .

Table 3.3 summarizes the equivalent information as that of Table 3.2, but for a balanced GWAS

of n = 2K, as opposed to n = 1K for the latter table. The observations regarding the RUPTE for the
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latter table also adhere to the former table. When comparing the RUPTE values across the tables

for fixed values in πj , fj 6= 0, and m, we see that deviations in said values from the HWE index of

1.00 are not as extreme for the larger GWAS sample size. Hence, this suggests the magnitude in the

conservative/liberal nature of Q
(∗H)
0j – for values of fj greater/less than zero – in its control of the

FWER for the CATT statistic under H
(j)
0 , is decreasing for increasing n. That is, for a balanced

GWAS and our adopted model allowing for genotype frequencies to deviate from HWE at SNP locus

j under H0, these results suggest Q
(∗H)
0j , in its control of the 5% level of the FWER for the CATT

statistic, is asymptotically (in n) robust to HWD.

Table 3.3: Bonferroni Corrected Unconditional Probability of Type I Error for the Cochran-Armitage
Trend Test Statistic at the Realization F−1

Q̃0
(1− 0.05/m) for the χ2

1 Distribution (Q̃0) – Where the

Two-sided Alternative Hypothesis under the Additive Genetic Model of Inheritance Is Assumed –
Assuming a Balanced GWAS of n = 2K Subjects and m SNP Markers, Across Several Values for
Each of the Population Inbreeding Coefficient (fj) and Population Minor Allele Frequency (πj).

The Assumed FWER under Q̃0 Is 5%.
Number of SNP Markers Power to Reject the Null

fj πj 10K 100K 500K of HWE Among Controls†

0.20 0.047 (0.99)‡ 0.041 (0.99) 0.040 (0.98) 0.99 (0.99)
0.10 0.044 (0.96) 0.033 (0.94) 0.029 (0.92) 0.99 (0.99)

0.3 0.05 0.037 (0.89) 0.019 (0.83) 0.014 (0.79) 0.99 (0.99)
0.02 0.022 (0.70) 0.002 (0.54) < 0.001 (0.44) 0.94 (0.83)
0.01 0.006 (0.30) < 0.001 (0.23) < 0.001 (0.09) 0.65 (0.65)
0.20 0.047 (0.99) 0.042 (0.99) 0.040 (0.92) 0.38 (0.20)
0.10 0.045 (0.98) 0.035 (0.97) 0.032 (0.96) 0.32 (0.16)

0.1 0.05 0.040 (0.95) 0.024 (0.92) 0.020 (0.89) 0.28 (0.16)
0.02 0.027 (0.86) 0.005 (0.77) 0.003 (0.72) 0.18 (0.06)
0.01 0.014 (0.65) < 0.001 (0.62) < 0.001 (0.45) 0.07 (0.07)
0.20 0.047 (1.00) 0.043 (1.00) 0.041 (1.00) 7× 10−4 (7× 10−5)
0.10 0.046 (1.00) 0.038 (1.00) 0.035 (1.00) 6× 10−4 (5× 10−5)

0.0 0.05 0.042 (1.00) 0.029 (1.00) 0.025 (1.00) 5× 10−4 (8× 10−5)
0.02 0.031 (1.00) 0.01 (1.00) 0.006 (1.00) 4× 10−4 (2× 10−5)
0.01 0.021 (1.00) < 0.001 (1.00) < 0.001 (1.00) 7× 10−5 (7× 10−5)

-0.1 0.20 0.048 (1.01) 0.044 (1.01) 0.043 (1.02) 0.47 (0.21)
-0.1 0.10 0.047 (1.03) 0.041 (1.05) 0.040 (1.07) 0.74 (0.37)
†Against the two-sided alternative of HWD for the exact test at pointwise significance levels of 10−3

(
10−4

)
.

‡Unconditional probability of Type I error; parenthetic values are unconditional probabilities of Type I error
relative to that under HWE for the given πj .

Although the utility of Q
(∗H)
0j – in computing pointwise p-values for the CATT statistic under

H
(j)
0 – does appear to be fairly robust to HWD for a balanced GWAS, particularly for large values

of πj , it seems to be overly conservative in its control of the FWER for the CATT statistic under

H
(j)
0 for minute values (say, not greater than 0.02) of πj . Furthermore, based upon the empirical

evidence presented within Tables 3.2 and 3.3 (by way of the RUPTE), this notion seems to hold
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even in the circumstance for which the values of n and fj are large and small, respectively. Indeed,

if one could filter out those SNP loci from the GWAS sample, whose genotype frequencies within the

population truly deviate from HWE (particularly those loci which possess minute values of πj), then

exploitation of
{
Q

(∗H)
0j

}
j=1,...,m

would be a viable approach for multiplicity correction entailing the

CATT statistic.

A possible approach to carrying out this SNP filtering process, is to conduct an exact test of

the null hypothesis that population genotype frequencies at locus j adhere to HWE (against the

two-sided alternative3), among the controls within the GWAS sample, for all j = 1, . . . ,m. In fact,

as mentioned within §3.2.1, this hypothesis testing regimen is recommended as a quality control

measure amongst the genotype data of the controls for a GWAS sample [104]. However, applied

against a GWAS SNP sample, this test has two problems. First, as demonstrated within each of the

articles of [113, 138], the distributional properties for the exact-based test statistic used for testing

the null hypothesis of HWE on a per-marker basis, is conservative in its control of the Type I error

rate – at pointwise significance levels of 10−3 and 10−4 this conservatism can also be seen by way

of the data presented within the final column for each of the Tables 3.2 and 3.3, taking fj = 0

therein. Although the exact test [by design] is guaranteed to control the Type I error rate at a given

significance threshold, due to the discreteness within the genotype (i.e., categorical) data these two

articles both demonstrate that the actual assumed Type I error in this test is dependent upon the

population MAF at the SNP locus, with an apparent decreasing trend in assumed Type I error for

decreasing MAF. All else being equal, this suggests the exact test to possess an inflated Type II

error rate for minute values (less than 0.05) in MAF – indeed, at pointwise significance levels of 10−3

and 10−4 this is precisely the trend in the Type II error rate depicted by the data presented within

the final column for each of the Tables 3.2 and 3.3, taking fj > 0 therein; and at the 5% pointwise

significance level this trend in decreasing power for decreasing πj can also be seen within Figure 3.7,

by way of the upper blue curve traversing away from the HWE reference line (heavy black dashed

line at fj = 0) as πj decreases. Recall, part of the intent for this Dissertation is to correctly identify

Q0 for the CATT statistic, particularly for rare variant SNPs. Insofar as the exact test of HWE

is underpowered for minute values in MAF, it is likely to incorrectly filter out rare variant SNP

loci whose genotype frequencies within the population truly deviate from HWE. Second, since the

exact test of the null hypothesis of HWE is to be conducted on a per-marker basis, amongst the

3The empirical data within Tables 3.2 and 3.3 suggest that a one-sided alternative hypothesis, testing fj > 0
would be practical, since this could elevate the power to screen out rare variant SNP loci which fail adherence to
HWE. However, the GWAS convention is to use a two-sided alternative hypothesis (see e.g., the article of [104]).
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hundreds of thousands of SNPs within a GWAS sample, multiplicity correction is necessary. The

problems encompassing the exact HWE test are exacerbated as the pointwise significance threshold

decreases [113].

Figure 3.8 displays the combinations of estimated (at the maximum likelihood estimate (MLE)

by marker) population inbreeding coefficients and estimated (at the MLE by marker) population

minor allele frequencies among sampled controls, across 45168 SNP loci of CHR 1 for the Bipolar

GWAS sample described within §2.6, assuming our adopted model allowing for genotype frequencies

to deviate from HWE at an arbitrary SNP locus. In testing the null hypothesis of HWE, each of

these markers possesses an exact two-sided pointwise p-value exceeding that of the value 10−6, so

that these markers are included within H0 for the entire GWAS marker sample (recall, m = 769672

for the entire GWAS sample). Among the 8082 markers with an MLE for πj not exceeding the

value 0.05, seventy-eight (78) markers – or, about 1% of these markers – possess an MLE for fj

at least equal to 0.1. Based upon the empirical results presented within Table 3.3, along with the

magnitude in the value of m for the total GWAS sample (m = 769672 > 500K), the integrity of

Q
(∗H)
0j in computing pointwise p-values under H0 for the CATT statistic – so also adjusted p-values

within, say, the Bonferroni MTP – among these 78 markers is questionable. Assuming the allele

frequencies among these 45168 markers to be representative of all m markers, this implies that the

notion of questionable integrity of Q
(∗H)
0j in computing pointwise p-values under H0 for the CATT

statistic would apply to more than 1300 SNP markers within the GWAS sample.

3.4 Proposal for Unbiased Strong Control of the FWER in GWAS

In light of the above potential problems encompassing the HWE assumption, we propose refrain-

ing from said assumption altogether and [in doing this] exploiting the resulting exact unconditional

distribution for the CATT statistic under H0 in computing pointwise p-values within a GWAS. The

absence of the HWE assumption, leads to the increasing (infinitely many times over) in the general-

izability of this distribution, because we make no assumptions about the underlying allele frequency

distributions within the population across SNP loci. As a consequence, we incur two nuisance pa-

rameters for the random trinomial vectors of sampled cases and controls at each SNP locus (see

paragraph four within §3.2.1 for a review to this notion). Nonetheless, given specified values for

these parameters and the fixed numbers of sampled cases and controls, we can generate the exact

unconditional distribution of the CATT statistic for every realization thereof. In this regard, for

SNP locus j, whose respective major and minor alleles are A and a, Q0 becomes a function of:
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Fig. 3.8: Combinations of Estimated Population Inbreeding Coefficients and Estimated Population
Minor Allele Frequencies among Sampled Controls, Across 45168 SNP Loci of Chromosome 1 for a
Bipolar GWAS Sample of 1034 Controls and 1001 Cases of Bipolar Disorder. The Heavy Dashed
Black Line Indicates Hardy-Weinberg Equilibrium.

the population proportion of homozygotes for the minor allele (subjects within the population pos-

sessing two copies of the minor allele at the locus – genotype aa)
(
πaaj
)
; the population proportion

of heterozygotes at the locus
(
πAaj

)
; and the fixed numbers of cases (n1) and controls (n0) for the

GWAS sample.4 Indeed, hereinafter we denote this unconditional distribution for the CATT statis-

tic under H
(j)
0 by Q∗0j

(
πaaj , πAaj , n0, n1

)
and we denote the vector

(
πaaj , πAaj

)
by θj . For clarity, we

4Note that, for SNP locus j, we have illustrated Q0 to be a function of the two parameters πaaj and πAaj .

However, any combination of two elements chosen from the collection
{
πaaj , πAaj , 1− πaaj − πAaj

}
can be substituted

in lieu of πaaj and πAaj .
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reference this distribution at locus j by Q∗0j . Therefore, Q∗0j correctly identifies the true underlying

test statistics null distribution for the CATT statistic under H
(j)
0 ; and collectively,

{
Q∗0j

}
j=1,...,m

correctly identifies the true underlying test statistics null distribution for the CATT statistic under

H0.

Specifically, for strong control of the FWER in GWAS, we propose exploitation of
{
Q∗0j

}
j=1,...,m

for the CATT statistic under H0 within the Bonferroni (or, Šidák) MTP. For a GWAS sample of m

mutually independent SNP loci, the implementation of Q∗0j within the Bonferroni MTP will provide

nearly exact control of the FWER5 at level α, all α ∈ (0, 1). Although it is unlikely that a GWAS

sample will be comprised of mutually independent SNP loci, the utility of Q∗0j within the Bonferroni

MTP is guaranteed to control the FWER at level α for the CATT statistic under H0, whereas –

pursuant to the arguments presented within §3.2.2 and §3.2.3 – no such assurance holds for this

MTP under Q̃0. A simple pseudocode for this implementation is given within Algorithm 3.1.

Algorithm 3.1 The Bonferroni MTP under Q∗0j

1. Select a level in the FWER to control, say α. Compute the realization of the CATT statistic

for SNP locus j under H
(j)
0 and some assumed genetic model of inheritance (e.g., additive

model) under the two-sided alternative hypothesis H
(j)
a , for all j = 1, . . . ,m. Denote the

realization in said test statistic by tj .

2. Let t∗ be the smallest realization of the CATT statistic which yields a pointwise p-value

under Q∗0
(
πaa, πAa, n0, n1

)
not exceeding the value α/m, for every πaa ∈ (0, 0.5) and πAa ∈

(0, 1) satisfying the linear inequality πAa ≤ 1− 2πaa, where Q∗0
(
πaa, πAa, n0, n1

)
denotes the

unconditional distribution of the CATT statistic under the null hypothesis of no genotype-

phenotype association for a locus with respective population proportion of homozygotes for

the minor allele and population proportion of heterozygotes given by πaa and πAa. The value

of t∗ is the smallest value of the CATT statistic under H0 which yields an unconditional p-

value (over the parameter space for πaa and πAa) less than the value α/m. That is, t∗ is the

smallest possible value of tj for which the Bonferroni MTP rejects null hypothesis H
(j)
0 at the

α level in the FWER under Q∗0j .

5The Šidák MTP is exact for mutually independent test statistics underH0. For large values in m, the Bonferroni
and Šidák MTPs are nearly equivalent.
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3. For those loci whose values of tj exceed that of t∗: estimate the values of πaaj and πAaj by

their respective maximum likelihood estimators under H
(j)
0 . Denote these MLEs for πaaj and

πAaj as π̂aaj and π̂Aaj , respectively; utilizing the PMF for Q∗0j
(
πaaj , πAaj , n0, n1

)
, evaluated at(

π̂aaj , π̂Aaj
)

(hereinafter, denoted by θ̂j), compute pointwise p-values.6

4. Reject those null hypotheses whose pointwise p-values do not exceed the value α/m.

Furthermore, to account for correlation within the GWAS sample, we propose implementation

of
{
Q∗0j

}
j=1,...,m

for the CATT statistic under H0 within the minP MTP. Insofar as the permutation

null distribution for the minP MTP is to be derived under
{
Q∗0j

}
j=1,...,m

, this MTP will provide

balanced strong control of the FWER. A simple pseudocode for this implementation – based upon

Algorithm 2.5 within [62] – is as follows (we denoted this by Algorithm 3.2):

Algorithm 3.2 The MinP MTP under Q∗0j

1. Same as step 1 above for the Bonferroni MTP pseudocode.

2. Assign, without replacement, a label from the collection of counting numbers {1, . . . , n} to

each of the n sampled study subjects. The joint distribution of the p-values, for the joint dis-

tribution of the CATT statistics under H0, can be estimated by permuting the labels amongst

the subjects (equivalently, we can permute the columns upon the genotype matrix, G, as [es-

sentially] done within GPER). Indeed, randomly permute the labels amongst the subjects,

say R times over. That is, in each permutation of the labels, we are randomly reassigning

case and control status amongst the subjects. Permuting the labels in this manner ensures

the phenotypic trait is independent of the genotype data (i.e., we are simulating H0), while

simultaneously attempts to preserve the correlation structure and distributional properties of

the genotype data.

3. For the rth permutation of the labels, r = 1, . . . , R: compute the realization of the CATT

statistic for SNP locus j under H
(j)
0 . Note, the genetic model of inheritance assumed under

[the two-sided] H
(j)
a within step 1 above must also be assumed here. Denote the realization of

the CATT statistic for locus j by tj,r; utilizing the PMF for Q∗0j
(
πaaj , πAaj , n0, n1

)
, evaluated

6Insofar as these pointwise p-values are computed under Q∗0j at the MLEs in the nuisance parameters, πaaj and

πAaj , the p-values are approximate, called bootstrap p-values [140].
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at the MLEs for the parameters θj under H
(j)
0 , θ̂j , compute the pointwise p-value for the

realization tj,r, which we denote by pj,r; and compute the minimum of the pj,r, denoted by

p(1),r. The value of p(1),r is a random sample of size one from the permutation null distribution

of the minimum p-value (minP) for the joint distribution of the p-values for the CATT statistic

under H0.

4. Denote the kth ordered value of the collection
{
p(1),r

}
r=1,...,R

by p(k), k = 1, . . . , R. Let

p∗ = p(bαRc), where b·c returns the greatest integer contained within (·). The value of p∗ is

the maximum observable unconditional pointwise p-value which results in rejection of a null

hypothesis at the α level in the FWER. Finally, let t∗ be as previously defined within step 2

of the above Bonferroni MTP pseudocode, replacing the fraction α/m with p∗ therein.

5. For the observed (non-permuted) data, repeat step 3 of the above Bonferroni MTP pseudocode,

omitting the estimation of the parameters comprising θj (i.e., the MLEs for these parameters

are permutation invariant and need only be computed once by SNP locus). Reject those null

hypotheses whose pointwise p-values do not exceed the value p∗. Note: the footnote within

step 3 of the above Bonferroni MTP pseudocode (see Algorithm 3.1) also applies here.

3.5 Computational Tools

3.5.1 Introduction

On the one hand, due to its proper control in the FWER, the unconditional distribution of

the CATT statistic under H
(j)
0 , Q∗0j , is exceptionally attractive. Its implementation within large-

scaled population based case-control genetic association studies, corrects upon näive asymptotic

assumptions entailing the CATT statistic at the SNP locus, and leads to accurate interpretation

in the data analysis of these studies. On the other hand, implementation of this distribution in

practice, introduces a difficult computational problem.

The computational problem encompassing this distribution originates from the large number

of elements making up its support – here, the support of Q∗0j (any j = 1, . . . ,m) is called the

unconditional reference set and is denoted Γ. In terms of a 2 × 3 contingency table (e.g., Table

2.1) with fixed row margin values, the unconditional reference set is the collection of all possible

tables, such that the cells upon each row of a particular table within this collection must sum to its



84

corresponding row margin value. Under H0, each table within this set has an affiliated probability

of being realized and a corresponding realization of the CATT statistic. To help illustrate the

computational problem here, let Z1k and Z0k represent the respective random numbers of cases

and controls carrying k copies of the minor allele at some SNP locus, k ∈ {0, 1, 2} = G, and let

Z1 = (Z10, Z11, Z12) and Z0 = (Z00, Z01, Z02) be the random row vectors for a 2×3 contingency table

with fixed row margin (n1, n0). If the vector (z0, z1) denotes some table of Γ, note that in computing

the pointwise p-value for the realization of the CATT statistic (tj) under Q∗0j , for all j = 1, . . . ,m,

one could carry out the following procedure:

for j = 1 to m do

pj ← 0. {Initialize the p-value to the value of zero upon SNP locus j}.

for each (z0, z1) ∈ Γ do

Compute the realization of the CATT statistic underH
(j)
0 (against the two-sided alternative

assuming the additive GMI) for table (z0, z1), and denote it by T (z0, z1).

if T (z0, z1) ≥ tj then

pj ← pj + Pr (observing table (z0, z1) |θj , n0, n1). {Table contributes to the p-value.

Increment the value of pj by the probability of observing the table under Q∗0j}.

end if

end for

end for

In computing p-value pj , each j = 1, . . . ,m, note that the conditional clause within the aforemen-

tioned pseudocode is conducted a total of n(Γ) (here, for a set S, n(S) is used to denote the number

of elements contained within S – i.e., n(S) denotes the cardinality of S) times over. Hence, the

computational problem encompassing utility of Q∗0j in practice is an increasing function in n(Γ).

For a case-control GWAS of n0 controls and n1 cases, it can be shown (see Proposition A.6 within

Appendix A) that

n(Γ) =

(
n0 + 2

2

)(
n1 + 2

2

)
.(3.1)

Expanding the binomial coefficients of expression (3.1), we find that n(Γ) is the product of quadratic

functions in each of n0 and n1. For a balanced GWAS, this observation reduces to n(Γ) taking a

value on the order of a quartic function in the number of cases (or, controls). This implies that

n(Γ) can obtain large values, even for small GWAS sample sizes. For example, consider a balanced
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GWAS of size n = 2K. According to expression (3.1), we have

n(Γ) =

(
1002

2

)2

= 2.52× 1011 ≈ (0.25)(n0)4,(3.2)

a very large number indeed. Therefore, the computational problem encompassing the distribution

Q∗0j originates from the large number of elements making up its support.

Pursuant to the above argument, it is clear that computing the pointwise p-value for a single

realization in the CATT statistic under Q∗0j , presents a large computational problem. However,

the magnitude of this computational problem is dwarfed, when compared to that of implementing{
Q∗0j

}
j=1,...,m

in computing pointwise p-values within the minP MTP. This can be seen by noting

that in carrying out R permutations of the phenotype labels within the minP MTP, the aforemen-

tioned pseudocode must be repeated a total of R times over. For example, taking m = 500K and

R = 100K – realistic values for these variables within a GWAS – it follows that the number of itera-

tions upon the conditional clause within the above pseudocode is m×R = 5×1010. To illustrate the

extent of this computational problem, suppose for each r = 1, . . . , R that the aforementioned pseu-

docode can compute the pointwise p-values upon the realizations in the CATT statistic {tj,r}j=1,...,m

(replacing tj with tj,r therein), in m seconds. Under this [highly suspect] supposition, it would take

more than 1580 computational years to compute the m×R pointwise p-values under
{
Q∗0j

}
j=1,...,m

within the minP MTP. Nonetheless, performing the aforementioned pseudocode in m seconds, each

r = 1, . . . , R, seems rather optimistic. Indeed, we require fast computational tools for the realized

implementation of
{
Q∗0j

}
j=1,...,m

within the minP MTP.

3.5.2 Approach

By recognizing that the computed pointwise p-values between two SNP loci will be similar,

whenever their corresponding parameter vectors θ =
(
πaa, πAa

)
(where dropping the subscript j from

the vector θj indicates general values of πaa and πAa within their joint parameter space) and CATT

statistic realizations are similar, to resolve the computational problem – entailing the implementation

of
{
Q∗0j

}
j=1,...,m

within the minP MTP – we propose the following five-step procedure (Algorithm

3.3):
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Algorithm 3.3 An Efficient Approach for Multiple Testing Correction under Q∗0j

1. Estimate the collection of vectors {θj}j=1,...,m at their corresponding MLEs,
{
θ̂j

}
j=1,...,m

under H0. For example, Figure 3.9 displays this collection of MLE vectors across 45168 SNP

loci of CHR 1 for the Bipolar GWAS sample described within §2.6. Formulate a subspace of

the parameter space for θ – the triangular region of the first quadrant within the Cartesian

plane (where πaa and πAa represent the respective x- and y-axis), bounded by each axis within

said plane and the downward sloping line πAa = 1 − 2πaa – of which captures the collection{
θ̂j

}
j=1,...,m

. Partition this subspace by way of horizontal and vertical line segments, and

partition the domain for the CATT statistic into disjoint intervals. The finer the resolution

in this partitioning scheme, the better the precision in the resulting estimates of pj,r from this

approach (see step 5 below for details in the reasoning here).

2. For each upper interval endpoint within the partition of the CATT statistic domain and each

ordered pair – formed from an intersecting horizontal and vertical line segment within the

subspace partition – of the parameter vector θ, compute the corresponding pointwise p-value

under Q∗0 (x, y, n0, n1), where n0 and n1 are assumed given and (x, y) corresponds to an ordered

pair of a realization in the elements comprising the parameter vector θ within the subspace

and where Q∗0 is as previously defined within step 2 of Algorithm 3.1. For example, Figure

3.10 displays a contour plot of the Bonferroni corrected UPTE for the CATT statistic under

Q∗0 (the dimension represented in color) at realization F−1

Q̃0
(1− 0.05/m) – the minimum value

in this statistic for which the Bonferroni MTP under Q̃0 calls for H
(j)
0 to be rejected at the

5% FWER – within the parameter space of θ, assuming a balanced GWAS of n = 1K and

m = 500K. This plot essentially portrays the notion of step 2, for a single interval endpoint

of the CATT statistic, namely the value F−1

Q̃0
(1− 0.05/m).

3. Implement parallel algorithms to calculate the pointwise p-values of step 2.

4. Formulate a lookup table from these p-value calculations.

5. Utilize this table within step 3 of the aforementioned minP pseudocode (see Algorithm 3.2

within §3.4). Essentially, this table can serve as a proxy for all possible realizations in the

CATT statistic, and all realizations of the vector θ within the formulated subspace. That

is, this table can be used to approximate pj,r, all j = 1, . . . ,m and r = 1, . . . , R. Note that
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the precision in these approximations improve, as the resolutions in the partitioning scheme –

provided within step 1 above – become finer.

3.5.3 Generating the P-value Lookup Table

3.5.3.1 Introduction

Note that the general idea encompassing the implementation of Algorithm 3.3, lies with gener-

ating a pointwise p-value lookup table (PPT) which can be utilized within the minP MTP pseudoal-

gorithm (see Algorithm 3.2) to estimate the pointwise p-values therein. In generating this lookup

table a priori to application of the minP MTP, we avoid having to directly utilize the joint null

distribution
{
Q∗0j

}
j=1,...,m

in computing the pointwise p-values within the R permutations of the

minP MTP. Provided that the number of elements comprising the PPT to be considerably smaller

than the value m × R – the number of pointwise p-values computed within
{
Q∗0j

}
j=1,...,m

of the

minP MTP upon R permutations thereof (i.e., implementation of the minP MTP without use of the

PPT) – the utility of the PPT within the minP MTP possesses the potential to substantially reduce

the scale of the computational problem outlined within §3.5.1.

Let O and T , denote the respective collections of ordered pairs θ = (πaa, πAa) and interval

endpoints for the CATT statistic, formulated as a result of implementing step 1 of Algorithm 3.3.

In terms of O and T , the PPT can be considered as a n(T )×n(O) dimensional matrix (denoted P)

whose (u,w)th element, po
u,w = [P]u,w, is defined by

po
u,w = Pr (Tw ≥ τu|Q∗0 (θw, n0, n1)) ,(3.3)

where τu and θw correspond to the respective uth and wth elements of T and O; where Tw ∼

Q∗0 (θw, n0, n1) under H0 (Q∗0 is as defined within step 2 of the Bonferroni pseudoalgorithm – see

Algorithm 3.1); and where, recall, n1 and n0 denote the respective number of cases and controls

amongst the sample of n subjects. Here, we use u and w to index the respective rows and columns

of P, u = 1, . . . , n(T ) and w = 1, . . . , n(O). Calculation of po
u,w is not a trivial task, and demands

considerable computational power, each u = 1, . . . , n(T ) and each w = 1, . . . , n(O). This is par-

ticularly due to the number of elements comprising the collection Γ (i.e., the support of Q∗0), as

previously elucidated to within §3.5.1.
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Fig. 3.9: Combinations of Estimated Population Frequencies of Heterozygotes and Estimated Pop-
ulation Frequencies of Homozygotes for the Minor Allele, Across 45168 SNP Loci of Chromosome
1 for a Bipolar GWAS Sample of 1034 Controls and 1001 Cases of Bipolar Disorder. The Heavy
Dashed Black Curve Indicates Hardy-Weinberg Equilibrium.

One approach to generating the PPT could entail the implementation of a network algorithm

(see e.g., [141, 142]). Given fixed margins of a 2 × 3 contingency table, a network is depicted as a

directed acyclic graph of nodes connected by arcs [143]. This network is constructed in four stages,

where a series of calculations are performed upon each of the nodes within each stage. The goal of

the network algorithm is to compute the p-value for the observed test statistic under H
(j)
0 , by implicit

evaluation of the performed calculations upon the nodes of the constructed network (see §4.6.1 for

explicit details of a network algorithm). While a network algorithm is perhaps the best approach
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Fig. 3.10: Contour Plot of the Bonferroni Corrected Unconditional Probability of Type I Error for
the Cochran-Armitage Trend Test Statistic under H0 at the Realization F−1

Q̃0
(1− 0.05/m) for the

χ2
1 Distribution (Q̃0), Across the Parameter Space θj , Against a Balanced GWAS of n = 1K and

m = 500K SNP Loci. The Assumed FWER under Q̃0 Is 5%.

in computing the exact conditional (i.e., fixed margins for a 2 × 3 contingency table) p-value for

the observed test statistic under H
(j)
0 , there are several problems with this approach in generating

P. The first problem lies with the scale in the number of possible observable margins for the 2× 3

tables within the unconditional reference set (i.e., the support of Q∗0; equivalent to the collection Γ),

which leads to the construction/evaluation of a great many networks. Since the row margin for any

table is considered fixed at the time of case-control sampling, the number of observable 2× 3 table

margins comprising the unconditional reference set is equal to the number of possible combinations
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for the column margin upon the n-size random sample of study subjects, denoted nc. It is,

nc =

(
n+ 2

2

)
.(3.4)

Hence, the computation of po
u,w of P, entails evaluation of nc (3.4) total networks. For example,

taking n0 = n1 = 1K, the computation of po
u,w demands evaluation of more than two million

networks, which likely requires an inordinate quantity of time to traverse over in generating P. The

second problem with the network algorithm approach in generating the elements of P, lies with the

fact that the elements comprising the collection T are not fixed. This complicates implementation of

the network algorithm and could require considerable computational time to generate the PPT. In

particular, this approach would require at least a single pass through each of the nc (3.4) networks.

However, within the kth network, k = 1, . . . , nc, note that the Forward pass – for the network

algorithm of [142] (see Appendix therein) – is required to be iterated through for each τu ∈ T . This

likely requires considerable computational time to accomplish.

Here, we take a different perspective to tackling the computational problem in generating the

elements of P. Namely, for a fixed θw ∈ O, we recognize that some elements within the unconditional

reference set have exceptionally small (nearly zero) probability of being observed. In this regard,

for each w = 1, . . . , n(O), we anticipate accurate estimation of po
u,w, u = 1, . . . , n(T ), amongst a

truncated (i.e., deleted) unconditional reference set. Within §3.5.3.3, we develop a methodology

for deleting elements upon the unconditional reference set, while simultaneously preserving the

integrity of the estimates amongst the elements comprising the appropriate column of P. Within

§3.5.3.4 we sketch an iterative algorithm for obtaining a truncated unconditional reference set, and

within §3.5.3.5 we provide examples for the implementation of the iterative algorithm. As it turns

out, this approach – generating [an estimated] PPT from truncated unconditional reference sets –

lends elegantly to parallel computing. Within §3.5.3.6, we sketch a parallel computing approach to

generating an estimated PPT from truncated unconditional reference sets.

3.5.3.2 The Exact Unconditional Probability of Type I Error

Before we can discuss constructing a truncated unconditional reference set, we need to: define,

mathematically (through set notation), the unconditional reference set; and define the formula which

relates (3.3) to the unconditional reference set. Here, for each k ∈ {0, 1, 2} = G, let Z1k and Z0k be

as previously defined, the respective random numbers of cases and controls carrying k copies of the
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minor allele at some SNP locus. Under the null hypothesis H
(j)
0 , for each y ∈ {0, 1} = Y, it can be

shown (see Proposition A.4 within Appendix A) that

Zy = (Zy0, Zy1, Zy2) ∼ Multinomial (ny,πj = (π0j , π1j , π2j)) ,

where πkj = Pr (Gj = k) for all k ∈ G, and Gj ∈ G denotes the number of copies for the minor allele

at locus j. Hence, for each y ∈ Y, under H
(j)
0 the density for the random vector Zy is given by

h (zy|πj) = Pr (Zy = zy|πj) =

(
ny

zy0, zy1, zy2

)(
πAAj

)zy0 (
πAaj

)zy1 (
πaaj
)zy2

,(3.5)

where (
ny

zy0, zy1, zy2

)
=

ny!

zy0!zy1!zy2!
,

such that A and a denote the respective major and minor alleles at locus j. Since cases and controls

are assumed unrelated, the exact unconditional probability of observing table (z0, z1) ∈ Γ under

H
(j)
0 , is given by

g (z0, z1|πj) = Pr (Z0 = z0,Z1 = z1|πj)

= h (z0|πj)h (z1|πj)(3.6)

=
∏
y∈Y

(
ny

zy0, zy1, zy2

)(
πAAj

)zy0 (
πAaj

)zy1 (
πaaj
)zy2

,

where Γ (i.e., the unconditional reference set) is given by

Γ =

{
(z0, z1) :

∑
k∈G

zyk = ny,∀y ∈ Y

}
.(3.7)

Consider (z0, z1) ∈ Γ to be an arbitrarily chosen table from the unconditional reference set, and

let T (z0, z1) > 0 denote the realization of the CATT statistic corresponding to the table, computed

under H
(j)
0 , some j, where the two-sided alternative hypothesis H

(j)
a is assumed. Thus, for any

other realization in the CATT statistic (computed under H
(j)
0 ), say t > 0, the critical region of the

asymptotic test corresponding with t, denoted ΓA (t), is given by

ΓA (t) = {(z0, z1) ∈ Γ : T (z0, z1) ≥ t} .(3.8)
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Therefore, under H
(j)
0 , the exact unconditional probability of Type I error for the CATT statistic

at realization tj , pj , is given by

pj =
∑

(z0,z1)∈ΓA(tj)

g (z0, z1|πj) ,(3.9)

where g (·|·) is given by (3.6). Note that by substituting the appropriate parameter vector θw and

realization τu within this expression, one obtains the value of (3.3).

3.5.3.3 A Truncated Unconditional Reference Set

Here, for a fixed θw ∈ O and some user defined precision (denoted, ε) in estimating (3.3), our

goal is to formulate a truncated unconditional reference set (denoted, Γ (θw)), with the intentions

of: rapid generation of estimates for the elements po
u,w over the assembled truncated unconditional

reference set, for all u = 1, . . . , n(T ); and maintaining high accuracy upon these estimates for the

po
u,w. In other words, given θw ∈ O and ε, we would like to delete as many elements from Γ as possible

(this ensures rapid generation of the estimate for po
u,w, u = 1, . . . , n(T )), without compromising the

accuracy in the estimates of the po
u,w.

Let Γ1 and Γ0 denote the respective collections of all possible case and control rows for the 2×3

contingency tables upon the elements within Γ. That is, for each y ∈ Y,

Γy =

{
zy :

∑
k∈G

zyk = ny

}
.(3.10)

Now, given θw – where, for the moment we set ε aside – let Γy (θw) denote the elements within

Γy which are to be preserved (i.e., not deleted) within the truncated unconditional reference set,

and denote the complement of Γy (θw) by Γ′y (θw). For a particular specification over each of the

collections Γ0 (θw) and Γ1 (θw), it therefore follows that the truncated unconditional reference set

is given by

Γ (θw) = {(z0, z1) ∈ Γ : (z0 ∈ Γ0 (θw)) ∩ (z1 ∈ Γ1 (θw))} ,(3.11)

and its complement is given by

Γ′ (θw) = {(z0, z1) ∈ Γ : (z0 ∈ Γ′0 (θw)) ∪ (z1 ∈ Γ′1 (θw))} .(3.12)
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Under H0, (3.9) can be expressed as

po
u,w =

∑
(z0,z1)∈(Γ(θw)∩ΓA(τu))

g (z0, z1|θw) +
∑

(z0,z1)∈(Γ′(θw)∩ΓA(τu))

g (z0, z1|θw)

= pu,w (Γ (θw)) + eu,w (Γ (θw)) ,(3.13)

where τu is the uth element of T , pu,w (Γ (θw)) is the estimate of po
u,w under Γ (θw), and eu,w (Γ (θw))

is the acquired error in estimating po
u,w with pu,w (Γ (θw)). For a given Γ (θw), we make the obser-

vation that the ratio, pu,w (Γ (θw)) to po
u,w, must assume values between zero and one, where a value

approximately equal to one in said ratio indicates high accuracy in the estimate of po
u,w – equiva-

lently, the value of eu,w (Γ (θw)) is small relative to that of pu,w (Γ (θw)), whenever pu,w (Γ (θw)) is

a very accurate estimate of po
u,w. Hence, we can utilize the ratio, pu,w (Γ (θw)) to po

u,w, as a measure

of accuracy for the estimate pu,w (Γ (θw)).

Here, for θw ∈ O, let ε > 0 be the smallest value in the ratio pu,w (Γ (θw)) to po
u,w over all

possible Γ (θw) ⊂ Γ for which the user is willing to accept. For a given Γ (θw), we note that

eu,w (Γ (θw)) =
∑

(z0,z1)∈(Γ′(θw)∩ΓA(τu))

g (z0, z1|θw)

≤
∑

(z0,z1)∈Γ′(θw)

g (z0, z1|θw)

<
∑

z0∈Γ′0(θw)

h (z0|θw) +
∑

z1∈Γ′1(θw)

h (z1|θw)

= e (Γ (θw)) .(3.14)

Hence, we have

pu,w (Γ (θw))

pu,w (Γ (θw)) + e (Γ (θw))
≥ ε =⇒ pu,w (Γ (θw))

po
u,w

> ε,(3.15)

so that if one can demonstrate that the inequality of the premise within (3.15) holds for the given

choice in Γ (θw), then Γ (θw) has essentially been created (through the selection of ε). Since ε and –

for a given Γ (θw) – e (Γ (θw)) are constants, the inequality of the premise within (3.15) reduces to

pu,w (Γ (θw)) ≥
(

ε

1− ε

)
e (Γ (θw)) .(3.16)
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Therefore, for the given value of ε > 0 and collection Γ (θw), if the condition imposed by (3.16) holds

for all u = 1, . . . , n(T ), then one has essentially constructed a truncated unconditional reference set,

of which can be utilized to estimate the wth column upon P.

3.5.3.4 An Iterative Algorithm for Obtaining a Truncated Unconditional Reference

Set

To this end, for a given ε > 0 and θw ∈ O, evaluation of (3.16) assumes that one possesses some

collection Γ (θw), for all u = 1, . . . , n(T ). Here, given θw ∈ O and ε > 0, we construct a systematic

procedure (algorithm) which generates some Γ (θw) ⊂ Γ satisfying the condition imposed by (3.16)

for all u = 1, . . . , n(T ). In brief, the algorithm determines a value δ∗w ∈ (0, 1), such that for every

table (z0, z1) ∈ Γ, (z0, z1) ∈ Γ (θw) if and only if
⋂
y∈Y {h (zy|θw) > δ∗w} implies (3.16) holds for

all u = 1, . . . , n(T ). Given an initial approximation to δ∗w, denoted δ1, the algorithm evaluates the

condition imposed by (3.16), for all u = 1, . . . , n(T ). If said condition fails for some value of u, the

approximation of δ∗w is updated to some [lesser] value, denoted δ2, and condition (3.16) is evaluated

(for all u = 1, . . . , n(T )) upon this updated estimate of δ∗w. This process of: updating the estimate of

δ∗w; and, evaluation – across the possible values in u – of the condition imposed by (3.16), continues

until which time said condition is satisfied for all u = 1, . . . , n(T ).

Prior to stating the algorithm, we outline two strategies for efficient implementation thereof:

we refine the above approach, so that evaluation of the condition (3.16) is to occur upon a single

[strategically selected] value of u over the collection {1, . . . , n(T )}. We demonstrate that adherence

to the condition imposed by (3.16) for the selected value in u is sufficient, so that said condition is

satisfied for all u = 1, . . . , n(T ); and, to ‘prime’ the iterative process, we designate a value for δ1.

First, note that for any Γ (θw) ⊂ Γ, the inequality (3.16) is most sensitive in failing to hold true

for small values of pu,w (Γ (θw)), because ε and e (Γ (θw)) are constants. By construction of ΓA (τu)

(3.8), the pu,w (Γ (θw)) are decreasing for increasing τu ∈ T . This implies that the inequality (3.16)

is most sensitive in failing to hold true for large values of τu ∈ T . So, let

ι = {s, s = 1, . . . , n(T ) : τs = max {τu ∈ T }} .

Hence, for any Γ (θw) ⊂ Γ, if the condition of (3.16) holds taking u = ι, then it holds for all

u = 1, . . . , n(T ). Therefore, within our iterative algorithm (Algorithm 3.4), we evaluate the condition

(3.16) solely upon u = ι.
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Second, without loss of generality, suppose

po
ι,w

·
= Pr

(
X ≥ τι|Q̃0

)
,

where X ∼ Q̃0 – the asymptotic chi-square distribution with degrees-of-freedom equal to one – under

H0. Thus, upon a properly chosen value for δ∗w, the left hand side of (3.16) will essentially satisfy

pι,w (Γ (θw))
·
= Pr

(
X ≥ τι|Q̃0

)
.

for which we have

e (Γ (θw)) ≤
(

1− ε
ε

)
Pr
(
X ≥ τι|Q̃0

)
.(3.17)

Moreover, pursuant to the opening paragraph within this section, by (3.14) the value of δ∗w must

satisfy

e (Γ (θw)) ≤ δ∗w {n (Γ′0 (θw)) + n (Γ′1 (θw))} .

Taking e (Γ (θw)) at the upper bound of this inequality and substituting within (3.17), we have

δ∗w ≤
(

1− ε
ε

) Pr
(
X ≥ τι|Q̃0

)
n (Γ′0 (θw)) + n (Γ′1 (θw))

<

(
1− ε
ε

)
Pr
(
X ≥ τι|Q̃0

)
.(3.18)

Since the right hand side of the strict inequality within (3.18) is a constant, we utilize the value in

said constant as our designated choice for δ1. We are now poised to state the algorithm. It is given

by Algorithm 3.4.

Algorithm 3.4 An Iterative Algorithm for Generating a Truncated Unconditional Reference Set

1. Initialize the value of s – a counter, indicating the number of “visits” to this step of the

algorithm – to one. In conjunction with (3.18), let δs be defined by7

δs =

(
1− ε
ε

)
Pr
(
X ≥ τι|Q̃0

)
I(s = 1) +

(
δs−1

10

)
I(s > 1),(3.19)

7This definition of δs is a suggestion. The user may choose to define δs in some other manner, under the condition
that δs+1 < δs for all s ∈ N.
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where δ0 = 0. For each y ∈ Y, let the collection Γ′y (θw) (the elements of Γy not preserved

within the truncated unconditional reference set – defined following (3.10)) be given by

Γ′y (θw) = {zy ∈ Γy : h (zy|θw) ≤ δs} .(3.20)

2. Compute the value of e (Γ (θw)) by way of (3.14).

3. Define the collection Γ (θw) by way of (3.11).

4. Compute pι,k (Γ (θw)) by way of (3.13).

5. Evaluate the inequality within (3.16), for the computed value pι,w (Γ (θw)). If this value fails

to adhere to said inequality, then Γ (θw) is unsatisfactory for the given ε – increment the

value of s by one and proceed to step 1 above, omitting the initial sentence thereof. On the

other hand, if pι,w (Γ (θw)) satisfies the inequality within (3.16), then Γ (θw) properly defines

a truncated unconditional reference set for the specified value of ε – let δ∗w = δs and terminate

the algorithm.

In brief, given θw and ε, this algorithm searches for a truncated unconditional reference set,

Γ (θw), for which the computed value pu,w (Γ (θw)) satisfies (3.16), for all u = 1, . . . , n(T ). It does

this in an iterative manner, by truncating the collection Γ′y (θw) by way of the value of δs (3.19). In

each iteration through the steps of the algorithm, δs becomes smaller by an order of magnitude equal

to 0.1 (step 1), decreasing the number of elements comprising Γ′y (θw) (step 1), thereby decreasing

the upper bound in the incurred error, e (Γ (θw)) (step 2). This increases the number of elements

contained within the truncated unconditional reference set, Γ (θw) (step 3), thereby producing a

more precise estimate pι,w (Γ (θw)) (step 4).

3.5.3.5 Examples for the Implementation of Algorithm 3.4

Example 3.1.

Consider a balanced GWAS of n = 2K study subjects, and θw =
(
πaa, πAa

)
= (0.25, 0.50)

(this is equivalent to genotypes at a SNP locus adhering to HWE with MAF equal to 0.5). Here,

we assign ε to be the value, such that 100ε% = 99.99%, where it is assumed that τι = 40 for P

(see §3.6.1.1 for the motivation in assigning this value of τι). We utilize Algorithm 3.4 to define a
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truncated unconditional reference set Γ (θw) for the CATT statistic, assuming the additive genetic

model of inheritance under H
(j)
a , some j = 1, . . . ,m.

Table 3.4 summarizes the application of Algorithm 3.4 for this example – implementation of

the algorithm is carried out by way of the programming code presented within §D.1 of Appendix D.

Overall, to attain the desired precision in the estimate of po
u,w for the given value of ε, all u = 1, . . . , T ,

we find that the collection Γy (θw), each y ∈ Y, comprises only about 7.3% (36705/501501) of the

total elements for the collection Γy. Moreover, the number of elements comprising the truncated

unconditional reference set is about 0.5% (36705/501501)2 of that for Γ, and the integrity of the PPT

remains intact. The total time needed to generate the estimate pι,w (Γ (θw)) – given within the fifth

iteration of the algorithm – is 56.2 seconds. In extrapolating, this implies approximately 2.9 hours

would be required to attain the exact value of po
ι,w over Γ. Moreover, there is a negligible difference in

the estimate of po
ι,w between the final two iterations of the algorithm (column 4), indicating superior

precision in the estimate of po
ι,w for the chosen value of ε. Therefore, this example illustrates the

efficiency of utilizing a truncated unconditional reference set over that of Γ, when one is willing to

incur a minute amount of error in estimating the elements of P.

Table 3.4: Summary Measures for the Implementation of Algorithm 3.4 Applied to Example 3.1.

Iteration e (Γ (θw)) n (Γ0 (θw)) pι,w (Γ (θw))
†

δs Marginal Time (s)
1 5.55× 10−11 26728 2.26021 2.5× 10−14 28.3
2 5.53× 10−12 29233 2.26305 2.5× 10−15 6.1
3 5.52× 10−13 31731 2.26363 2.5× 10−16 6.7
4 5.42× 10−14 34241 2.26373 2.5× 10−17 7.3
5 5.53× 10−15 36705 2.26375 2.5× 10−18 7.8
†Depicted values are divided by 10−10.

Example 3.2.

Consider a balanced GWAS of n = 10K study subjects, and θw =
(
πaa, πAa

)
= (0.25, 0.50).

We assign ε to be the value, such that 100ε% = 99.999%, where τι = 40 for P. We utilize Algorithm

3.4 to define a truncated unconditional reference set Γ (θw) for the CATT statistic, assuming the

additive genetic model of inheritance under H
(j)
a , some j = 1, . . . ,m.

Table 3.5 summarizes the application of the algorithm for this example. Overall, to attain the

desired precision in the estimate of po
u,w for the given value of ε, all u = 1, . . . , T , we find that each

of the collections Γy (θw) comprises only about 1.6% (202111/12507501) of the total elements for

the collection Γy, y ∈ Y. Moreover, the number of elements comprising the truncated unconditional
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reference set is about 0.03% (202111/12507501)2 of that for Γ, and the integrity of the PPT remains

intact. The total time needed to generate the estimate pι,w (Γ (θw)) – given within the sixth iteration

of the algorithm – is 29.4 minutes. In extrapolating, this implies approximately 78 days would be

required to attain the exact value of po
ι,w over Γ. Moreover, there is a negligible difference in the

estimate of po
ι,w between the final two iterations of the algorithm (column 4), indicating superior

precision in the estimate of po
ι,w for the chosen value of ε. Therefore, as with Example 3.1, this

example illustrates the efficiency of utilizing a truncated unconditional reference set over that of Γ,

when one is willing to incur a minute amount of error in estimating the elements of P.

Table 3.5: Summary Measures for the Implementation of Algorithm 3.4 Applied to Example 3.2.

Iteration e (Γ (θw)) n (Γ0 (θw)) pι,w (Γ (θw))
†

δs Marginal Time (m)
1 2.80× 10−11 138508 2.478877 2.5× 10−15 12.9
2 2.80× 10−12 151247 2.480751 2.5× 10−16 2.8
3 2.80× 10−13 163974 2.481116 2.5× 10−17 3.0
4 2.81× 10−14 176666 2.481180 2.5× 10−18 3.3
5 2.79× 10−15 189412 2.481191 2.5× 10−19 3.6
6 2.80× 10−16 202111 2.481193 2.5× 10−20 3.8
†Depicted values are divided by 10−10.

Example 3.3.

Here, we desire to compare the performance of Algorithm 3.4 at τι = 40, across: (1) balanced

GWAS samples of sizes n ∈ {1K, 2K, 5K, 10K}; (2) θw ∈ {(0.25, 0.50) , (0.063, 0.38) , (0.01, 0.18)}

(equivalent to genotypes at three SNP loci adhering to HWE with respective MAFs 0.50, 0.25,

and 0.10); and (3) 100ε% ∈ {99.99%, 99.999%}. We utilize said algorithm to define the truncated

unconditional reference set Γ (θw) for the CATT statistic, assuming the additive genetic model of

inheritance under H
(j)
a , some j = 1, . . . ,m.

Table 3.6 summarizes the application of the algorithm for this example. For a fixed choice in ε,

these data indicate that Algorithm 3.4 becomes increasingly more efficient (here, efficiency is relative

to generating po
ι,w from the entire collection Γ): as the minor allele frequency decreases, across the

sample sizes chosen for this example. For example, consider ε = 0.9999 and n = 1K. Relative to a

locus with population MAF equal to 0.50, the size of Γ0 for loci with respective population MAFs

equal to 0.25 and 0.01 are 60% (11133/18477) and 19%; and, for a fixed minor allele frequency,

increasing sample size. For example, consider ε = 0.9999 and MAF equal to 0.50. Relative to

the sample size n = 1K, the magnitude in the ratio n (Γ0 (θw))n (Γ1 (θw)) /n (Γ) for the respective

sample sizes n = 2K, n = 5K, and n = 10K are 25% ({36705×125751/(501501×18477)}2), 4%, and
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Table 3.6: Summary Measures for the Implementation of Algorithm 3.4 Applied to Example 3.3.

n θw 100ε% Iterations e (Γ (θw))
†

n (Γ0 (θw)) pι,w (Γ (θw))
‡

Time (s)
1K (0.25, 0.50) 99.99% 5 2.6 18477 2.036553 14.7

99.999% 5 0.26 19675 2.036555 16.4
(0.063, 0.38) 99.99% 4 8.9 11133 1.885308 5.2

99.999% 4 0.88 11856 1.885314 6.4
(0.01, 0.18) 99.99% 4 5.4 3476 1.255795 0.7

99.999% 4 0.56 3709 1.255797 0.8
2K (0.25, 0.50) 99.99% 5 5.5 36705 2.263751 56.2

99.999% 5 0.55 39195 2.263754 67.0
(0.063, 0.38) 99.99% 5 3.5 23947 2.163368 24.5

99.999% 5 0.35 25514 2.163370 28.0
(0.01, 0.18) 99.99% 4 10.0 6966 1.795663 2.8

99.999% 4 1.0 7426 1.795667 3.1
5K (0.25, 0.50) 99.99% 5 14.0 90017 2.424471 353.0

99.999% 5 1.4 96357 2.424477 408.5
(0.063, 0.38) 99.99% 5 9.0 59060 2.384602 155.1

99.999% 5 0.89 63149 2.384606 187.7
(0.01, 0.18) 99.99% 5 2.6 19390 2.215479 21.7

99.999% 5 0.26 20585 2.215481 24.1
10K (0.25, 0.50) 99.99% 6 2.8 189412 2.481191 1594.4

99.999% 6 0.28 202111 2.481193 1761.9
(0.063, 0.38) 99.99% 5 18.0 116141 2.460379 600.7

99.999% 5 1.8 124373 2.460387 668.9
(0.01, 0.18) 99.99% 5 5.8 39377 2.373231 88.8

99.999% 5 0.58 42025 2.373234 96.7
†Depicted values are divided by 10−15.
‡Depicted values are divided by 10−10.

1%. Finally, these data indicate very subtle differences in the estimates of po
ι,w between the chosen

values of ε across both the chosen values of MAF and the chosen sample sizes. This suggests that

the choice of ε equal to 0.9999 will suffice for high precision in the estimates of po
u,w over P.

Figure 3.11 displays the ratio (negative natural logarithm thereof) in the number of elements

comprising the truncated unconditional reference set (from applying Algorithm 3.4) to that of the

unconditional reference set, against population MAF for several balanced GWAS samples sizes,

assuming HWE amongst population genotype frequencies and ε = 0.9999. This plot is in direct

agreement with our observations regarding Table 3.6. Namely, for any fixed value in the population

MAF, these data indicate the efficiency of Algorithm 3.4 increases for increasing sample size. This

notion is seen by the greater values in − log (n (Γ0 (θw))n (Γ1 (θw)) /n (Γ)) for greater values in n.

Moreover, this plot also suggests the efficiency for the algorithm increases for decreasing values in

MAF, irrespective of sample size. This is seen by way of the decreasing trend in any of the colored
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curves for increasing values in MAF. Overall, in assigning ε = 0.9999 within Algorithm 3.4, this

example suggests the ascertainment of high precision estimates of po
u,w over P.

Fig. 3.11: Plot of Negative log (n (Γ0 (θw))n (Γ1 (θw)) /n (Γ)) – the Ratio (Natural Log Scale) of the
Number of Elements Comprising the Truncated Unconditional Reference Set to That of the Uncon-
ditional Reference Set – Against Population Minor Allele Frequency for Balanced GWAS Samples
of Varying Sizes, Assuming Hardy-Weinberg Equilibrium among Population Genotype Frequencies
and ε = 0.9999.

3.5.3.6 An Algorithm to Rapidly Generate the Estimated P-value Lookup Table

Having motivated the utility of a truncated unconditional reference set in generating the val-

ues upon any column of the estimated PPT P, and having developed an algorithm for the con-
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struction of a truncated unconditional reference set, we now develop a parallel processing ap-

proach to efficiently generate all values comprising Pε, where Pε denotes the estimate of P given

the user specified value of ε. To motivate a parallel approach over that of a strictly serial ap-

proach, note that the latter approach to constructing Pε could entail the following pseudocode:

1: for each θw ∈ O do

2: Construct Γ (θw) in accordance with Algorithm 3.4.

3: for each τu ∈ T do

4: pu,w (Γ (θw))← 0. {Initialize the p-value estimate to zero}.

5: for each table (z0, z1) ∈ Γ (θw) do

6: if (z0, z1) ∈ (Γ (θw) ∩ ΓA (τu)) then

7: pu,w (Γ (θw)) ← pu,w (Γ (θw)) + g (z0, z1|θw). {Table contributes to the p-value.

Increment the p-value by the probability of the table being realized under H0}.

8: end if

9: end for

10: end for

11: end for

There are several problems with this approach. First, this strictly serial approach in generating

Pε is implausible whenever the number of elements comprising a particular truncated unconditional

reference set is large, because excessive computational time would be required to generate the cor-

responding column upon Pε. This is due to the third loop within the above pseudocode (lines 5-9

therein) being comprised of a large number of elements in such circumstances.

Based upon the results obtained within the examples (§3.5.3.5) – particularly, the observed values

of n (Γ0 (θw)) depicted within Tables 3.4-3.6 – we see that the value of n (Γ (θw)) is likely to be

considerably large, because said value is the product of the [quite large] factors n (Γ0 (θw)) and

n (Γ1 (θw)). Moreover, based upon these examples, we see that this notion is increasingly exacer-

bated for increasing values in MAF and appears to hold true even for small (i.e., 0.10) values in

MAF.

Second, while the programming code of §D.1 is well suited to construct the collections Γ (θw),

all w = 1 . . . , n (O), in the circumstance for which the column dimension of P is small (say, not larger

than the value of ten (10)), it is computationally intractable for our purposes, since here we assume

the column dimension of P to be in the thousands. We assume such a column dimension over P,
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because we desire high precision in our estimates of pj,r within the minP MTP, all j = 1, . . . ,m

and r = 1, . . . , R (see Algorithm 3.3). For example, consider n = 2K upon a balanced GWAS,

ε = 0.9999, and n (O) ≥ 1000. Hypothetically speaking, suppose the average computational time to

construct Γ (θw) – applying the programming code of §D.1 – all w = 1, . . . , n (O), is 29 seconds (the

arithmetic average of the computational times presented upon rows 7 and 11 of Table 3.6). Under

this presumption, the appropriate truncated unconditional reference sets, {Γ (θw)}w=1,...,n(O), would

be constructed in roughly 8 hours time for n (O) = 1000. This is too much time to allot in generating

the truncated unconditional reference sets over P.

As an alternative to the above serial computing approach in generating the elements upon Pε,

we propose a parallel computing approach, based upon the CUDA C programming model, comprised

of five CUDA kernels. The first three kernels, denoted TURK1 (TURK is shorthand for truncated

unconditional reference set kernel), TURK2, and TURK3, respectively, work in collaboration to

generate the collection {δ∗w}w=1,...,n(O). The final two kernels, denoted PPTK1 (PPTK is shorthand

for pointwise p-value table kernel) and PPTK2, respectively, work collaboratively in deriving the

values pu,w (Γ (θw)) from the defined collection {δ∗w}w=1,...,n(O), for all u = 1, . . . , n (T ) and w =

1, . . . , n (O). For the underlying details encompassing these kernels, see Algorithm B.7 within §B.2

of Appendix B. Algorithm 3.5 outlines our approach to generating Pε.

Algorithm 3.5 Generating the Estimated Pointwise P-value Lookup Table

1. Let W = {1, . . . , n (O)} warehouse the column indices upon P; let ε > 0 be given; and let

the value of δ = δ1, where δ1 is as specified within step 1 of Algorithm 3.4. We assume the

elements within T are ordered such that

τ1 < τ2 < · · · < τι,

where ι is as defined within §3.5.3.4. Within steps 2–4 to follow, we are essentially invoking

Algorithm 3.4, simultaneously, upon all θw ∈ O.

2. For each y ∈ Y, we invoke the TURK1 kernel, where the return thereof is the collection

 ∑
zy∈Γ′y(θw)

h (zy|θw)


w∈W

.
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3. For each w ∈ W:

a. Compute the value of e (Γ (θw)), by evaluating the two sums within (3.14).

b. For each y ∈ Y, we invoke the TURK2 kernel, where the return thereof is the collection

Γy (θw).

c. We invoke the TURK3 kernel, where the return is the value pι,w (Γ (θw)).

d. Evaluate the condition (3.16), where u = ι therein. If the condition is true, then let

δ∗w = δ and update the collection W to W\{w} (i.e., extract the element w from said

collection).

4. If W = ∅, then the collection {δ∗w}w=1,...,n(O) has been determined. Let W = {1, . . . , n (O)}

and proceed to step 5; otherwise, update the value of δ to one-tenth its value and proceed

to step 2 (essentially, we are iterating through Algorithm 3.4 upon the remaining elements

contained within W).

5. For each w ∈ W:

a. For each y ∈ Y, invoke the TURK2 kernel where the return thereof is the collection

Γy (θw).

b. Invoke the PPTK1 kernel as follows:

A. For each z0 ∈ Γ0 (θw) and z1 ∈ Γ1 (θw) under H
(j)
0 : compute the realization in

the CATT statistic – denote it by T (z0, z1); and compute the table probability

corresponding to the element (z0, z1) ∈ Γ, g (z0, z1|θw).

B. For each z0 ∈ Γ0 (θw) and z1 ∈ Γ1 (θw), determine the value of λ (z0, z1), where

λ (z0, z1) = min {min {u, u = 1, . . . , n (T ) : T (z0, z1) ≤ τu, τu ∈ T } , ι} .(3.21)

C. Return the collections {g (z0, z1|θw)}(z0,z1)∈Γ(θw) and {λ (z0, z1)}(z0,z1)∈Γ(θw).

c. Invoke the PPTK2 kernel as follows:

A. For each τu ∈ T , we compute the value pu,w (Γ (θw)). It is,

pu,w (Γ (θw)) =
∑

(z0,z1)∈Γ(θw)

I (λ (z0, z1) ≥ u) g (z0, z1|θw) .(3.22)
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3.6 Proof of Concept

To illustrate the integrity of the proposed synergistic methodologies – outlined within §3.4 and

§3.5 – in providing balanced and accurate control of the FWER at the 5% level for the CATT statistic,

we conducted a large-scaled simulation investigation (§3.6.1); and to illustrate the application of the

methodologies in practice, we applied them against a large GWAS data set (§3.6.2).

3.6.1 Simulation

Under assumed HWE for genotype frequencies across loci, by way of simulation we will suggest:

(1) the exact unconditional distribution Q
(∗H)
0j (π̂j , n0, n1) for the CATT statistic under H0 within

the minP MTP, provides balanced and accurate control of the FWER at the 5% level;8 and (2) the

exact unconditional distribution Q
(∗H)
0j (π̂j , n0, n1), correctly identifies the null distribution for the

CATT statistic under H
(j)
0 .

3.6.1.1 Methods

Indeed, to illustrate the aforementioned two notions, we analyzed – simultaneously, alongside

the simulations conducted within §3.2.4.1 – the identical D = 100K simulated balanced (recall,

denoted simulation 1 (S1)) and unbalanced (recall, a two to one ratio of controls to cases and denoted

simulation 2 (S2)) GWAS data sets, each data set comprised of n = 1200 subjects and m = 10K SNP

loci. The CATT statistic was used to test each of the null hypotheses, H
(j)
0 , assuming the additive

genetic model of inheritance under the corresponding two-sided alternative hypothesis. The minP

and Šidák MTPs were utilized to control the FWER within each data set, where pointwise p-values

were calculated under
{
Q

(∗H)
0j

}
j=1,...,m

, taking the unknown population minor allele frequency (πj)

at its corresponding MLE value π̂j , all j = 1, . . . ,m. For each data set, R = 2048 (i.e., two blocks

of 210 permutations) random shuffles of the column indices upon the genotype matrix G(∗ρ) were

applied within the GPER algorithm (see §2.4) for the minP MTP. Recall, each of the D data sets

was simulated – each simulation, S1 and S2 – under assumed HWE among population genotype

frequencies. Thus, Q
(∗H)
0j (πj , n0, n1) correctly identifies the true underlying distribution for the

8Here, we assume HWE for both simplicity in illustration and to serve as an analogue to the HWE assumption
made upon the simulation conducted within §3.2.4.1.
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CATT statistic under H
(j)
0 , across the D data sets. Hence, we expect the results here to confirm

the two notions of §3.6.1.

To resolve the computational problem – in utilizing Q
(∗H)
0j (π̂j , n0, n1) to compute pointwise

p-values under H
(j)
0 – we adopted a modified version of the computational tools outlined within

Algorithm 3.3 (i.e., steps 1-5 therein). The method is as follows: step 1 – as mentioned within the

aforementioned paragraph, within each simulated data set we estimated the parameter πj with its

MLE π̂j . To define our subspace about the parameter space of πj , we first took note of the fact that

the parameter space for πj is the interval of the reals, [0, 0.5], although our simulation was restricted

to πj ∈ {0.01, 0.02, . . . , 0.1}. Hence, we recognized that our subspace was to be a subset of the

interval [0, 0.5], of which we denoted by [sl, su]. At the onset of the simulation, we did not know off-

hand what range of values the MLEs {π̂j}j=1,...,m would comprise across the D simulated data sets

(true of each simulation, S1 and S2), which made formulation of this subspace – through the values

of sl and su – a bit non-trivial. However, under the HWE model for genotype frequencies, it can be

shown (see Proposition A.7 within Appendix A) that E (π̂j) = πj and V ar (π̂j) = πj (1− πj) /(2n).

By the Central Limit Theorem, it follows – since π̂j is a function involving a sum of random variables –

that π̂j
·∼ N

(
πj ,
√
πj (1− πj) /(2n)

)
. We arbitrarily considered assigning sl = 0.001 and su = 0.12.

Hence,

max {Pr (π̂j ≤ sl|πj = 0.01) ,Pr (π̂j ≥ su|πj = 0.1)} ·= 5× 104,(3.23)

for which we determined that our defined subspace, [sl, su] = [0.001, 0.12], should possess excellent

coverage in capturing the majority of elements over the collection {π̂j}j=1,...,m across the D simulated

data sets. We partitioned this subspace into equal length subintervals, each of length 0.001, which

yielded the collection of unconditional distributions for the CATT statistic,{
Q

(∗H)
0 (w/1000, 600, 600)

}
w=1,...,120

(for S1) and
{
Q

(∗H)
0 (w/1000, 800, 400)

}
w=1,...,120

(for S2), to

be utilized within step 2 of Algorithm 3.3 (to be elaborated upon below), where Q
(∗H)
0 (π, n0, n1)

denotes the exact unconditional distribution for the CATT statistic under the null hypothesis of

no genotype-phenotype association at a locus with population minor allele frequency π, such that

genotype frequencies at the locus adhere to HWE.

Next, to define our partition of the domain for the CATT statistic, we first took note that

said domain is all positive real numbers. Rather than partitioning the entire positive real line into

disjoint intervals, we decided to partition a subset of the positive reals, say [0, τι] ⊂ R, where the
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value of τι (recall, equal to the max over T ) was to be assigned such that the likelihood of the CATT

statistic attaining a value at least as extreme as τι, just by chance under H0, is essentially zero.

We then recognized that under H0, the likelihood of observing extremely large realizations of this

statistic over the interval πj ∈ [sl, su], say tj ≥ 40, is very small, where this notion holds even upon

the aggregated data sets comprising 500K mutually independent SNP loci (recall, we randomly

aggregated ten/fifty data sets – each comprised of m = 10K loci – together to obtain simulated

data sets comprised of 100K/500K mutually independent SNP loci under H0). To illustrate, under

H0, the expected number of [mutually independent] SNP loci to attain a realization in the CATT

statistic at least equal to the value forty, just by chance upon S1, is given by

(m) Pr
(
Tj ≥ 40|Q(∗H)

0j (πj , 600, 600)
)
≤ (m) sup

π∈[sl,su]

Pr
(
Tj ≥ 40|Q(∗H)

0j (π, 600, 600)
)

= (m) Pr
(
Tj ≥ 40|Q(∗H)

0j (su, 600, 600)
)

= (m)(1.6× 10−10)

≤ 7.8× 10−5 (taking m =500K),

(3.24)

where Tj ∼ Q(∗H)
0j (πj , 600, 600) denotes a random value of the CATT statistic for locus j under H0.

We extended the interpretation of expression (3.24) amongst our entire 2K mutually independent

aggregated data sets (each comprised of 500K mutually independent SNP loci), so that prior to

conducting the simulation we expected to see less than one realization of the CATT statistic within

the observed (non-permuted) data taking a value at least as large as 40.9 Hence, we defined the

upper bound for our interval of the domain for the CATT statistic, [0, τι], by τι = 40. We chose

to partition the interval, [0, τι], into disjoint subintervals, each of length 0.05. Our reasoning was

that the pointwise p-values should be very similar for CATT statistic realizations t and t′, such that

|t − t′| = 0.05. This yielded the collection of CATT statistic realizations, {5u/100}u=1,...,800, by

which to compute pointwise p-values within step 2 of Algorithm 3.3.

Steps 2 and 3 – taking ε = 0.99999 within Algorithm 3.5, we computed each of the pointwise

p-values over the elements comprising: the joint collection over
{
Q

(∗H)
0 (w/1000, 600, 600)

}
w=1,...,120

and {5i/100}i=1,...,800 (for S1); and, the joint collection over
{
Q

(∗H)
0 (w/1000, 800, 400)

}
w=1,...,120

and {5u/100}u=1,...,800 (for S2); step 4 – in other words, our estimated PPT upon each simulation

9Note that in performing R = 2048 random shuffles of the phenotype labels in the construction of the minP MTP
permutation null distributions across the D data sets, just by chance, one would expect to find several realizations
tj,r at least equal to forty, where tj,r is as defined within step 3 of the minP pseudocode (Algorithm 3.2). However,
this has essentially zero probability of affecting the results of the simulation.
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scenario, Pε, was comprised of 800× 120 = 96K elements. Table 3.7 summarizes the computational

time needed to generate the lookup table Pε across the two simulation scenarios for two selections in

the value of ε. These data indicate application of Algorithm 3.5 to be exceptionally efficient, since

just slightly more than a single minute of GPU computing time (worst case) was needed to generate

the 96K elements upon Pε; and, finally step 5 – within the rth permutation of the minP MTP, we

estimated the pointwise p-value pj,r, for the realization of the CATT statistic tj,r under H0, by the

(u,w)th element of our table, [Pε]u,w, where

u = min {max {b20tj,rc, 1} , 800} ; and

w =

 min {d1000π̂je, 120} , if S1

min {max{b1000π̂jc, 1}, 120} , if S2,

(3.25)

Table 3.7: Computational Time (Seconds) Needed to Generate Pε for the Simulations of §3.6.1,
Applying Algorithm 3.5.

Time (s)
n1 n0 ε To Process Steps 1-4 To Process Step 5 Total
400 800 0.99990 4.5 36.0 40.5
400 800 0.99999† 5.4 41.5 46.9
600 600 0.99990 14.6 44.4 59.0
600 600 0.99999† 15.7 49.2 64.9
†Value of ε utilized for generation of Pε.

where, recall b·c and d·e are the respective floor and ceiling functions for the argument (·). In an

analogous manner, we estimated the pointwise p-value pj , for the realization of the CATT statistic

tj under H0 for the observed (non-permuted) data, by the element [Pε]u,w, where the value of u

was obtained by substituting the value tj within (3.25) in lieu of tj,b therein – note: the value of

w only needed to be computed once per SNP locus, since said value is permutation invariant. In

this regard, pursuant to visual interpretation (e.g., Figure 3.1 (balanced GWAS) and Figure 3.2

(unbalanced GWAS)) and empirical evidence over the generated estimated PPT table, Pε (upon

each of S1 and S2), each of our estimated pointwise p-values – permutation derived or otherwise

– was a slightly conservative estimate of their corresponding true underlying bootstrap pointwise

p-value counterparts.

3.6.1.2 Results

Table 3.8 summarizes the number of observed Type I errors for the simulated data at the true
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underlying 5% level in the FWER, cross-classified by: MTP (minP or Šidák) under Q
(∗H)
0j (π̂j , n0, n1)

and H0; the marker density (m); and the assumed population minor allele frequency (πj). The data

depicted within this table should be compared to those of Table 3.1, on a row-to-row basis. As

expected, in ignoring πj (i.e., collapsing over πj) these data support the notion that each of the

minP and Šidák MTPs under Q
(∗H)
0j (π̂j , n0, n1) control the FWER at the 5% level, since the three

95% confidence intervals cover said level in the FWER across marker densities. Note the remarkable

distinction in the observations between the two tables, regarding control of the 5% FWER for the

Šidák MTP – this MTP is suggestive of being overly conservative in controlling the 5% FWER

when assuming Q̃0 as the underlying null distribution for the CATT statistic under H0, where

the conservatism appears to be increasing in m; this MTP is suggestive of properly controlling

the 5% FWER when assuming Q
(∗H)
0j (π̂j , n0, n1) as the underlying null distribution for the CATT

statistic under H0, where this notion seems to hold across marker densities. Moreover, these data

indicate that the minP and Šidák MTPs under Q
(∗H)
0j (π̂j , n0, n1) control the 5% FWER in a balanced

manner across πj , since the number of observed Type I errors for each of these MTPs is roughly

uniform across πj , where this notion holds across the marker densities depicted within the table.

Again, we note a remarkable distinction in the observations between the two tables, namely, in

assuming Q
(∗H)
0j (π̂j , n0, n1) /Q̃0 as the underlying null distribution for the CATT statistic under H0,

the minP/maxT MTPs seem to provide balanced/unbalanced control of the 5% FWER across πj .

Finally, the number of Type I errors for these MTPs (minP and Šidák under Q
(∗H)
0j (π̂j , n0, n1)) are

roughly identical across πj and marker densities. This suggests that the minP and Šidák adjusted

p-values are essentially identical. In turn, this suggests that the distribution Q
(∗H)
0j (π̂j , n0, n1)

essentially identifies the true underlying null distribution for the CATT statistic under H0 – at

least in the circumstance for which the loci are independent. Overall, these data indicate: (1)

that the minP MTP under Q
(∗H)
0j (π̂j , n0, n1) is nearly balanced in its control of the 5% FWER

under H0; and (2) that the distribution Q
(∗H)
0j (π̂j , n0, n1) essentially identifies the true underlying

null distribution for the CATT statistic under H
(j)
0 . These two notions are vital elements when

conducting multiplicity adjustment within a GWAS and extensions thereof – particularly, studies

entailing loci possessing a rare variant allele – as they ensure the proper reporting of false-positives.

Note that under our simulation conditions (i.e., independent SNP loci within a GWAS data set), we

have suggested that Q
(∗H)
0j (π̂j , n0, n1) correctly identifies Q0 for the CATT statistic under H

(j)
0 .

Figures 3.3 and 3.4 display simultaneous exact Clopper-Pearson 95% confidence intervals for
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Table 3.8: Number of Data Sets Exhibiting Some Type I Error Cross-Classified by Multi-
ple Testing Procedure (MTP), the Marker Density (m), and Assumed Minor Allele Frequency
(πj ; MAF), Within a Population Whose Genotype Frequencies at Each SNP Locus Adhere to
Hardy-Weinberg Equilibrium, Assuming the Cochran-Armitage Trend Test Statistic Is Distributed

as Q
(∗H)
0j (π̂j , n0, n1) under H0. The True Underlying Family-wise Type I Error Rate (FWER) Is

5%. Assuming Type I Errors Are Independent of MAF, the Expected Number of Type I Errors by
MAF Are 500 (m = 10K), Fifty (m = 100K), and Ten (m = 500K). 95% Exact Clopper-Pearson
Confidence Intervals (CI) Are for Control in the Overall True Underlying FWER†.

Minor Allele Frequency
MTP Observed FWER
(m) 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 Totals (95% CI)

minP
(10K) 562 503 477 536 502 474 467 475 496 452 4944 4.94% (4.8%, 5.1%)

(100K) 53 44 41 54 56 43 45 43 52 51 482 4.82% (4.4%, 5.3%)

(500K) 10 11 9 10 10 10 9 9 7 8 93 4.65% (3.8%, 5.7%)

Šidák
(10K) 533 540 483 541 510 487 480 491 511 468 5044 5.04% (4.9%, 5.2%)

(100K) 52 43 45 54 54 43 46 41 52 54 484 4.84% (4.4%, 5.3%)

(500K) 10 12 9 9 10 9 9 9 8 9 94 4.70% (3.8%, 5.8%)
minP
(10K) 502 504 488 490 486 500 498 500 506 498 4972 4.97% (4.8%, 5.1%)

(100K) 51 50 47 45 53 51 50 46 48 56 497 4.97% (4.6%, 5.4%)

(500K) 10 10 12 9 13 10 9 10 11 11 105 5.25% (4.3%, 6.3%)

Šidák
(10K) 510 506 502 503 487 502 510 506 510 510 5046 5.05% (4.9%, 5.2%)

(100K) 55 49 48 49 55 54 52 48 48 55 513 5.13% (4.7%, 5.6%)

(500K) 10 11 12 9 11 10 10 10 11 11 105 5.25% (4.3%, 6.3%)
†Initial [final] six rows correspond to simulation 1 (S1) [simulation 2 (S2)].

control in the FWER across πj , upon the maxT and Šidák MTPs assuming the CATT statistic is

distributed as Q̃0 under H0 (the circles and squares depicted within the figure denote the respective

observed FWER for these MTPs) and upon the minP and Šidák MTPs assuming the CATT statistic

is distributed as Q
(∗H)
0j (π̂j , n0, n1) under H0 (the respective triangles and crosses depicted within the

figure denote the respective observed FWER for these MTPs) for S1; Figures 3.5 and 3.6 display the

analogous information, but for S2 as opposed to S1. These figures illustrate analogous observations

to those made for the initial six rows of empirical data of Table 3.8. Namely, we see that the

minP and Šidák MTPs under Q
(∗H)
0j (π̂j , n0, n1) each indicate: (1) control of the true underlying

5% FWER across marker densities, since their respective observed FWER is nearly that expected

5%; (2) balanced control of the 5% FWER across πj and marker densities, since their respective

observed FWER seems to randomly cycle above and below the 5% FWER reference line across πj

and marker densities; and (3) almost identical observed FWER across πj and marker densities, an

indication that the minP and Šidák adjusted p-values are likely identical. Overall, combining the

three observations, these data suggest that Q
(∗H)
0j (π̂j , n0, n1) correctly identifies the true underlying
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null distribution for the CATT statistic under H0.

3.6.2 Application

3.6.2.1 Methods

To illustrate the utility of our proposed statistical method in practice, we applied it against

a GWAS data set investigating Bipolar disorder (this is the same Bipolar GWAS data set, first

introduced within §2.6) [105,106]. Prior to subject and SNP filtering, there were n1 = 1001 cases of

Bipolar disorder, n0 = 1034 control subjects, and 875578 SNP markers within this data set. Pur-

suant to consulting advise,10 we excluded subjects from the final GWAS sample who were missing

at least 5% genotype data amongst the 875578 markers and we excluded SNP markers from the

final GWAS sample which were either: missing amongst at least 5% of the 2035 subjects; and/or

failed (i.e., we rejected the null hypothesis) – at significance level 10−6 – the exact test of the null

hypothesis of HWE among control subjects. By convention, SNPs possessing a rare variant allele

(less than 0.01 MAF, among those study subjects included within the final GWAS data set) are

excluded from a final GWAS sample, recommended based upon statistical power to detect associa-

tions [104] – we speculate the author’s to imply ‘low power’ to detect associations for minute values

in πj . However, there are several problems with this MAF filtering approach: (1) in excluding these

rare variant allele loci, one is throwing away precious data, the loci of which could potentially be

part of the genetic component within the disease etiology; (2) the notion of low statistical power

assumes that proper statistical tools are utilized for inference purposes. The assumption of Q̃0 for

the CATT statistic for these rare variant allele loci is highly suspect, insofar as the 2 × 3 contin-

gency tables summarizing the data thereof will be quite sparse. In other words, this notion of low

statistical power for rare variant loci should not be of such concern when adopting the proper null

distribution for the CATT statistic under H
(j)
0 ; and (3) by excluding these rare variant allele loci,

one is inadvertently increasing the power (i.e., introducing a bias) to detect associations at common

variant allele loci. Nonetheless, since our method correctly identifies the test statistics null distribu-

tion for the CATT statistic, we employed a less stringent MAF filter and included – within our final

GWAS sample – those SNP loci possessing a sample estimated minor allele frequency at least equal

to 0.001. PLINK (version 1.07; October 2009) [63] was utilized to carry out this subject/marker

10Provided by Peter Zandi, PhD, Director, Psychiatric Epidemiology Training Program of John Hopkins
Bloomberg School of Public Health.
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filtering recipe. After employing this procedure, we obtained our final GWAS sample, comprised of

n1 = 1001 case subjects, n0 = 1034 control subjects, and m = 769672 SNP loci. In coherence with

the reasoning provided within §2.6, for data compression we chose the value of ρ to be four (4), so

that our genotype matrix G(∗4) was of dimension 192418× 2035.

Unconditional Distribution of the CATT Statistic: HWE

We tested our proposed methodology in two ways: (1) assuming HWE among population geno-

type frequencies across loci; and (2) making no assumption whatsoever regarding the distributional

characteristics governing population genotype frequencies at locus j, all j = 1, . . . ,m. In both cir-

cumstances, the CATT statistic was used to test the null hypothesis H
(j)
0 , assuming the additive

genetic model of inheritance under the two-sided alternative hypothesis. We first consider the former

of the two approaches.

The minP and Bonferroni MTPs were utilized to control the FWER, where pointwise p-values

were calculated under
{
Q

(∗H)
0j

}
j=1,...,m

, taking the unknown population minor allele frequency (πj)

at its corresponding MLE value under H
(j)
0 , π̂j , for all j = 1, . . . ,m. Since we desired to compare the

performance of our method against that of conventional (i.e., assuming Q̃0 for the CATT statistic

under H0) GWAS MHT practice, we also employed the maxT and Bonferroni MTPs under Q̃0. We

applied R = 102400 random shuffles of the column labels upon G(∗ρ) within the GPER algorithm

(§2.6) for each of the maxT and minP MTPs.

As with the simulation analysis conducted within §3.6.1, to resolve the computational problem

here – in utilizing Q
(∗H)
0j (π̂j , n0, n1) to compute pointwise p-values under H

(j)
0 – we adopted a

modified version of the computational tools outlined within Algorithm 3.3. The methodology follows:

step 1 – we defined our subspace for πj to be equivalent to the parameter space thereof. That is, our

subspace was defined by the interval [0, 0.5]. Our reasoning was due to the fact that we expected

– based upon inspection of Figure 3.9 – the MLEs, {π̂j}j=1,...,m, to “fill-in” much of this compact

interval of the reals (this notion was confirmed empirically through the data). Next, we observed

that our GWAS sample is nearly balanced (n0 ≈ n1;n ≈ 2K). Hence, we assumed the dependency

of the exact unconditional probability of Type I error for the CATT statistic to resemble that of

the blue curves depicted within Figure 3.1. Insofar as the slopes for these curves appear to be

exacerbated – relative to the 5% FWER reference line – for minute values in πj , say πj ≤ 0.1, to

maintain the veracity of Q
(∗H)
0j (π̂j , n0, n1) in computing pointwise p-values under H

(j)
0 for the CATT
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statistic we decided to partition our subspace (i.e., the interval [0, 0.5]) into two subintervals, [0, 0.1]

and (0.1, 0.5], respectively. We partitioned the interval [0, 0.1], the region within the parameter space

of πj for which we assumed – based upon our interpretation of the slopes for the curves depicted

within Figure 3.1 over this region of the parameter space – the integrity of the computed UPTE under

Q
(∗H)
0j (π̂j , n0, n1) is particularly sensitive to misclassification over π̂j , into equal length subintervals,

each of length 0.001; and we partitioned the interval (0.1, 0.5], the region within the parameter

space of πj for which we assumed – based upon our visual interpretation of the slopes for the curves

within Figure 3.1 tending to “flatten out” within this region of the parameter space – the integrity

of the computed UPTE under Q
(∗H)
0j (π̂j , n0, n1) is likely not as sensitive to misclassification over

π̂j , into equal length subintervals, each of length 0.005. This yielded the collection of unconditional

distributions for the CATT statistic,
{
Q

(∗H)
0 (dw/1000, n0, n1)

}
w=1,...,180

, to be utilized within step

2 of Algorithm 3.3, where Q
(∗H)
0 (π, n0, n1) is as previously defined within §3.6.1 and dw is defined

by dw = w + 4(w − 100)I(w > 100), for all w = 1, . . . , 180. Finally, we partitioned the domain

of the CATT statistic in an identical manner as that conducted within §3.6.1, which yielded the

collection of CATT statistic realizations, {5u/100}u=1,...,800, by which to compute pointwise p-

values within step 2 of Algorithm 3.3, of which we now state; steps 2 and 3 – the methodology is

identical to that outlined within §3.6.1, replacing the collection
{
Q

(∗H)
0 (w/1000, 600, 600)

}
w=1,...,120

(simulation 1), say, with
{
Q

(∗H)
0 (dw/1000, n0, n1)

}
w=1,...,180

therein; step 4 – prior to conducting

statistical inference for this Bipolar GWAS data set, taking ε = 0.9999 we formulated – in coherence

with Algorithm 3.5 – an 800× 180 two-dimensional lookup table, Pε, comprised of 144K computed

elements pu,w (Γ (θw)), u = 1, . . . , 800 and w = 1, . . . , 180, for utility within the Bonferroni and

minP MTPs. The first row of Table 3.9 summarizes the required computation time to generate Pε,

applying Algorithm 3.5; and step 5 – identical to that within §3.6.1, with the exception that

w = min {I (π̂j > 0.1) (d200(π̂j − 0.1)e+ 100− d1000π̂je) + d1000π̂je, 180}

should be substituted in lieu of w = min {d1000π̂je, 120} within expression (3.25). In this regard,

each of our estimated pointwise p-values – permutation derived or otherwise – was a slightly con-

servative estimate of their corresponding true underlying bootstrap pointwise p-value counterpart.
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Table 3.9: Computational Time (Hours) Needed to Generate Pε for Application to the Bipolar
GWAS Data Set, Applying Algorithm 3.5.

Distribution Time (h)
Under H0 ε To Process Steps 1-4 To Process Step 5 Total

Q
(∗H)
0 0.9999 0.02 0.9 0.9
Q∗0 0.9999 0.52 14.1† 14.6†

†Utilizing a cluster of two GPUs.

Unconditional Distribution of the CATT Statistic

The minP and Bonferroni MTPs were utilized to control the FWER, where pointwise p-values

were calculated under
{
Q∗0j

}
j=1,...,m

, taking the unknown population genotype frequencies, πaaj and

πAaj , at their respective MLEs under H
(j)
0 , π̂aaj and π̂Aaj , all j = 1, . . . ,m. To remain consistent

with the minP MTP approach above, we applied R = 102480 random shuffles of the column labels

upon G(∗ρ) within GPER. To resolve the computational problem – in utilizing the distribution

Q∗0j
(
π̂aaj , π̂Aaj , n0, n1

)
to compute pointwise p-values under H

(j)
0 – we employed the computational

tools outlined within Algorithm 3.3 as follows. First, we partitioned the domain of the CATT statistic

in an identical manner to that previously conducted (e.g., §3.6.1), which yielded the collection of

CATT statistic realizations, {5u/100}u=1,...,800, by which to compute p-values within step 2 of said

algorithm.

Next, we formulated our subspace of the parameter space for θ. We estimated the parameter

vector θj at its corresponding MLE under H0, θ̂j , for all j = 1, . . . ,m. We then sorted the MLE

vectors in increasing order, by first ordering over the estimated values
{
π̂aaj
}
j=1,...,m

and then

ordering over the estimated values
{
π̂Aaj

}
j=1,...,m

. For clarity, let θ̂(j) denote the jth element upon

the ordered MLE vectors (i.e., if θ̂(j) =
(
π̂aa(j), π̂

Aa
(j)

)
, then π̂aa(j) ≤ π̂aa(j+1); and, if π̂aa(j) = π̂aa(j+1), then

π̂Aa(j) ≤ π̂Aa(j+1), for all j = 1, . . . ,m − 1). So as to obtain high precision in our estimates over the

collection
{
{pj,r}j=1,...,m

}
r=1,...,R

within the minP MTP, we partitioned the ordered MLE vectors

into 20 disjoint groups and considered a pointwise p-value lookup table (PPT) for each group. Here,

the initial 19 of these groups were each comprised of 40000 MLE vectors, such that the kth group

was comprised of the vectors
{
θ̂(j)

}
j=40000(k−1)+1,...,40000k

, k = 1, . . . , 19; and the final group was

comprised of the largest (relative to our sorting methodology) 9672 MLE vectors over the collection{
θ̂(j)

}
j=1,...,m

. For clarity in discussion, we denote these collections of ordered MLE vectors by

Θ̂k, k = 1, . . . , 20. Within the [triangular] parameter space of θ we constructed 20 rectangles, each

formed to encapsulate the elements for a unique collection Θ̂k, some k = 1, . . . , 20. Geometrically,
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if k = 1, . . . , 20 indexes the groups, and if the vector (Ak, Bk, Ck, Dk) denotes the vertices of the

constructed rectangle for group k, then we defined the vertices for rectangle AkBkCkDk by

Ak =
(
πaa1 , πAa1

)
, Bk =

(
πaa1 , πAa2

)
, Ck =

(
πaa2 , πAa2

)
, and Dk =

(
πaa2 , πAa1

)
,

such that

πaa1 = min
{
π̂aaj :

(
π̂aaj , π̂Aaj

)
∈ Θ̂k

}
, πaa2 = max

{
π̂aaj :

(
π̂aaj , π̂Aaj

)
∈ Θ̂k

}
,

πAa1 = min
{
π̂Aaj :

(
π̂aaj , π̂Aaj

)
∈ Θ̂k

}
, πAa2 = max

{
π̂Aaj :

(
π̂aaj , π̂Aaj

)
∈ Θ̂k

}
.

(3.26)

Our subspace – of the parameter space over θ – was defined by the aggregation of those θ en-

capsulated within some rectangle. Figure 3.12 depicts the MLE vectors θ̂j (red dots), for all

j = 1, . . . ,m, and the rectangles (the four-sided polygons with edges depicted in blue), AkBkCkDk,

for all k = 1, . . . , 20.

Each of the formulated rectangles was partitioned by way of equally spaced horizontal and

vertical line segments, such that the length of the spacing between sequential horizontal/vertical

line segments was proportional to the width/height of the corresponding rectangle. Ordered pairs

– in πaa and πAa within the parameter space for θ – were formulated within each of the rectangles,

such that each ordered pair was formed from an intersection of: a horizontal line segment and a

vertical line segment; a horizontal or vertical line segment and some edge of the accompanying

rectangle; or, two edges of the rectangle (i.e., a vertex upon the rectangle), where we limited the

number of ordered pairs within each rectangle to 200. We limited this number of ordered pairs by

rectangle for two reasons: (1) if (x, y) denotes some formed ordered pair of the parameter vector

θ within rectangle AkBkCkDk, k = 1, . . . , 20, this upper limit in the number of ordered pairs gave

us good coverage for estimating the distribution Q∗0j
(
π̂aaj , π̂Aaj , n0, n1

)
with that of Q∗0 (x, y, n0, n1),

where
(
π̂aaj , π̂Aaj

)
∈ Θ̂k; and (2) to reduce the computational burden in generating the PPT upon

each of the rectangles. This partitioning of the rectangles, yielded our partition of the subspace

over θ. Table 3.10 summarizes our partitioning methodology over the 20 constructed rectangles

comprising our defined subspace of the parameter space for θ.

For each k = 1, . . . , 20, let Ok denote the collection of ordered pairs (x, y) corresponding with

the aforementioned partitioning of rectangle AkBkCkDk. Taking ε = 0.9999, for each k = 1, . . . , 20

we formulated – in coherence with Algorithm 3.5 – a pointwise p-value lookup table (PPT), denoted

Pε
k, whose rows corresponded to the realizations in the CATT statistic {5u/100}u=1,...,800 and whose
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Fig. 3.12: Estimated θj (Red Dots) for the m = 769672 SNP Loci of a Case-Control GWAS
Investigating Bipolar Disorder, and the Defined Subspace of the Parameter Space over θ (Blue
Rectangles).

columns corresponded to the elements contained within the collection Ok. The value depicted upon

row k of the final column of Table 3.10, corresponds to the number of elements contained within

Ok, k = 1, . . . , 20. The second row of Table 3.9 summarizes the required computational time to

generate all 20 of the PPTs. Using a cluster of two NVIDIA GeForce GTX 470 GPUs, the roughly

3 million elements (800 × 3821) comprising the aggregate of the 20 PPTs were generated in about

14.6 hours.

For each k = 1, . . . , 20, the values comprising table Pε
k were utilized to estimate the pointwise
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Table 3.10: Summary of the Subspace Partitioning over the Parameter Space for θ, as Applied
Within Algorithm 3.3 for the Bipolar GWAS Data Set†.

Rectangle AkBkCkDk Resolution(a) in Number of Ordered Pairs (x, y)(b)

k πaa1 πaa2 πAa1 πAa2 πaa πAa Within Rectangle AkBkCkDk

1 0.000 0.001 0.002 0.006 0.003 0.02 198
2 0.000 0.001 0.006 0.044 0.020 0.19 198
3 0.000 0.002 0.002 0.187 0.368 3.67 153
4 0.002 0.003 0.005 0.225 0.495 4.94 180
5 0.003 0.007 0.011 0.291 0.701 7.00 200
6 0.007 0.011 0.006 0.309 0.886 8.85 170
7 0.011 0.017 0.090 0.348 0.923 9.22 196
8 0.017 0.025 0.003 0.366 1.238 12.4 174
9 0.025 0.034 0.118 0.401 1.159 11.6 200
10 0.034 0.045 0.179 0.417 1.191 11.9 200
11 0.045 0.058 0.224 0.449 1.253 12.5 198
12 0.058 0.073 0.242 0.464 1.369 13.7 187
13 0.073 0.090 0.286 0.486 1.333 13.3 195
14 0.090 0.109 0.313 0.507 1.390 13.9 196
15 0.109 0.131 0.357 0.523 1.386 13.9 192
16 0.131 0.155 0.376 0.548 1.513 15.1 192
17 0.155 0.182 0.394 0.555 1.484 14.8 198
18 0.182 0.211 0.412 0.551 1.450 14.5 200
19 0.211 0.242 0.429 0.561 1.467 14.7 198
20 0.242 0.278 0.429 0.516 1.304 13.0 196
Total: 3821
†πaas and πAas as defined within (3.26), s ∈ {1, 2}.
(a)Increment between line segments within the rectangle AkBkCkDk; Depicted values are divided by 10−3.
(b)(x, y) denotes an ordered pair of intersecting line segments within the rectangle partitioning.

p-values computed under the minP MTP, for those SNP loci whose MLE vector θ̂ resided within Θ̂k.

Specifically, if ‖x‖ denotes the Euclidian norm for some vector x, then within the rth permutation of

the minP MTP, we estimated pointwise p-value pj,r – corresponding to the realization of the CATT

statistic tj,r under H0 – by the (u,w)th element of Pε
k, such that the value of u was obtained by way

of (3.25) and the value of w satisfied

w ∈
{
ω, 1 ≤ ω ≤ n (Ok) : θ(ω) ∈ Ok satisfies θ(ω) = arg min

θ∈Ok
‖θ̂j − θ‖

}
,(3.27)

where θ̂j ∈ Θ̂k, some k = 1, . . . , 20, and θ(s) is the sth ordered element within the collection Ok.

In an analogous manner, we estimated the pointwise p-value pj , for the realization of the CATT

statistic tj underH0 for the observed data, by the element [Pε
k]u,w, where the value of u was obtained

by substituting the value tj within (3.25) in lieu of tj,r therein, and the value of w satisfied (3.27).
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3.6.2.2 Results

Figure 3.13 displays a Manhattan plot of the pointwise p-values for the CATT statistic, com-

puted under Q∗0j

(
θ̂j , n0, n1

)
, with reference line (black; (−1) log10

(
p(bαRc)

)
) added (p(bαRc) as

defined within step 4 of the minP pseudocode (§3.4)), taking α = 0.05 and R = 102400. By in-

spection of this plot, we find that the genotypes for 14 SNP loci – represented by the dots lying

above the reference line – to be statistically significantly associated with Bipolar disorder at the 5%

FWER, after MHT correction within the minP MTP, assuming the CATT statistic to be distributed

by Q∗0j

(
θ̂j , n0, n1

)
under H0. Indeed, Table 3.11 summarizes select summary measures for these

14 SNP loci. The first striking observation we make, is that these data indicate each of the markers

to possess a rare variant allele within the population, assuming H0 to be true, as the range of MLEs

in πj lie within the interval [0.007, 0.02]. Next, these data indicate that the genotype frequencies

among the controls at these loci adhere very close to the Hardy-Weinberg equilibrium assumption,

insofar as the MLEs in the inbreeding coefficient of our alternative genotype frequency model (fj ,

see §3.3) attain values essentially equal to zero. Thus, these data suggest that the distribution

Q
(∗H)
0j (πj , n0, n1) to almost certainly identify the CATT statistic under H

(j)
0 at these 14 loci, for

which we expect the corresponding pointwise p-values derived under Q
(∗H)
0j (π̂j , n0, n1) at these loci

to be very accurate (i.e., assume values approximately equal to those under Q∗0j). Indeed, compar-

ing the Bonferroni adjusted p-values computed under Q
(∗H)
0j (π̂j , n0, n1) (column 7) on a row-to-row

basis to those computed under Q∗0j

(
θ̂j , n0, n1

)
(column 8), we find the values depicted upon the two

columns to be nearly one in the same. Next, as expected these data indicate that the pointwise p-

values computed under Q∗0j

(
θ̂j , n0, n1

)
are remarkably different (in fact, considerably smaller) than

their counterparts computed under Q̃0, since the ratio of latter to the former pointwise p-values take

extremely large values as shown by the final column of the table. This is not a surprising result, per

our discussions (e.g., §3.2.2 and §3.2.3) regarding the conservative behavior in assuming Q̃0 under

H0 for the CATT statistic over minute values of πj (see also Figure 3.1) upon a [almost] balanced

GWAS. However, drawing attention to the [exceptionally large] values within the final column of

the table upon SNP-IDs 2, 3, and 5, we can speculate – based upon the respective small and large

realizations in π̂j and tj for these loci – that the conservatism in the assumption of Q̃0 for the CATT

statistic must surely be considerable as the marker density increases towards that of genome-wide

coverage (i.e., a genetic marker sample of approximately 3 billion base pairs), due to the extremely

large p-value ratios depicted within the table for these loci. Finally, we note that the genotypes for
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five (5) of these markers are statistically significantly associated with Bipolar disorder at the 5%

FWER after Bonferroni correction under Q̃0, whereas the genotypes for thirteen (13) of the markers

are statistically significantly associated with Bipolar disorder at the 5% FWER after Bonferroni

correction under Q∗0j

(
θ̂j , n0, n1

)
. These data illustrate the potential increase in statistical power

which can be achieved by applying our method (i.e., applying Q∗0j

(
θ̂j , n0, n1

)
in lieu of Q̃0) upon a

[nearly] balanced GWAS data set in practice, even when applying a conservative MTP such as the

Bonferroni.

Table 3.12 displays risk estimates and permutation
(
maxT MTP under Q̃0, and minP MTP

under each ofQ
(∗H)
0j (π̂j , n0, n1) andQ∗0j

(
θ̂j , n0, n1

))
adjusted p-values for the fourteen (14) SNP loci

whose genotypes were determined to be statistically significantly associated with Bipolar disorder at

the 5% FWER, after adjustment for MHT applying the minP MTP, assuming the CATT statistic to

be distributed by Q∗0j

(
θ̂j , n0, n1

)
under H0. These data illustrate two key notions: (1) as expected

– pursuant to the argument presented within §3.2.3 regarding the unbalanced nature of the maxT

MHT adjustment – these data indicate an inflated Type II error rate for the maxT MTP under

Q̃0 upon loci suggestive to possess a rare variant allele, since this MTP reports only seven of these

14 loci to be statistically significantly associated with Bipolar disorder at the 5% FWER; and (2)

pursuant to the argument presented within the second paragraph of §1.5, that rare variant allele

loci could makeup part of the genetic component within the etiology of complex diseases. It is

worth noting here that at these loci, both cases and controls possess at least one copy of the major

allele (the only exception being the locus whose SNP-ID is 4). This could indicate that possessing a

single copy of the minor allele at these loci leads to a gain (or, loss)-of-function within the biological

mechanism responsible for the incidence of Bipolar disorder. In other words, a mutation at one

(or, more) of these loci during ones’ lifetime, could significantly alter the biological mechanism

responsible for the incidence of Bipolar disease. Finally, as with the observation made regarding the

Bonferroni adjusted p-values computed under each of the unconditional distributions of the CATT

statistic discussed within this Dissertation, here we note the minP adjusted p-values computed under

Q
(∗H)
0j (π̂j , n0, n1) (assuming HWE among population genotype frequencies across SNP loci) are

remarkably similar to those computed under Q∗0j

(
θ̂j , n0, n1

)
. When combined, these observations

regarding similarity in each of the respective Bonferroni and minP adjusted p-values across the null

distributions Q
(∗H)
0j (π̂j , n0, n1) and Q∗0j

(
θ̂j , n0, n1

)
, suggests that the unconditional distribution

Q
(∗H)
0j (π̂j , n0, n1) is robust to deviations from HWE among population genotype frequencies.
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Fig. 3.13: Manhattan Plot of the Pointwise P-values for the 769672 SNP Loci of the Bipolar

GWAS Data Set, Computed under Q∗0j

(
θ̂j , n0, n1

)
. The Black Reference Line Denotes the Value

− log10

(
p(bαRc)

)
for the MinP MTP, Taking R = 102400 and α = 0.05.
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Table 3.11: Summary Statistics for Markers Within the m = 769672 Bipolar SNP Panel Resulting
in a Statistically Significant Association with Bipolar Disorder at the 5% FWER, after Multiplicity

Adjustment by Way of the MinP MTP under Q∗0j

(
θ̂j , n0, n1

)†
.

SNP Bonferroni Corrected P-value P-value

ID Chr π̂j f̂j tj Q̃0 Q
(∗H)
0j (π̂j , n0, n1) Q∗0j

(
θ̂j , n0, n1

)
Ratio

1 21 0.012 0.00 43.5 < 0.001 < 0.001 < 0.001 8
2 1 0.011 0.00 36.6 0.001 < 0.001 < 0.001 36
3 2 0.010 0.00 33.3 0.006 < 0.001 < 0.001 23
4 10 0.020 0.00 35.7 0.002 < 0.001 < 0.001 16
5 8 0.007 0.00 28.6 0.069 0.002 0.001 51
6 15 0.012 0.00 30.3 0.029 0.005 0.005 6
7 22 0.009 -0.02 27.9 0.101 0.013 0.010 10
8 22 0.009 0.00 27.0 0.160 0.019 0.015 11
9 12 0.007 0.00 25.2 0.390 0.031 0.032 12
10 3 0.009 0.00 26.2 0.242 0.032 0.024 10
11 3 0.008 0.00 25.5 0.347 0.036 0.032 11
12 1 0.011 0.00 26.6 0.193 0.040 0.039 5
13 16 0.008 -0.01 25.1 0.425 0.054 0.042 10
14 13 0.011 0.00 25.8 0.288 0.065 0.062 5

†π̂j is estimated among all study subjects under H
(j)
0 ; f̂j is estimated among control subjects; and

the p-value ratio is the Bonferroni corrected p-value under Q̃0 divided by that under Q∗0j

(
θ̂j , n0, n1

)
.

Table 3.12: Risk Estimates and Permutation Based Adjusted P-values for Markers Within the m =
769672 Bipolar SNP Panel Resulting in a Statistically Significant Association with Bipolar Disorder

at the 5% FWER, after Multiplicity Adjustment by Way of the MinP MTP under Q∗0j

(
θ̂j , n0, n1

)
.

Permutation Corrected P-value
SNP maxT minP

ID OR† 95% CI for OR‡ Q̃0 Q
(∗H)
0j (π̂j , n0, n1) Q∗0j

(
θ̂j , n0, n1

)
1 47.6 (6.5, 346.0) < 0.001 < 0.001 < 0.001
2 21.6 (5.2, 89.9) 0.001 < 0.001 < 0.001
3 19.9 (4.8, 82.9) 0.003 < 0.001 < 0.001
4 13.6 (4.2, 44.2) 0.001 < 0.001 < 0.001
5 58.0 (3.5, 952.7)(a) 0.035 0.001 0.001
6 8.9 (3.5, 22.6) 0.016 0.003 0.003
7 0.06 (0.01, 0.25) 0.051 0.006 0.007
8 16.6 (4.0, 69.6) 0.079 0.012 0.010
9 28.6 (3.9, 211.0) 0.182 0.020 0.020
10 16.1 (3.8, 67.7) 0.116 0.021 0.015
11 15.8 (3.8, 66.3) 0.165 0.025 0.021
12 8.1 (3.2, 20.7) 0.094 0.028 0.026
13 0.04 (0.01, 0.26) 0.198 0.034 0.027
14 7.9 (3.1, 20.2) 0.138 0.040 0.040

†Odds ratio of Bipolar disorder, comparing carriers of the minor allele to non-carriers of the minor allele.
‡Asymptotic Wald-based confidence interval, uncorrected for MHT.
(a)Odds ratio and confidence interval were estimated by adding 0.5 to the cells of the applicable 2× 2 table.
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3.7 Conclusions and Future Directions

Correct identification of the test statistics null distribution under H0 (Q0) is arguably the most

vital step in implementing an MTP, as improper identification of Q0 could lead to control in the

FWER at a level other than that intended. Our results have illustrated – both probabilistically over

the PMF of the exact unconditional distribution for the CATT statistic, and empirically by way

of simulation – that the widely accepted asymptotic chi-square assumption for the CATT statistic

under H0 is not realistic in a GWAS. This is due to the exceptionally small pointwise significance

level on a per-marker basis, ensuing from the scale in the number of tested null hypotheses. Under

these conditions (i.e., a large value in m), our analysis suggests that the unconditional probability

of Type I error (UPTE) for the CATT statistic is dependent upon a number of factors for the

GWAS sample and its underlying population, including the values for θj , n, n0, n1, and m. When

these factors are ignored, improper control in the FWER at level α for the Bonferroni MTP can

result, insofar as pointwise p-values are computed under an incorrectly identified null distribution

for the CATT statistic. Based upon our analysis for a balanced/unbalanced GWAS and assumed

5% FWER, under Q̃0 and H0 for the CATT statistic the potential for under/over reporting of

false-positives is prevalent. Moreover, because the UPTE for the CATT statistic is suggestive to

be dependent upon several factors of a GWAS sample and its underlying population, the chi-square

assumption for this statistic under H0 can lead to the GWAS gold standard maxT and minP MTPs

to produce unbalanced MHT adjustment. This notion is problematic for several reasons, including:

the potential for lack of replication among several GWAS investigating a common binary phenotypic

trait; and future genetic association studies where rare variant alleles may be of particular interest –

for a balanced/unbalanced GWAS (and, extensions thereof), our results indicate that the maxT (or,

minP) MTP, applied against the CATT statistic under Q̃0, would under/over-state Type I errors

for those SNP loci possessing a rare variant allele.

On the other hand, the exact unconditional distribution for the CATT statistic under H
(j)
0 , Q∗0j ,

correctly identifies Q0 for SNP locus j and removes the underlying asymptotic chi-square assumption

thereof. The joint implementation of
{
Q∗0j (θj , n0, n1)

}
j=1,...,m

within a GWAS, by way of say the

minP MTP, accounts for the correlation among the hypotheses encompassing H0, thereby resulting

in: high statistical power; and accurate, balanced, strong control of the FWER at level α. Moreover,

our abolishing of the underlying asymptotic chi-square assumption for the CATT statistic, implies

that one does not need to be concerned about incorrectly interpreting the statistical inference of said
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statistic for sparse tables, as the results thereof are surely accurate. As a result, we now possess the

proper tools for testing H0 in GWAS and extensions (e.g., integrating inference of rare variant allele

loci with common variant loci within the same study, as demonstrated through the Bipolar GWAS

example of §3.6.2) thereof. This implies that one can: revisit [each-and-every] historically reported

GWAS, apply our method, and where applicable provide the necessary corrections to the reported

results of these studies; and correctly report the statistical results of future GWAS and extensions

thereof. This latter notion is particularly critical, because future large-scaled genetic association

studies are likely – due to improvements in genotyping technology – to possess: ever increasing

sizes in their respective sampled SNP panels; and increasing presence of SNP loci possessing a rare

variant allele. Our results indicate that the UPTE for the CATT statistic depends upon each of

these parameters (i.e., m and θj) of the GWAS sample, motivating the necessity for the application

of our developed tools. We have illustrated the utility of Q∗0j in practice, against a GWAS data

set investigating genetic associations with Bipolar disorder. Overall, when compared to the maxT

MTP under Q̃0, at the 5% FWER we found an additional seven markers – double that of the

maxT MTP – statistically significantly associated with Bipolar disorder applying the minP MTP

under Q∗0j

(
θ̂j , n0, n1

)
. In turn, we have demonstrated the realized potential for increased statistical

power upon a [nearly] balanced GWAS data set, when utilizing Q∗0j as the assumed test statistics

null distribution for the CATT statistic under H
(j)
0 , in lieu of Q̃0 thereof.

Implementing Q∗0j in practice within the minP MTP, introduces a rather profuse computational

problem. In fact, this computational problem is orders of magnitude higher than that of the maxT

computational problem resolved within Chapter 2. As a simple illustration, within §3.5 we argued

that the statistical analysis under Q∗0j , applied against a balanced GWAS comprised of n = 2K

subjects and m = 500K SNP loci, would take more than 1580 computational years, assuming

R = 100K minP permutations and one second of computational time being required to compute

a single pointwise p-value. Upon clustering R = 100K maxT permutations (to two GPUs) within

GPER to 500K [randomly selected] SNP loci (of the m = 769672 total loci) for the aforementioned

Bipolar GWAS, we found that GPER was able to complete this task in roughly 73 minutes.11

Hence, the computational problem for the implementation of the GPER algorithm within the minP

MTP under Q∗0j is upwards of 11.5 million times (the ratio of: 1580 years, converted to minutes;

and 73 minutes) that of the GPER algorithm application within the maxT MTP under Q̃0 – note:

11Note that the sample size for this Bipolar GWAS is n = 2035 ≈ 2000, and is nearly balanced in the numbers
of its sampled cases and controls. Thus, the results of GPER applied to this data set should be very representative
of those for a balanced GWAS of n = 2K subjects.
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this estimate is likely exceptionally conservative (i.e., understated), insofar as it assumes a mere

single second of computational time is required to compute the pointwise p-value under Q∗0j for each

realization of the CATT statistic.

To address the computational problem, we developed the computational tools of §3.5. These

tools embrace the central theme of Algorithm 3.3, namely that one can utilize a p-value lookup table

(PPT) to ascertain accurate estimates of the true underlying pointwise p-values computed within the

minP MTP. Albeit, generating a p-value lookup table in-and-of-itself presents a steep computational

problem (§3.5.1.1), primarily due to the size of the support encompassing the unconditional reference

set for Q∗0j , Γ. To lessen this computational problem, we proposed the notion of generating an

estimate of the PPT by way of a truncated unconditional reference set (§3.5.1.1). To efficiently

generate a truncated unconditional reference set, we developed an iterative algorithm (Algorithm

3.4); to generate the estimates of the PPT, we developed a parallel processing algorithm (Algorithm

3.5). The estimates of the PPT were then utilized within the minP MTP. Overall, based upon

the results obtained within the Bipolar GWAS application, our proposed approach to estimating

pointwise p-values – by way of the estimates over the PPT – within the minP MTP is suggestive to

be: exceptionally efficient, as the roughly 3 million estimated pointwise p-values over the PPTs (20

p-value lookup tables total, each generated over a specific rectangle within the parameter space of

θ – see §3.6.2.1) were generated in 14.6 hours using our parallel processing approach of Algorithm

3.5; and exceptionally accurate, as demonstrated through the examples presented within §3.5.3.5.

An unfortunate consequence of implementing Q∗0j in practice is due to the parameter values,

encompassing the parameter vector θj , likely being unknown and a nuisance. Hence, prior to

implementing the PMF for Q∗0j in computing pointwise p-values for the CATT statistic, we must

handle these nuisance parameters in some manner. One approach is to condition on a sufficient

statistic for the parameter vector θj under H
(j)
0 . For example, we could condition on the observed

genotype margin of the 2 × 3 contingency table – cross classifying genotype-phenotype – at locus

j, since the values of this margin are sufficient for θj . In doing this, it can be readily shown that

under H
(j)
0 , the resulting conditional PMF is free of θj . However, this approach seems untenable,

as it would remove the random component in the exposure (i.e., genotype) status at the locus.

Alternatively, we could estimate each element of the nuisance parameter vector θj . Indeed, we have

proposed a methodology for the implementation of Q∗0j within a GWAS, such that the nuisance

parameter vector θj is to be estimated at its MLE, θ̂j . In this regard, the pointwise p-values
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computed under Q∗0j

(
θ̂j , n0, n1

)
are called bootstrap p-values and are approximate. However, this

approach seems tenable, insofar as the calculation of the Cochran-Armitage trend test statistic

at locus j (2.5) itself involves estimating a nuisance parameter at its MLE under H0 (for details,

see page 150 of [62]). Although future research – beyond the body of research comprising this

dissertation – is needed for developing a methodology to transform these approximate p-values to

their exact counterparts, based upon the simulation results presented within §3.6.1 we are optimistic

that the approximations are sufficient for accurate strong control of the FWER in a GWAS. This

notion holds particularly true to the minP MTP, as any discrepancies between the approximate and

exact p-values will result in: an unbalanced multiplicity adjustment, as a worst case scenario; and

should not compromise the overall control in the FWER for this MTP. Moreover, recent research

investigating the distributional properties of bootstrap p-values, particularly within the realm of

discrete data, suggests the accuracy of these p-values to be quite remarkable (see e.g., [140]), which

is in direct agreement with the results we obtained within our simulation (§3.6.1).

According to a recent article published within the American Journal of Psychiatry, the cost

of assaying the genotype data for a GWAS is approximately $500 per study subject [144]. Thus,

collecting the genotype data upon a GWAS of n = 2K subjects, amounts to a cost of approximately

one million dollars. Upon tendering this quantity of funds for data, one most certainly desires

the application of the very best quality statistical analysis tools available. Apparently, GWAS

practice does not conform to this notion, for two reasons: (1) many GWAS rely on application of an

overly conservative MTP to control the FWER, such as the Bonferroni MTP; and (2) these studies

rely upon näive distributional assumptions for the test statistics (e.g., the asymptotic chi-square

assumption for the CATT statistic under H0), utilized as the inference tools in testing the null

hypothesis of no genotype-phenotype association on a per-marker basis. Chapters 2 and 3 of this

dissertation address and correct upon each of these two notions. Within Chapter 2, we proposed

GPER, an algorithm for the rapid implementation of the maxT and minP MTPs applied against a

GWAS data set. In this regard, said chapter addresses and corrects the former of these two notions,

insofar as the maxT and minP MTPs are amongst the most powerful MTPs controlling the FWER

– recall, the goal of the MHT problem is to control some Type I error rate in the strong sense, while

simultaneously maximizing statistical power to reject false null hypotheses (§2.1.1). Within Chapter

3, we proposed the test statistics null distribution Q∗0j (θj , n0, n1) for the CATT statistic under H0.

Its utility within the minP MTP, provides high statistical power, and accurate, balanced, strong
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control of the FWER within a GWAS and extensions thereof. In this regard, said chapter addresses

and corrects upon the latter notion. When combined, the inference tools developed within said

chapters of this dissertation surely provide the very best quality statistical analysis tools available

for a GWAS.



CHAPTER 4

A PERMUTATION APPROACH TO DETECT GENE-ENVIRONMENT INTERACTION IN

GENETIC ASSOCIATION STUDIES

4.1 Introduction

As mentioned within §1.2, many common, complex diseases are believed to be a result of the

collective effects of genetic and environmental factors, and their interactions. For example, [145]

showed a significant interaction between smoking status and the apurinic/apyrimidinic endonuclease

1 protein coding gene (APE1) for lung cancer. The article of [146] demonstrated smoking status

to be an effect modifier for the association between the XPD codon 751 polymorphism and risk

of bladder cancer. Understanding the relationship between genetic polymorphisms and environ-

mental exposures can aid in identifying high-risk subgroups of a population and can provide better

perception into the causative pathway mechanisms for complex diseases.

Within this chapter, we adapt the gene-gene interaction testing framework of [109] to include

tests for gene-environment interaction. We enhance the framework by: relinquishing the asymp-

totic approximation upon the appropriate test statistics null distribution; and, for control of the

family-wise Type I error rate (FWER), we implement the resampling-based maxT multiple test-

ing procedure (MTP) of [62]. For control of the FWER at the 5% level, within the context of a

case-control study we demonstrate by way of simulation that our proposed method offers greater

statistical power to detect gene-environment interaction, when compared to several competing ap-

proaches to assess this type of interaction.

4.1.1 Existing Methods to Detect Gene-Environment Interaction

Analyses of interactions between genetic variants (here, we consider genetic variation upon SNP

loci) and a single binary exposure (environmental factor) in case-control studies, entails comparisons

of the estimated genetic relative risks (RRs) for the exposed and unexposed subjects; or, exposure

RRs for genetically susceptible and non-susceptible subjects [147]. The conventional approach to

estimating these RRs lies with modeling the genetic and environmental effects, along with their

interaction effect, through an appropriate multiple logistic regression model. In this context, a

standard approach to test for gene-environment interaction (henceforth, GxE interaction) would be
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to perform a likelihood ratio test (LRT), for example, assigning the appropriate parameter(s) of

the logistic regression model to nullity under the null hypothesis. While this is the conventional

approach for assessing the significance of GxE interaction for the single genetic variant paired with

a single environmental exposure, assessing GxE interaction across multiple genetic markers – where

the LRT is conducted upon each pairing of the environmental factor with that of a genetic factor –

introduces a multiple testing problem. A correction for multiple testing is required, to ensure the

proper reporting of false-positive significant GxE interaction findings. Here, we assume the case-

control study design, but our arguments extend to other population-based genetic study designs.

As elucidated within the preceding chapters, a popular approach to correcting for the multiple

testing problem in genetic association studies (e.g., GWAS) is control of the FWER by way of

the Bonferroni MTP. While this approach is simple to implement, within the context of multiple

hypothesis testing (MHT) of GxE interaction it ignores the correlation among the LRT statistics

– resulting from testing for GxE interaction across multiple genetic markers paired with a single

environmental factor. As a consequence of ignoring correlation amongst the test statistics, this

MTP can be overly conservative in its control of the FWER [20,21,22] – assumes correct selection of

the test statistics null distribution, as elucidated within Chapter 3. Correlation most certainly exists

amongst these LRT statistics, insofar as the environmental factor is a common ingredient amongst

the tests conducted across the SNP loci. To circumvent the conservatism of the Bonferroni approach,

one might consider a more powerful approach to correcting the multiple testing problem, such as

the resampling-based maxT MTP proposed within [62]. By accounting for the correlation within

the data, the maxT MTP can result in greater statistical power – with respect to the Bonferroni

MTP and other MTPs which control the FWER – to detect true GxE interactions. However,

this resampling approach is generally not tenable when testing hypotheses involving coefficient(s)

of a multiple regression model (e.g., testing the null hypothesis of no GxE interaction upon an

appropriately constructed multiple logistic regression model), insofar as strong control of the FWER

is not guaranteed [148, 149]. In fact, the article [150] argues that exact permutation tests of gene-

environment (or, gene-gene) interaction are typically not possible to construct in genetic association

studies. Furthermore, we note that the above assumes one has implemented the correct genetic model

of inheritance (GMI; e.g., additive, recessive, dominant) into the logistic regression model across the

loci. Should this notion fail to hold true (e.g., upon a novel complex disease in which etiology is

unknown), two apparent resolutions present themselves: (a) abide with the results ascertained from
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testing for GxE interaction upon the chosen GMI across the loci. The problem with this approach

is that one likely forfeits detecting GxE interaction upon loci for which the GMI is incorrectly

specified; or, (b) at each locus, test for GxE interaction against several GMIs. However, testing for

GxE interaction upon several GMIs at each locus, exacerbates the multiple testing problem for the

conventional case-control LRT approach.

Alternatively, one might consider taking a case-only analysis as the approach to identifying

interactions within genetic association studies. In fact, the case-only test has been previously shown

to be more powerful than a case-control analysis for detecting interactions (see e.g., [151, 152]).

However, the case-only approach depends upon the assumption of G-E independence within the

population, the assumption in which – because of the rather profuse number of genetic markers under

study – seems unsupported within the context of GWAS and candidate gene association studies. In

the circumstance for which a population association exists between genetic and environmental factors

under study, a case-only analysis will result in an inflated observed FWER [151,153]. Further, like

the conventional case-control LRT approach, the case-only approach assumes one has implemented

the correct GMI into the appropriate model.

As an alternative approach to the conventional case-control and case-only LRT testing, [3]

proposed a 2-step logistic regression approach for detecting significant GxE interactions within the

context of a case-control GWAS. Within step 1 of their method (screening step), a modification to

the case-only test of GxE interaction is employed, such that the entire case-control sample is included

within the hypothesis test. Those SNP loci determined to be statistically significantly associated

with the environmental factor are then carried forward to the second step of their method, where

the standard 1-df LRT test for GxE interaction is carried out and a Bonferroni correction applied

for multiple testing. When compared to the conventional 1-step LRT, this 2-step method can attain

more power to detect GxE interactions. More recently, [27] proposed a hybrid approach to detect

GxE interaction within the context of a case-control GWAS, combining the screening effects of their

aforementioned 2-step method along with that of the [154] screening method – the screening approach

of [154] was proposed to detect gene-gene (GxG) interactions within the context of GWAS. While

these approaches seem to work well for a GWAS, there are potential problems with their respective

approaches for assessing GxE interactions upon genetic association studies in general, such as: the

user having to specify the typically unknown GMI upon the genetic markers under investigation;

control of the FWER is based upon the conservative Bonferroni MTP; p-values are computed in
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reference to an asymptotic test statistics null distribution from the corresponding LRT statistics;

and the significance threshold, within the screening step for each of these procedures, is subjective.

In this regard, the utility of these approaches within the context of a candidate gene study – involving

say [at most] a few hundred sampled genetic markers – is likely limited because too stringent a value

for the significance threshold within the screening step could result in few (if, any) markers filtering

through step 1 and being assessed for GxE interaction within step 2 of the approach.

An alternative approach – of which has been given considerable attention recently within GxG

interaction studies and will be considered here – to logistic regression modeling in genetic association

studies, considers logical patterns in the genetic and environmental factors. If Gj denotes the random

variable corresponding to the number of copies for the minor allele (i.e., Gj ∈ {0, 1, 2} = G) at SNP

locus j, j = 1, . . . ,m, and E ∈ {0, 1, . . . , ε− 1} = Eε, ε ≥ 2, is the random variable pertaining to the

level of exposure upon some environmental factor, we consider logical patterns in Gj and E of the

form, for example,

LA = (Gj ∈ {0, 1}) ∧ (E = 1) ,(4.1)

of which may bring about higher or lower risk of developing a particular complex disease when

compared to some alternative logical pattern (denoted, LB ; in most circumstances this will be the

complement logical pattern to LA). A logical rule, such as that given within (4.1), is denoted as

a pattern. A pattern in Gj and E which is to be utilized in assessment for a main effect in Gj ,

a main effect in E, or a GxE interaction, is henceforth denoted a candidate pattern. Identifying

significant GxE interactions within high dimensional data (e.g., candidate gene studies and GWAS)

is a non-trivial endeavor. Several search algorithms have been proposed in recent years, within the

context of SNP and gene expression data for assessing GxG interactions. Some are based upon logic

regression and use a simulated Monte Carlo approach to search the space of all possible interactions

(see e.g., [155,156,157,158]). Tree-based methods could also be employed to search for interactions.

For example, [159] apply a random forest approach to assess interactions within SNP data.

Unlike traditional logistic regression modeling, these data mining approaches are not based

upon parametric additive models. They can typically identify main effects; but, in the presence

of two main effects fail to detect the additional interaction effect [109]. Also, within the context

of GxE interaction, properties related to Type I error rates and statistical power have not been

thoroughly compared with the more conventional approach of tests based upon parametric additive
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models (see [160] for comparative analysis of these data mining approaches within the context of

assessing epistasis (GxG interaction)). Nonetheless, these approaches tend to be easier to interpret

than regression models involving interaction terms. Because of the high-dimensionality search,

assessing statistical significance among patterns thought to be relevant to the disease causative

pathway, is a critical issue. Cross-validation is commonly employed. In their testing for SNP-SNP

interactions, [109] examines this assessment from a multiple testing viewpoint, which is the approach

we take here in our assessment of GxE interactions.

Finally, one might argue that even if a disease locus only affects disease risk among those exposed

to an environmental factor, the locus will likely still have a detectable main effect with disease [161],

so analysis can be carried out in the absence of (or, ignoring) data on environmental exposure.

Albeit, the relative statistical power of these various approaches to assessing GxE interaction will

depend upon the true penetrance model of the disease, for which we have little information a priori

for complex diseases [162]. If a locus truly only affects disease risk among exposed (or, unexposed)

individuals upon the environmental factor within the population, the locus may or may not have

a detectible main genetic effect, dependent upon the prevalence of exposure within the population

and the magnitude of the genetic effect [162]. For example, under the dominant genetic model,

if the risk of disease among non-carriers of the risk allele is unaffected by exposure status to the

environmental factor, the statistical power in detecting the main genetic effect at the locus will be

dependent upon: the prevalence of exposure within the population, among individuals carrying at

least one copy of the risk allele at the locus; and, the magnitude of the genetic effect at the locus (see

Proposition A.8 for illustration). On the other hand, if the locus affects risk among both exposed

and unexposed individuals, then tests to detect the main genetic effect may be more powerful than

tests to detect GxE interaction, even when genotype odds ratios differ between the populations

of exposed and unexposed individuals [116, 163]. The performance of data-mining procedures –

including statistical power to detect disease susceptible loci (DSLs), Type I error rate, and mean

prediction error – is not generally clear. Complex disease DSLs likely have incomplete penetrance,

modest effects, and high phenocopy1 rates, making them poor risk indicators of disease [162]. Even

with an odds ratio upwards of three (3) – considerably larger than anticipated for complex disease

DSLs – a common allele can be a poor risk indicator of disease [164]. Apparently, in the presence

of genetic and environmental heterogeneity, data-mining procedures designed to identify DSLs may

1A phenocopy is an individual whose phenotype is determined under a particular environmental condition, and
is identical to that of another individual whose phenotype is determined by the genotype of some genetic locus.
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have low statistical power to detect these DSLs for many complex disease [116, 162], unless each

DSL acts in a simple Mendelian manner upon a subset of individuals defined by measured genetic

or environmental factors (i.e., genetic and environmental homogeneity exists upon some subset of

individuals within the population) [162].

4.1.2 Approach

Here, we adapt the logical pattern SNP-SNP interaction framework of [109] (denoted LPCV

– shorthand for Logical Patterns within Categorical Variables) in assessing SNP-Environment in-

teraction (assumed synonymous with GxE interaction) within genetic association studies, where

the environmental factor is assumed categorical in nature. Given a set of q-fold candidate pattern

ordered pairs {(LAl , LBl)}l=1,...,q involving the categorical random variables Gj and E, the LPCV

approach to assessing interaction between these two random variables works as follows:

(a) for each l = 1, . . . , q, we collect the subset of data pertaining to subjects satisfying either of

the patterns, LAl or LBl ;

(b) this subset of data is dichotomized according to the candidate pattern LAl – i.e., subjects sat-

isfying this candidate pattern form one group, while subjects satisfying the candidate pattern

LBl form the alternative group;

(c) for each candidate pattern ordered pair, the test of the null hypothesis of no association

between disease status (denoted by the binary random variable Y ) and the dichotomized

indicator random variable – pertaining to whether or not a subject is a member of the group

satisfying candidate pattern LAl , say – is carried out, yielding a chi-square test statistic;

(d) the maximum of these test statistics is selected; and

(e) for control of the FWER – over the multiple testing problem invoked upon carrying out step

(c) of this procedure – [109] exploit statistical inference over the asymptotic distribution of the

maximum chi-square test statistic.

Here, we abstain from making any asymptotic assumptions encompassing the maximum chi-

square test statistic altogether, and propose multiple testing correction by way of the permutation-

based maxT MTP [62]. Our resampling approach offers a vital advantage over that of an asymptotic

assumption governing the maximum chi-square test statistic – namely, conditional on the observed
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data, this approach correctly estimates the true underlying null distribution for the maximum chi-

square test statistic at [or, across] the SNP locus [loci], resulting in accurate control of the FWER.

Moreover, for the circumstance in which m = 1 and E is binary (i.e., assessment of GxE interaction

for a single SNP locus when ε = 2), we propose correction for multiple testing by way of the

exact conditional (i.e., permutation) null distribution for the maximum chi-square test statistic.

We perform the applicable computations for the multiple hypothesis testing correction without

resorting to simulation, by modifying the network algorithm of [142]. This approach is equivalent

to implementing the maxT MTP upon said test statistic, but does not require resampling. Without

the uncertainty associated with simulating a null distribution, this approach provides the highest

accuracy for control of the FWER over the permutation null distribution of the maximum test

statistic. Moreover, because this approach is based upon a resampling MTP, it can result in greater

statistical power over other MTPs controlling the FWER, such as the Bonferroni.

In addition to assessing GxE interaction – corresponding with each of the dominant and recessive

GMIs – at a particular SNP locus, our approach [simultaneously] assesses the main effect upon the

environmental factor and the main genetic effect corresponding to each of the dominant and recessive

GMIs at the locus. Because the maxT MTP corrects for the multiple testing problem across genetic

markers, our approach: is applicable to a wide range of genetic association studies, including single

locus association studies, candidate gene studies, and GWAS; and, fully accounts for correlation in

the tests across SNP loci, resulting in high statistical power for control over the FWER. We develop

our methodological framework within the context of a case-control study (i.e., retrospective design),

but the approach is also applicable to other genetic association study designs (e.g, a prospective

cohort). We denote our method by GEM (shorthand for detecting GxE interaction by way of

maxT). In the circumstance for which a binary environmental factor has been sampled, by way of

simulation we demonstrate that GEM properly controls the FWER at the 5% level under a variety

of conditions and achieves greater statistical power over a number of competing approaches used to

assess GxE interaction. An R [103] package, tentatively denoted GEM, is under development for our

method and its application is outlined within Appendix C.

4.2 Formulation of Candidate Patterns

Suppose that among n1 sampled cases (Y = 1) and n0 sampled controls (Y = 0), a fixed

number of cjk subjects are observed at level k upon the random variable Xj , where this variable is

defined such that each element within its support represents a specific level to the combination of
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Gj and E, all j = 1, . . . ,m and k ∈ {1, . . . , 3ε} = Xε. Precisely, for each Gj ∈ {0, 1, 2} = G and

E ∈ {0, 1, . . . , ε− 1} = Eε, we have

Xj = 1 +Gj + 3E.(4.2)

Note that any pattern of Gj and E can be expressed through combination(s) of element(s) from the

support of Xj , Xε. These element(s) form a subset of the collection Xε, which we denote by the

subscript of the pattern LC , C ∈ {A,B}. For example, consider the pattern given by (4.1). It is,

LA = (Gj ∈ {0, 1}) ∧ (E = 1) ⇐⇒ Xj ∈ {4, 5},

for which A = {4, 5}.

When studying associations between disease status and explanatory variables by way of a para-

metric additive model (e.g., logistic regression), our interest centers on determining which variables

belong in the model and estimating their corresponding effect size (measured by way of the appro-

priate coefficient of the model). On the other hand, when studying these associations within the

context of logic patterns – as is the circumstance here – we seek logic expressions which are associ-

ated with disease status. If Wl represents the indicator random variable with success/failure defined

as those elements within the support of Xj lying within the collection Al/Bl, some l = 1, . . . , q, we

consider the test of the null hypothesis of no association between disease status (Y ) and Wl, versus

the alternative hypothesis for the existence of some association between these variables. Rejection

of the null hypothesis, suggests that the odds of disease statistically significantly differs between the

two levels in Wl. In turn, this indicates that the logical pattern ordered pair (LAl , LBl) is associated

with disease status.

In the context of the aforementioned test of hypotheses, we essentially seek the logical pat-

tern ordered pair (LAl , LBl) which yields the smallest p-value (i.e., strongest association signal) –

computed under the null hypothesis – amongst all possible logical pattern ordered pairs thereof.

Without loss of generality, assume that LAl and LBl are chosen such that the sets Al and Bl form

a binary partition of the collection Xε – that is, we assume Al ∪ Bl = Xε such that Al ∩ Bl = ∅;

equivalently, LAl and LBl are assumed complementary patterns. There are in fact 2(3ε−1) − 1 dis-

tinct binary partitions of the collection Xε, each relating to a unique logical pattern ordered pair

(LAl , LBl). Thus, the consideration of the logical pattern ordered pairs pertaining to all partitions
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of Xε, leads one to conducting a total of 2(3ε−1) − 1 inordinate tests of the null hypothesis of no

association between Wl and disease status at each locus.

However, from a biological perspective, it makes sense to restrict attention upon logical patterns

in Gj and E connected by the ∧ operator (e.g., (4.1)), particularly when searching for GxE interac-

tion. This said, we construct our q-fold set of candidate pattern ordered pairs {(LAl , LBl)}l=1,...,q

by formulating patterns upon Gj and E in a systematic manner, with the aims of assessing GxE

interaction as well as assessing the main effects upon the genetic and environmental factors. Since

heterozygous individuals most often have an intermediate phenotype, or the identical phenotype to

that of the homozygous variant individuals (dominant GMI)2 or the homozygous wild-type individ-

uals (recessive GMI) [109], here we consider the heterozygous genotype at locus j (i.e., Gj = 1) as an

intermediate to the two homozygous genotypes. Hence, we consider the following four combinations

of Gj : Gj ∈ {0, 1}, Gj ∈ {1, 2}, Gj = 0, and Gj = 2. Coalescing these combinations in Gj with

those for the environmental factor (e.g., Gj = 0 combined with E = 0), we obtain a total of 4ε

candidate patterns, denoted LA1
, . . . , LA4ε

(for clarity, we index candidate patterns by l). For each

l = 1, . . . , 4ε, the candidate pattern LBl is defined to be the complement of LAl . Each of these

candidate pattern ordered pairs formulate a distinct random variable Wl, by which to test the null

hypothesis of no association between Wl and disease status. Taken collectively, the hypothesis tests

involving the random variables {Wl}l=1,...,4ε assess the effect of GxE interaction.

Following the line of regression modeling – which incorporates both main effects and interaction

effects – we can also incorporate candidate patterns to assess genetic and environment main effects.

The candidate patterns for assessing the genetic main effect are those encompassing the dominant

and recessive genetic models, given by

LA4ε+1
= (Gj ∈ {1, 2}) ∧ (E ∈ Eε)

and

LA4ε+2 = (Gj = 2) ∧ (E ∈ Eε) ,

respectively, where the candidate pattern LBl is defined to be the complement of LAl , each l ∈ {4ε+

1, 4ε+2}. Each of these candidate pattern ordered pairs formulate a distinct random variable Wl, by

which to test the null hypothesis of no association between Wl and disease status. Taken collectively,

2Unless otherwise specified, henceforth when we speak of a GMI upon a SNP locus it is assumed in terms of the
minor allele for the locus, as we have so defined here for the dominant and recessive GMIs.
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the hypothesis tests involving the random variables W4ε+1 and W4ε+2 assess the main effect for Gj .

On the other hand, consider now the candidate patterns essential for assessing the main effect in

E. Insofar as we make no assumption regarding intermediate effects for the environmental factor,

we consider this factor as a nominal categorical variable.3 We model our candidate pattern ordered

pairs in an analogous manner to that of dummy coding a qualitative predictor in regression modeling,

where level zero is our baseline group in E. In this regard, whenever ε > 2 the candidate patterns

LAl and LBl will not be complements of one another. More precisely, for each l = 4ε+ 3, . . . , 5ε+ 1,

the candidate patterns for assessing the environment main effect are defined by

LAl = (Gj ∈ G) ∧ (E = l − (4ε+ 2))

and

LBl = (Gj ∈ G) ∧ (E = 0) .

Each of these candidate pattern ordered pairs formulate a distinct random variable Wl, by which

to test the null hypothesis of no association between Wl and disease status. Taken collectively,

the hypothesis tests involving the random variables {Wl}l=4ε+3,...,5ε+1 assess the main effect for the

environmental factor. Table 4.1 summarizes our proposed candidate patterns for assessing – upon

SNP locus j – each of the genetic and environmental main effects, and GxE interaction. Overall,

a total of q = 5ε + 1 candidate pattern ordered pairs (LAl , LBl) are considered within our GEM

approach presented here.

4.3 Chi-Square Tests

Having defined the collection of q-fold candidate patterns, {(LAl , LBl)}l=1,...,q, we now define the

notation which will be used to assess main effects over each of the random variables Gj and E, and

the effect for GxE interaction. We consider testing the null hypothesis of no association between

disease status and the random variable Wl (denoted, H
(j,l)
0 ), against the alternative hypothesis

that some association exists between these variables (denoted H
(j,l)
a ), for all j = 1, . . . ,m and

l = 1, . . . , q. Rejection of null hypothesis H
(j,l)
0 indicates: a significant GxE interaction between Gj

and E, whenever l ≤ 4ε; a significant genetic main effect in Gj , whenever l = 4ε + 1, 4ε + 2; or, a

significant main environmental effect, whenever l = 4ε+ 3, . . . , q.

3Note that GEM offers flexibility in assumptions governing formulation of candidate patterns. In this regard,
formulation of candidate patterns over an ordinal environment factor is a general extension of the approach presented
here.
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Table 4.1: Summary of the Candidate Patterns for Assessing the Main Effect in Each of the Genetic
and Environmental Factors, and GxE Interaction.

l Effect Candidate Pattern (LAl) Al
1 GxE (Gj = 0) ∧ (E = 0) {1}
2 (Gj = 0) ∧ (E = 1) {4}
· · · · · · · · ·
ε (Gj = 0) ∧ (E = ε− 1) {3ε− 2}
ε+ 1 (Gj ∈ {0, 1}) ∧ (E = 0) {1, 2}
ε+ 2 (Gj ∈ {0, 1}) ∧ (E = 1) {4, 5}
· · · · · · · · ·
2ε (Gj ∈ {0, 1}) ∧ (E = ε− 1) {3ε− 2, 3ε− 1}
2ε+ 1 (Gj ∈ {1, 2}) ∧ (E = 0) {2, 3}
2ε+ 2 (Gj ∈ {1, 2}) ∧ (E = 1) {5, 6}
· · · · · · · · ·
3ε (Gj ∈ {1, 2}) ∧ (E = ε− 1) {3ε− 1, 3ε}
3ε+ 1 (Gj = 2) ∧ (E = 0) {3}
3ε+ 2 (Gj = 2) ∧ (E = 1) {6}
· · · · · · · · ·
4ε (Gj = 2) ∧ (E = ε− 1) {3ε}
4ε+ 1 G (Gj = 0) ∧ (E ∈ Eε) {1, 4, . . . , 3ε− 2}
4ε+ 2 (Gj ∈ {0, 1}) ∧ (E ∈ Eε) {1, 2, 4, 5, . . . , 3ε− 2, 3ε− 1}
4ε+ 3 E (Gj ∈ G) ∧ (E = 1) {4, 5, 6}
· · · · · · · · ·
q = 5ε+ 1 (Gj ∈ G) ∧ (E = ε− 1) {3ε− 2, 3ε− 1, 3ε}

Amongst the population of individuals with Xj ∈ (Al ∪Bl), let πjAl1 and πjAl0 denote the

respective conditional probabilities of observing Xj ∈ Al for given cases and controls. That is, for

each y ∈ {0, 1} = Y, πjAly = Pr (Xj ∈ Al|Y = y,Xj ∈ (Al ∪Bl)). The test of hypotheses H
(j,l)
0

versus H
(j,l)
a can therefore be written as

H
(j,l)
0 : πjAl1 = πjAl0

H
(j,l)
a : πjAl1 6= πjAl0

.(4.3)

Let Xj1k and Xj0k denote the respective random numbers of cases and controls observed at level k

of Xj , and let Xj be the 2× 3ε table comprised of the random vectors, Xjy =
(
Xjy1, . . . , Xjy{3ε}

)
,

y ∈ Y. Table 4.2 depicts table Xj at SNP locus j.

Table 4.2: Cross-Classification of Disease Status and Level in Xj

Level in Xj Total
1 · · · 3ε

Cases Xj11 · · · Xj1{3ε} n1

Controls Xj01 · · · Xj0{3ε} n0

Total cj1 · · · cj{3ε} n
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For each y ∈ Y we have

(
Xjy1, . . . , Xjy{3ε}

)
∼ Multinomial

(
ny,πjy =

(
πjy1, . . . , πjy{3ε}

))
,(4.4)

where πjyk = Pr (Xj = k|Y = y) for all k ∈ Xε. For each j = 1, . . . ,m, y ∈ Y, and l = 1, . . . , q, we

define the random variable Djyl by

Djyl =
∑

k∈(Al∪Bl)′
Xjyk.

Note that the random variables Dj1l and Dj0l represent the respective random numbers of cases and

controls whose value in Xj lies outside of both collections Al and Bl. Also, each of these random

variables (for a given value in l) will always assume the value of zero whenever LAl and LBl are

complementary candidate patterns. For the sake of clarity in discussion, we consider Djyl as a fixed

known constant whenever the collection (Al ∪Bl)′ is not empty, for each j = 1, . . . ,m, y ∈ Y, and

every l = 1, . . . , q (the consideration of these variables in their random state of nature is an open

research question). Thus, for each y ∈ Y it follows by [165] (see pg. 167 therein) that the conditional

distribution

∑
k∈Al

Xjyk|Djyl = djyl ∼ Binomial (ny − djyl, πjAly) .(4.5)

Here, given Djyl = djyl for each y ∈ Y, we consider testing the hypotheses (4.3) by applying the

Wald-based statistic

TjAl = π̂jAl1 − π̂jAl0,(4.6)

against the data depicted within the 2× 2 contingency table (Table 4.3), where

π̂jAly =

(
1

ny − djyl

) ∑
k∈Al

Xjyk

is the maximum likelihood estimator (MLE) of πjAly.
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Table 4.3: Collapsed 2× 3ε Table for Testing the Hypotheses (4.3).
Wl Total

Al Bl
Cases

∑
k∈Al Xj1k

∑
k∈Bl Xj1k n1 − dj1l

Controls
∑
k∈Al Xj0k

∑
k∈Bl Xj0k n0 − dj0l

Total
∑
k∈Al cjk

∑
k∈Bl cjk n− dj0l − dj1l

Under the null hypothesis (4.3), the standard error of (4.6),

se (TjAl) =

√
πjAl (1− πjAl)

(
1

n0 − dj0l
+

1

n1 − dj1l

)
,(4.7)

is estimated by

ŝe (TjAl) =

√
π̂jAl (1− π̂jAl)

(
1

n0 − dj0l
+

1

n1 − dj1l

)
,(4.8)

where πjAl = Pr (Xj ∈ Al|Xj ∈ (Al ∪Bl)) such that

π̂jAl =

(
1

n− dj0l − dj1l

) ∑
k∈Al

cjk.(4.9)

It is well known that under the null hypothesis of (4.3), the standardized Wald-based test statistic

ZjAl =
TjAl − E (TjAl)

ŝe (TjAl)
,(4.10)

converges to the standard normal distribution, where E
(
TjAl |H

(j,l)
0

)
= 0. Under said null hypothe-

sis, Z2
jAl

is asymptotically distributed as chi-square with one degree of freedom. Thus, if pjl denotes

the p-value for the test of hypotheses (4.3), it is

pjl
·
= Pr

(
χ2

1 ≥ z2
jAl
|H(j,l)

0

)
,

where z2
jAl

denotes a realization of Z2
jAl

computed under H
(j,l)
0 .
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4.4 Multiple Hypothesis Testing Correction

If we conduct the q-fold test of hypotheses (4.3) across the index of l at locus j, a multiple testing

problem is induced. Multiple testing correction to the p-values pj1, . . . , pjq could be performed by

way of, say the Bonferroni MTP. However, because the test statistics Z2
jA1

, . . . , Z2
jAq

are likely

correlated, implementation of the maxT MTP may result in a much more powerful adjustment [60].

Thus, if

Z2
jmax = max

{
Z2
jA1

, . . . , Z2
jAq

}
,(4.11)

denotes the maximum chi-square test statistic under H(j)
0 = ∩ql=1H

(j,l)
0 (here, called the complete

null hypothesis at locus j), the maxT adjusted p-value for pjl, denoted p̃jlσ (the ‘σ’ within the

subscript is shorthand for single locus adjustment), is given by

p̃jlσ = Pr
(
Z2
jmax ≥ z2

jAl
|H(j)

0

)
= Pr

(
V ≥ 1|H(j)

0

)
= FWER,(4.12)

where the final equality holds assuming H(j)
0 to in fact be the underlying truth regarding the null

hypotheses H
(j,1)
0 , . . . ,H

(j,q)
0 , such that the random variable V corresponds to the number of Type

I errors committed in testing H(j)
0 . Hence, at the α level in the FWER, null hypothesis H

(j,l)
0 is

rejected whenever p̃jlσ ≤ α.

Furthermore, if we conduct the complete null hypothesis H(j)
0 across the m SNP loci and if

Z2
max = max

{
Z2

1max, . . . , Z
2
mmax

}
,(4.13)

denotes the maximum chi-square test statistic under H0 = ∩mj=1H
(j)
0 (called the complete null

hypothesis), the maxT adjusted p-value for pjl, denoted p̃jlµ (the ‘µ’ within the subscript is shorthand

for multiple loci adjustment), is given by

p̃jlµ = Pr
(
Z2

max ≥ z2
jAl
|H0

)
= Pr (V ≥ 1|H0) = FWER,(4.14)

where the final equality holds assuming H0 to in fact be the underlying truth regarding the null

hypotheses {H(j,1)
0 , . . . ,H

(j,q)
0 }j=1,...,m, such that the random variable V corresponds to the number

of Type I errors committed in testing H0. Therefore, in testing all m×q null hypotheses represented

by H0, at the α level in the FWER null hypothesis H
(j,l)
0 is rejected whenever p̃jlµ ≤ α.
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4.5 A Permutation Approach to the Multiple Testing Problem

Note that, as presented, each of the expressions (4.12) and (4.14) assume weak control over

the FWER (see §1.3 for definitions of weak and strong control of Type I error rates). Strong

control of the FWER will be assured to hold upon each of these expressions, provided that we

can establish GEMs adherence to the property of subset pivotality (see §2.2.4 for definition of this

property). If Pj =
(
P ∗j1, . . . , P

∗
jq

)
denotes the vector of unadjusted p-values corresponding with

the test statistics Z∗jA1
, . . . , Z∗jAq – where, for all l = 1, . . . , q, Z∗jAl is given by (4.10) with (4.7)

substituted in lieu of (4.8) therein – we show within Proposition A.9 that the distribution of Pj

fails adherence to the property of subset pivotality for the circumstance in which E is binary. An

unfortunate consequence of this result is that the maxT MTP, as implemented within GEM upon

a sampled binary environmental factor, can be assumed to control the FWER only in the weak

sense [62]. However, while the subset pivotality condition is sufficient for strong control of the

FWER upon the maxT MTP, it is not clear whether the condition is necessary for strong control of

the FWER. Within §4.9 we conduct a simulation study to examine this notion closer for GEM.

4.5.1 Single Genetic Marker

Consider the maximum test statistic over the q-fold test of hypotheses (4.3) conducted at locus

j, Z2
jmax (4.11). In order to compute the adjusted p-value p̃jlσ (4.12), l = 1, . . . , q – with the

intention of making a decision of whether to reject or fail to reject H
(j,l)
0 – we could approximate

the distribution of Z2
jmax under H(j)

0 by way of an appropriately parameterized multivariate normal

distribution (MVN). This could be accomplished by simply modifying the MVN framework of [109]

(utilized for testing SNP-SNP interactions) to suit the candidate patterns corresponding with our

GEM setup. However, there are several problems with this approach (for clarity in presentation,

see §4.11 for details). Here, we abstain from approximating the distribution of Z2
jmax under H(j)

0

with an asymptotic MVN distribution.

Alternatively, we consider computing the adjusted p-value p̃jlσ (4.12) by way of the permutation

null distribution of Z2
jmax under H(j)

0 . Conditional on the [assumed fixed] values of the margins for

the 2×3ε table (Table 4.2), the permutation null distribution of Z2
jmax under H(j)

0 can be determined

by enumerating every possible arrangement of the cell values in the table. We call this set of tables
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the conditional reference set

Γcj =

xj :
∑
y∈Y

xjyk = cjk ∀k ∈ Xε,
∑
k∈Xε

xjyk = ny ∀y ∈ Y

 ,(4.15)

where xj is a realization of the random table Xj and cj =
(
cj1, . . . , cj{3ε}

)
is the vector of values

pertaining to the column margin of the 2 × 3ε table. Under H(j)
0 , each table within this set has

an affiliated probability of being realized and a corresponding realization of Z2
jmax. Computing the

exact conditional maxT adjusted p-value under H(j)
0 at realization z2

jAl
, namely p̃jlσ, involves finding

the exact tail area for the distribution of Z2
jmax over the conditional reference set.

Enumerating the set Γcj presents a difficult computational problem, irrespective of the number

of levels (i.e., ε) to the environmental factor under study. In the circumstance for which a binary

environmental factor (ε = 2) is under study, within §4.6 we present a network algorithm approach

to tackling the computational problem, whereby we are able to compute the exact conditional maxT

adjusted p-value p̃jlσ under H(j)
0 , for all l = 1, . . . , q. For all other circumstances encompassing the

environmental factor (i.e., ε > 2), as a compromise to enumerating Γcj in its entirety we propose

estimating p̃jlσ by way of sampling from the permutation null distribution of Z2
jmax under H(j)

0 . We

provide the underlying details for doing this within §4.5.3.

4.5.2 Multiple Genetic Markers

Consider the maximum test statistic over the q-fold tests of hypotheses (4.3) conducted across

the m loci, Z2
max (4.13). In order to compute the adjusted p-value p̃jlµ (4.14), each j = 1, . . . ,m

and l = 1, . . . , q, we consider application of the permutation null distribution of Z2
max under H0. In

an analogous manner to §4.5.1, we would like to draw inference for this distribution by conditioning

on the fixed values of the margins upon an appropriate two-way table. However, this is a bit

complicated here, because it requires evaluation of the appropriate conditional reference set over the

joint distribution of the vector of random variables (X1, . . . , Xm, Y ). It is not immediately clear how

to represent this random vector by a two-way table. We proceed by noting that for any categorical

variable X, the joint distribution of (X,Y ) can be conveniently depicted by a two-way contingency

table. Thus, if we can collectively summarize the Xj by some random variable X, this would allow

for closed-form formulation of the conditional reference (constructed about a two-way table) set for

the permutation null distribution of Z2
max under H0. Indeed, with the spirit of (4.2) in mind, we
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consider

X = 1 + 3mE +

m∑
j=1

3j−1Gj ,(4.16)

where X ∈ {1, . . . , 3mε} = Xεm. Note: each X ∈ Xεm corresponds to a unique specification of

the random vector (G1, . . . , Gm, E) – the proof here is a slight modification to that given within

Proposition A.2; and X indirectly summarizes the random variables Xj , by way of the random

variables Gj and E.

Let X1k and X0k denote the respective random numbers of cases and controls observed at level

k of the random variable X, and let X denote the 2 × 3mε table comprised of the random vectors(
Xy1, . . . , Xy{3mε}

)
, y ∈ Y. Table 4.4 depicts table X, where it is assumed no missing data values

are prevalent. Conditional on the values of the margins for the 2 × 3mε table (Table 4.4), the

permutation null distribution of Z2
max under H0 can be determined by enumerating the conditional

reference set

Γc =

x :
∑
y∈Y

xyk = ck ∀k ∈ Xεm,
∑

k∈Xεm

xyk = ny ∀y ∈ Y

 ,(4.17)

where x is a realization of the random table X and c = (c1, . . . , c3mε) is the vector of values

pertaining to the column margin of the 2 × 3mε table. Under H0, each table within this set has

an affiliated probability of being realized and a corresponding realization of Z2
max. Computing the

exact conditional maxT adjusted p-value under H0 at realization z2
jAl

, namely p̃jlµ, involves finding

the exact tail area for the distribution of Z2
max over the conditional reference set.

Table 4.4: Cross-Classification of Disease Status and X
Level in X Total

1 · · · 3mε
Cases X11 · · · X1{3mε} n1

Controls X01 · · · X0{3mε} n0

Total c1 · · · c3mε n

Enumerating the set Γc presents an exceptionally difficult computational problem, where the

magnitude of the computational burden is positively associated with each of the values in ε and m.

This is due to the number of columns for the 2× 3mε table increasing whenever either of the values

ε or m increase. In fact, each table within the conditional reference set Γcj (4.15) relates to at least
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one table within Γc, for all j = 1, . . . ,m. As a compromise to enumerating Γc in its entirety, we

propose estimating p̃jlµ by way of sampling from the permutation null distribution of Z2
max under

H0. We provide the underlying details for doing this within §4.5.3.

4.5.3 Sampling from the Permutation Null Distribution

For each i = 1, . . . , n and j = 1, . . . ,m, let geji (here, ge is used to signify the level in GxE)

denote the realization in Xj (4.2) for study subject i, and let gei = (ge1i, . . . , gemi)
′

denote the

realized profile of the vector of random variables (X1, . . . , Xm) for said subject, where we assign

missing data in the geji to the value of zero. In accordance with §2.3.1, let y∗ correspond to the

specified ordering of the case-control responses (2.11), and let GE∗ denote the matrix of ordered

profiles in the gei corresponding with the chosen y∗. The maxT adjusted p-values (4.12) and (4.14)

can be estimated by utility of Algorithm 4.1.

Algorithm 4.1 A Permutation Approach for GEM

1. Initialize the q × 3ε matrix I, whose (l, k)th entry (denoted [I](l,k)) is an indicator for mem-

bership of realization Xj = k to Al, Bl, or neither of these two collections. Specifically, for all

l = 1, . . . , q and k ∈ Xε, we define I by

[I](l,k) = I (k ∈ Al)− I
(
k ∈ (Al ∪Bl)′

)
.

Initialize the m× (3ε+ 3) matrix M, whose (j, k)th entry (denoted [M](j,k)) warehouses perti-

nent [permutation invariant] information for construction of the 2×2 table (depicted by Table

4.3) at locus j. Namely, upon row j of M: the initial 3ε elements warehouse the values of

the column margin upon Table 4.2; elements 3ε + 1 and 3ε + 2 warehouse the values of the

row margin upon Table 4.2 (i.e., the non-missing case and control data upon row j of GE∗);

and element 3ε + 3 warehouses the number of non-missing data values upon row j of GE∗.

Specifically, for all j = 1, . . . ,m and k = 1, . . . , 3ε+ 3, it is

[M](j,k) =



∑n
i=1 I

(
ge∗ji = k

)
, if k ≤ 3ε∑n0

i=1 I
(
ge∗ji > 0

)
, if k = 3ε+ 1∑n

i=n0+1 I
(
ge∗ji > 0

)
, if k = 3ε+ 2∑n

i=1 I
(
ge∗ji > 0

)
, if k = 3ε+ 3

,
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where ge∗ji is the (j, i)th element of GE∗.

2. Compute the realization in the test statistic (4.10) for the observed (i.e., non-permuted) data,

as follows. For j = 1, . . . ,m:

(a) Formulate the values of the case row, say, upon the 2×3ε table (Table 4.2), by appropriate

evaluation of the latter n1 elements upon row j of GE∗. Specifically, for each k ∈ Xε, if

xj1k denotes the realization in Xj1k, we evaluate the following expression:

xj1k =

n∑
i=n0+1

I
(
ge∗ji = k

)
.

(b) For l = 1, . . . , q:

A. Formulate the values of the column margin upon the 2× 2 table (Table 4.3), by way

of the following formulas

∑
k∈Al

cjk =
∑
k∈Xε

(
I
(

[I](l,k) = 1
)

[M](j,k)

)
∑
k∈Bl

cjk =

 [M](j,3ε+3) −
∑
k∈Al cjk, if ε = 2∑

k∈Xε

(
I
(

[I](l,k) = 0
)

[M](j,k)

)
, if ε > 2

.

B. Formulate the values of the case row upon the 2× 2 table (Table 4.3), by way of the

following formulas

∑
k∈Al

xj1k =
∑
k∈Xε

(
xj1kI

(
[I](l,k) = 1

))
∑
k∈Bl

xj1k = [M](j,3ε+2) −
∑
k∈Al

xj1k.

C. Formulate the values of the control row upon said 2×2 table by subtracting the values

of the case row (computed in step 2(b)B above) from those of the column margin

(computed in step 2(b)A above). Utilizing these computed values, along within

those computed within steps 2(b)A and 2(b)B, and those over
{

[M](j,3ε+k)

}
k=1,2,3

,

compute the realization of ZjAl and denote it by zjAl .

3. We consider permuting the columns upon GE∗. Permuting in this manner (i.e., retaining

the observed configuration in the response vector y∗), ensures that the phenotype data is



145

independent of the genetic and environment data. As a result, we are: simulating each of the

complete null hypotheses over
{
H(1)

0 , . . . ,H(m)
0 ,H0

}
; and maintaining the correlation structure

in GE∗. Let R denote the desired number of permutations over the columns upon GE∗.

4. For r = 1, . . . , R:

(a) Shuffle the columns upon GE∗. For each j = 1, . . . ,m and l = 1, . . . , q, compute the

realization in the test statistic (4.10) for the permuted data, by repeating step 2 above

upon the permuted matrix GE∗, with the following modifications: change the formulas

presented within step 2(a)B to

∑
k∈Al

xj1k =
∑
k∈Xε

(
xj1kI

(
[I](l,k) = 1

))
∑
k∈Bl

xj1k =
∑
k∈Xε

(
xj1kI

(
[I](l,k) = 0

))
;

and, change the second sentence within step 2(b)C to: utilizing these computed values,

along with those computed within steps 2(b)A and 2(b)B, and – due to potential missing

values in the ge∗ji – possibly those over
{

[M](j,3ε+k)

}
k=1,2,3

, compute the realization of

ZjAl and denote it by z
(r)
jAl

. Let z
(r)
max, and for each j = 1, . . . ,m, z

(r)
jmax, be defined by

z
(r)
jmax = max

{
|z(r)
jA1
|, . . . , |z(r)

jAq
|
}
, and z(r)

max = max
{
z

(r)
1max, . . . , z

(r)
mmax

}
.

5. For each j = 1, . . . ,m and l = 1, . . . , q, let p̃∗jlσ and p̃∗jlµ denote the respective estimates of the

maxT permutation adjusted p-values for (4.12) and (4.14), for our having to sample from the

permutation null distributions for the respective test statistics Z2
jmax and Z2

max. These values

are given by

p̃∗jlσ =

∑R
r=1 I

(
z

(r)
jmax ≥ |zjAl |

)
R

,(4.18)

and

p̃∗jlµ =

∑R
r=1 I

(
z

(r)
max ≥ |zjAl |

)
R

.(4.19)
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4.6 An Exact Approach to Assessing GxE Interaction upon a Single Genetic Marker

and a Binary Environment Factor

Consider the simplest circumstance in which one could assess GxE interaction in a case-control

study using GEM. Namely, it is the assessment of GxE interaction upon a single SNP marker

(m = 1) and a binary environment factor (ε = 2). Under this condition, cross-classification of disease

status and the random variable X (4.16) (equivalent to X1 (4.2)) can be conveniently depicted by

a 2 × 6 contingency table, as shown by Table 4.5. Conditional on the assumed fixed values of the

margins for this table, the permutation null distributions under H0 (equivalent to H(1)
0 ) for the

[equivalent] test statistics, Z2
1max (4.11) and Z2

max (4.13), can be determined by enumerating the

conditional reference set (4.17), where c = c1 = (c11, . . . , c16) and X2{1} = X2 = {1, . . . , 6}. Under

H0, the exact conditional maxT adjusted p-value at realization z2
1Al

, p̃jlµ (equivalent to p̃jlσ) , can

be computed from the permutation null distribution of Z2
max, provided: that we have access to an

explicit formula for the conditional probability mass function (PMF) of X1, given x ∈ Γc, so that we

can compute exact tail area from said null distribution; and, a formula which relates this conditional

PMF to computing the exact conditional probability of Type I error for the test statistic Z2
max under

H0.

Table 4.5: Cross-Classification of Disease Status and Level in X1 for a Binary Environmental Factor.
Level in X1 Total

1 · · · 6
Cases X111 · · · X116 n1

Controls X101 · · · X106 n0

Total c11 · · · c16 n

We first derive the conditional probability mass function for the table X1 under H0, given

x ∈ Γc, which will be used to compute the exact conditional maxT adjusted p-value, p̃1lµ, for all

l = 1, . . . , q. It can be shown (see Proposition A.10 of Appendix A) that H0 is equivalent to the

null hypothesis of no association between X1 and Y (disease status), which can be written as

H0 : π10k = π11k ∀k ∈ X2 ⇐⇒ H0 : π10 = π11,(4.20)

where for each y ∈ Y and k ∈ X2, π1yk and π1y are defined by (4.4). Because the data arise from

two independent multinomial populations (see (4.4)), under H0 (equivalent to (4.20)) the probability
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mass function of X1, conditional on x ∈ Γc, is given by

h (x|c,H0) = Pr (X1 = x|X11 + X10 = c,H0)

=
Pr (X11 = x11) Pr (X10 = c− x11)

Pr (X11 + X10 = c)
(4.21)

=

∏
k∈X2

(
c1k
x11k

)
(
n

n1

) .

Next, we relate this conditional PMF to computing the exact conditional probability of Type

I error for the test statistic Z2
max under H0. Let x ∈ Γc be an arbitrarily chosen table from the

conditional reference set, and let T (x) denote the realization in the test statistic Z2
max corresponding

to the table, computed under H0. Thus, the critical region of the test, corresponding with our

observed test statistic z2
1Al

, denoted Γc

(
z2

1Al

)
, is given by

Γc

(
z2

1Al

)
=
{
x ∈ Γc : T (x) ≥ z2

1Al

}
.(4.22)

Therefore, in terms of (4.21) and (4.22), the exact conditional maxT adjusted p-value, p̃1lµ, is given

by

p̃1lµ =
∑

x∈Γc

(
z21Al

)h (x|c,H0) ∀l = 1, . . . , q.(4.23)

For a relatively small random sample of cases and controls the exact conditional maxT adjusted

p-value (4.23) can be computed, by explicitly enumerating all possible tables within Γc. For example,

the data depicted within Table 4.6, represent a hypothetical random sample of n1 = n0 = 4 cases and

controls – there are 32 tables within Γc for these data. However, upon larger case-control samples,

explicit enumeration of Γc becomes computationally prohibitive. For example, even for a reasonably

small random sample of n1 = n0 = 100 cases and controls, the number of tables comprising Γc lies

in the millions (assumes the distribution of the elements upon c here is the same as that for the

example of n1 = n0 = 4); the computational problem is greatly exacerbated for case-control samples

comprising thousands of study subjects. Given these considerations, it is necessary that we possess

a tool which provides computational efficiency in practice, and in which can also accommodate the

restrictions imposed by the conditioning over the elements upon Γc. A network algorithm is such a
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tool.

Table 4.6: Cross-Classification of Disease Status and X1 for a Small Case-Control Sample.
Level in X1 Total

1 2 3 4 5 6
Cases 1 1 1 1 0 0 4
Controls 0 1 0 0 2 1 4
Total 1 2 1 1 2 1 8

4.6.1 A Network Algorithm

The pioneer work of network algorithms can be traced back to two articles published in the

early 1980’s: the article of [166] examined the circumstance of exploiting a network algorithm for

conducting exact inference upon 2 × k contingency tables; and, the article of [167] generalized this

network approach to include exact inference upon r×k contingency tables. The network algorithms

of these papers have been applied to a number of other computationally challenging problems, such

as exact inference over 2 × r × k contingency tables [168], and exact inference for ordered r × k

contingency tables [169]. More recent applications of network algorithms can be found, for example,

within the articles of [141,142,143,170].

A network algorithm is an efficient means by which to develop and process a conditional reference

set. Specifically, the network representation of a conditional reference set for a 2×k table is a directed

acyclic network of nodes and arcs [143], originating upon a single node (called the initial node) and

ending upon a single node (called the terminal node). A path across the network: is defined as a

series of k connected arcs which emanate from the initial node and reach the terminal node, passing

through k − 1 intermediate nodes; represents a unique table within the conditional reference set;

and, has an affiliated probability under H0. Here, the problem of defining the critical region of the

test (4.22), reduces to finding all paths across the network which adhere to a prespecified condition.

When compared to explicit enumeration of the conditional reference set, there are two advantages to

the network approach in computing the p-value (4.23). First, there are typically far fewer nodes in

the network than tables in the conditional reference set. This provides a condensed means by which

to portray said set. Second, the calculation of the p-value involves summing up the probabilities of

all of the paths satisfying the prespecified condition, with no need to explicitly enumerate each path.

The decision as to whether or not a particular path contributes to the p-value is made upon the nodes



149

of the network as it (the network) is being processed. In this regard, considerable computational

savings can be realized by not having to explicitly enumerate the paths of the network.

The conditional reference set for a 2 × k contingency table with fixed column margin c =

(c1, . . . , ck) and fixed row margin (n1, n0), Γc (here, within (4.17) we replace Xεm with the collection

{1, . . . , k}), can be represented by a directed acyclic network of nodes and arcs. The nodes are

structured over k + 1 stages, the stages in which are labelled 0, . . . , k. In any stage s, there is a

nonempty set of nodes and each of them is labelled by a pair of integer values (s,ms), such that

max
{

0, n1 − n+ c(s)
}
≤ ms ≤ min

{
c(s), n1

}
,

where n = n0 + n1, c(s) = c1 + · · · + cs, and s = 0, . . . , k. The value of ms is the sum over the

initial s columns of the first row upon some table(s) in Γc. In particular, within stage 0 there is

a single node (0,m0) with m0 = 0 (initial node) and in stage k there is also a single node (k,mk)

with mk = n1 (terminal node). Arcs emanate upon each node of stage s, such that each arc (upon

a given node) is directed towards a particular node of stage s+ 1, for all s = 0, . . . , k − 1. A node

of stage s + 1, say (s+ 1,ms+1), which is joined by an arc with a node (s,ms) of stage s is called

a direct successor of node (s,ms), and we write (s,ms)→ (s+ 1,ms+1) to signify that these nodes

are joined by an arc. The collection of direct successors of node (s,ms) are the elements of the set

Ψ (s,ms), where

Ψ (s,ms) =
{

(s+ 1, w) : max
{
ms, n1 − c(k) + c(s+1)

}
≤ w ≤ min {n1,ms + cs+1}

}
.(4.24)

Here, for some s = 0, . . . , k−1 and b = 1, . . . , k−s, we say that node (s+ b,ms+b) is a successor node

of (s,ms) if and only if there exists some collection of nodes {(s,ms) , . . . , (s+ b,ms+b)} satisfying

(s+ a,ms+a)→ (s+ a+ 1,ms+a+1) ∀a = 0, . . . , b− 1,

in which case a subpath between nodes (s,ms) and (s+ b,ms+b) is defined by the series of arcs

connecting said collection of nodes. Thus, the collection of nodes {(s,ms)}s=0,...,k forms a path

through the network if and only if for every pair of nodes over this collection, say (a,ma) and (b,mb)

depicting some pair of nodes, it holds that the latter node is a successor node of the former node

whenever 0 ≤ a < b ≤ k. Figure 4.1 illustrates the 32 paths for the network representation of



150

the conditional reference set for Table 4.6, where the line segment connecting nodes (s,ms) and

(s+ 1,ms+1) depicts the arc for (s+ 1,ms+1) ∈ Ψ (s,ms). The dashed path corresponds to the

observed table.

Now, for implementation of the network algorithm approach to GEM upon a sampled binary

environment factor, we consider k = n (X2) (here, n(·) denotes the cardinality of the set (·)). Let I

be the q × k matrix, whose (l, w)
th

element (denoted [I](l,w)) is an indicator for realization Xj = w,

w = 1, . . . , k, to the collection Al ([I](l,w) = 1) or Bl ([I](l,w) = 0), where it is noted that LAl and

LBl are complementary candidate patterns for all l = 1, . . . , q. Under H0, the arc joining nodes

(s,ms) and (s+ 1,ms+1) ∈ Ψ (s,ms), s = 0, . . . , k − 1, has a q-vector of rank lengths defined by

rs+1 =
(

[I](1,s+1) (ms+1 −ms) , . . . , [I](q,s+1) (ms+1 −ms)
)
,(4.25)

and – in accordance with (4.21) – associated probability length

ps+1 =

(
cs+1

ms+1 −ms

)
.(4.26)

The probability of table x ∈ Γc, h (x|c,H0) (4.21), is therefore recovered by taking the product of

the probability lengths of the arcs which comprise the corresponding path through the network and

subsequently dividing this resultant by the binomial coefficient n choose n1; and the q-vector of rank

lengths for this table, denoted r (x), is obtained by summing over the k q-vectors of rank lengths of

the arcs which comprise the corresponding path through the network.

Having constructed the network, we could traverse through it to identify the tail area of the

permutation null distribution of Z2
max underH0. However, there are two problems with this approach

here, each leading to the potential for increased computations. First, note that for any q′ < q and

Λq′ some q′-size proper subset of {1, . . . , q}, (4.14) can be written as

p̃1lµ = Pr
(
Z2

max ≥ z2
1Al
|H0

)
= Pr

(
q⋃
v=1

Z2
1Av ≥ z

2
1Al
|H0

)
≥ Pr

 ⋃
v∈Λq′

Z2
1Av ≥ z

2
1Al
|H0

 ,(4.27)

with strict inequality whenever the Z2
1Al

, l = 1, . . . , q are not perfectly correlated. Assuming these

test statistics are not perfectly correlated, this implies that the collection of tables within Γc con-

tributing to the critical region for the permutation null distribution of Z2
max, is a richer set than

that for the permutation null distribution of the maximum test statistic over {Z1Av}v∈Λq′
for all
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q′ < q and any Λq′ ⊂ {1, . . . , q}. But, the computational burden in computing (4.14) is positively

associated with the number of tables within Γc contributing to the critical region of the permutation

null distribution of Z2
max, and – in light of (4.27) – so also positively associated with the value of q.

This could lead to the potential for an increase in computations here, since q = 11 for a binary envi-

ronment factor (see Table 4.1 for the relationship between ε and q). Second, our goal in processing

the network is to abridge paths which do not contribute to the calculation of (4.14). Having to do

this amidst the union over q (4.27), requires scrupulous pruning of paths over the joint distribution

of the test statistics
{
Z2

1Al

}
l=1,...,q

under H0. This could lead to an increase in the computational

demand when processing the network.

Alternatively, here we consider processing the network to determine the value of the complement

of (4.14). It is,

q̃1lµ = 1− p̃1lµ = Pr

(
q⋂
v=1

Z2
1Av < z2

1Al
|H0

)
= Pr

(
q⋂
v=1

|Z1Av | < |z1Al ||H0

)
,(4.28)

for all l = 1, . . . , q. The intersections over q within this expression are exceptionally attractive,

because – as illustrated below within step 4(b) of the forward induction pass of Algorithm 4.2 –

we can prune paths over the marginal permutation null distribution of Z2
1Al

for some l = 1, . . . , q.

Working upon marginal distributions in this regard is aesthetically appealing when compared to

working upon the joint distribution of
{
Z2

1Al

}
l=1,...,q

. Moreover, calculation of p̃1lµ (4.14) from the

computed value (4.28) is a trivial exercise in arithmetic.

We now outline the network algorithm approach for GEM. For each l = 1 . . . , q, in terms of

Table 4.5, let X1Al =
∑
v∈Al X11v be the random number of cases – for an arbitrary table within

the conditional reference set – whose values of X1 lie within Al and let c1Al =
∑
v∈Al c1v be the

number of sampled subjects whose values of X1 lie within Al. We make the observation that for

any t > 0, under H0 it holds

|Z1Al | < t ⇐⇒ X1Al ∈
(
n1c1Al − tKl

n
,
n1c1Al + tKl

n

)
,(4.29)

where

Kl =

√
n0n1c1Al (n− c1Al)

n
.
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Fig. 4.1: The Network Representation of the Conditional Reference Set for the 2 × 6 Contingency
Table Depicted by Table 4.6. The Observed Table Is Represented by the Dashed Path.

For some t > 0, let ψ1 (l, t) and ψ2 (l, t) be the functions defined by

ψ1 (l, t) = min

{
w = 0, . . . , n1 : w >

n1c1Al − tKl

n

}
ψ2 (l, t) = max

{
w = 0, . . . , n1 : w <

n1c1Al + tKl

n

} .(4.30)
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Thus, for any t > 0, it holds that

x ∈ Γc(t)

⇐⇒ ∃ l = 1, . . . , q such that X1Al ∈ [0, ψ1 (l, t)) ∪ (ψ2 (l, t) , n1](4.31)

⇐⇒ ∃ rl ∈ r(x), some l = 1, . . . , q such that rl ∈ [0, ψ1 (l, t)) ∪ (ψ2 (l, t) , n1] ,

where Γc(·) is defined by (4.22) and rl ∈ r(x) denotes the lth element upon the q-vector of rank

lengths corresponding to the path of x, r(x). Given t > 0, the network algorithm for GEM computes

(4.28)4 by identifying and summing up the probability lengths of all paths in the network failing

adherence to the conditions imposed by (4.31), but with no need to explicitly enumerate each path.

The decision as to whether or not the paths of the network contribute to the value of (4.28) occurs

upon the nodes of the network. Specifically, given t > 0, for each (s+ 1,ms+1) ∈ Ψ (s,ms) [direct

successor] of node (s,ms), s = 0, . . . , k − 1, we must check if one of the following conditions holds:

s∑
v=1

[rv]l︸ ︷︷ ︸
(A)

+ [rs+1]l︸ ︷︷ ︸
(B)

+ [SP (s+ 1,ms+1)]l > ψ2 (l, t)(4.32)

and

s∑
v=1

[rv]l + [rs+1]l + [LP (s+ 1,ms+1)]l < ψ1 (l, t) ,(4.33)

for some l = 1, . . . , q, where: SP (s+ 1,ms+1) and LP (s+ 1,ms+1) are q-vectors, such that

[SP (s+ 1,ms+1)]l and [LP (s+ 1,ms+1)]l are the rank lengths of the shortest and longest sub-

path, respectively, from node (s+ 1,ms+1) to the terminal node, corresponding with the lth element

upon each of the vectors of rank length, {rs+2, . . . , rk}, l = 1, . . . , q; (A) corresponds to the sum of

the rank lengths upon element l across the vectors {r1, . . . , rs}; and (B) corresponds to the rank

length for the arc joining node (s,ms) to the direct successor node (s+ 1,ms+1). If Q is the set of

all paths which pass through the node (s+ 1,ms+1) ∈ Ψ (s,ms) and which have a common subpath

rank length equal to the value of (A) (4.32) upon reaching node (s,ms) from the initial node, then

no path of Q will contribute to (4.28) if either of the conditions (4.32) or (4.33) holds for some

4The network algorithm we develop here assumes realizations in (4.10), such that |z1A1
| = · · · = |z1Aq | = t.

The complement of the adjusted p-value, q̃1lµ, can thus be computed by substituting the true underlying realization
|z1Al | in lieu of t within the network algorithm, for all l = 1, . . . , q (i.e., upwards of q implementations of the network
algorithm could be required to obtain the values for all q of the complements to the adjusted p-values).
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l = 1, . . . , q. In this circumstance, the paths of Q are not considered again in the network algorithm,

and this forms the basis for the pruning of paths within the algorithm.

We process the network in two steps. First, we conduct a backward pass (called, the backward

induction pass) through the network, beginning at the terminal node and ending at the initial node.

During this pass through the network, we construct the vectors SP (s,ms) and LP (s,ms) upon the

nodes of the network, so that the conditions (4.32) and (4.33) can be evaluated. Upon completion of

the backward pass, the network is processed in the forward direction (called, the forward induction

pass), beginning at the initial node and ending at the terminal node. During this second pass

through the network, we essentially prune paths in accordance to the aforementioned conditions

(4.32) and (4.33) and compute (4.28) for some t > 0. Without further delay, we now state the

network algorithm for GEM.

Algorithm 4.2 Network Algorithm for GEM

Backward Induction Pass

1. Insofar as the alternative hypothesis of (4.3) is two-sided, the statistical inference encompassing

the test statistic (4.10) under H0 is invariant to the labeling of the random variable Wl, for

all l = 1, . . . , q = 11. Indeed, in accordance with Table 4.1, for l ∈ {6, 8, 11} we swap the

collections Al and Bl. Specifically, let

Al =

 Al, if l ∈ {1, 2, 3, 4, 5, 7, 9, 10}

Bl, if l ∈ {6, 8, 11}
,

and since LAl and LBl are complementary candidate patterns, let Bl = {1, . . . , q}\Al, for

all l = 1, . . . , q. We consider I, the q × k (here, k = 6) matrix as previously defined within

this section. See step 4(b) of the forward induction pass to follow, for details motivating the

current step of this algorithm.

2. For stage s = 0, . . . , k − 1 = 5:

(a) For each node (s,ms), let Tc (s,ms) be the set of all subpaths from node (s,ms) to the

terminal node.

(b) Let SP (s,ms) and LP (s,ms) be as defined above, the q-vectors where [SP (s,ms)]l and

[LP (s,ms)]l are the rank lengths of the shortest and longest subpath, respectively, over
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Tc (s,ms), corresponding with the lth element upon each of the vectors of rank length,

{rs+1, . . . , rk}, l = 1, . . . , q, where rs+1 is as defined within (4.25).

3. Let SP (k,mk) and LP (k,mk) each be q-vectors, whose lth elements are defined by

[SP (k,mk)]l = [LP (k,mk)]l = 0, for all l = 1, . . . , q.

4. For stage s = k − 1, . . . , 0:

For each node (s,ms):

For l = 1, . . . , q:

(a) [SP (s,ms)]l = minΨ(s,ms) {[rs+1]l + [SP (s+ 1,ms+1)]l}.

(b) [LP (s,ms)]l = maxΨ(s,ms) {[rs+1]l + [LP (s+ 1,ms+1)]l}.

Forward Induction Pass

1. Let t > 0 be some observed value of the statistic |Zmax| =
√
Z2

max, where Z2
max is defined by

(4.13).

2. For stage s = 1, . . . , k:

(a) For each node (s,ms), let Ic (s,ms) denote the set of all subpaths originating at the initial

node and ending at node (s,ms).

(b) Consider η ∈ Ic (s,ms). Let r(η) be the q-vector of rank lengths over {r1, . . . , rs},

corresponding to subpath η, whose lth element is defined by

[r(η)]l =

s∑
v=1

[rv]l ∀l = 1, . . . , q,

where rs is defined by (4.25). Also, let p(η) denote the probability length for subpath η

under H0. Specifically, it is

p(η) =

s∏
v=1

pv,

where ps is defined by (4.26).
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(c) For each node (s,ms), let I∗c (s,ms) ⊆ Ic (s,ms) denote the refined set of subpaths of

Ic (s,ms), such that η ∈ I∗c (s,ms) if and only if for every l = 1, . . . , q and for each

φl ∈ {[SP (s,ms)]l , [LP (s,ms)]l}, it holds

ψ1(l, t) ≤ [r(η)]l + φl ≤ ψ2(l, t),

where ψ1(l, t) and ψ2(l, t) are given by (4.30).

(d) For each node (s,ms), if L denotes the set of all unique vectors r(η) such that η ∈

I∗c (s,ms), then we define the set of records R (s,ms) = {(ν, π(ν)) : ν ∈ L}, where

π(ν) =
∑

η ∈ I∗c (s,ms) :

r(η) = ν

p(η).

3. Let R (0,m0) = {(0, π(0) = 1)}, where 0 is the q-vector comprised of all entries equal to zero.

4. For stage s = 0, . . . , k − 1:

For each node (s,ms):

For each (s+ 1,ms+1) ∈ Ψ (s,ms):

For each record (ν, π(ν)) ∈ R (s,ms):

(a) Evaluate the conditions imposed by (4.32) and (4.33), for each l = 1, . . . , q, replacing the

summands within each of these expressions with [ν]l. If either one of these conditions

holds for some l, then continue to next record within R (s,ms); otherwise, continue to

step 4(b).

(b) For l = 1, . . . , q: If
∑k
w=s+2 [I](l,w) = 0 and the following condition holds

[ν]l + [rs+1]l ∈ [0, ψ1(l, t)) ∪ (ψ2(l, t), n1] ,

then continue to next record within R (s,ms); otherwise, continue to step 4(c). Note

that by our defining the Al in the manner in which we did (within step 1 of the backward

induction pass), the first condition of the premise here (i.e, the sum evaluating to zero)

holds true for l ∈ {1, 3, 6, 8, 11} upon the respective values of s ∈ {0, 1, 2, 3, 4} – this
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allows for the pruning of paths over the marginal permutation null distributions of Z2
1Al

for said values in l and can enhance computational performance of the network algorithm.

(c) Pass the record (ν, π(ν)) to the direct successor (s+ 1,ms+1). We consider the modified

record (ν∗, π∗), where ν∗ = ν + rs+1 and π∗ = π(ν)ps+1.

(d) If there exists a record (µ, π(µ)) ∈ R (s+ 1,ms+1), such that µ = ν∗, then update

the record (µ, π(µ)) with (µ, π(µ) + π∗) and continue to next record within R (s,ms);

otherwise, continue to step 4(e).

(e) Insert (ν∗, π∗) into R (s+ 1,ms+1) as a new record.

5. It follows that

q̃ = Pr (|Zmax| < t|H0) =

(
n1!n0!

n!

) ∑
(ν,π(ν))∈R(k,mk)

π(ν),

for which taking |z1Al | = t, some l = 1, . . . , q, (4.23) evaluates to

p̃1lµ = 1− q̃.

4.7 Simulation Study: Statistical Power to Detect GxE Interaction in General

We performed a simulation analysis with the aims of: (1) demonstrating that our proposed

GEM method controls the FWER at the 5% level under the complete null hypothesis H0, where

we compare control of the FWER at this level across a number of competing methods to assess

GxE interaction; and (2) under various conditions for which the complete null hypothesis is not true

(i.e., H
(j,l)
0 is false for some l = 1, . . . , q and j = 1, . . . ,m), compare the statistical power of our

proposed GEM method to those for a number of competing methods. Unless otherwise specified,

the investigation of statistical power is assumed at the 5% level of the FWER.

4.7.1 Data Setup

We assumed a sample size of n = 1K per data set throughout the simulation investigation,

where each data set was comprised of: a binary response, a single binary environmental factor,

and m biallelic SNP markers, such that m ∈ {1, 2, 5, 10}. Let πGj denote the population minor
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allele frequency (MAF) for the jth SNP of the data set, j = 1, . . . ,m, and let the population

prevalence of exposure be denoted by πE = Pr(E = 1). The random variables E,G1, . . . , Gm

were simulated mutually independent of one another, where we assumed E ∼ Binomial (n, πE) and

Gj ∼ Multinomial
(
n, 3,

(
(1− πGj )2, 2πGj (1− πGj ), π2

Gj

))
. That is, the random variable Gj was

assumed to adhere to Hardy-Weinberg equilibrium within the population. For simplicity, we assumed

the πGj satisfy the condition πG1
= · · · = πGm , where the parameters

(
πGj , πE

)
were assumed to

reside within the selected collection {(0.05, 0.4), (0.2, 0.2), (0.2, 0.4), (0.4, 0.2), (0.5, 0.5)}. In order to

investigate the behavior in the FWER under the complete null and the statistical power under some

partial null hypothesis, we varied the distributional assumptions governing the random variable Y in

six different ways (for clarity, we denote the accompanying simulations as A, B, . . . , F, respectively):

FWER: The random variable Y was simulated independently of the random variables E,G1, . . . , Gm,

such that the conditional probabilities Pr (Y = 1|Xj = k) = 0.5, for all k ∈ X2 and j =

1, . . . ,m. Assigning this common value in the conditional probabilities, corresponds to simu-

lating data sets in coherence with a balanced case-control study; by simulating Y independently

of the genetic and environmental factors, we modelled the complete null hypothesis H0.

Power (Main Effect Gj Recessive Model): To simulate a main effect for Gj , we assumed the

recessive genetic model of inheritance such that the conditional probabilities

Pr (Y = 1|Xj ∈ {3, 6}) = 0.60 (corresponds to Gj = 2),

and – to preserve a balanced case-control sampling design –

Pr (Y = 1|Xj ∈ {1, 2, 4, 5}) =
(

0.5− 0.6π2
Gj

)
/
(

1− π2
Gj

)
.

Power (Main Effect Gj Dominant Model): To simulate a main effect for Gj , we assumed the

dominant genetic model of inheritance such that the conditional probabilities

Pr (Y = 1|Xj ∈ {2, 3, 5, 6}) = 0.55 (corresponds to Gj ∈ {1, 2}),

and – to preserve a balanced case-control sampling design –

Pr (Y = 1|Xj ∈ {1, 4}) =
(

0.5− 0.55
(

1−
(
1− πGj

)2))
/
(
1− πGj

)2
.
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Power (Main Effect E): To simulate a main effect for E, we assumed the conditional probabilities

Pr (Y = 1|Xj ∈ {4, 5, 6}) = 0.55 (corresponds to E = 1),

and – to preserve a balanced case-control sampling design –

Pr (Y = 1|Xj ∈ {1, 2, 3}) = (0.5− 0.55πE) / (1− πE) .

Power (GxE Recessive Model): To simulate GxE where the SNP adheres to the recessive ge-

netic model, we assumed the conditional probabilities

Pr (Y = 1|Xj = 6) = 0.70 (corresponds to logical pattern (Gj = 2) ∧ (E = 1)),

and – to preserve a balanced case-control sampling design –

Pr (Y = 1|Xj ∈ {1, 2, 3, 4, 5}) =
(

0.5− 0.70πEπ
2
Gj

)
/
(

1− πEπ2
Gj

)
.

Power (GxE Dominant Model): To simulate GxE where the SNP adheres to the dominant ge-

netic model, we assumed the conditional probabilities

Pr (Y = 1|Xj ∈ {5, 6}) = 0.65 (corresponds to logical pattern (Gj ∈ {1, 2}) ∧ (E = 1)),

and – to preserve a balanced case-control sampling design –

Pr (Y = 1|Xj ∈ {1, 2, 3, 4}) =
(

0.5− 0.65πE

(
1− (1− πG)

2
))

/
(

1− πE
(

1− (1− πG)
2
))

.

Within each of the five power conditions, the random variables G2, . . . , Gm were assumed in-

dependent of the random variables Y and E, whenever m > 1. Our intention was to investigate

the power to detect either the main genetic effect or the GxE effect – in the case where one of

these effects is present upon exactly one SNP marker – adjusting for the multiplicity problem across

multiple SNP markers simultaneously being assessed for GxE. Interestingly, this approach is anal-

ogous to that taken by [3] within their simulation investigating statistical power to detect GxE

interaction. For each of these six variations in the distributional properties of Y across the support



160

of the random variable Xj , for each m ∈ {1, 2, 5, 10}, and for each
(
πGj , πE

)
within the collection

{(0.05, 0.4), (0.2, 0.2), (0.2, 0.4), (0.4, 0.4), (0.5, 0.5)}, we simulated D = 10K mutually independent

data sets. To obtain adequate estimates for p̃jlσ (4.12) and p̃jlµ (4.14), within each simulated data

set we carried out the permutation procedure of Algorithm 4.1, assigning the value of R (i.e., the

number of random shuffles upon the columns of GE∗) therein to 10K.

4.7.2 Competing Methods for Detecting GxE Interaction

To remain consistent with the simulation methodology undertaken within [109], we compared

our proposed GEM method to six competing approaches for detecting GxE – note: because GEM

is able to perform multiplicity adjustment for m ≥ 1 (the simulations conducted within [109] were

carried out assuming m ≡ 1), some of these approaches have been modified (i.e., to accommodate the

circumstance for which m > 1) for benchmarking our GEM method. The seven methods, including

GEM, are described as follows (here, we reference the seven methods as competing methods):

Raw GEM (RGEM): The maximum value of the proposed test statistic ZjAl (4.10) over all

hypothesis tests for the data set
(
absolute value thereof; i.e., max

{
|ZjA1

|, . . . , |ZjAq |
}
j=1,...,m

)
is determined. The computed value is then assumed – under the complete null hypothesis (H0)

– asymptotically distributed by the standard normal distribution, and the corresponding two-

sided p-value, denoted pRGEM, is computed from the CDF of said distribution.

Bonferroni Raw GEM (BRGEM): The p-value computed under RGEM is adjusted for multiple

hypothesis testing, by applying the Bonferroni correction for having tested the m × q null

hypotheses represented by H0. That is, the BRGEM p-value is given by min{(mq)pRGEM, 1}.

Pearson Chi-Square Test (PCT): Extending (4.20) to the circumstance in which m ≥ 1, it

follows that the null hypothesis of no association between the random variables Xj and Y

is equivalent to H(j)
0 , for any j = 1, . . . ,m. We conduct the Pearson chi-square test of no

association between Xj and Y , against the corresponding two-sided alternative hypothesis, for

each j = 1, . . . ,m; the corresponding p-value is computed under H(j)
0 , by referring to the chi-

square distribution with five degrees-of-freedom. The smallest of these p-values is then selected

and a Bonferroni correction is applied for having tested the m null hypotheses represented by

H0.
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GEM: The maxT adjusted p-value p̃jlσ (m = 1) or p̃jlµ (m > 1) is estimated by its respective per-

mutation counterpart, (4.18) or (4.19), in accordance with Algorithm 4.1, for all j = 1, . . . ,m

and l = 1, . . . , q. The smallest of these maxT permutation adjusted p-values is selected.

Nominal Likelihood Ratio Test (NLRT): The conventional approach to assess whether an as-

sociation exists between genetic/environmental factors and a binary response in genetic as-

sociation studies consists of constructing various logistic regression models. These models

can involve one or both of the genetic or environmental factors, and may possibly involve

term(s) for testing GxE interaction [147, 171, 172]. Indicator random variables are typically

employed, to distinguish the levels for each of the genetic and environmental factors. Here,

for j = 1, . . . ,m, we define the two indicator random variables for the jth SNP locus, Gj1 and

Gj2, where

Gjg = I (Gj ≥ g) ,

each g = 1, 2. That is, Gj1 and Gj2 are the respective indicator random variables corre-

sponding to the dominant and recessive genetic models for locus j. Since our GEM method

assesses patterns for both main effects and GxE interaction, as a benchmarking tool for GEM

we construct the following seven nested logistic regression models: the three simple logistic

regression models, each distinguishable from the remaining two models and comprised of a

single predictor variable from the collection {Gj1, Gj2, E}; the two [main effect] multiple logis-

tic regression models, each comprised of a unique indicator random variable from Gj modeled

along with the environmental factor indicator random variable E; and the two GxE multi-

ple logistic regression models, each comprised of a unique indicator random variable from Gj

modeled along with the environmental factor indicator random variable E and the appropriate

GxE interaction term. The likelihood ratio test (LRT) is carried out for each of these seven

models – against the null model consisting of solely an intercept regression parameter, for fair

comparison – at each SNP locus. The p-value for each LRT is determined by referring to the

appropriate chi-square distribution.5 The minimum of the p-values, denoted pNLRT, is selected

from amongst all of those computed across the m SNP loci, insofar as the underlying genetic

model is generally unknown for a novel complex disease.

5The degrees-of-freedom for the chi-square distribution is equal to the difference between the number of regression
parameters for the model under the alternative hypothesis and that for the null model.
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Bonferroni Likelihood Ratio Test (BLRT): The p-value computed under NLRT, pNLRT, is ad-

justed by applying the Bonferroni correction for having tested 7 ×m null hypotheses. That

is, the BLRT p-value is given by min {(7m)pNLRT, 1}.

Global Likelihood Ratio Test (GLRT): The random variable Gj is modeled as a qualitative

predictor, categorized by the two indicator random variables Gj1 and Gj2, respectively, where

Gjg = I (Gj = g) ,

each g = 1, 2. For each j = 1, . . . ,m, we consider the multiple logistic regression model

logit (Pr (Y = 1|Gj1, Gj2, E)) = β0 + βeE +
∑

g∈{1,2}

(βjgGjg + γjgGjgE) ,(4.34)

where logit(·) is the [natural] log odds of (·) and each of the regression parameters of this

model is assumed unknown. The LRT statistic – computed under the null hypothesis that

all predictor coefficients equal zero upon this multiple logistic regression model, against the

two-sided alternative hypothesis that some coefficient is different from zero – is computed,

each j = 1, . . . ,m. The corresponding p-value for each of these LRT statistics is computed by

referring to the chi-square distribution with five degrees-of-freedom. The minimum of these

p-values is selected and a Bonferroni correction is applied for having tested a total of m null

hypotheses.

4.7.3 Type I Error Rate and Power

For each of the aforementioned competing methods to detect GxE interaction, let Vd be the

indicator random variable with success defined as some Type I error being observed within simulation

A upon data set d, where a Type I error is assumed to occur whenever the p-value (as defined by

the competing method) falls below the value 0.05; and, upon each of the simulations B thru F, let

Sd be the indicator random variable with success occurring whenever the p-value (as defined by the

competing method) falls below the value of 0.05, for all d = 1, . . . , D = 10K. Since the data sets

are simulated independently of one another, it follows that

∑
d

Vd ∼ Binomial (D,αF) ,
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and ∑
d

Sd
·∼ Binomial (D, 1− β) ,

where αF denotes the true underlying FWER and – assuming control of the FWER is at the 5%

level – β denotes the true underlying Type II error rate.6 Taking the parameters αF and β at their

respective MLEs, our estimates of the FWER and the power of the test are given by

α̂F =

∑
d Vd
D

,(4.35)

and

1− β̂ ·
=

∑
d Sd
D

,(4.36)

respectively.

4.7.4 Results

Table 4.7 depicts the proportion of the [D = 10K total] p-values which fall below the value of

0.05, across the levels in m by competing method to detect GxE interaction (rows) and parame-

terization of the ordered pair
(
πGj , πE

)
(columns) for simulation A. That is, these values are the

estimated FWER (4.35) by competing method under the complete null hypothesis (H0). Each of the

RGEM and NLRT methods have inflated observed FWER rates when compared to the expected 5%

value, irrespective of the value of m and parameterization of the ordered pair
(
πGj , πE

)
, where the

discrepancy of the observed FWER rate from expected is exacerbated as m increases. This result

is not unexpected, since the corresponding p-values arising from these methods are not adjusted for

multiple hypothesis testing. Application of these methods in practice would therefore lead one to

extreme misrepresentation of results, as the reporting of some Type I errors is very likely. Because

these two methods clearly fail to control the FWER at the 5% level, for clarity in discussion these

two methods are henceforth no longer considered competing methods.

On the other hand, these data indicate that the GLRT method controls the FWER at the

5% level, in general, whereas each of the methods BRGEM, PCT (for the circumstances in which

6The estimator
∑
d Sd/D does not [technically] represent the estimated power of the test, since Sd = 1, for

d = 1, . . . , D, could indicate either a Type I error or a correct rejection of a false null hypothesis. However, said
estimator should provide a reasonable estimate for the power of the test, and – provided the true underlying level of
control in the FWER is the same across competitive methods which assess GxE interaction – provides an adequate
means by which to compare the power of the test across said methods.
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m > 1), and BLRT possess observed FWERs falling [well] below the 5% expected level, in general,

suggesting that these latter three methods are conservative in their respective control of the FWER

at the 5% level. This notion is particularly true of the BLRT method, suggesting that this method

is overly conservative in its control of the FWER at the 5% level. In fact, of the five methods which

control the FWER at a level not exceeding the true underlying 5% level, namely BRGEM, PCT,

GEM, BLRT, and GLRT, only GEM is unbiased7 in its control of the FWER at the 5% level for

every combination of chosen ordered pair
(
πGj , πE

)
and chosen number of SNP markers (m) within

the simulated data sets. This is not an unexpected result, since the multiple testing correction for

GEM is based upon the permutation null distribution of Z2
max (4.14), as opposed to the multiple

testing correction upon the four alternative methods being based upon an asymptotic assumption

governing the test statistics null distribution.

The conservatism in the control of the FWER at the 5% level is particularly interesting upon

the ordered pair
(
πGj , πE

)
= (0.05, 0.4). With the exception of BRGEM, the conservatism for

each of the four competing methods based upon the Bonferroni MTP seems to be positively asso-

ciated with the magnitude in m. The observed FWERs upon the PCT method, for example, are

{0.029, 0.014, 0.012, 0.008} for the respective values of m ∈ {1, 2, 5, 10}. In light of this, we expect

the statistical power for the PCT, BLRT, and GLRT competing methods to be lower than that

of both GEM and BRGEM. Conversely, these data indicate an apparent increasing trend in the

observed FWER for the BRGEM method as the value of m increases. The observed FWERs upon

this competing method are {0.028, 0.030, 0.035, 0.039}, for the respective values of m ∈ {1, 2, 5, 10}.

This suggests that the veracity in the asymptotic normal assumption governing the distribution of

the test statistic ZjAl (4.10) under H0, may be dependent upon the value of m. Further research

investigating this notion is needed, but we do point out here that this observation is similar to that

made within Chapter 3 regarding the distribution of the Cochran-Armitage trend test statistic (un-

der the complete null hypothesis therein) being dependent upon sample characteristics, including

the magnitude in m.

Figures 4.2 and 4.3 display the estimated statistical power (4.36) to detect a main genetic effect

(blue symbols, simulation B; red symbols, simulation C), a main environmental effect (orange sym-

bols, simulation D), and GxE interaction (purple symbols, simulation E; black symbols, simulation

F) at the 5% level in the FWER by competing method and selected values in the ordered pairs(
πGj , πE

)
, upon a single SNP locus (m = 1; top panel of the former figure), two loci (m = 2; lower

795% Exact Clopper-Pearson confidence interval for the true underlying FWER covers the value of 0.05.
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Table 4.7: Observed FWER (4.35) by Competing Method to Assess GxE Interaction and Selected
Values in the Ordered Pair

(
πGj , πE

)
for Simulation A (Complete Null Hypothesis). The True

Underlying FWER Is 5%. (
πGj , πE

)
Method m (0.05, 0.4) (0.2, 0.2) (0.2, 0.4) (0.4, 0.2) (0.5, 0.5)
RGEM 1 0.206 0.289 0.298 0.312 0.317
BRGEM 1 0.028 0.044 0.040 0.048 0.046
PCT 1 0.029 0.048 0.047 0.049 0.052
GEM 1 0.049 0.052 0.047 0.052 0.053
NLRT 1 0.245 0.244 0.230 0.226 0.232
BLRT 1 0.025 0.042 0.037 0.035 0.039
GLRT 1 0.026 0.059 0.051 0.051 0.053
RGEM 2 0.324 0.442 0.473 0.487 0.480
BRGEM 2 0.030 0.045 0.042 0.049 0.042
PCT 2 0.014 0.043 0.045 0.047 0.046
GEM 2 0.050 0.051 0.050 0.052 0.049
NLRT 2 0.404 0.389 0.383 0.380 0.367
BLRT 2 0.021 0.038 0.034 0.031 0.032
GLRT 2 0.024 0.053 0.052 0.049 0.047
RGEM 5 0.497 0.640 0.671 0.696 0.687
BRGEM 5 0.035 0.046 0.043 0.052 0.044
PCT 5 0.012 0.038 0.041 0.047 0.045
GEM 5 0.049 0.048 0.046 0.052 0.050
NLRT 5 0.621 0.603 0.585 0.581 0.588
BLRT 5 0.023 0.033 0.032 0.032 0.030
GLRT 5 0.022 0.053 0.049 0.050 0.046
RGEM 10 0.795 0.900 0.920 0.922 0.914
BRGEM 10 0.039 0.056 0.054 0.056 0.043
PCT 10 0.008 0.036 0.042 0.040 0.044
GEM 10 0.046 0.049 0.050 0.050 0.049
NLRT 10 0.907 0.898 0.883 0.875 0.868
BLRT 10 0.025 0.034 0.035 0.031 0.031
GLRT 10 0.016 0.053 0.054 0.046 0.047

panel of the former figure), five loci (m = 5; top panel of the latter figure), and ten loci (m = 10;

lower panel of the latter figure) paired with a binary environmental factor. These data indicate that

the statistical power for GEM, in general, exceeds that of all competing methods chosen for this

investigation. The only two apparent exceptions to this notion occur upon simulation E (power to

detect GxE for the recessive genetic model of inheritance; purple symbols), where
(
πGj , πE

)
equals

(0.2, 0.2) (second pane) and (0.2, 0.4) (third pane). However, the statistical power is low for all

competing methods upon simulation E within these two panes upon each of the two panel plots

within each figure. In light of the conservatism in its control of the FWER at the 5% level (Table

4.7), as expected these data indicate that the BLRT method possesses the weakest statistical power

amongst the competing methods, in general, within each of the simulation conditions B–F across the
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five panes of each figure. Furthermore, when compared to GEM, the BLRT method has particularly

low power in detecting GxE interaction upon the dominant genetic model and in detecting a main

environmental effect.

Fig. 4.2: Estimated Statistical Power (4.36) to Detect a Main Genetic Effect (Blue Symbols, Simula-
tion B; Red Symbols, Simulation C), a Main Environment Effect (Orange Symbols, Simulation D),
and GxE Interaction (Purple Symbols, Simulation E; Black Symbols, Simulation F) at the 5% Level
in the FWER for m = 1 (Upper Panel) and m = 2 (Lower Panel), by Competing Method (Vari-
ous Symbol Types) to Assess GxE Interaction and Selected Values for the Ordered Pair

(
πGj , πE

)
(Panes). G = Genetic Effect; RM = Recessive Genetic Model; DM = Dominant Genetic Model;
and E = Environment Effect.
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Fig. 4.3: Estimated Statistical Power (4.36) to Detect a Main Genetic Effect (Blue Symbols, Simula-
tion B; Red Symbols, Simulation C), a Main Environment Effect (Orange Symbols, Simulation D),
and GxE Interaction (Purple Symbols, Simulation E; Black Symbols, Simulation F) at the 5% Level
in the FWER for m = 5 (Upper Panel) and m = 10 (Lower Panel), by Competing Method (Vari-
ous Symbol Types) to Assess GxE Interaction and Selected Values for the Ordered Pair

(
πGj , πE

)
(Panes). G = Genetic Effect; RM = Recessive Genetic Model; DM = Dominant Genetic Model;
and E = Environment Effect. Note: Only Those Competing Methods Which Control the FWER
at the 5% Level Are Presented.

This observation of low statistical power for the BLRT method is particularly interesting, because

the NLRT method – for which the BLRT is based upon – is essentially the conventional approach

one would undertake in exploratory data analysis, for determining an equation which describes the

relationship between the binary response (Y ) and the three predictor variables Gj1, Gj2, and E

upon a novel complex disease. These data suggest that alternative competing methods (to BLRT),
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such as GEM, can yield greater statistical power in such circumstances. While each of the PCT and

GLRT methods seem to possess statistical power slightly lower than that of GEM within the second

thru fifth panes upon each panel plot within each figure, the statistical power for each of these two

methods appears to suffer considerably within the first pane of each figure. In fact, within the first

pane of the upper panel plot of the former figure (i.e., taking
(
πGj , πE

)
= (0.05, 0.4) for m = 1),

the statistical power of GEM is at least 20% greater than that of all competing methods, where the

minimum relative statistical power of GEM to all competing methods occurs within simulation D

(assessing a main effect in the environmental factor), comparing the statistical power of GEM (57.5%)

to that of BRGEM (47.5%). This suggests that GEM likely possesses greater ability to detect true

associations upon SNP loci with rare population MAF, when compared to the competing methods

of this investigation.

Indeed, for a rare (a value not exceeding 0.05) minor allele frequency in πGj , we examined [to

a closer extent] the statistical power to detect the main effect of the environmental factor (sim-

ulation D) and GxE interaction (dominant GMI; simulation F) for the competing methods, over

the domain in the population prevalence of exposure, πE ∈ (0, 1), taking m = 1. We examined

these two effects specifically, since the first pane of the plot within the upper panel of Figure 4.2

suggests these effects: to yield adequate power to carry out this task; and, to be of particular

interest, due to the apparent vertical separation in power amongst the competing methods. We

assumed the identical distributional assumptions for Y and data set characteristics, as specified

within §4.7.1. To carry out this power investigation, we first examined each of the competing meth-

ods for adherence to control of the FWER at the 5% level under the complete null hypothesis (i.e.,

simulation A), taking πGj ∈ {0.01, 0.02, 0.04, 0.05} to serve as a proxy for SNP loci possessing rare

MAFs and πE ∈ {0.01, 0.02, . . . , 0.99}. Figure 4.4 illustrates the observed FWER for the competing

methods (D = 10K data sets simulated upon each ordered pair
(
πGj , πE

)
and each plot depicted

within a panel of the figure), taking πGj = 0.01 (upper left panel), πGj = 0.02 (upper right panel),

πGj = 0.04 (lower left panel), and πGj = 0.05 (lower right panel). These data indicate that control

of the FWER at the 5% level to be conservative for the PCT, BRGEM, and GLRT, irrespective

of the value of πGj chosen here, where for a given value in πE the conservatism upon the latter

two methods seems to increase for decreasing values in πGj . On the other hand, for πE ≤ 0.60,

interestingly the BLRT method is suggestive to be conservative in its control of the FWER at the

5% level for πGj ∈ [0.04, 0.05], to be somewhat liberal in its control of this error rate for πGj ≤ 0.02,
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the anti-conservatism for this method to be negatively associated with the value of πGj over this

latter range in the parameter πGj , and is suggestive to possess liberal control of the FWER at the

5% level for πE > 0.60 and πGj < 0.05.

Fig. 4.4: Observed FWER (4.35) by Competing Method to Assess GxE Interaction under Simulation
A for πE ∈ (0, 1), Taking πGj = 0.01 (Upper Left Panel), πGj = 0.02 (Upper Right Panel), πGj =
0.04 (Lower Left Panel), and πGj = 0.05 (Lower Right Panel), Where the True Underlying FWER
Is 5%. Wald-based Methods Are Depicted by Solid Curves; LRT-based Methods by Heavy Dashed
Curves; and, the PCT Method by the Light Dashed Blue Curve. Due to Data Sparsity, the PCT
Method Comprised a Large Proportion of Non-Calculable Test Statistics and as Such Is Only Shown
Within the Lower Two Panels of the Figure.
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Finally, as expected, these data indicate that GEM properly controls the FWER at the 5% level,

as demonstrated by the solid blue curve within these plots adhering very close to the expected 5%

thin black reference line, where it is noted that the 95% Clopper-Pearson confidence intervals for the

true FWER (not shown) cover the value of 0.05 across the domain of πE within each of the panel

plots of the figure.

Since each competing method appears to control the FWER at the 5% level across the domain

of πE for πGj = 0.05, to remain consistent with the chosen ordered pairs
(
πGj , πE

)
of our power

study over simulations A–F, we decided to examine the statistical power of the competing methods

upon simulations D and F taking πGj = 0.05. At the 5% level in the FWER, Figure 4.5 portrays

the estimated statistical power to detect GxE interaction (dominant GMI; upper panel) and a

main effect in the environmental factor (lower panel), where D = 10K data sets were simulated

upon the conditions depicted within each panel of the figure at each ordered pair
(
πGj , πE

)
for

πE ∈ {0.01, 0.02, . . . , 0.99}. These data indicate that the statistical power to detect GxE interaction

for GEM is greater than that of all competing methods, whenever πE ≥ 0.20. Moreover, over

this range of πE , with the exception of BRGEM, the rate at which power increases for GEM (for

increasing πE) appears to be accelerated when compared to the competing methods, as seen by the

increasing vertical separation between the appropriate curves within the upper panel plot. Also,

even though power for GEM appears lower than some competing methods for πE < 0.20, the power

to detect GxE interaction is low for all competing methods over this range of population prevalence

of exposure. These data also indicate that GEM possesses the highest statistical power – over the

competing methods chosen for this investigation – to detect a main effect upon the environmental

factor (lower panel), irrespective of the chosen value in πE .8 Finally, it is worth mentioning here that

in applying the Bonferroni MTP (in lieu of the maxT MTP), for multiple testing correction upon the

GEM methodology (i.e., BRGEM), these data indicate a considerable loss in statistical power can

be incurred when failing to account for the correlation amongst the test statistics, ZjA1
, . . . , ZjAq ,

as shown by the vertical separation between the solid curves within each panel plot of this figure.

An interesting feature – of which amongst all competing methods (BRGEM set aside) is unique

to GEM – is the ability of said approach to identify the correct candidate pattern upon the ap-

propriate simulation condition (i.e., simulations B–F), independently of the obtained p-value. To

illustrate this notion, upon each of the simulation conditions B–F we simulated D = 2K data sets

8Note that pursuant to the setup for simulation D – assessing statistical power for a main effect in the environ-
mental factor (see §4.7.1) – the value of πE is restricted to a maximum of 0.5/0.55 ≈ 0.9.
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Fig. 4.5: Estimated Statistical Power (4.36) to Assess GxE Interaction (Upper Panel) Assuming the
Dominant GMI for πE ∈ (0, 1), and the Main Effect in the Environmental Factor (Lower Panel) for
πE ∈ (0, 0.9), Taking πGj = 0.05, Where the True Underlying FWER Is 5%. Wald-based Methods
Are Depicted by Solid Curves; LRT-based Methods by Heavy Dashed Curves; and, the PCT Method
by the Light Dashed Blue Curve.

at each combination of πE ∈ {0.01k}k=1,...,99 (the index k was limited to the value of 90 upon

simulation D – see footnote 8 above) and πGj ∈ {0.05, 0.10, 0.20, 0.40}, assigning the value of R

within Algorithm 4.1 to 5K. The panel plots shown within Figure 4.6, depict the proportion of the

simulated data sets – amongst those exhibiting some rejected null hypothesis upon the collection

{H(j,1)
0 , . . . ,H

(j,q)
0 }j=m=1 at the 5% FWER level – for which GEM correctly identified the appropri-

ate candidate pattern (y-axis) versus the population prevalence of exposure for the environmental
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factor (x-axis), across simulations B–F (shown by the various colored curves) for select choices in

πGj (panels). Here, for clarity we denote said proportion as the “success rate for GEM” (SRG).

These data indicate that SRG is an increasing function of πE/πGj upon simulations D–F (these

simulations exclude the genetic main effect)/B–C (simulations entailing a main genetic effect), irre-

spective of the value of πGj/πE . These results are not unexpected, because as πE/πGj increases,

the appropriate cells within the 2×6 table (i.e., Table 4.2 with ε = 2 therein) should exhibit a value

in the statistic TjAl increasingly deviating from that expected under H
(j,l)
0

(
E
(
TjAl |H

(j,l)
0

)
= 0
)

,

thereby increasing the evidence in favor of H
(j,l)
a . Finally, upon simulations D (main effect in the

environmental factor)/B-C (main effect in the genetic factor), for a fixed value in πE/πGj the data

suggest SRG to be constant across the values of πGj/πE . These results make sense, in light of the

fact that the genetic and environmental factors are simulated independently of one another.

4.8 Simulation Study: Statistical Power to Detect Cross-Interaction

Gene-environment interactions can portray several different patterns of association, as pre-

viously described within §1.2.1. Of particular interest is the cross-interaction pattern. A cross-

interaction between a binary environmental factor and a genetic factor, for example, will exhibit op-

posite effects within the two exposure groups of the former factor. This pattern of GxE interaction

is prevalent in the literature. For example, in a study of delinquency (phenotype of interest) among

a sample of 1825 high school students, self-reported maltreatment in gender (binary environmental

factor) cross-interacted with the alleles upon a functional 30-base pair repeat polymorphism in the

promoter region (MAOA-V NTR) of the human MAOA gene (genetic factor) [58]. In a case-control

study involving 735 cases of coronary artery disease (phenotype) and 519 healthy controls, gender

and presence of hypertension (environmental factors) cross-interacted with a haplotype of six SNPs

within the AGT gene (genetic factor) [173]. Upon this three-way gene-environment-environment

cross-interaction, risk of coronary artery disease: increased in women with hypertension; decreased

in men with hypertension; and, the haplotype effect was not significant in men nor women without

the presence of hypertension.

It is loosely stated within the article [3] that genetic markers which cross-interact with an envi-

ronmental factor will not show a main genetic effect. This statement is not correct for two reasons.

First, given a significance level, one could find a significant main genetic effect by chance. The state-

ment does not allow for a chance finding and is thus incorrect. Second, although the statement is too

strong to be valid upon all possible ways of modeling cross-interaction (see Table 4.8 for sampled
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data which contradict said statement), it allegorizes that scanning for solely main genetic effects

(e.g., the GWAS approach) may fail to detect genetic-phenotype associations upon those genetic

markers exhibiting cross-interaction with some environmental factor.

Fig. 4.6: Proportion of the Simulated Data Sets – among Those Exhibiting Some Rejected Null
Hypothesis at the 5% Level in the FWER – for Which GEM Correctly Detected the Logical Pattern
(y-axis) Versus the Prevalence of the Environmental Exposure (x-axis), upon Selected Values in πGj
(Panel Plots) for m = 1. Curves for the Main Genetic Effect Are Shown in Blue (Simulation B) and
Red (Simulation C); for the Main Environmental Effect Are Shown in Orange (Simulation D); and
for GxE Interaction Are Shown in Purple (Simulation E) and Black (Simulation F). G = Genetic
Effect; RM = Recessive Genetic Model; DM = Dominant Genetic Model; E = Environmental Effect.
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Table 4.8: Hypothetical Case-Control Sample Showing a Cross-Interaction Pattern of GxE Interac-
tion Between Binary Genetic (G) and Environmental (E) Factors, as Seen by the Opposite Effects
in the Estimates of the Odds Ratio ψ Across the Two Levels of Exposure in E. These Data Exhibit
a Main Genetic Effect, as Seen by the Estimate of ψ Within the Pooled Data Deviating from the
Null Value of One.†

E = 1 E = 0 Pooled
Y = 1 Y = 0 Total Y = 1 Y = 0 Total Y = 1 Y = 0 Total

G = 1 50 100 150 200 100 300 250 200 450
G = 0 100 50 150 100 200 300 200 250 450
Total 150 150 300 300 300 600 450 450 900

ψ̂ = 0.25 ψ̂ = 4 ψ̂ = 1.56

†ψ is the odds ratio of disease (Y = 1), comparing subjects with G = 1 to subjects with G = 0; ψ̂ is the MLE of ψ.

In fact, failure to account for cross-interaction can result in overall poor replicability of genetic-

phenotype associations. For example, when environmental exposures are not considered, associations

are not seen between the alleles of SNP rs2569190 within the CD14 gene and risk of asthma (see §1.2.1

for cross-interaction between this gene and an environmental factor in risk of asthma) [26,134,135,

136]. In light of the importance of the cross-interaction pattern of gene-environment interaction, here

we extend upon the above simulation (§4.7) with the specific aim of investigating the statistical power

of GEM in its ability to detect the cross-interaction pattern of GxE interaction. We conduct this

investigation under conditions for which the genetic factor is always independent of the phenotype

(i.e., a main genetic effect is hereby assumed to not exist), with the intention of illustrating the

aforementioned statement of [3].

4.8.1 Methods

Letting Y be as previously defined – an indicator of disease – we considered a true penetrance

model of the form

logit (Pr (Y = 1|G,E)) = β0 + βgG+ βeE + γgeGE,(4.37)

where G is some genotype coding upon a SNP locus and E = 1 or 0 for respective exposed or

unexposed subjects. For clarity in exposition of concept we considered a dominant genotype coding

at the locus, where G = 1 for carriers of the risk allele and G = 0 for non-carriers. Here, among

unexposed subjects, exp (βg) = ORg is the odds ratio (OR) of disease, comparing carriers of at least

one risk allele with non-carriers; among non-carriers of the risk allele, exp (βe) = ORe is the odds
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ratio of disease, comparing exposed with unexposed subjects; and, exp (γge) = ORge is the ratio

of the genetic odds ratios, comparing exposed with unexposed subjects (i.e., ORg|E=1/ORg|E=0)

– equivalently, ORge is the ratio of the exposure odds ratios, comparing carriers of the risk allele

with non-carriers of the risk allele (i.e., ORe|G=1/ORe|G=0). If this ratio is equal to 1 (equivalently,

γge = 0), we say that there is no interaction between genotype at this locus and the environmental

factor in their synergistic effect towards risk of disease. Figure 4.7 portrays the model (4.37) in the

circumstance of cross-interaction between E and G.

To remain consistent with the notation of §4.7.1, let πG denote the population MAF at the locus.

We assumed that genotypes at the locus are in Hardy-Weinberg equilibrium within the population

(i.e., under the dominant GMI, Pr (G = 1) = 1− (1− πG)
2
), and we assumed that the genetic and

environmental factors are independent within the population. We noted that the model (4.37) could

be written as

logit (Pr (Y = 1|G,E = 0)) = β0 + βgG, and

logit (Pr (Y = 1|G,E = 1)) = (β0 + βe) + (βg + γge)G,

which, for x ∈ {0, 1}, in turn can be expressed by

logit (Pr (Y = 1|G,E = x)) = βx0 + βxgG,(4.38)

where

β00 = β0, β0g = βg, β10 = β0 + βe, and β1g = βg + γge.

To invoke a cross-interaction effect between G and E, we assumed the slope parameters of the

model (4.38) adhered to the relationship 0 ≤ β1g = −β0g. Now, since we assumed G and E are

independent, for g ∈ {0, 1}, it holds

Pr (Y = 1, G = g) =
∑

x∈{0,1}

Pr (Y = 1, G = g,E = x)

=
∑

x∈{0,1}

Pr (Y = 1|G = g,E = x) Pr (G = g) Pr (E = x) .
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Fig. 4.7: Cross-Interaction Between Binary Environmental and Genetic Factors with Respect to the
Assumed Penetrance Model of Disease Risk (4.37). The Blue and Red Lines Represent Risk among
Respective Exposed and Unexposed Subjects Within the Population.

Conditioning the left-hand-side of this expression on G, we get

Pr (Y = 1|G = g) =
∑

x∈{0,1}

Pr (Y = 1|G = g,E = x) Pr (E = x)

=
∑

x∈{0,1}

(
exp (βx0 + βxgG)

1 + exp (βx0 + βxgG)

)
Pr (E = x) .(4.39)
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Since we desired to illustrate cross-interaction between G and E, upon a genetic factor which is as-

sumed independent of Y , we evaluated sufficient conditions upon (4.39) for which Pr (Y = 1|G = 0) =

Pr (Y = 1|G = 1) (i.e., Y and G are independent if this equality holds). It can be readily shown –

by way of (4.39) – that Y and G are independent if one of the following two conditions holds: (1)

β01 = β11 = 0; or, (2)

Pr (E = 1) =
expit (β0)− expit (β0 + βg)

expit (β0) + expit (β0 + βg + βe + γge)− expit (β0 + βg)− expit (β0 + βe)
,(4.40)

where expit(·) = exp(·) (1 + exp(·))−1
. The former condition implies that βg = γge = 0, for which

GxE interaction would not be prevalent. Since we desired a cross-interaction effect between G and

E, we assumed the latter condition held.

To evaluate the power to detect cross-interaction using GEM, we conducted a simulation anal-

ysis. Throughout the simulation, we assumed a sample size of n = 1K and – for sake of simplicity

– held the parameter β10 constant at the value logit(0.4). We simulated data in coherence with

the model (4.38), where we considered a range of values for MAF, πG ∈ {0.05, 0.10, 0.20}, effect

sizes in E, βe ∈ {0.0,−0.1,−0.25}, and GxE interaction effects, γge ∈ {−2βe + 0.02k}k=0,...,50. The

parameters β0 and βg for the model (4.38) were recovered by referencing the respective relations

β0 = logit(0.4) − βe and βg = −γge/2; the population exposure prevalence, Pr (E = 1), was calcu-

lated in coherence with (4.40). For each parameterization in πG, βe, and γge, a total of D = 10K

data sets were simulated mutually independent of one another. Upon each simulated data set, the

adjusted p-value p̃jlσ (4.12) was estimated by (4.18), taking R = 10K permutations within Algorithm

4.1, for all l = 1, . . . , 11 and j = m = 1. We compared the statistical power of GEM to that of the

competing methods PCT, BLRT, and GLRT, where these methods are as outlined within §4.7.1.

The assessment of the main effect in G was carried out using the Wald-based GEM test statistic

upon candidate pattern nine (ZjA9) – since the dominant genotype coding was assumed for G –

and referencing the standard normal distribution for appropriate p-value computation. Statistical

significance was set at the 5% level in the FWER, and statistical power was estimated by way of

expression (4.36).

4.8.2 Results

Figure 4.8 shows the estimated statistical power to detect: GxE interaction (various blue and

red curves) for the competing methods, at the 5% level in the FWER; and, the main effect in the
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genetic factor (black curves) at the nominal 5% significance level. As expected, these data indicate

that the statistical power to detect a genetic main effect is at the nominal 5% level in the Type

I error rate, irrespective of the chosen values upon the elements within the triplicate (πG, βe, γge),

as shown by the black curves (essentially horizontal lines) lying at the 5% power level within each

of the panel plots of the figure. Thus, these data confirm the notion that a GxE interaction may

in fact be prevalent between the genotypes of some SNP locus and exposure status of some binary

environmental factor – in the particular form of cross-interaction – where genotype is independent of

the phenotype (i.e., a phenotype-genotype association is not necessary for GxE interaction). Under

these conditions, by testing for solely main genetic effects (e.g., the GWAS approach), one will most

surely fail in detecting GxE interaction. That is, only by a chance finding will genotype at such

loci be deemed statistically significantly associated with phenotype, whereupon further study upon

these loci – which could include testing for GxE interaction – would be considered. These data

also suggest that the statistical power of GEM, for the most part, to be: at least as high as that of

the competing methods when no marginal effect9 in E is present (i.e., βe = 0) upon the multiple

logistic regression model (4.37), as depicted by the first column panel plots within the figure; to be

on par with the competing methods when a small marginal effect in E is present (i.e., βe = −0.1)

upon said regression model, as shown by the second column panel plots within the figure; and, to

be slightly lower that of the competing methods when a moderate marginal effect in E is present

(i.e., βe = −0.25) upon the regression model, as illustrated by the third column panel plots within

the figure. Interestingly, when compared to the other competing methods, the statistical power

for the BLRT and GLRT methods seem to suffer upon minute values in βe and πG, respectively;

the statistical power for each of these methods improves for increasing values in these respective

parameters. These observations make sense in light of how these competing methods were defined

within §4.7.2. For example, under the assumed dominant genotype coding, the regression coefficients

of the GLRT model (4.34) reduce to the assumed penetrance model (4.37). By construction of our

cross-interaction model, the power to detect a main effect in the environmental factor is expected to

be considerably higher amongst carriers of the risk allele when compared to non-carriers of the allele

whenever γge > 0 – note: this notion can be seen visually by way of Figure 4.7. In turn, all else being

equal, whenever γge > 0 we expect the power to detect a main effect in the environmental factor

to depend upon the population minor allele frequency at the locus – the larger the value in πG, the

9To be clear in discussion, a marginal effect in a covariate is assumed to be the effect (i.e., magnitude of association
with the phenotype) due to the covariate, after accounting for the effects of all other covariates of the model.
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larger we expect the power to detect the main effect in the environmental factor. In other words,

not only is genotype considered an effect modifier for the phenotype-environment relationship, but

the degree to which it is an effect modifier for the relationship depends upon the distribution of

genotype frequencies at the locus.

Fig. 4.8: Estimated Statistical Power (y-axis) to Detect GxE Interaction or the Main Effect in the
Genetic Factor Versus the Interaction Parameter (γge) of the Assumed Penetrance Model (4.37)
(x-axis) for a Range of Environmental Marginal Effects (βe; Columns upon the Panel Plots) and
Locus Minor Allele Frequencies (πG; Rows upon the Panel Plots). Assumed FWER Is 5%; GEM
Depicted by Solid Blue Curves; LRT-based Methods by Heavy Dashed Curves; PCT Method by the
Light Dashed Blue Curves; and the Power to Detect the Main Genetic Effect Is Depicted by the
Black Curves.
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From a mathematical vantage point, if δ represents the difference between Pr (Y = 1|E = x) for

x taking the respective values zero and one, then in accordance with the model (4.37), it is

δ = pG (expit (β0 + βg)− expit (β0 + βg + βe + γge)) + (1− pG) (expit (β0)− expit (β0 + βe))

= pG (expit (β0 − γge/2)− expit (β0 + βe + γge/2)) + (1− pG) (expit (β0)− expit (β0 + βe)) ,

where pG = Pr (G = 1) = 1− (1− πG)
2
. Differentiating this expression with respect to pG, we have

dδ

dpG
= expit (β0 − γge/2) + expit (β0 + βe)− expit (β0 + βe + γge/2)− expit (β0) ≤ 0,

for any fixed triplicate (β0, βe, γge) of our simulation study. Since δ = 0 represents the null hypothesis

of no association between the phenotype and the environmental factor, this result implies that the

statistical power to detect the main effect for the environmental factor is an increasing function

in pG (so also an increasing function in πG by a Chain Rule result). Therefore, the simulation

results for the GLRT method are confirmed – namely, increasing statistical power for this method

for increasing values in πG – both from a model (4.37) perspective and a mathematical perspective.

Figure 4.9 shows the estimated statistical power for GEM to detect GxE interaction or the main

effect in the environmental factor by candidate pattern at the 5% level in the FWER, where these

candidate patterns are as defined within Table 4.1, taking ε = 2 therein for a binary environmental

factor. Unsurprisingly, these data indicate that the statistical power to detect GxE interaction is

highest for GEM upon candidate patterns LA5
= (G ∈ {1, 2}) ∧ (E = 0) and LA6

= (G ∈ {1, 2}) ∧

(E = 1), since these candidate patterns pertain to GxE interaction for the dominant genetic model.

Interestingly, for fixed marginal effects in βe and γge, these data suggest an increasing trend in the

statistical power to detect the main effect in E for increasing πG. This phenomenon can be explained

by the arguments presented within the preceding paragraph for the GLRT competing method, and

also empirically by comparing the magnitude in the conditional probability

Pr (E = 1|Y = y) =

∑
g∈{0,1} Pr (Y = y|E = 1, G = g) Pr (E = 1) Pr (G = g)∑
x,g∈{0,1} Pr (Y = y|G = g,E = x) Pr (E = x) Pr (G = g)

,

for each y ∈ {0, 1}, whereupon one would substitute the appropriate parameter values – from those

given upon the simulation conditions, as defined within the final paragraph of §4.8.1 – within this

expression. Taking βe = 0 and γge = 1.0, for example, we find that the absolute value in the
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difference Pr (E = 1|Y = 0)− Pr (E = 1|Y = 1) to equal 0.024, 0.047, and 0.088, for the respective

values of πG equal to 0.05, 0.10, and 0.20. This suggests that the magnitude in the association

between Y and E to be increasing for increasing πG, which is precisely the trend seen within the

first column panel plots of the figure for this association.

Fig. 4.9: Estimated Statistical Power (y-axis) for GEM to Detect GxE Interaction or the Main
Effect in the Environmental Factor by Candidate Pattern Versus the Interaction Parameter (γge)
of the Assumed Penetrance Model (4.37) (x-axis) for a Range of Environmental Marginal Effects
(βe; Columns upon the Panel Plots) and Locus Minor Allele Frequencies (πG; Rows upon the Panel
Plots), at the 5% Level in the FWER. The Candidate Pattern(s) Corresponding to: GxE Interaction
Are Depicted by LAl , l = 1, . . . , 8; the Main Effect in the Environmental Factor Is Depicted by LA11

,
Where the LAl Are Specified Within Table 4.1.
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4.9 Simulation Study: Control of the FWER under Partial Null Hypotheses

Insofar as GEM can be assumed to control the FWER only in the weak sense (see §4.5 and

Proposition A.9), it is important for one to keep in mind that the veracity upon the power compar-

isons of §4.7 and §4.8, assumes that our proposed method properly controls the FWER at the 5%

level under the appropriate partial null hypothesis thereto. For example, since our data setup for

each of the aforementioned simulation studies assumes the genetic and environmental factors to be

mutually independent, when assessing for a main effect in the environmental factor upon simulation

D of the former simulation study, the null hypotheses involving the candidate patterns upon the

main effect in the genetic factor, namely H
(j,9)
0 and H

(j,10)
0 , are in fact true, whereas H

(j,l)
0 , for all

l ∈ {1, . . . , 8, 11} are in fact false. In this circumstance, unless GEM properly controls the FWER

at the 5% level upon these two true null hypotheses (a partial null hypothesis), the credibility in

the statistical power for GEM to detect the main effect in the environmental factor is essentially

compromised, and the statistical power comparisons could be biased in favor of GEM over some

competing methods. Here, we demonstrate [empirically] that GEM appears to properly control the

FWER at the 5% level amongst the simulation studies conducted within §4.7 and §4.8, for which

j = m = 1. Furthermore, we extend upon these simulation studies and examine the ability of GEM

to properly control the FWER under several different scenarios governing the elements over the

multinomial probability vectors πj0 and πj1 (see (4.4)), each scenario in which entails some partial

null hypothesis(es) over the collection {H(j,1)
0 , . . . ,H

(j,11)
0 }j=m=1.

4.9.1 Methods

Since we assumed j = m = 1, here for clarity in discussion we drop the superscript j from the

notation upon the null hypothesis H
(j,l)
0 , and the subscript from: the vector πjy; each element within

this vector; the unadjusted p-value pjl; and, the adjusted p-value p̃jlσ (4.12) and its permutation

sampling estimate p̃∗jlσ (4.18). Specifically, for all l = 1, . . . , q = 11, we define H
(l)
0 , pl, p̃lσ, and

p̃∗lσ to be equivalent to H
(j,l)
0 , pjl, p̃jlσ, and p̃∗jlσ, respectively, and for each y ∈ {0, 1} = Y and

k ∈ X2, we define πy = (π1y, . . . , π6y) = πjy, where πky = Pr (X = k|Y = y), such that the random

variable X is as given by (4.16). Based upon the results of Proposition A.9, we considered partial

null hypotheses which encompass the true null hypotheses H
(3)
0 and H

(9)
0 . That is, if H̃p

0 denotes

the true partial null hypothesis over the collection of null hypotheses {H(1)
0 , . . . ,H

(11)
0 }, it is

{H(3)
0 , H

(9)
0 } ⊆ H̃

p
0 .
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We considered a biallelic SNP locus with population minor allele frequency (MAF) πG, and a binary

environmental factor with a population prevalence of exposure given by πE = Pr (E = 1). We

assumed the genotype frequencies at the locus adhere to Hardy-Weinberg equilibrium (HWE) within

the population, and that the genotypes at the locus are independent of the environmental factor.

To generate partial null hypotheses, we considered two scenarios governing the probability

vectors π0 and π1: (a) we assumed that genotype frequencies at the locus adhere to HWE among

population controls, and that the elements within the vector π1 could be expressed by

πk1 =


πk0 + δ, if k ∈ {1, 5}

πk0 − δ, if k ∈ {2, 4}

πk0, if k ∈ {3, 6}

,(4.41)

for some real value of δ, such that 0 ≤ πk1 ≤ 1 for all k ∈ X2. This setup for the elements over

π1 ensured that {H(3)
0 , H

(9)
0 } ⊆ H̃

p
0 , and assumed – among other things – that risk of disease is the

same, comparing subjects carrying two copies of the risk allele at the locus to those carrying not

more than one copy of the risk allele at the locus. In fact, one can trivially show that

H̃p
0 = {H(3)

0 , H
(4)
0 , H

(7)
0 , H

(8)
0 , H

(9)
0 , H

(10)
0 , H

(11)
0 };(4.42)

and, (b) we assumed that genotype frequencies at the locus adhere to HWE among population

controls, and that the elements within the vector π1 could be expressed by

πk1 =



πk0 + δ1, if k ∈ {1}

πk0 − δ1, if k ∈ {2, 4}

πk0 + δ2, if k ∈ {3}

πk0 + δ3, if k ∈ {5}

πk0 + δ1 − δ2 − δ3, if k ∈ {6}

,(4.43)

for real numbers δ1, δ2, and δ3, such that 0 ≤ πk1 ≤ 1 for all k ∈ X2. This setup for the elements

over π1 ensured that {H(3)
0 , H

(9)
0 } ⊆ H̃

p
0 , and – when compared to the first setup of π1 (4.41) –

allowed for greater generalizability in the behavior of the control over the FWER for GEM.

Given the above assumptions governing the population characteristics over the random variables

Y and – by way of G and E – X, to evaluate the integrity of GEM in its ability to control the FWER
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under partial null hypotheses, we conducted a simulation study. As with the previous simulation

studies (§4.7 and §4.8), here we assumed a sample size of n = 1K per simulated data set. We also

assumed a balanced case-control study design, so that n0 = n1 = 500. We considered a range of

values for MAF, πG ∈ {0.05, 0.10, 0.20, 0.40}, and a range of values for the exposure prevalence,

πE ∈ {0.10, 0.20, 0.30, 0.40, 0.50}. Upon the first scenario governing the probability vectors π0 and

π1 (4.41), for each combination of πG and πE we considered two values for δ – one negative and

one positive – at the plausible extremities over the real interval [−0.1, 0.1]. For example, consider

πG = 0.05 and πE = 0.10. Under HWE and G-E independence, it follows that

π11 = π10 + δ = Pr (G = 0) Pr (E = 0) + δ = (1− πG)
2

(1− πE) + δ = 0.8123 + δ

π21 = π20 − δ = Pr (G = 1) Pr (E = 0)− δ = 2πG (1− πG) (1− πE)− δ = 0.0855− δ

π41 = π40 − δ = Pr (G = 0) Pr (E = 1)− δ = (1− πG)
2
πE − δ = 0.09025− δ

π51 = π50 + δ = Pr (G = 1) Pr (E = 1) + δ = 2πG (1− πG)πE + δ = 0.0095 + δ

,

so that δ is confined to lie within the interval [−0.0095, 0.0855]. Thus, for this example, we considered

δ ∈ {−0.0095, 0.0855}. Overall, we considered a total of 40 ordered triples in (πG, πE , δ) for the

first scenario governing the probability vectors π0 and π1. Upon the latter scenario governing these

probability vectors (4.43), we carried out the following procedure:

1. For each combination of πG and πE , we formulated the vector π0 under the assumptions of

HWE and G-E independence, and considered assigning plausible ordered triples in (δ1, δ2, δ3)

over the collection

∆ =
{

(a1, a2, a3) ∈ R3 : ai = −0.10 + 0.01si, where si = 0, . . . , 20, for all i = 1, 2, 3
}
.

2. We substituted each element of this collection within (4.43) and determined whether the fol-

lowing condition held: 0 ≤ π1k ≤ 1 for all k ∈ X2. Let ∆ (πG, πE) ⊆ ∆ denote those elements

of ∆ which satisfied said condition.

3. For each element within the collection ∆ (πG, πE), we formulated the vector π1 and determined

its accompanying partial null hypothesis, H̃P
0 . Let H̃p

0 (πG, πE) denote the collection of unique

partial null hypotheses upon those constructed over the collection ∆ (πG, πE).

4. We considered H̃p
0 ∈ H̃

p
0 (πG, πE). Now, since

{
H

(3)
0 , H

(9)
0

}
⊆ H̃p

0 , we were particularly
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interested in the π1 – formulated from some element within ∆ (πG, πE), and yielding the

partial null hypothesis H̃p
0 – for which the magnitude of the difference

Cov
(
Z∗A3

, Z∗A9
|H̃p

0

)
− Cov

(
Z∗A3

, Z∗A9
|H0

)
(4.44)

is most extreme, where Z∗Al denotes the test statistic (4.10) under H
(l)
0 , with (4.7) substituted

in lieu of (4.8) therein. We were interested in these π1, because extreme values of (4.44)

signify that the joint distribution of the test statistics Z∗A3
and Z∗A9

under H̃p
0 is very different

from that under H0. That is, if one could assign a magnitude upon the extent to which

the subset pivotality condition is violated, in this circumstance – with regard to solely the

joint distribution of the test statistics Z∗A3
and Z∗A9

– said condition is ‘violated to an extreme

extent,’ and we conjectured that this could have an adverse consequence towards GEMs ability

to properly control the FWER under H̃p
0 . So, for each H̃p

0 ∈ H̃
p
0 (πG, πE), we selected a pair

of ordered triples from ∆ (πG, πE), such that: each ordered triple yielded H̃p
0 ; and, collectively

the pair of ordered triples yielded the most extreme negative and positive values of (4.44),

respectively, amongst all ordered triples of ∆ (πG, πE) yielding H̃p
0 .

Overall, we considered a total of 408 ordered quintuples in (πG, πE , δ1, δ2, δ3) for the second scenario

governing the probability vectors π0 and π1. Table 4.9 summarizes the distributions of the collections

∆ (πG, πE) and H̃p
0 (πG, πE) for each combination of πG and πE . For each ordered pair (πG, πE), this

provided us at least five unique partial null hypotheses to consider (fourth column) and provided us

with a wide range to the size of the elements (i.e., the number of hypotheses included within H̃p
0) of

the collection H̃p
0 (πG, πE) (final column). For example, consider πG = 0.05 and πE = 0.10. Here,

H̃p
0 (πG, πE) =

{
{H(3)

0 , H
(9)
0 }, {H

(3)
0 , H

(8)
0 , H

(9)
0 }, {H

(3)
0 , H

(7)
0 , H

(9)
0 , H

(11)
0 },

{H(3)
0 , H

(5)
0 , H

(6)
0 , H

(8)
0 , H

(9)
0 }, {H

(3)
0 , H

(4)
0 , H

(7)
0 , H

(8)
0 , H

(9)
0 , H

(10)
0 , H

(11)
0 }

} ,

(4.45)

the collection in which includes five unique and varying size partial null hypotheses to consider. In

contrast, the first scenario governing the probability vectors π0 and π1 (4.41), provided us with only

a single common partial null hypothesis (4.42) to consider for each-and-every ordered pair (πG, πE).

For each of the 40 ordered triples (πG, πE , δ) and each of the 408 ordered quintuples

(πG, πE , δ1, δ2, δ3), we simulated a total of D = 2K mutually independent data sets. For each data
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set, we estimated the adjusted p-value p̃lσ (4.12) with (4.18), for all l = 1, . . . , 11, taking R = 5K

permutations within Algorithm 4.1. We considered rejection of null hypothesis H
(l)
0 – under the

assumption that the complete null hypothesis held (see §4.4) – if and only if the estimate of the

adjusted p-value p̃lσ assumed a value not larger than α̃F, for all l = 1, . . . , 11, some α̃F ∈ (0, 1) –

here, α̃F is the user assumed level in the FWER being controlled under GEM. If αF and βF denote

the respective true underlying FWER and Type II error rates for GEM, at the assumed α̃F FWER

level for a given ordered triple (πG, πE , δ) or ordered quintuple (πG, πE , δ1, δ2, δ3), we estimated these

true parameters by their respective MLEs

α̂F =

∑
d Vd
D

,(4.46)

and

β̂F =

∑
d Ud
D

,(4.47)

where for data set d, d = 1, . . . , D,

Vd = I
(
p̃∗lσ ≤ α̃F, for some H

(l)
0 ∈ H̃

p
0

)
∼ Bernoulli (αF) , and

Ud = I
(
p̃∗lσ > α̃F, for all H

(l)
0 ∈ H0\H̃p

0

)
∼ Bernoulli (βF) .

Statistical significance was set at the 5% level in the FWER (i.e., α̃F = 0.05).

4.9.2 Results

Table 4.10 provides summary measures for the 40 ordered triples (πG, πE , δ), upon the simulation

conducted over the first scenario governing the probability vectors π0 and π1 (4.41). These data

indicate that GEM controls the FWER at the 5% level under the partial null hypothesis H̃p
0 (4.42),

since for each ordered triple (πG, πE , δ): the observed FWER (α̂F; fifth column) lies below the value

0.05; and, the corresponding 95% exact Clopper-Pearson confidence interval for αF either covers

the value of 0.05, or encapsulates values below that of 0.05. Moreover, the data suggest GEM

controls the FWER at the 5% level, even for extreme differences in the joint distribution between

the test statistics Z∗A3
and Z∗A9

under the assumed partial null hypothesis (4.42) and the complete

null hypothesis (fourth column). For example, consider (πG, πE , δ) = (0.05, 0.10, 0.08). Under H̃p
0

(4.42) we find Cov
(
Z∗A3

, Z∗A9

)
= 0.50, while under H0 we find the value of this covariance to be
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0.02. The joint distribution between the test statistics Z∗A3
and Z∗A9

is considerably different under

H̃p
0 and H0, yet the data indicate that GEM controls the FWER at the 5% level (α̂F = 0.024; 95%

CI for αF (0.017, 0.031)).

Table 4.9: Summary of the Partial Null Hypotheses Considered for the Second Scenario Governing
the Probability Vectors π0 and π1 (4.43).†

πG πE n (∆ (πG, πE)) n
(
H̃p

0 (πG, πE)
)

n
(
H̃p

0

)
: H̃p

0 ∈ H̃
p
0 (πG, πE)

0.05 0.10 165 5 {2, 3, 4, 5, 7}
0.20 165 8 {2, 3, 4, 5, 7, 8}
0.30 165 9 {2, 3, 4, 5, 7, 8}
0.40 165 9 {2, 3, 4, 5, 7, 8}
0.50 165 9 {2, 3, 4, 5, 7, 8}

0.10 0.10 220 8 {2, 3, 4, 5, 7, 8}
0.20 550 9 {2, 3, 4, 5, 7, 8}
0.30 781 9 {2, 3, 4, 5, 7, 8}
0.40 1056 9 {2, 3, 4, 5, 7, 8}
0.50 1210 9 {2, 3, 4, 5, 7, 8}

0.20 0.10 455 12 {2, 3, 4, 5, 6, 7, 8}
0.20 1474 12 {2, 3, 4, 5, 6, 7, 8}
0.30 2066 12 {2, 3, 4, 5, 6, 7, 8}
0.40 2294 12 {2, 3, 4, 5, 6, 7, 8}
0.50 2499 12 {2, 3, 4, 5, 6, 7, 8}

0.40 0.10 1275 12 {2, 3, 4, 5, 6, 7, 8}
0.20 4211 12 {2, 3, 4, 5, 6, 7, 8}
0.30 6090 12 {2, 3, 4, 5, 6, 7, 8}
0.40 6260 12 {2, 3, 4, 5, 6, 7, 8}
0.50 6367 12 {2, 3, 4, 5, 6, 7, 8}

†n(·) represents the cardinality of the set (·).

In light of the fact that many estimates of αF within this table assume values considerably smaller

than expected (namely, 0.05), one might be inclined to conjecture that GEM is overly conservative

in its control of the FWER at the 5% level. However, this is likely not the circumstance, and can

be attributed to the underlying characteristics in which the maxT MTP controls the FWER under

the partial null hypothesis H̃p
0 (4.42). To see this, assuming the unadjusted p-value Pl – for test

statistic (4.10) – is distributed as U(0, 1) under H
(l)
0 , for all H

(l)
0 ∈ H

p
0 , some Hp

0 ⊆ H0, here we note

that the FWER for the Bonferroni MTP is given by

αF = Pr (V ≥ 1|Hp
0) = Pr

 ⋃
H

(l)
0 ∈H

p
0

{PB
l ≤ α̃F}

 ≤ ∑
H

(l)
0 ∈H

p
0

Pr

(
Pl ≤

α̃F

11

)
≤ n (Hp

0) α̃F

11
,(4.48)

where V denotes the number of Type I errors committed in testing the partial null hypothesis Hp
0 ,
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PB
l is the Bonferroni adjusted p-value for null hypothesis H

(l)
0 , and n(·) denotes the cardinality of

the collection (·).

Table 4.10: Estimated Family-wise Type I Error Rate and Statistical Power for GEM under Partial
Null Hypotheses over Various Parametrizations of the Ordered Triple (πG, πE , δ)

†
.

πG πE δ Cov
(
Z∗A3

, Z∗A9

)
Observed FWER (95% CI for αF) Power (1− β̂F)

0.05 0.10 −0.01 −0.03/0.02 0.044 (0.035, 0.053) 0.30
0.20 −0.02 −0.06/0.02 0.034 (0.026, 0.042) 0.88
0.30 −0.03 −0.09/0.01 0.034 (0.026, 0.043) 0.97
0.40 −0.04 −0.12/0.01 0.021 (0.015, 0.028) 1.00
0.50 −0.05 −0.15/0.01 0.027 (0.020, 0.035) 1.00

0.10 0.10 −0.02 −0.01/0.06 0.044 (0.035, 0.054) 0.77
0.20 −0.04 −0.07/0.04 0.033 (0.026, 0.042) 0.99
0.30 −0.05 −0.12/0.03 0.040 (0.032, 0.050) 1.00
0.40 −0.07 −0.16/0.03 0.042 (0.033, 0.051) 1.00
0.50 −0.09 −0.21/0.02 0.030 (0.023, 0.038) 0.93

0.20 0.10 −0.03 0.04/0.14 0.043 (0.035, 0.053) 1.00
0.20 −0.06 −0.06/0.10 0.030 (0.023, 0.038) 1.00
0.30 −0.10 −0.13/0.08 0.033 (0.026, 0.042) 1.00
0.40 −0.10 −0.15/0.06 0.032 (0.024, 0.040) 1.00
0.50 −0.10 −0.16/0.05 0.035 (0.027, 0.043) 0.98

0.40 0.10 −0.05 0.14/0.25 0.042 (0.034, 0.052) 1.00
0.20 −0.10 −0.01/0.20 0.033 (0.026, 0.042) 1.00
0.30 −0.10 −0.04/0.17 0.037 (0.029, 0.046) 1.00
0.40 −0.10 −0.06/0.14 0.024 (0.017, 0.031) 1.00
0.50 −0.10 −0.09/0.12 0.032 (0.024, 0.040) 1.00

0.05 0.10 0.08 0.50/0.02 0.024 (0.017, 0.031) 1.00
0.20 0.08 0.33/0.02 0.023 (0.016, 0.030) 1.00
0.30 0.07 0.25/0.01 0.027 (0.020, 0.035) 1.00
0.40 0.06 0.21/0.01 0.029 (0.022, 0.037) 1.00
0.50 0.05 0.17/0.01 0.028 (0.021, 0.036) 1.00

0.10 0.10 0.08 0.39/0.06 0.035 (0.027, 0.044) 1.00
0.20 0.10 0.36/0.04 0.034 (0.026, 0.042) 1.00
0.30 0.10 0.31/0.03 0.032 (0.024, 0.040) 1.00
0.40 0.10 0.28/0.03 0.032 (0.025, 0.041) 1.00
0.50 0.09 0.25/0.02 0.041 (0.032, 0.050) 1.00

0.20 0.10 0.06 0.33/0.14 0.031 (0.024, 0.040) 1.00
0.20 0.10 0.35/0.10 0.034 (0.026, 0.042) 1.00
0.30 0.10 0.30/0.08 0.040 (0.031, 0.049) 1.00
0.40 0.10 0.28/0.06 0.034 (0.026, 0.043) 1.00
0.50 0.10 0.26/0.05 0.033 (0.025, 0.041) 1.00

0.40 0.10 0.04 0.34/0.25 0.045 (0.036, 0.055) 1.00
0.20 0.07 0.36/0.20 0.038 (0.030, 0.047) 1.00
0.30 0.10 0.38/0.17 0.034 (0.026, 0.043) 1.00
0.40 0.10 0.35/0.14 0.038 (0.030, 0.047) 1.00
0.50 0.10 0.33/0.12 0.043 (0.034, 0.052) 1.00

†The null hypotheses H
(l)
0 , for l ∈ {3, 4, 7, 8, 9, 10, 11}, are in fact true for the given parameterizations in (πG, πE , δ)

within this table (see (4.42)); Depicted value of Cov
(
Z∗A3

, Z∗A9

)
is calculated under H̃p

0/H0, where Z∗Al
is defined by

(4.44); 95% confidence intervals (CI) for αF are exact Clopper-Pearson; Assumed FWER is 5% (α̃F = 0.05).
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Substituting α̃F = 0.05 and H̃p
0 (4.42) within (4.48), we find that the Bonferroni MTP controls the

FWER at a level not exceeding 0.032. This apparent conservative control of the FWER for the

Bonferroni MTP under H̃p
0 can be attributed to its underlying characteristics for achieving strong

control of the FWER, as seen through (4.48). A similar argument for the maxT MTP can explain

the apparent conservative estimates of αF given within the table (Table 4.10). Finally, these data

suggest that GEM controls the FWER at the 5% level, irrespective of the statistical power to detect

true associations, as seen by the variety of estimates within the final column of the table.

Table 4.11 provides summary measures for the 408 ordered quintuples (πG, πE , δ1, δ2, δ3), for the

simulation conducted over the second scenario governing the probability vectors π0 and π1 (4.43).

Although some estimates of αF suggest GEMs control of the FWER at a level exceeding the 5%

level (e.g., max{α̂F} = 0.056 for (πG, πE) = (0.05, 0.30)), after accounting for sampling variation,

these data indicate that GEM controls the FWER at the 5% level, insofar as all 95% confidence

intervals for αF, either: cover the value 0.05; or, cover values strictly falling below that of 0.05.

The fourth column of the table provides the average of α̂F for the selected pair(s) of ordered triples

(δ1, δ2, δ3) from ∆ (πG, πE) yielding a partial null hypothesis H̃p
0 ∈ H̃

p
0 (πG, πE) by value of n

(
H̃p

0

)
,

such that the first and second elements of the accompanying superscript indicate the respective

values of n
(
H̃p

0

)
and the number of selected pair(s) of ordered triples (δ1, δ2, δ3) from ∆ (πG, πE)

yielding a partial null hypothesis comprised of n
(
H̃p

0

)
true null hypotheses.10 For example, consider

πG = 0.05 and πE = 0.10, for which H̃p
0 (πG, πE) is given by (4.45). So, the value 0.024(2,1) given

in the table, implies that the arithmetic average of the two values in α̂F – corresponds to the

single (second superscript element) selected pair of ordered triples (δ1, δ2, δ3) from ∆ (πG, πE) with

n
(
H̃p

0

)
= 2 (first superscript element; i.e., H̃p

0 = {H(3)
0 , H

(9)
0 }) – is equal to 0.024. For the most

part, the data indicate that [average] α̂F is an increasing function in n
(
H̃p

0

)
(the initial element

upon the superscripts) for any given ordered pair (πG, πE), particularly for values in πG ≥ 0.10 and

πE ≥ 0.20. This result is not unexpected and can be explained by an analogous argument to that

presented above encompassing (4.48). Specifically, for a fixed value of α̃F, the upper bound of said

expression is increasing in n
(
H̃p

0

)
. In this circumstance, we expect estimates of αF to be increasing

in n
(
H̃p

0

)
for the Bonferroni MTP – so also, the maxT MTP – and the data precisely support this

notion (through the arithmetic mean of the α̂F). Finally, these data support the notion that GEM

10For a given ordered pair (πG, πE), note that: taking the union of the initial element over the superscripts,
yields the corresponding set depicted upon the final column of Table 4.9; and, summing over the second element of
the superscripts yields the corresponding cell value depicted within the fourth column of said table.
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controls the FWER at the 5% level, irrespective of the statistical power to detect true associations,

as seen by the assortment of estimates within the final column of the table.

Table 4.12 summarizes GEMs control over the FWER at the assumed 5% level (α̃F = 0.05),

upon: the final simulation study conducted within §4.7 (i.e., the investigation of the “success rate

for GEM” (SRG) – see final paragraph within §4.7.4), depicted by the first half of the table; and,

the simulation conducted within §4.8 (i.e., the investigation of GEMs ability to detect the cross-

interaction pattern of GxE interaction), depicted by the latter half of the table. These data indicate

that GEM controls the FWER at the 5% level, upon the simulations summarized within the table,

since: nearly all of the estimates of αF lie below the value of 0.05 (the only exceptions being

α̂F ≥ 0.05 upon the simulations conducted over §4.8, taking γge = βe = 0 therein); and, after

considering sampling variation, all 95% exact Clopper-Pearson confidence intervals for αF either

cover the value 0.05, or cover values strictly falling below that of 0.05. These observations imply

that, when comparing the statistical power of GEM to that of competing methods within these

simulation studies, the veracity in these comparisons are essentially sound. Furthermore, the fact

that the estimates of αF assume values approximately equal to/slightly exceeding that of α̃F = 0.05

upon the simulations conducted over §4.8, for which γge = βe = 0, can be attributed to the fact that

the complete null hypothesis is in fact true in these circumstances. Finally, the apparent conservative

control of the FWER at the 5% level upon the maxT MTP (e.g., the average α̂F = 0.007, taking

πG = 0.40 for the main genetic effect of the dominant genetic model) can be explained by an

analogous argument to that presented above regarding (4.48).

4.10 Application

4.10.1 Methods

To illustrate application of our proposed GEM method in practice, we applied it against two

population-based case-control study samples. The first, a study of colon cancer, included n1 = 1555

cases of cancer and n0 = 1956 healthy controls; the second, a study of rectal cancer, included

n1 = 754 cases of cancer and n0 = 959 healthy controls. Details encompassing the sampling char-

acteristics for these studies can be found within the respective articles [174, 175]. A candidate

pathway, consisting of genes involved in modulating reactive oxygen species (ROS; chemically reac-

tive molecules carrying oxygen), was constructed over the four genes: eosinophil peroxidase (EPX);

myeloperoxidase (MPO); hypoxia-inducible factor-1A (HIF1A); and nitric oxide synthase (NOS2A)
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Table 4.11: Estimated Family-wise Type I Error Rate and Statistical Power for GEM under Partial
Null Hypotheses over Various Parametrizations of the Ordered Quintuple (πG, πE , δ1, δ2, δ3)

†
.

max{α̂F} Average

πG πE (95% CI for αF) α̂
(a)
F Power (1− β̂F)

0.05 0.10 0.039 (0.031, 0.049) 0.024(2,1), 0.023(3,1), 0.024(4,1) 0.70
0.039(5,1), 0.027(7,1)

0.20 0.047 (0.038, 0.057) 0.018(2,1), 0.021(3,1), 0.023(4,2) 0.71
0.038(5,2), 0.029(7,1), 0.046(8,1)

0.30 0.056 (0.046, 0.067) 0.018(2,1), 0.022(3,1), 0.029(4,3) 0.81
0.036(5,2), 0.022(7,1), 0.046(8,1)

0.40 0.047 (0.038, 0.057) 0.020(2,1), 0.020(3,1), 0.026(4,3) 0.82
0.035(5,2), 0.029(7,1), 0.044(8,1)

0.50 0.046 (0.037, 0.056) 0.023(2,1), 0.021(3,1), 0.025(4,3) 0.86
0.034(5,2), 0.027(7,1), 0.040(8,1)

0.10 0.10 0.050 (0.041, 0.061) 0.019(2,1), 0.017(3,1), 0.027(4,2) 0.66
0.030(5,2), 0.034(7,1), 0.048(8,1)

0.20 0.042 (0.034, 0.052) 0.013(2,1), 0.018(3,1), 0.029(4,3) 0.76
0.030(5,2), 0.032(7,1), 0.040(8,1)

0.30 0.046 (0.038, 0.057) 0.015(2,1), 0.018(3,1), 0.029(4,3) 0.85
0.029(5,2), 0.032(7,1), 0.045(8,1)

0.40 0.054 (0.044, 0.064) 0.015(2,1), 0.016(3,1), 0.023(4,3) 0.88
0.030(5,2), 0.036(7,1), 0.049(8,1)

0.50 0.044 (0.035, 0.054) 0.013(2,1), 0.018(3,1), 0.025(4,3) 0.88
0.031(5,2), 0.037(7,1), 0.042(8,1)

0.20 0.10 0.044 (0.036, 0.054) 0.020(2,1), 0.017(3,1), 0.023(4,4), 0.031(5,2) 0.82
0.033(6,2), 0.033(7,1), 0.044(8,1)

0.20 0.043 (0.035, 0.053) 0.016(2,1), 0.020(3,1), 0.024(4,4), 0.027(5,2) 0.86
0.034(6,2), 0.035(7,1), 0.040(8,1)

0.30 0.046 (0.037, 0.056) 0.014(2,1), 0.023(3,1), 0.025(4,4), 0.029(5,2) 0.79
0.035(6,2), 0.038(7,1), 0.044(8,1)

0.40 0.042 (0.034, 0.052) 0.016(2,1), 0.020(3,1), 0.025(4,4), 0.033(5,2) 0.79
0.035(6,2), 0.031(7,1), 0.041(8,1)

0.50 0.051 (0.042, 0.062) 0.013(2,1), 0.018(3,1), 0.024(4,4), 0.028(5,2) 0.86
0.038(6,2), 0.034(7,1), 0.044(8,1)

0.40 0.10 0.039 (0.031, 0.048) 0.013(2,1), 0.021(3,1), 0.025(4,4), 0.032(5,2) 0.81
0.029(6,2), 0.035(7,1), 0.039(8,1)

0.20 0.049 (0.040, 0.059) 0.013(2,1), 0.020(3,1), 0.024(4,4), 0.033(5,2) 0.97
0.034(6,2), 0.040(7,1), 0.047(8,1)

0.30 0.042 (0.033, 0.051) 0.012(2,1), 0.022(3,1), 0.022(4,4), 0.032(5,2) 0.98
0.034(6,2), 0.033(7,1), 0.041(8,1)

0.40 0.041 (0.033, 0.051) 0.012(2,1), 0.022(3,1), 0.024(4,4), 0.028(5,2) 1.00
0.031(6,2), 0.037(7,1), 0.034(8,1)

0.50 0.041 (0.033, 0.051) 0.014(2,1), 0.017(3,1), 0.024(4,4), 0.029(5,2) 1.00
0.033(6,2), 0.035(7,1), 0.039(8,1)

†Maximum estimated FWER and average power are computed over all selected pairs of ordered triples (δ1, δ2, δ3)

considered over all H̃p
0 ∈ H̃

p
0 (πG, πE); Average = Arithmetic mean; 95% confidence intervals (CI) for αF are exact

Clopper-Pearson; Assumed FWER is 5% (α̃F = 0.05).
(a)Average of α̂F is the arithmetic mean of the α̂F over all selected pairs of ordered triples (δ1, δ2, δ3) from ∆ (πG, πE)

yielding a partial null hypothesis H̃p
0 , such that H̃p

0 is some partial null hypothesis for which the depicted first su-

perscript element denotes the value of n
(
H̃p

0

)
– n(·) denotes the cardinality of the set (·). The second superscript

element denotes the total number of selected pairs of ordered triples (δ1, δ2, δ3) from ∆ (πG, πE) yielding a partial null

hypothesis H̃p
0 , comprised of a total of n

(
H̃p

0

)
true null hypotheses.
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Table 4.12: Estimated Family-wise Type I Error Rate for GEM under Partial Null Hypotheses over
the Simulation Studies of §4.7 and §4.8.

Simulation Study of §4.7†

πG

Effect of Interest l : H
(l)
0 ∈ H̃

p
0 0.05 0.10 0.20 0.40

Main Genetic (DOM Genetic Model) {11} 0.013 0.010 0.008 0.007
(0.021) (0.016) (0.013) (0.014)

Main Genetic (REC Genetic Model) {11} 0.013 0.010 0.008 0.007
(0.021) (0.016) (0.017) (0.016)

Main Environment {9, 10} 0.013 0.018 0.015 0.014
(0.026) (0.031) (0.031) (0.033)

Simulation Study of §4.8‡

πG

βe l : H
(l)
0 ∈ H̃

p
0 0.05 0.10 0.20 0.40

0 {1, 2, 9, 10} 0.032 0.033 0.027 –
(0.053) (0.050) (0.050) –

−0.10 {9, 10} 0.014 0.017 0.014 –
(0.028) (0.029) (0.024) –

−0.25 {9, 10} 0.012 0.017 0.014 –
(0.018) (0.034) (0.036) –

†For the SRG simulation outlined within the final paragraph of §4.7.4; Depicted values represent the arithmetic mean of
α̂F (parenthetic values are max{α̂F}) over the D = 2K simulated data sets across the 99 (main genetic effect)/90 (main
environment effect) selected values of πE over the collection {0.01k}k=0,...,99; DOM = Dominant; REC = Recessive;
Assumed FWER is 5% (α̃F = 0.05).

‡Depicted values represent the arithmetic mean of α̂F (parenthetic values are max{α̂F}) over the D = 10K simulated

data sets across the 51 selected values of γge over the collection {−2βe + 0.02k}k=0,...,50; note that H̃p
0 = H0 for the

simulation in which γge = βe = 0; Assumed FWER is 5% (α̃F = 0.05).

– for details, see the article [176]. Here, we examined the association between genetic variation within

these candidate genes and risk of incidence for colon and rectal cancer. Furthermore, given their

respective associations with ROS [176], we evaluated the associations upon each of the respective

two binary environmental factors, recent use of aspirin (NSAIDs) (yes/no) and recent consumption

of cigarettes (yes/no), with risk of incidence for colon and rectal cancer. Our interest lied not

solely upon the main effects of these candidate genes and lifestyle (environmental) factors, but more

importantly on their synergistic effect towards the risk of cancer.

Twenty-nine tSNPs (see footnote 3 within Chapter 1 for definition) were selected and genotyped

upon the four candidate genes as follows: eight markers for EPX; two markers for MPO; four

markers for HIF1A; and fifteen markers for NOS2A. Subjects missing genotype data at a particular

SNP locus were excluded from the analysis for that marker. Analysis for GxE interaction was based

upon these selected tSNP markers and the aforementioned binary environmental factors, and assessed

using two competing approaches: by way of our novel GEM method; and – as a benchmarking tool
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for GEM – by way of the methodology outlined within the following paragraph.

If GM denotes the genetic coding for each genotype at a SNP locus, such that the label M

identifies the genetic model of inheritance (GMI), we considered a model of the form

logit (Pr (Y = 1|Gj , E,M)) = β0 + βGMGM + βEME + γMGME,(4.49)

where the GMI was assumed to follow either the dominant (DOM) or recessive (REC) genetic

models, and

GM = I (Gj = 2) + I (Gj = 1,M = DOM) .

Given M , a standard approach to test for GxE interaction would be to perform a 1-df test of the

null hypothesis H0 : γM = 0 – versus the two-sided alternative hypothesis – based upon the model

(4.49), for each of the 29 tSNP markers comprising the candidate pathway. We assumed M was

not known, and thus we conducted an LRT under each of the dominant and recessive GMIs upon

each of the 29 SNP loci. The largest of the two LRT statistics for each SNP locus was used to

assess GxE interaction at the locus. For clarity, we denote this competing approach in assessing

GxE interaction as the LRT of interaction (LRTI).

Correction for multiple hypothesis testing was carried out at the gene level (i.e., taking into

account all hypothesis tests conducted upon the tSNPs within a given gene), by permutation for

GEM and by the pACT approach [20] for LRTI. We performed the MHT correction at the gene

level, because we conjecture that SNPs exhibiting GxE interaction within a gene lends to increasing

likelihood of the gene itself exhibiting GxE interaction. For the permutation approach of GEM we

assigned the value R = 100K, and estimated the respective maxT adjusted p-values (4.12) and (4.14)

by (4.18) and (4.19) using Algorithm 4.1. For the pACT approach, we assigned each value within the

genotype vectors to their appropriate predictor in GME of model (4.49), and we assigned each value

within the covariate vectors to their appropriate predictor in E or GM of model (4.49) (see pg. 1160

of [20] for definitions of the terms genotype vector and covariate vector). Note that this procedure

for pACT was deliberately carried out, because here we were particularly interested in testing for

GxE interaction of the model (4.49), accounting for the marginal effects in E and GM , but were not

directly interested in testing for an association between Y and GM of said model – accounting for

the effects of E and GME – for which the pACT method is based upon. Statistical inference was

conducted within the R (version 2.13.1; July 2011) statistical software environment [103]. For GEM,
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we compiled the C code corresponding with our proposed GEM R package (see Appendix C) to a

dynamic link library (DLL) and interfaced – by way of the code given within §D.2 of Appendix D

– the resulting DLL with R, and for pACT we sourced the p ACT seq.R11 file within R. Statistical

significance was set at the 5% level in the FWER prior to conducting analysis.

4.10.2 Results

A summary of the 29 tSNPs for the genes EPX, MPO, HIF1A, and NOS2A is provided within

Table 4.13. After multiple testing correction, by way of the false discovery rate (FDR) method of [61]

using the multtest package of R [103], none of the allele frequencies upon these markers statistically

significantly deviated from Hardy-Weinberg equilibrium (FDR adjusted p ≥ 0.9 for colon cancer;

FDR adjusted p ≥ 0.16 for rectal cancer). Here, unless otherwise specified, the value of j indexes

the SNP ID column of this table. After multiplicity correction by way of GEM (at the SNP locus

level), no marginal genetic effects were found to be statistically significantly associated with either

cancer (p̃∗j9σ, p̃
∗
j{10}σ ≥ 0.21 for colon, p̃∗j9σ, p̃

∗
j{10}σ ≥ 0.12 for rectal). Recent NSAID use was found

to exhibit a statistically significant protective effect for each cancer (colon: OR 0.65; 95% CI for

OR (0.57,0.75); p̃∗j{11}σ < 0.0001 for all j = 1, . . . , 29, rectal: OR 0.69; 95% CI for OR (0.57,0.84);

p̃∗j{11}σ < 0.0001 for all j = 1, . . . , 29)12, where 31.5% of the cases and 41.4% of the controls within

the colon cancer study were recent NSAID users, and these respective proportions were 36.2% and

45.1% within the rectal cancer study. On the other hand, after multiplicity correction by way of

GEM, recent cigarette consumption was not statistically significantly associated with either cancer

(colon: OR 1.20; 95% CI for OR (1.01,1.42); p̃∗j{11}σ ≥ 0.14, rectal: OR 1.33; 95% CI for OR

(1.03,1.70); p̃∗j{11}σ ≥ 0.10), where 20.5% of the cases and 17.7% of the controls within the colon

cancer study were recent cigarette consumers, and these respective proportions were 19.7% and

15.6% within the rectal cancer study.

Table 4.14 summarizes the statistically significant GxE interactions between recent NSAID use

and each of the 29 genetic markers in their respective effect towards risk of colon cancer, after

multiplicity correction at the gene level by way of GEM (p̃∗jlµ < 0.001 for some l ≤ 8, all j =

1, . . . , 29). While GEM was able to detect statistically significant GxE interaction upon all 29 SNP

markers, prior to application of the pACT MHT correction the genotypes upon each of two markers

exhibited a statistically significant interaction with recent NSAID use in their respective effect with

11pACT version 1.2, retrieved November 11, 2011 from http://csg.sph.umich.edu/boehnke/p_act/p_ACT_1.2/

p_act.html.
12Unless otherwise specified, reported confidence intervals are unadjusted for multiple hypothesis testing.

http://csg.sph.umich.edu/boehnke/p_act/p_ACT_1.2/p_act.html
http://csg.sph.umich.edu/boehnke/p_act/p_ACT_1.2/p_act.html
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colon cancer risk (p = 0.04 SNP ID 6 and p = 0.05 SNP ID 3) using the LRTI approach. However,

the results for each of these markers under LRTI can be attributed to a chance finding amongst the

58 tests (two tests for each marker) of the null hypothesis of no GxE interaction conducted upon this

approach for these 29 markers. In fact, the pACT MHT corrected LRTI approach failed to identify

any statistically significant GxE interactions amongst these markers (pACT adjusted p > 0.2).

Table 4.13: Profiles of the 29 TagSNPs Studied upon the Genes EPX, MPO, HIF1A, and NOS2A†.
Chromosome Genome SNP Major/Minor MAF

Gene Location SNP ID Index Allele Colon/Rectal Cancer
EPX 17q23.1 rs12602891 1 T/C 0.45/0.42

rs11079339 2 A/G 0.15/0.14
rs10853004 3 A/G 0.32/0.29
rs2240815 4 A/G 0.47/0.46
rs12602498 5 A/G 0.33/0.32
rs9892223 6 A/G 0.46/0.44
rs8077426 7 G/A 0.22/0.20
rs2302313 8 G/A 0.10/0.11

HIF1A 14q21-q24 rs1951795 9 C/A 0.20/0.21
rs2301113 10 A/C 0.24/0.25
rs11549465 11 C/T 0.10/0.10
rs6573399 12 G/T 0.15/0.15

MPO 17q23.1 rs2759 13 A/G 0.03/0.03
rs2243828 14 A/G 0.20/0.23

NOS2A 17q11.2-q12 rs7406657 15 G/C 0.24/0.26
rs9906835 16 A/G 0.39/0.41
rs2297518 17 G/A 0.20/0.19
rs2274894 18 G/T 0.39/0.38
rs2314810 19 G/C 0.05/0.06
rs4795067 20 A/G 0.34/0.34
rs3729508 21 G/A 0.41/0.39
rs3730017 22 C/T 0.03/0.03
rs944725 23 C/T 0.39/0.40
rs3794763 24 G/A 0.22/0.23
rs8072199 25 C/T 0.45/0.43
rs16949 26 T/C 0.24/0.23
rs3730013 27 C/T 0.32/0.33
rs10459953 28 G/C 0.36/0.36
rs2779248 29 T/C 0.38/0.37

†Chromosome location, genome SNP identifiers, and nucleotide base-pair coding for major/minor alleles (A, C, G, T)
taken from [176]; Minor allele frequencies (MAF) calculated – at their maximum likelihood estimates, in coherence with
Proposition A.7 – from sample controls upon the colon/rectal cancer data sets, assuming population Hardy-Weinberg
equilibrium.

After applying GEM, nine markers demonstrated their respective strongest association with risk

of colon cancer upon candidate pattern LA3 = (Gj ∈ {0, 1})∧(E = 0) (see Table 4.1 for a summary of

candidate pattern formulation), while the remaining 20 markers demonstrated strongest association
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with risk of colon cancer upon candidate pattern LA4
= (Gj ∈ {0, 1}) ∧ (E = 1). To obtain a

better understanding of these GxE interactions, we created numerous graphs. Figures 4.10 and

4.11 portray the relationships between genotypes and risk of colon cancer, stratified by the status

of recent NSAID use, for the corresponding SNPs having demonstrated strongest association with

risk of colon cancer upon the respective candidate patterns LA3
and LA4

.

Table 4.14: Statistically Significant Interactions Between Recent Use of NSAIDs and the Genes
EPX, MPO, HIF1A, and NOS2A in Their Effect Towards Risk of Colon Cancer, at the 5% FWER
Level as Determined by GEM†.

SNP P-value LRTI P-value GEM Odds Ratio
Gene ID Raw (GMI) pACT min

1≤l≤8
{p̃∗jlσ} (l) p̃∗jlµ (95% CI)

EPX 1 0.18 (REC) 0.84 < 0.001 (4) < 0.001 0.66 (0.56, 0.76)
2 0.63 (DOM) 1.00 < 0.001 (3) < 0.001 1.54 (1.33, 1.77)
3 0.05 (DOM) 0.45 < 0.001 (3) < 0.001 1.54 (1.34, 1.76)
4 0.18 (DOM) 0.83 < 0.001 (4) < 0.001 0.66 (0.56, 0.77)
5 0.57 (REC) 1.00 < 0.001 (4) < 0.001 0.66 (0.57, 0.77)
6 0.04 (REC) 0.35 < 0.001 (4) < 0.001 0.63 (0.54, 0.73)
7 0.07 (DOM) 0.50 < 0.001 (3) < 0.001 1.53 (1.33, 1.76)
8 0.49 (REC) 0.99 < 0.001 (3) < 0.001 1.53 (1.33, 1.77)

HIF1A 9 0.40 (REC) 0.92 < 0.001 (4) < 0.001 0.64 (0.55, 0.74)
10 0.60 (REC) 1.00 < 0.001 (4) < 0.001 0.64 (0.55, 0.74)
11 0.71 (DOM) 1.00 < 0.001 (4) < 0.001 0.65 (0.57, 0.75)
12 0.58 (REC) 1.00 < 0.001 (3) < 0.001 1.51 (1.31, 1.74)

MPO 13 0.07 (REC) 0.24 < 0.001 (4) < 0.001 0.65 (0.56, 0.75)
14 0.25 (REC) 0.53 < 0.001 (4) < 0.001 0.66 (0.57, 0.77)

NOS2A 15 0.06 (DOM) 0.75 < 0.001 (4) < 0.001 0.66 (0.57, 0.76)
16 0.09 (DOM) 0.86 < 0.001 (4) < 0.001 0.67 (0.58, 0.78)
17 0.59 (REC) 1.00 < 0.001 (3) < 0.001 1.51 (1.31, 1.74)
18 0.19 (REC) 0.97 < 0.001 (4) < 0.001 0.63 (0.54, 0.74)
19 0.27 (REC) 0.99 < 0.001 (4) < 0.001 0.65 (0.56, 0.75)
20 0.12 (DOM) 0.90 < 0.001 (4) < 0.001 0.67 (0.58, 0.78)
21 0.71 (DOM) 1.00 < 0.001 (4) < 0.001 0.67 (0.57, 0.77)
22 0.19 (REC) 0.97 < 0.001 (4) < 0.001 0.65 (0.57, 0.75)
23 0.62 (REC) 1.00 < 0.001 (4) < 0.001 0.69 (0.59, 0.80)
24 0.15 (REC) 0.94 < 0.001 (3) < 0.001 1.48 (1.29, 1.71)
25 0.11 (REC) 0.89 < 0.001 (4) < 0.001 0.65 (0.56, 0.76)
26 0.12 (DOM) 0.89 < 0.001 (3) < 0.001 1.52 (1.32, 1.75)
27 0.49 (DOM) 1.00 < 0.001 (4) < 0.001 0.67 (0.58, 0.77)
28 0.68 (DOM) 1.00 < 0.001 (4) < 0.001 0.66 (0.57, 0.77)
29 0.12 (DOM) 0.89 < 0.001 (3) < 0.001 1.48 (1.29, 1.70)

†Odds ratio = Odds of colon cancer for individuals over candidate pattern LAl , compared to that for individuals over
candidate pattern LBl ; Raw p-value for LRTI is unadjusted for MHT, where GMI is the genetic model yielding the

largest LRT statistic for this approach; 95% Fisher’s exact-based confidence intervals are uncorrected for multiple
comparisons.

These plots indicate that recent NSAID use may be an effect modifier for the relationship between

risk of colon cancer and genotype for many of the tSNP loci, as seen by the deviation in parallelism
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of the lines connecting adjacent genotype groups (e.g., the line connecting genotypes AA and Aa)

across the two strata in recent NSAID use. For example, consider the plot within the lower left

panel of the former figure (corresponds with SNP rs3794763). Now, recent NSAID use will not be an

effect modifier for the relationship between risk of colon cancer and genotype at this locus, provided

that the odds ratio of colon cancer – based upon the comparison of any two genotype groups – is the

same across the strata of NSAID use. Here, among non-recent NSAID users, these data indicate

that the odds of colon cancer among subjects with genotype Aa (heterozygote) is 1.1 times that of

subjects with genotype AA (homozygote wildtype), and this odds ratio is 0.9 comparing subjects

with genotype aa (homozygote variant) to subjects with genotype Aa – here, A/a is used to denote

the respective major/minor allele at a particular SNP locus. Conversely, among recent NSAID users,

these odds ratios are 1.0 and 0.6, respectively. Since these genotype odds ratios appear to depend

upon the status of recent NSAID use, said environmental factor may be an effect modifier for the

relationship between risk of colon cancer and genotype at this SNP locus.

Moreover, there is evidence of cross-interaction at play upon some loci, as seen by opposite

genotype-phenotype effects between the two NSAID strata across genotype levels. For example,

SNPs rs10853004 (the plot within the panel of the first row and second column upon the former

figure), rs2759 (the plot within the panel of the second row and third column upon the latter figure),

and rs12602891 (the plot within the panel of the first row and column upon the latter figure). To

illustrate, we consider the first of these markers. Among non-recent NSAID users, the odds of

colon cancer among subjects with genotype Aa is 0.89 times that of subjects with genotype AA,

this odds ratio is 0.81 comparing subjects with genotype aa to subjects with genotype Aa, and this

odds ratio is 0.72 comparing subjects with genotype aa to subjects with genotype AA. Conversely,

among recent NSAID users, these respective odds ratios are 1.12, 1.04, and 1.16. When comparing

the two strata of recent NSAID use, it seems that the within-NSAID strata genotype effects are in

opposite directions across the genotype levels at this locus, which suggests cross-interaction is at

play. Table 4.15 summarizes the observed cross-interaction pattern of GxE interaction, among the

SNP loci determined to exhibit statistically significant GxE interaction at the 5% FWER level by

GEM (SNP locus level multiple testing adjustment). In particular, the initial six rows of this table,

depict the observed cross-interactions upon assessing GxE interaction between recent NSAID use

and genotypes upon six SNP loci in their synergistic effect towards risk of colon cancer. Here, we

note that amongst the SNP markers depicted within this table, none exhibit a statistically significant
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genetic main effect, as assessed by testing the null hypothesis, H0 : γg = 0 upon the model

logit (Pr (Y = 1|Gj)) = γ0 + γgGj ,(4.50)

Fig. 4.10: Relationships Between Genotype and Risk of Colon Cancer, Stratified by the Levels
of Exposure to Recent NSAID Use, Amongst the 9 SNPs Determined to Possess the Strongest
Association Signal Within GEM upon Candidate Pattern LA3

= (Gj ∈ {0, 1}) ∧ (E = 0). Blue
Curves Correspond to Recent NSAID Users and Red Curves to Non-Recent NSAID Users. The
Genome SNP ID and SNP Index (in Parentheses) Are Shown above Each Plot, for a SNP with
Respective Major and Minor Alleles A and a.
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Fig. 4.11: Relationships Between Genotype and Risk of Colon Cancer, Stratified by the Levels
of Exposure to Recent NSAID Use, Amongst the 20 SNPs Determined to Possess the Strongest
Association Signal Within GEM upon Candidate Pattern LA4

= (Gj ∈ {0, 1}) ∧ (E = 1). Blue
Curves Correspond to Recent NSAID Users and Red Curves to Non-Recent NSAID Users. The
Genome SNP ID and SNP Index (in Parentheses) Are Shown above Each Plot, for a SNP with
Respective Major and Minor Alleles A and a.
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under each of the dominant and recessive GMIs.13 Thus, these data support the notion introduced

within §4.8. Namely, scanning for solely main genetic effects may fail to detect a genetic-phenotype

association upon genetic markers exhibiting cross-interaction; as a consequence in doing this, im-

portant risk factors – both genetic and environmental – for disease may be overlooked. Moreover,

we point out here that a rather large proportion of the GxE interactions upon these data show the

cross-interaction pattern, as 20.7% (6/29) of the GxE interactions between recent NSAID use and

the genotypes of these 29 markers show cross-interaction in their effect towards risk of colon cancer.

Figures 4.12 and 4.13 portray the relationships between recent NSAID use status and risk of

colon cancer, stratified by genotype, for the corresponding SNPs having demonstrated strongest

association with risk of colon cancer upon the respective candidate patterns LA3 and LA4 . These

plots indicate that genotype may be an effect modifier for the relationship between recent NSAID

status and risk of colon cancer, as seen by the deviation in parallelism among the three lines depicted

within each plot of these figures.14 To illustrate, we again consider SNP locus rs3794763 (the plot

within the lower left panel of the former figure). Upon subjects with genotype AA (homozygote

wildtype) at this locus, these data indicate that the odds of colon cancer among non-recent NSAID

users is 1.45 times that of recent NSAID users; upon subjects with genotype Aa (heterozygote), the

odds of colon cancer among non-recent NSAID users is 1.60 times that of recent NSAID users; and,

upon subjects with genotype aa (homozygote mutant), the odds of colon cancer among non-recent

NSAID users is 2.55 times that of recent NSAID users. Since these odds ratios differ across genotype

levels, this suggests that the relationship between recent NSAID use and risk of colon cancer may

be modified by genotype at this SNP locus.

Furthermore, through examination of these two figures, we obtain a sense of clarification as

to the rationale for GEMs reporting the significant associations upon candidate patterns LA3
and

LA4 , in assessing GxE interaction upon these 29 tSNPs with status of recent NSAID use. Namely,

comparing any pair of genotypes, the consensus between the risk for colon cancer seems to be

maximum upon the two genotypes AA and Aa, for non-recent NSAID users within the former figure

and recent NSAID users within the latter figure. Consider SNP rs11079339 (the plot within the

13For each SNP locus, the 1-df LRT was conducted upon the model (4.50) under each of the dominant and
recessive GMIs. The larger of the two test statistics was selected, and the p-value – under the null hypothesis
H0 : γg = 0 – was computed by referring to the chi-square distribution with 1-df. Correction for multiple testing was
performed upon each locus by way of the Bonferroni MTP.

14Note that this effect modification can be equivalently seen within Figures 4.10 and 4.11, by comparing the
differences in the vertical spread between the two colored line plots across genotype levels within the appropriate plot.
If these differences differ across genotype, this suggests genotype to be an effect modifier for the relationship between
recent NSAID use and risk of colon cancer.
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upper left panel of the former figure) for example. By inspection of this plot, given status in recent

NSAID use, it is clear that the consensus in colon cancer risk is maximized comparing genotypes

AA and Aa. Indeed, upon non-recent NSAID users, the odds of colon cancer among subjects with

genotype Aa is 1.03 times that of subjects with genotype AA; and, among recent NSAID users, this

odds ratio is 0.94. Since the former of these two odds ratios is closer in magnitude to the value of

Fig. 4.12: Relationships Between Recent NSAID Use and Risk of Colon Cancer, Stratified by the
Levels of Genotype, Amongst the 9 SNPs Determined to Possess the Strongest Association Signal
Within GEM upon Candidate Pattern LA3 = (Gj ∈ {0, 1}) ∧ (E = 0). Blue Curves Correspond to
Genotype AA (Gj = 0), Red Curves to Genotype Aa (Gj = 1), and Purple Curves to Genotype aa
(Gj = 2), for a SNP with Respective Major and Minor Alleles A and a. The Genome SNP ID and
SNP Index (in Parentheses) Are Shown above Each Plot.



202

Fig. 4.13: Relationships Between Recent NSAID Use and Risk of Colon Cancer, Stratified by the
Levels of Genotype, Amongst the 20 SNPs Determined to Possess the Strongest Association Signal
Within GEM upon Candidate Pattern LA4

= (Gj ∈ {0, 1}) ∧ (E = 1). Blue Curves Correspond to
Genotype AA (Gj = 0), Red Curves to Genotype Aa (Gj = 1), and Purple Curves to Genotype aa
(Gj = 2), for a SNP with Respective Major and Minor Alleles A and a. The Genome SNP ID and
SNP Index (in Parentheses) Are Shown above Each Plot.
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Table 4.15: Summary of SNP Loci Depicting Cross-Interaction with Recent NSAID Use or Recent
Cigarette Consumption in Risk Towards Colon or Rectal Cancer, among Loci Determined to Exhibit
Statistically Significant GxE Interaction at the 5% FWER Level by GEM†.

Recent NSAID Use and Colon Cancer
SNP Adjusted P-value Stratified Genotype Odds Ratios

Gene ID Main Effect in G E = 0 E = 1
EPX 1 1.00 (0.94, 0.92, 0.86) (1.06, 1.11, 1.18)

3 0.46 (0.89, 0.81, 0.72) (1.12, 1.04, 1.16)
NOS2A 15 1.00 (1.10, 0.97, 1.07) (0.82, 1.17, 0.96)

16 0.87 (1.16, 0.96, 1.11) (0.88, 1.06, 0.94)
20 1.00 (0.89, 1.05, 0.93) (1.15, 0.89, 1.03)
25 1.00 (1.06, 0.84, 0.89) (0.99, 1.15, 1.14)

Recent NSAID Use and Rectal Cancer
SNP Adjusted P-value Stratified Genotype Odds Ratios

Gene ID Main Effect in G E = 0 E = 1
EPX 5 1.00 (0.94, 1.14, 1.07) (1.05, 0.92, 0.97)
NOS2A 17 1.00 (0.98, 0.81, 0.80) (1.14, 1.15, 1.30)

22 0.56 (1.02,NC,NC) (0.75,NC,NC)
27 1.00 (1.00, 0.87, 0.87) (1.03, 1.12, 1.16)

Recent Cigarette Consumption and Colon Cancer
SNP Adjusted P-value Stratified Genotype Odds Ratios

Gene ID Main Effect in G E = 0 E = 1
NOS2A 15 1.00 (1.06, 1.19, 1.27) (0.79, 0.61, 0.48)

21 1.00 (0.96, 0.93, 0.89) (1.06, 1.45, 1.54)
23 1.00 (1.11, 1.04, 1.16) (0.87, 0.68, 0.59)
27 0.33 (1.20, 0.95, 1.14) (0.79, 1.16, 0.92)
28 1.00 (0.99, 0.92, 0.91) (1.28, 1.14, 1.47)

Recent Cigarette Consumption and Rectal Cancer
SNP Adjusted P-value Stratified Genotype Odds Ratios

Gene ID Main Effect in G E = 0 E = 1
HIF1A 9 1.00 (1.12, 1.19, 1.33) (0.60, 0.79, 0.47)

10 1.00 (1.01, 1.27, 1.28) (0.68, 0.79, 0.54)
NOS2A 16 0.11 (0.69, 1.17, 0.81) (1.59, 0.96, 1.53)

18 0.50 (1.05, 1.29, 1.36) (0.84, 0.76, 0.64)
22 0.56 (1.07,NC,NC) (0.52,NC,NC)
29 1.00 (1.08, 1.10, 1.19) (0.65, 0.89, 0.58)

†Statistically significant GxE interaction is based upon the maxT adjusted p-value, min{p̃∗j1σ, . . . , p̃
∗
j8σ}; Adjusted

p-value for assessing the main effect in G is Bonferroni corrected, for having tested the null hypothesis of no genotype-
phenotype association upon each of the dominant and recessive GMIs; For a SNP locus with major/minor alleles A/a,
the vector of odds ratios = Odds of cancer, (comparing subjects with genotype Aa to subjects with genotype AA,
comparing subjects with genotype aa to subjects with genotype Aa, comparing subjects with genotype aa to subjects
with genotype AA); NC = not calculable.

1.0 (perfect agreement), it would seem that the consensus in disease risk is maximized within the

subjects represented by candidate pattern LA3 = (Gj ∈ {0, 1}) ∧ (E = 0), which is precisely what

GEM has suggested to be the circumstance. Although some of the plots within each figure may
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appear to contradict the candidate pattern for which GEM has suggested most associated with

risk of colon cancer (e.g., candidate pattern LA4 = (Gj ∈ {0, 1}) ∧ (E = 1) upon SNP rs3794763

(24) of the former figure seems more appropriate than that of LA3
; candidate pattern LA3

upon

SNP rs3729508 (21) of the latter figure seems more appropriate than that of LA4), the statistical

significance governing the tests of null hypotheses over the candidate patterns LA3
and LA4

is

roughly the same, across all 29 tSNP loci. This notion, coupled with the affiliated standard errors

in estimating the adjusted p-values p̃jlµ (4.14) with those of p̃∗jlµ (4.19), can explain this phenomenon.

Table 4.16 summarizes the statistically significant GxE interactions between recent NSAID use

and genotype at each of the 29 genetic markers in their respective effect towards risk of rectal cancer,

after multiplicity correction at the SNP locus level by way of GEM (p̃∗jlσ ≤ 0.02, some l ≤ 8, for

all j = 1, . . . , 29). Furthermore, after multiple testing correction at the gene level, the genotypes

at all but four markers (i.e., rs9906835 (j = 16), rs3729508 (21), rs944725 (23), and rs10459953

(28)) statistically significantly interact with recent NSAID use status in their effect towards risk

of rectal cancer (p̃jlµ < 0.05, some l ≤ 8, for all j /∈ {16, 21, 23, 28}). However, with regard to

the aforementioned four markers, whereas these GxE interactions are statistically significant at the

SNP level adjustment using GEM (p̃∗jlσ ≤ 0.02), the corresponding GxE interactions using the

LRTI method are not statistically significant (p ≥ 0.17). Finally, note that the pACT algorithm

failed to converge in performing the appropriate multiple testing correction upon the genes HIF1A

and NOS2A, indicating that this MHT approach may not be well suited for tests involving GxE

interaction.

After applying GEM, two (2) markers showed their respective strongest association with risk of

rectal cancer upon candidate pattern LA1
= (Gj = 0)∧(E = 0), one (1) marker upon candidate pat-

tern LA2
= (Gj = 0)∧(E = 1), seven (7) markers upon the candidate pattern LA3

= (Gj ∈ {0, 1})∧

(E = 0), thirteen (13) markers upon candidate pattern LA4 = (Gj ∈ {0, 1}) ∧ (E = 1), one marker

upon candidate pattern LA5
= (Gj ∈ {1, 2}) ∧ (E = 0), four (4) markers upon candidate pattern

LA6
= (Gj ∈ {1, 2})∧(E = 1), and one marker upon the candidate pattern LA7

= (Gj = 2)∧(E = 0).

Figures 4.14 and 4.15 display the relationships between recent NSAID use and risk of rectal can-

cer, stratified by genotype, where the former figure captures the nine SNPs having demonstrated

strongest association with risk of rectal cancer upon either of the candidate patterns LA1
and LA3

.

These plots indicate that recent NSAID use may be an effect modifier for the relationship between

genotype and risk of rectal cancer upon some SNP loci. For example, consider SNP rs16949 (the
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plot within the lower right panel of the former figure). Among non-recent NSAID users, the odds of

rectal cancer for subjects with genotype AA are 1.00 and 1.32 times those of subjects with respective

genotypes Aa and aa; and, the odds of rectal cancer for subjects with genotype Aa is 1.32 times

that of subjects with genotype aa. Among recent NSAID users, these odds ratios are 0.91, 1.02,

and 1.12, respectively. Insofar as these genotype-phenotype odds ratios appear to differ between

exposure status of recent NSAID use, said environmental factor could be an effect modifier for the

Table 4.16: Statistically Significant Interactions Between Recent Use of NSAIDs and the Genes
EPX, MPO, HIF1A, and NOS2A in Their Effect Towards Risk of Rectal Cancer, at the 5%
FWER Level as Determined by GEM†.

SNP P-value LRTI P-value GEM Odds Ratio
Gene ID Raw (GMI) pACT min

1≤l≤8
{p̃∗jlσ} (l) p̃∗jlµ (95% CI)

EPX 1 0.05 (REC) 0.44 0.003 (7) 0.015 1.75 (1.27, 2.40)
2 0.02 (DOM) 0.17 0.004 (4) 0.022 0.70 (0.58, 0.86)
3 0.30 (DOM) 0.94 0.003 (4) 0.014 0.69 (0.56, 0.85)
4 0.33 (DOM) 0.94 0.008 (4) 0.037 0.70 (0.57, 0.87)
5 0.65 (REC) 1.00 0.009 (4) 0.046 0.72 (0.58, 0.88)
6 0.35 (DOM) 0.95 0.011 (4) 0.047 0.71 (0.57, 0.88)
7 0.25 (REC) 0.92 0.003 (4) 0.015 0.70 (0.57, 0.85)
8 0.48 (DOM) 0.98 < 0.001 (1) < 0.001 1.54 (1.26, 1.88)

HIF1A 9 0.15 (DOM) 0.54 0.001 (4) 0.005 0.69 (0.56, 0.84)
10 0.50 (DOM) 0.96 0.002 (4) 0.005 0.69 (0.56, 0.85)
11 0.01 (REC) 0.07 < 0.001 (3) 0.002 1.48 (1.21, 1.81)
12 0.62 (DOM) 1.00 0.002 (3) 0.005 1.44 (1.18, 1.76)

MPO 13 0.48 (DOM) DNC < 0.001 (1) 0.002 1.44 (1.18, 1.76)
14 0.09 (REC) DNC < 0.001 (3) 0.001 1.49 (1.22, 1.82)

NOS2A 15 0.46 (DOM) DNC 0.004 (4) 0.036 0.70 (0.57, 0.86)
16 0.76 (DOM) DNC 0.008 (6) 0.064 0.69 (0.54, 0.86)
17 0.39 (DOM) DNC 0.001 (3) 0.017 1.45 (1.18, 1.77)
18 0.22 (DOM) DNC 0.004 (4) 0.039 0.70 (0.57, 0.86)
19 0.41 (DOM) DNC < 0.001 (2) 0.007 0.67 (0.54, 0.82)
20 0.03 (DOM) DNC 0.001 (3) 0.011 1.46 (1.19, 1.77)
21 0.18 (DOM) DNC 0.006 (5) 0.055 1.41 (1.15, 1.73)
22 0.42 (DOM) DNC 0.001 (3) 0.019 1.45 (1.18, 1.77)
23 0.33 (REC) DNC 0.021 (6) 0.165 0.71 (0.56, 0.89)
24 0.91 (REC) DNC 0.002 (4) 0.025 0.69 (0.57, 0.85)
25 0.11 (REC) DNC 0.002 (6) 0.018 0.66 (0.53, 0.83)
26 0.57 (DOM) DNC 0.001 (3) 0.012 1.46 (1.19, 1.78)
27 0.40 (REC) DNC 0.003 (4) 0.030 0.69 (0.56, 0.85)
28 0.17 (REC) DNC 0.021 (6) 0.159 0.71 (0.56, 0.89)
29 0.43 (DOM) DNC 0.005 (4) 0.046 0.70 (0.57, 0.86)

†Odds ratio = Odds of colon cancer for individuals over candidate pattern LAl , compared to that for individuals over
candidate pattern LBl ; Raw p-value for LRTI is unadjusted for MHT, where GMI is the genetic model yielding the

largest LRT statistic for this approach; 95% Fisher’s exact-based confidence intervals are uncorrected for multiple
comparisons; DNC = pACT algorithm did not converge; Italicized p-values are exact, based upon implementation of
Algorithm 4.2.
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Fig. 4.14: Relationships Between Recent NSAID Use and Risk of Rectal Cancer, Stratified by
the Levels of Genotype, Amongst the 9 SNPs Determined to Possess the Strongest Association
Signal Within GEM upon Either of the Candidate Patterns LA1

= (Gj = 0) ∧ (E = 0) and LA3
=

(Gj ∈ {0, 1})∧(E = 0). Blue Curves Correspond to Genotype AA (Gj = 0), Red Curves to Genotype
Aa (Gj = 1), and Purple Curves to Genotype aa (Gj = 2), for a SNP with Respective Major and
Minor Alleles A and a. The Genome SNP ID / SNP Index / Candidate Pattern Index Are Shown
above Each Plot. The Missing Purple Line Within Each of the Two Appropriate Plots Is due to
Data Sparsity.

genotype-phenotype relationship. Furthermore, these plots indicate that genotype may be an effect

modifier for the relationship between recent NSAID use and risk of rectal cancer upon some SNP

loci. To illustrate, consider again SNP rs16949. Upon subjects with genotype AA at this locus,

these data indicate that the odds of rectal cancer among non-recent NSAID users is 1.52 times that

of recent NSAID users; upon subjects with genotype Aa at this locus, this odds ratio is 1.39; and,
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Fig. 4.15: Relationships Between Recent NSAID Use and Risk of Rectal Cancer, Stratified by
the Levels of Genotype, Amongst the 20 SNPs Determined to Possess the Strongest Association
Signal Within GEM Amongst the Candidate Patterns LA2

, LA4
, LA5

, LA6
, and LA7

. Blue Curves
Correspond to Genotype AA (Gj = 0), Red Curves to Genotype Aa (Gj = 1), and Purple Curves to
Genotype aa (Gj = 2), for a SNP with Respective Major and Minor Alleles A and a. The Genome
SNP ID / SNP Index / Candidate Pattern Index Are Shown above Each Plot.
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upon subjects with genotype aa at this locus, this odds ratio is 1.18. Since these odds ratios differ

across genotype levels, this suggests that the relationship between recent NSAID use and risk of

rectal cancer may be modified by genotype at this SNP locus. Finally, several SNP loci (e.g.,

SNPs rs2297518 and rs3730017 upon the former figure, and SNP rs12602498 upon the latter figure)

demonstrate cross-interaction (see Table 4.15 for complete list of cross-interactions upon these data).

To illustrate, consider SNP rs2297518. Among non-recent NSAID users, the odds of rectal cancer

for subjects with genotype Aa is 0.98 times that of subjects with genotype AA, this odds ratio

is 0.81 comparing subjects with genotype aa to subjects with genotype Aa, and this odds ratio

is 0.80 comparing subjects with genotype aa to subjects with genotype AA. Conversely, among

recent NSAID users, these odds ratios are 1.14, 1.15, and 1.30, respectively. When comparing

the two strata of recent NSAID use, it seems that the within-NSAID strata genotype effects are

in opposite directions across the genotype levels at this locus, which suggests cross-interaction is

at play. Moreover, we note that 17.2% (5/29) of the GxE interactions for these data show the

cross-interaction pattern.

Table 4.17 summarizes the statistically significant GxE interactions between recent cigarette

consumption and genotype at each of 10 genetic markers in their respective effect towards risk of colon

cancer, after multiplicity correction at the SNP locus level by way of GEM (exact p̃jlσ ≤ 0.054, for

some l ≤ 8 and j ∈ {10, 14, 15, 17, 18, 21, 23, 26, 27, 28}); the statistically significant GxE interactions

between recent cigarette consumption and genotype at each of 12 genetic markers in their respective

effect towards risk of rectal cancer, after multiplicity correction at the SNP locus level by way of

GEM (exact p̃jlσ ≤ 0.052, for some l ≤ 8 and j ∈ {3, 8, 9, 10, 11, 12, 14, 16, 18, 22, 25, 29}). As with

the observations made upon Tables 4.14 and 4.16 for the recent NSAID use environmental factor,

here for the most part, these data indicate the statistical power of GEM to exceed the conventional

LRTI approach in detecting GxE interaction upon the recent cigarette consumption environmental

factor. In fact, for the GxE interactions depicted within the table for rectal cancer risk, whereas

each of the 12 markers results in a statistically significant interaction using GEM (adjustment at the

SNP locus level), only a handful (i.e., SNPs with ID 9, 10, 14, 18, 29) suggest statistically significant

GxE interaction applying the LRTI approach.

After applying GEM, one marker showed its strongest association with risk of colon cancer

upon candidate pattern LA1 = (Gj = 0) ∧ (E = 0), three markers upon candidate pattern LA2 =

(Gj = 0) ∧ (E = 1), one marker upon the candidate pattern LA3
= (Gj ∈ {0, 1}) ∧ (E = 0), one
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marker upon candidate pattern LA4
= (Gj ∈ {0, 1})∧(E = 1), three markers upon candidate pattern

LA6 = (Gj ∈ {1, 2}) ∧ (E = 1), and one marker upon the candidate pattern LA8 = (Gj = 2) ∧

(E = 1). Also, seven markers showed their respective strongest association with risk of rectal cancer

upon candidate pattern LA2 = (Gj = 0) ∧ (E = 1), two markers upon candidate pattern LA3 =

(Gj ∈ {0, 1})∧ (E = 0), one marker upon candidate pattern LA4
= (Gj ∈ {0, 1})∧ (E = 1), and two

markers upon candidate pattern LA5
= (Gj ∈ {1, 2}) ∧ (E = 0).

Table 4.17: Statistically Significant Interactions Between Recent Consumption of Cigarettes and the
Genes EPX, MPO, HIF1A, and NOS2A in Their Effect Towards Risk of Colon or Rectal Cancer,
at the 5% FWER Level as Determined by GEM†.

Recent Consumption of Cigarettes and Colon Cancer
SNP P-value LRTI P-value GEM Odds Ratio

Gene ID Raw (GMI) pACT min
1≤l≤8

{p̃jlσ} (l) p̃∗jlµ (95% CI)

HIF1A 10 0.55 (DOM) 1.00 0.047 (3) 0.110 0.81 (0.69, 0.95)
MPO 14 0.23 (DOM) DNC 0.049 (6) 0.067 1.42 (1.09, 1.85)
NOS2A 15 0.03 (DOM) DNC 0.040 (2) 0.291 1.35 (1.09, 1.68)

17 0.15 (DOM) DNC 0.019 (2) 0.162 1.36 (1.11, 1.67)
18 0.02 (DOM) DNC 0.026 (6) 0.185 1.36 (1.10, 1.67)
21 0.03 (REC) DNC 0.054 (8) 0.358 1.63 (1.12, 2.37)
23 0.03 (REC) DNC 0.041 (4) 0.287 1.29 (1.08, 1.56)
26 0.11 (DOM) DNC 0.030 (2) 0.231 1.36 (1.10, 1.68)
27 0.03 (DOM) DNC 0.036 (1) 0.260 0.82 (0.71, 0.94)
28 0.08 (DOM) DNC 0.050 (6) 0.328 1.33 (1.08, 1.64)

Recent Consumption of Cigarettes and Rectal Cancer
SNP P-value LRTI P-value GEM Odds Ratio

Gene ID Raw (GMI) pACT min
1≤l≤8

{p̃jlσ} (l) p̃∗jlµ (95% CI)

EPX 3 0.67 (REC) 1.00 0.045 (3) 0.192 0.74 (0.59, 0.92)
8 0.36 (DOM) 0.97 0.018 (5) 0.114 0.66 (0.50, 0.88)

HIF1A 9 0.01 (DOM) 0.05 0.009 (2) 0.023 1.67 (1.21, 2.32)
10 0.06 (DOM) 0.30 0.030 (2) 0.069 1.62 (1.15, 2.28)
11 0.34 (DOM) 0.55 0.050 (2) 0.140 1.44 (1.08, 1.91)
12 0.08 (DOM) 0.33 0.043 (2) 0.111 1.49 (1.11, 2.02)

MPO 14 0.03 (DOM) DNC 0.003 (2) 0.004 1.76 (1.27, 2.44)
NOS2A 16 0.003 (DOM) DNC 0.002 (5) 0.021 0.70 (0.58, 0.85)

18 0.06 (REC) DNC 0.037 (3) 0.256 0.74 (0.60, 0.92)
22 0.19 (DOM) DNC 0.052 (2) 0.501 1.39 (1.06, 1.81)
25 0.07 (REC) DNC 0.016 (4) 0.128 1.54 (1.16, 2.05)
29 0.04 (DOM) DNC 0.036 (2) 0.263 1.75 (1.16, 2.65)

†Odds ratio = Odds of colon cancer for individuals over candidate pattern LAl , compared to that for individuals over
candidate pattern LBl ; Raw p-value for LRTI is unadjusted for MHT, where GMI is the genetic model yielding

the largest LRT statistic for this approach; 95% Fisher’s exact-based confidence intervals are uncorrected for multiple
comparisons; Statistically significant interactions based upon the maxT adjusted p-value p̃∗jlσ ; DNC = pACT algorithm
did not converge; Italicized p-values are exact, based upon implementation of Algorithm 4.2.
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Figures 4.16 and 4.17 display the relationships between recent cigarette consumption with risk of

colon cancer (former figure) and rectal cancer (latter figure), upon the markers determined to exhibit

statistically significant GxE interaction by GEM (SNP locus level multiple testing adjustment). Note

that each of the four SNPs within the HIF1A gene exhibit their respective strongest association with

risk of rectal cancer upon candidate pattern LA2
= (Gj = 0) ∧ (E = 1) of GEM (see Table 4.17).

Interestingly, upon examination of the latter figure, we see that three (SNP IDs 9, 10, and 12) of the

four markers within this gene show similar patterns in their respective relationships between recent

cigarette consumption and risk of rectal cancer, across each of the three genotype levels at these

loci. To illustrate, upon subjects with genotype AA, the odds of rectal cancer among recent cigarette

consumers is 1.75, 1.65, and 1.53 times that of non-recent cigarette consumers for the respective SNP

IDs 9, 10, and 12; these odds ratios upon subjects with genotype Aa are 0.93, 1.13, and 1.02, for

the respective SNP IDs 9, 10, and 12; and these odds ratios upon subjects with genotype aa are

0.63, 0.69, and 0.49, for the respective SNP IDs 9, 10, and 12. Finally, we note that 50% of the

GxE interactions (5/10 for colon; 6/12 for rectal) for these data show the cross-interaction pattern

– see Table 4.15 for the summary of the SNP loci showing cross-interaction with the recent cigarette

consumption environmental factor.

4.11 Conclusions and Future Directions

Within this chapter we have proposed adapting the SNP-SNP (gene-gene) interaction testing

framework of [109] (LPCV) to tests of gene-environment interaction. Upon a given genetic marker

(a SNP) and a categorical environmental factor, the goal of the LPCV approach in this context is the

simultaneous assessment of a main genetic effect, a main environmental effect, and GxE interaction,

without the requirement of specifying the genetic model of inheritance. This is carried out by way of

the MHT of the null hypothesis of no association between a pair of competitive candidate patterns

– formulated in terms of strata upon the genetic and environmental factors, by way of the random

variable Xj (4.2) – and a binary response. A chi-square test statistic is computed upon testing each

of the null hypotheses. Correction for MHT is performed by way of referring to the test statistics

null distribution for the maximum of these chi-square test statistics. Whereas the MHT correction

of [109] is based upon an asymptotic MVN approximation to the test statistics null distribution, our

approach to the MHT correction refrains from making any approximations to said distribution and

is based upon the permutation null distribution of the maximum chi-square test statistic.
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Fig. 4.16: Relationships Between Recent Consumption of Cigarettes and Risk of Colon Cancer,
Stratified by the Levels of Genotype, for the 10 SNPs Determined to Possess Statistically Significant
GxE Interaction Using GEM. Blue Curves Correspond to Genotype AA (Gj = 0), Red Curves to
Genotype Aa (Gj = 1), and Purple Curves to Genotype aa (Gj = 2), for a SNP with Respective
Major and Minor Alleles A and a. The Genome SNP ID / SNP Index / Candidate Pattern Index
Are Shown above Each Plot.

Our simulation results upon the RGEM and NLRT competitive methods suggest that such a

correction – to the multiple hypothesis testing problem invoked from the fishing for associations

approach of these methods – is necessary for the proper reporting of Type I errors. Furthermore,

our results suggest that control of the FWER at the 5% level to not be realistic for the competitive

methods, BLRT, BRGEM, PCT, and GLRT, each of which is based upon an asymptotic test statis-

tics null distribution for its control of the FWER, as illustrated empirically by the observed FWERs

presented within Table 4.7. This notion is particularly true upon SNP loci possessing a rare minor

allele frequency (say not greater than 5%) within the population and whose allele frequencies adhere

to Hardy-Weinberg equilibrium within the population, as illustrated by Figure 4.4.
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Fig. 4.17: Relationships Between Recent Consumption of Cigarettes and Risk of Rectal Cancer,
Stratified by the Levels of Genotype, for the 12 SNPs Determined to Possess Statistically Significant
GxE Interaction Using GEM. Blue Curves Correspond to Genotype AA (Gj = 0), Red Curves to
Genotype Aa (Gj = 1), and Purple Curves to Genotype aa (Gj = 2), for a SNP with Respective
Major and Minor Alleles A and a. The Genome SNP ID / SNP Index / Candidate Pattern Index
Are Shown above Each Plot. The Plot Missing a Purple Line Is due to Data Sparsity.
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Under H0, there are two apparent approaches to controlling the FWER over the maximum

test statistic for GEM: approximate the test statistics null distribution, by adapting an appropriate

asymptotic framework; or, conditional upon the data, work upon the exact conditional (i.e., permu-

tation) null distribution of said test statistic. However, applying an asymptotic approximation to the

true null distribution for the maximum chi-square test statistic, say, by way of the MVN theoretical

framework presented within [109], is suspect and can lead to inaccurate control in the FWER. This

notion is true, even upon large samples, because sparse cell counts (in reference to Table 4.2) can

occur upon SNPs with low population minor allele frequencies. Moreover, the MVN framework for

the maximum chi-square test statistic (4.11), as presented within [109], lacks the ability to correct

the MHT problem of assessing GxE interaction upon multiple genetic markers (i.e., upon circum-

stances for which m > 1). Apparently, there are two approaches for adapting the MVN framework

when assessing GxE interaction upon multiple genetic markers: (a) modify the MVN framework to

a single 3mε-level categorical variable which summarizes the random variables G1, . . . , Gm and E

(e.g., use the random variable X defined within §4.5.2); (b) or, adapt an MTP which corrects for the

multiple implementation of the LPCV approach across several genetic markers (e.g., Bonferroni).

However, there are problems affiliated with each of these approaches. For the former approach (a),

there are two problems. First, the notion of sparse cell counts (referring to Table 4.4) is exacerbated

over the single genetic marker implementation of the LPCV approach. For the fixed numbers of

cases and controls, many of these categories are likely to contain few (if any) observations. Hence,

the integrity of the asymptotic assumption governing the maximum chi-square test statistic across

the loci becomes increasingly suspect for increasing values in m. The second problem is computa-

tional in nature. As the value in m increases, the number of hypothesis tests encompassing H0 also

increases. Within such a setting, integration over the assumed asymptotic PDF for the maximum

chi-square test statistic across the loci becomes computationally prohibitive [109]. A problem with

the latter approach (b) is that it lacks accounting for the joint distribution of the maximum test

statistics across the genetic markers. As a consequence, this can result in a conservative MHT

correction. For example, to account for the MHT problem, induced from application of the LPCV

approach to multiple SNP-SNP pairings, [109] applied the conservative method of [177] to control

the false discovery rate (FDR). The problem with this approach in controlling the FDR, is that it

accounts for an arbitrary dependence structure of the maximum test statistics across the loci [60],

thereby failing to incorporate the true underlying correlation of the data. As a result, one can incur
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a loss in statistical power.

On the other hand, our permutation based approach to the LPCV induced multiple testing

problem, refrains from making any approximations to the null distribution for the maximum chi-

square test statistic and therefore results in proper control of the FWER. Moreover, our approach

incorporates MHT correction upon the permutation null distribution of the maximum chi-square

test statistic across multiple genetic markers, thereby accounting for the joint distribution of the

maximum test statistic (4.13) across the loci. As a result, there is no need to implement a secondary

MTP (to that of the maxT MTP) to control for MHT across the genetic markers. This can result

in increased statistical power to detect true associations, while properly controlling the FWER.

In terms of statistical power (where control of the FWER is at the 5% level), with the exception

of two simulation conditions (§4.7) – each of which, nevertheless, resulted in low statistical power

amongst all competitive methods chosen for this investigation – our GEM approach outperformed

all competitive methods chosen for this investigation, when the true data generating model involved

a main genetic effect, a main environmental effect, or GxE interaction. Moreover, based upon the

simulation conditions chosen within our investigation, this notion appears to be prevalent whenever

the number of sampled genetic markers, m, assumes a value not exceeding 10. This makes our GEM

approach ideal for assessing GxE interaction upon a small sample of SNP markers. Although the

relative performance of GEM to competing methods seemed to vary upon the simulation conditions

involving cross-interaction (§4.8), its performance was essentially on par with the competing meth-

ods. Moreover, upon the circumstances in which the relative statistical power of GEM seemed to

suffer (i.e., βe = −0.25), could be attributed to the competing methods possessing increasing power

to detect the marginal effects in both the genetic factor (βg) and the environmental factor (βe) – in

addition to effect of GxE interaction – particularly, for the multiple logistic regression model of the

BLRT method, comprised of the predictors Gj1 (dominant genetic model), E, and the appropriate

term for their interaction effect.

We have proposed several tools for addressing the computational problem unfolding from adapt-

ing GEM in practice. Algorithm 4.1 is an efficient computational tool for utility in sampling from

the permutation null distribution of the maximum test statistic for GEM. We utilized this algorithm

to rapidly carry out R = 10K permutation upon the columns of GE∗ for each of the simulated data

sets of our simulation study of §4.7, for example, and we used the algorithm to efficiently gener-

ate R = 100K permutations upon the columns of GE∗ for the application of GEM to the colon
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and rectal data sets. In fact, these latter permutations upon the live data sets required at most

1.5 minutes to complete (maximum required time for GEM occurred upon the colon cancer data

integrated with the recent NSAID use environmental factor), when applying our proposed GEM R

package code upon the desktop computer summarized within Table 2.3. Moreover, in the case of

assessing GxE interaction upon a single genetic marker and a binary environmental factor, we have

proposed a network algorithm (NA) approach (Algorithm 4.2) which produces exact conditional

maxT adjusted p-values. Without the uncertainty associated with simulating a null distribution,

this approach provides the highest accuracy in the control of the FWER over the permutation null

distribution of Z2
max. As a future research endeavor, this NA approach could be extended to include

investigations related to statistical power for GEM.

We have demonstrated application of GEM to real case-control data involving cases upon each of

colon and rectal cancer. Our GEM approach detected highly statistically significant GxE interactions

between each of the 29 SNP markers of the candidate pathway and recent NSAID use in their

synergistic effect towards risk of colon and rectal cancer, whereas the LRTI approach – used as a

model to the conventional logistic regression modeling approach in detecting GxE interaction – failed

to detect a single statistically significant GxE interaction at the 5% level in the FWER. Although

we have yet to replicate these significant GEM findings, the results adhere with our simulation

findings for increased statistical power to detect GxE interaction through application of GEM when

compared to the conventional logistic regression modeling approach to detect this type of interaction.

Aside from replicating these findings, the next step in the analysis of these data might be to obtain

a collective measure of risk for the SNPs comprising the candidate pathway. This could be carried

out by using the combined statistic approach of [178], or the adaptive rank truncated product statistic

approach of [179].

We recognize that there are several limitations to our approach. First, because of the sheer

magnitude in the number of hypothesis tests conducted across the sampled SNP loci (i.e., m × q),

control of the FWER is anticipated to possess lower statistical power when compared to control of

alternative Type I error rates, such as the FDR [60,180]. This notion is of particular interest, because

genome-wide interaction studies (GWIS) are beginning to emerge [26]. One of the greatest challenges

for this approach to gene-environment interaction discovery is that of statistical power [3,181]. In this

regard, when assessing GxE interaction upon a large number of sampled genetic markers (say, m ≥

1K – e.g., GWIS) using GEM, control of the FDR may be more appropriate. In such circumstances,
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one most surely desires accountability of the correlation in the data (and, so also the test statistics)

under the complete null hypothesis, and apparently resampling seems to be the most lucid approach

to implicitly accomplish this feat. This could be carried out by adapting the resampling procedures of

[182,183] to GEM. Second, in parallel with the novel approaches of e.g., [3,27,109]15 – assessing GxG

or GxE interaction within the context of a population-based study design (e.g., case-control) – our

approach lacks accountability for confounding factor(s). Confounding occurs whenever the response-

explanatory association is over- or under-estimated because of the relation of an underlying variable

(i.e., the confounder) with both the explanatory variable and the response variable. Adjustment for

the confounding variable(s) within the GEM model can remove its effects. This could be carried

out by application of the methodology within [184], as follows. If Z is a confounding variable for

the Y -Wl association, some l = 1, . . . , q, we fit a generalized linear model (GLM) to [a function of]

E(Y ) = µ and Z, say

g (µi) = β0 + β1Zi,

where g is some appropriate link function (e.g., logit), and where µi and Zi are the respective

expected value of Y and measurement of Z for subject i, i = 1, . . . , n. The MLEs for β0 and β1 are

calculated and the residual, εi, is estimated by

ε̂i = Yi − µ̂i = Yi − g−1
(
β̂0 + β̂1Zi

)
,

where Yi is the phenotype for subject i. The confounder Z could then be accounted for within GEM,

by using ε̂i in lieu of Yi when conducting the chi-square tests of §4.3. Third, in conjunction with the

inference conducted within §3.2.3 for the CATT statistic, there is no compelling reason to assume

that the test statistics, ZjA1
, . . . , ZjAq (4.10) are identically distributed under H0, j = 1, . . . ,m, for

which the maxT MTP for GEM could be unbalanced in its multiplicity adjustment. To illustrate,

Figure 4.18 displays the natural logarithm of the ratio of the exact unconditional probability of Type

I error for the test statistics upon candidate patterns LA1
and LA6

, for balanced and unbalanced

case-control samples and various parameterizations of the ordered pair (πG, πE). If the distributions

of the test statistics ZjA1 and ZjA6 are identical under H0, each curve depicted within each of the

panel plots of this figure would lie upon the horizontal reference line (light dashed black line).

15Interestingly, to this author’s review, each of these cited articles fails to acknowledge the notion of confounding
factors. Yet, these population-based approaches are susceptible to distortions in associations of interest brought about
by unaccounted confounding factors.
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However, the panel plots within this figure suggests that the distributions of ZjA1
and ZjA6

are not

identical under H0, as seen by the deviation of each curve from the reference line. Hence, the maxT

MTP could be unbalanced in its control of the FWER. A plausible resolution to this potential

problem is to adapt a minP MTP approach to GEM, in an analogous manner to that conducted

upon the CATT statistic within Chapter 3 of this manuscript. Finally, as argued within Proposition

A.9, GEM can be assumed to control the FWER only in the weak sense (in the circumstance for

which a binary environmental factor has been sampled). However, because all of the simulations

conducted within this chapter (§4.7–§4.9) suggest that GEM controls the FWER at the 5% level

under a variety of conditions for which a partial null hypothesis holds, we are optimistic in GEMs

ability to control the FWER (at the 5% level) in practice.

We have demonstrated application of our approach within the context of a binary environmental

factor, and have assumed that the heterozygote genotype (i.e., Gj = 1) to be grouped with one of

the homozygote genotypes for each of the genetic factors. In practice, the investigator may be

interested in an alternative type of categorical environmental factor, such as a nominal or ordinal

multinomial exposure, and/or alternative assumptions governing the genotypes for the genetic factor.

Our approach can naturally be extended to accommodate variations in each of the environmental

or genetic factors. For example, the candidate patterns outlined within Table 4.1 can be used to

apply GEM to a three (or, more) qualitative environmental factor. The statistical power of these

extensions would depend upon the underlying data distributions, but – pursuant to our simulation

results (§4.7.4) – we would expect similar increases in power for GEM over competing approaches

to detect GxE interaction.

In conclusion, gene-environment interactions are worth studying for a number of reasons (§1.2),

as they can lead to a better understanding of the complete etiology of disease, inclusive of both

distinct and interacting pathways comprised of genetic and environmental factors. In some circum-

stances, interactions between genetic and environmental factors are believed to exhibit a greater

effect than either of the accompanying main effects upon the factors [53,185]. Failing to account for

the presence of GxE interaction (e.g., the GWAS approach of assessing solely for main genetic ef-

fects) can result in spurious conclusions about the etiology of complex disease, and often attributed

as a reason of discordant study findings [53]. Many GWAS, either currently underway or com-

pleted, have been conducted on samples with large amounts of existing environmental data (see

e.g., [24,59,186,187,188]). Hence, additional testing for interactions to identify novel genetic mark-
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Fig. 4.18: Plot of the Ratio (Natural Logarithm Thereof) of the Exact Unconditional Probability of
Type I Error for the Test Statistics upon Candidate Patterns LA1

and LA6
of GEM, for a Binary

Environmental Factor with Population Prevalence of Exposure, πE = Pr (E = 1) = 0.4, and a SNP
Marker Adhering to Population Hardy-Weinberg Equilibrium with Minor Allele Frequency (πG)
0.05 (Upper Panel Plots) / 0.20 (Lower Panel Plots). Balanced/Unbalanced Case-Control Samples
Depicted Within the Left/Right Panel Plots.

ers beyond those that would be detected by main genetic effect testing alone within these studies,

would seem to be a practical cost effective approach. The evidence for GxE interaction upon complex

diseases within the literature is compelling (§1.2), as is the argument that failure to model GxE

interactions in genetic studies will result in missing potentially important loci which demonstrate
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interactions, particularly those coupled with an environmental factor showing a cross-interaction

pattern of association. Based upon the analysis conducted within this chapter, our GEM approach

appears to possess the potential to increase the yield of genetic association studies, by identifying

important loci that synergistically work in concert with an environmental factor to influence risk of

a complex disease.



CHAPTER 5

SUMMARY

The mapping of the human genome and the completion of the Human HapMap project over

the past decade have significantly altered how research is conducted with respect to the genetic

epidemiology of human disease. Study designs and analytic approaches have evolved rapidly from

investigations involving relatively few targeted candidate genes to hypothesis-free genome-wide as-

sociation studies, where thousands – and now even millions – of single molecular mutations are

simultaneously analyzed to identify regions of the genome that may influence disease. As labora-

tory techniques continue to improve and costs decrease, the volume of genetic data will inexorably

rise, and robust tools for data management, statistical analysis, and computation will likewise need

to keep pace.

This project has focused attention on several analytic and computational problems arising from

these new technologies and study designs. Within Chapter 2, we proposed two data management

techniques and a parallel processing algorithm (named GPER), whose collective aim is to acceler-

ate simulation of the permutation null distributions for the maxT and minP MTPs upon GWAS

data. Our approach presents a significant improvement in computational performance over that

of the widely utilized GWAS PLINK software, and is on par with the fastest alternative methods

(e.g., PRESTO, PERMORY). However, unlike these methods – which utilize the CPU of the per-

sonal computer upon a purely serial-based computing algorithm – our approach is novel insofar as

we offload the computational burden for the maxT and minP MTPs to the GPU of the personal

computer, and employ a parallel processing approach to accelerate the computational performance.

In Chapter 3 we extended these computational and data management tools, and proposed

tools which enhance the statistical analysis governing the Cochran-Armitage trend test (CATT)

statistic upon GWAS data. In practice, these proposed enhancements introduce a rather profuse

computational problem. We leveraged upon the GPU basis of the GPER algorithm and proposed a

parallel processing approach to tackle this computational problem. Insofar as our approach is based

upon the minP MTP, implementation of the tools developed within Chapter 3 lead to proper control

over the FWER – in the strong sense – while simultaneously preserving high statistical power for

control over the nominal Type I error rate. We have demonstrated – through simulation and through
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the analysis of a GWAS of Bipolar Disorder – we can attain a considerable boost in statistical power

through applying our proposed test statistics null distribution for the CATT statistic within the

minP MTP, when compared to utilizing the asymptotic null distribution within the maxT MTP.

In Chapter 4 we extended the utility of the maxT MTP, adapting its control over the FWER

when detecting markers involved in gene-environment interactions. We have proposed several tools

for addressing the computational problems arising from adapting GEM in practice, including a data

management tool analogous to that proposed within Chapter 2 for GWAS data. In the case of

assessing a GxE interaction upon a single genetic marker and a binary environmental factor, we

proposed a network algorithm (NA) approach which produces exact conditional maxT adjusted

p-values. Without the uncertainty associated with simulating a null distribution, this approach

provides the highest accuracy in the control of the FWER over the permutation null distribution

of the appropriate maximum test statistic. Because our NA operates upon the joint distribution of

several test statistics (in contrast, typically an NA involves the distribution of a single test statistic),

it could be used as a model for the implementation of an exact approach to the maxT MTP upon

GWAS data.

We recognize that there are limitations to some of our proposed tools. For example, calculation

of the appropriate p-values under the proposed exact unconditional null distribution for the CATT

statistic (Chapter 3), depends upon the nuisance parameter vector θ (see §3.5.2). We have proposed

estimating the parameter elements of this vector at their respective MLEs under the complete null

hypothesis. In doing this, our computed pointwise p-values are called bootstrap p-values and are

approximate (i.e., not exact). However, this approach seems tenable, insofar as the calculation of the

Cochran-Armitage trend test statistic at a particular marker locus (2.5) itself involves estimating a

nuisance parameter at its MLE under the complete null hypothesis (for details, see page 150 of [62]).

Although future research – beyond the body of research comprising this Dissertation – is needed

for developing a methodology to transform these approximate p-values to their exact counterparts,

based upon the simulation results presented within §3.6.1 we are optimistic that the approximations

are sufficient for accurate strong control of the FWER in a GWAS. This notion holds particularly

true to the minP MTP, as any discrepancies between the approximate and exact p-values will result

in an unbalanced multiplicity adjustment, as a worst case scenario, and should not compromise the

overall control in the FWER for this MTP. Moreover, recent research investigating the distributional

properties of bootstrap p-values, particularly within the realm of discrete data, suggests the accuracy
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of these p-values to be quite remarkable (see e.g., [140]), which is in direct agreement with the results

we obtained within our simulation (§3.6.1).

There are also several limitations to our proposed GEM method, as described within §4.11.

First, for large marker panels (i.e., large m), control of the FWER may require an increase in the

number of reported Type II errors when compared to control of alternative Type I error rates,

such as the FDR. This is of particular interest, because genome-wide interaction studies (GWIS)

are now becoming more common [26]. Second, since our GEM method does not as yet allow for

inclusion of additional covariates, it can be susceptible to confounding. Within §4.11 we suggested

a procedure to control for other factors within GEM, based upon fitting the residuals of a GLM as

the response variable for GEM. Finally, as argued within Proposition A.9, GEM can be assumed

to control the FWER only in the weak sense. Although we demonstrated this in the context of a

binary environmental factor, we can easily extend this approach to an environmental factor with

three or more levels. However, because each of the simulations conducted within Chapter 4 (see

§4.7–§4.9) suggests that GEM controls the FWER at the 5% level under a variety of conditions for

which a partial null hypothesis holds, our preliminary results suggest that GEM could control the

FWER (at the 5% level) in practice. This will be a focus of further study.
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APPENDIX A

PROPOSITIONS

Proposition A.1. For j = 1, . . . ,m, we consider testing the null hypothesis of no association be-

tween Y and Gj (H
(j)
0 ), against the two-sided alternative hypothesis (H

(j)
a ). To test these hypotheses

within a GWAS, a commonly employed test statistic is based upon the Cochran-Armitage trend test

(CATT), whose form is given by (2.5). Taking (v0, v1, v2) = (t, t+ 1, t+ 2), for some real number t,

the CATT statistic can be used to test H
(j)
0 against H

(j)
a under the additive GMI. From a paramet-

ric modeling perspective, the additive GMI satisfies the simple logistic regression model, specified by

(2.3). That is, if πjk = Pr (Y = 1|Gj = k), for each k ∈ G, the additive GMI assumes the behavior

in the πjk at locus j satisfies the model

log (Odds (πjk)) = β0j + β1jk,(A.1)

for some unknown parameters β0j and β1j . In terms of this model, H
(j)
0 and H

(j)
a can be expressed

by

H
(j)
0 : β1j = 0

H
(j)
a : β1j 6= 0.

(A.2)

Under H
(j)
0 , it follows that the CATT statistic is equivalent to Rao’s Score test statistic in testing

the hypotheses given by (A.2) upon the model (A.1).�

Proof: First, note that under the additive GMI, the CATT statistic (2.5) can be written as

Tj =
n (n (nj02 − nj00)− n0 (nj2 − nj0))

2

(n0) (n− n0) (4nj0nj2 + nj0nj1 + nj1nj2)
,(A.3)

where for each c = 0, 1 and k ∈ G, the values of njck and njk are as depicted within Table 2.1.

Let Y = (Y1, . . . , Yn) denote the vector of random responses for the binary trait among the n

sampled participants. Further, conditional on Xj , denote the joint PMF of Y at realization y by
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fY(y;πj0, πj1, πj2). Since the responses are assumed independent, the likelihood function is

fY(y;πj0, πj1, πj2) =

2∏
k=0

∏
i:yi∈y,gji=k

Pr (Yi = yi|Gj = gji)

=

2∏
k=0

∏
i:yi∈y,gji=k

πyijk (1− πjk)
1−yi ,(A.4)

where gji is as defined by (2.2). Taking the natural logarithm, the log-likelihood function – denoted

as l (πj0, πj1, πj2; y) – is given by

l (πj0, πj1, πj2; y) =

2∑
k=0

∑
i:yi∈y,gji=k

[yi log (πjk) + (1− yi) log (1− πjk)]

=

2∑
k=0

∑
i:yi∈y,gji=k

[yi logit (πjk) + log (1− πjk)]

∗
=

n∑
i=1

[yi (β0j + gjiβ1j)− log (1 + exp {β0j + gjiβ1j})]

= l (β0j , β1j ; y) ,(A.5)

where logit(·) = log (Odds(·)) and where (
∗
=) holds by (A.1). Taking partial derivatives of (A.5)

with respect to βkj , k ∈ {0, 1}, we get

∂l (β0j , β1j ; y)

∂β0j
=

n∑
i=1

[yi − expit (β0j + gjiβ1j)]

∂l (β0j , β1j ; y)

∂β1j
=

n∑
i=1

[yigji − gji expit (β0j + gjiβ1j)]

,(A.6)

where expit(·) = exp(·) (1 + exp{·})−1
(the inverse function of logit(·)). Let Uj =

(
U0(βj), U1(βj)

)′
denote the efficient score for βj = (β0j , β1j)

′
. For k ∈ {0, 1}, by (A.6) it holds

Uk
(
βj
)

=
∂l (β0j , β1j ; y)

∂βkj
=

n∑
i=1

[
gkji (yi − expit{β0j + gjiβ1j})

]
.(A.7)

Now, under the null hypothesis of (A.2), in accordance with (A.6) it follows that

∂l (β0j , β1j ; y)

∂β0j
= 0 ⇐⇒ β̃0j = logit

(
n− n0

n

)
,(A.8)
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where β̃0j denotes the maximum likelihood estimate of β0j under said null hypothesis. Hence, under

the null hypothesis of (A.2), evaluating (A.7) at βj = (β̃0j , 0)′, we get U0

(
(β̃0j , 0)′

)
= 0 and

U1

(
(β̃0j , 0)′

)
=

n∑
i=1

gji

(
yi −

n− n0

n

)
=
n (nj11 + 2nj12)− (n− n0) (nj11 + nj01 + 2nj12 + 2nj02)

n

=
n0 (nj12 − nj10) + (n− n0) (nj00 − nj02)

n
.(A.9)

Denote the observed Fisher’s information matrix for βj = (β0j , β1j)
′

by I(βj). Also, for each

s, t ∈ {1, 2}, denote the (s, t)th element of I(βj) by
[
I(βj)

]
(s,t)

. Under the null hypothesis of (A.2),

a consistent estimator of
[
I(βj)

]
(s+1,t+1)

is [99]

[
I
(

(β̃0j , 0)′
)]

(s+1,t+1)
= −

∂Us(βj)

∂βtj

∣∣∣β0j=β̃0j ,β1j=0 ∀s, t ∈ {0, 1}.(A.10)

We find

−
∂Us(βj)

∂βtj
=

n∑
i=1

[
(gji)

I(s6=t)+2I(s=t=1)

(
expit {β0j + gjiβ1j}

1 + exp {β0j + gjiβ1j}

)]
∀s, t ∈ {0, 1},(A.11)

where recall I(·) is the indicator function, whose returned value is: one if its argument, namely (·),

is true; and zero otherwise. Evaluating (A.11) at βj = (β̃0j , 0)′, expression (A.10) reduces to

[
I
(

(β̃0j , 0)′
)]

(s+1,t+1)
=



n

(
n− n0

n

)(n0

n

)
, if s = t = 0(

n− n0

n

)(n0

n

)
(nj1 + 2nj2) , if s 6= t(

n− n0

n

)(n0

n

)
(nj1 + 4nj2) , if s = t = 1.

(A.12)

Now, by (A.12), it holds

det
(
I
(

(β̃0j , 0)′
))

=

(
n− n0

n

)2 (n0

n

)2 (
n(nj1 + 4nj2)− (nj1 + 2nj2)

2
)

=

(
n0(n− n0)

n2

)2

(4nj0nj2 + nj0nj1 + nj1nj2) .(A.13)
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Denote the inverse of I(βj) by I−1(βj). It follows that the (2, 2)th element of I−1((β̃0j , 0)′), denoted

as
[
I−1((β̃0j , 0)′)

]
(2,2)

, is given by

[
I−1((β̃0j , 0)′)

]
(2,2)

=

 1

det
(
I
(

(β̃0j , 0)′
))
[I((β̃0j , 0)′

)]
(0,0)

=

(
n3

n0(n− n0)

)
(4nj0nj2 + nj0nj1 + nj1nj2)

−1
.(A.14)

Hence, under the null hypothesis of (A.2), Rao’s Score test statistic, Qj , is given by

Qj = U′jI
−1(βj)Uj

∣∣∣β0j=β̃0j ,β1j=0

=
[
0 U1

(
(β̃0j , 0)′

)]
I−1

(
(β̃0j , 0)′

)(
0, U1

(
(β̃0j , 0)′

))′
=
(
U1

(
(β̃0j , 0)′

))2 [
I−1((β̃0j , 0)′)

]
(2,2)

∗
=
n [n0 (nj12 − nj10) + (n− n0) (nj00 − nj02)]

2

n0(n− n0) (4nj0nj2 + nj0nj1 + nj1nj2)

∗∗
= Tj

(
expression (A.3) computed under H

(j)
0

)
,(A.15)

where
(
∗
=
)

holds by (A.9) and (A.14), and
(
∗∗
=
)

holds by trivial algebra. But, showing that Qj = Tj

under H
(j)
0 of (A.2) is precisely what we needed to demonstrate. Therefore, under H

(j)
0 , the Cochran-

Armitage trend test statistic under the additive GMI is equivalent to Rao’s Score test statistic in

testing the hypotheses (A.2) upon the logistic regression model (A.1).



245

Proposition A.2. Let G∗t denote the tth row of the genotype matrix G∗, t = 1, . . . ,m, where G∗

is the matrix defined within §2.3.2. Here, for each s = 1, . . . ,m′, where m′ = m/ρ some ρ ≥ 1, and

each i = 1, . . . , n, we consider

g
(∗ρ)
si =

sρ∑
j=(s−1)ρ+1

4j−(s−1)ρ−1g∗ji,(A.16)

where g∗ji is the (j, i)th element of G∗. We assign missing genotype values to the numerical value

of three (3), so that g∗ji ∈ G∗ = G ∪ {3}. Then, it holds that each possible value of g
(∗ρ)
si , namely

g
(∗ρ)
si = 0, 1, . . . , 4ρ−1, corresponds to a unique specification of the vector

(
g∗{(s−1)ρ+1}i, . . . , g

∗
{sρ}i

)
.�

Proof: The proof is by mathematical induction with respect to ρ. To establish the basis for

induction, suppose ρ = 1. It follows by (A.16) that

g
(∗ρ)
si = g∗si ∈ G∗,

for all s = 1, . . . ,m. Clearly, each unique g
(∗ρ)
si ∈ G∗ corresponds to a unique specification of the

[singleton] vector (g∗si), so that the basis for induction holds.

Next, to establish the induction step, suppose that each possible value of g
(∗ρ)
si , namely g

(∗ρ)
si =

0, 1, . . . , 4ρ−1, corresponds to a unique specification of the vector
(
g∗{(s−1)ρ+1}i, . . . , g

∗
{sρ}i

)
, for some

ρ ∈ N, ρ > 1, and all s = 1, . . . ,m′. We need to show that this result holds for ρ+1 ∈ N. Here, for ρ >

1, let g
(∗ρ)
si ∈ {0, 1, . . . , 4ρ − 1}, correspond to the unique specification of

(
g∗{(s−1)ρ+1}i, . . . , g

∗
{sρ}i

)
,

for some s = 1, . . . ,m′ − 1. It holds,

g
(∗{ρ+1})
si =

s(ρ+1)∑
j=(s−1)(ρ+1)+1

4j−(s−1)(ρ+1)−1g∗ji

=

sρ+1∑
k=(s−1)ρ+1

4k−(s−1)ρ−1g∗ki

= g
(∗ρ)
si + 4ρg∗{sρ+1}i,

where it is assumed that sρ + 1 ≤ m. Here, the element g
(∗{ρ+1})
si corresponds to the vector(

g∗{(s−1)ρ+1}i, . . . , g
∗
{sρ}i, g

∗
{sρ+1}i

)
. Note that each g∗{sρ+1}i ∈ G

∗ yields a unique value for g
(∗{ρ+1})
si ,

since 0 ≤ g
(∗ρ)
si < 4ρ. The result immediately follows, since the value of g

(∗ρ)
si corresponds to a

unique specification of the vector
(
g∗{(s−1)ρ+1}i, . . . , g

∗
{sρ}i

)
. This establishes the induction step.
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Therefore, by mathematical induction it holds that each possible value of g
(∗ρ)
si , corresponds to a

unique specification of the vector
(
g∗{(s−1)ρ+1}i, . . . , g

∗
{sρ}i

)
, for all s = 1, . . . ,m′.
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Proposition A.3. Here, for each s = 1, . . . ,m′, where m′ = m/ρ, for some ρ ≥ 1, let g
(∗ρ)
si be given

by (A.16), for all i = 1, . . . , n. For every h = 1, . . . , ρ− 1, it holds

⌊
bg(∗ρ)
si /4h−1c+ 4− k

4

⌋
=

⌊
bg(∗ρ)
si /4h−1c+ 7− k

4

⌋
⇐⇒ g∗{(s−1)ρ+h}i = k,(A.17)

for all k ∈ G∗ = G ∪ {3}. Furthermore, for all k ∈ G∗, it holds

⌊
g

(∗ρ)
si

4ρ−1

⌋
= k ⇐⇒ g∗{sρ}i = k.�(A.18)

Proof: First, note that for each h = 1, . . . , ρ and all i = 1, . . . , n, it holds

(
41−h) g(∗ρ)

si = g∗{(s−1)ρ+h}i + c1 + c2,(A.19)

where

c1 =

(s−1)ρ+h−1∑
j=(s−1)ρ+1

4j−(s−1)ρ−hg∗ji and c2 =

ρs∑
j=(s−1)ρ+h+1

4j−(s−1)ρ−hg∗ji.

Further, since g∗ji ∈ G∗, it follows that

c1 ≤ 3

h−1∑
j=1

4−j (partial geometric series)

= 3

(
1− (1/4)

h

3/4
− 1

)
I(h > 1)

< 1,

for all h ∈ N. Hence, by (A.19), it holds

bg(∗ρ)
si /4h−1c = x∗{(s−1)ρ+h}i + c2.(A.20)
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Consider h = 1, . . . , ρ − 1. Suppose that the premise of (A.17) holds for all k ∈ G∗. Note that

c2/4 = c∗2, where c∗2 ∈ N ∪ {0}. Thus, for each k ∈ G∗, by (A.20) we have

⌊
bg(∗ρ)
si /4h−1c+ 4− k

4

⌋
=

⌊
bg(∗ρ)
si /4h−1c+ 7− k

4

⌋

=⇒
⌊
g∗{(s−1)ρ+h}i − k

4
+ c∗2 + 1

⌋
=

⌊
g∗{(s−1)ρ+h}i + 3− k

4
+ c∗2 + 1

⌋

=⇒ g∗{(s−1)ρ+h}i = k,

for which the conclusion of (A.17) holds. Conversely, suppose that the conclusion of (A.17) holds

for all k ∈ G∗. Again, we note that c2/4 = c∗2, where c∗2 ∈ N∪{0}. Thus, for each k ∈ G∗, by (A.20)

we have

⌊
bg(∗ρ)
si /4h−1c+ 4− k

4

⌋
= c∗2 + 1 =

⌊
bg(∗ρ)
si /4h−1c+ 7− k

4

⌋
,

for which the premise of (A.17) holds. Therefore, (A.17) holds for all k ∈ G∗ and all h = 1, . . . , ρ−1.

Finally, suppose that h = ρ. It follows that c2 = 0, for which (A.20) provides that

bg(∗ρ)
si /4ρ−1c = g∗{sρ}i.

The result of (A.18) immediately follows for all k ∈ G∗.
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Corollary A.1. Let f : R→ R be the function defined by

f(x) =
⌊x

4

⌋
,(A.21)

and for k ∈ N ∪ {0} let fk(x) denote the k-fold iterated function over f , where f0(x) = x. Let

s = 1, . . . ,m′ and i = 1, . . . , n, each be chosen arbitrarily. For all h = 1, . . . , ρ, it holds

fh−1
(
g

(∗ρ)
si

)
=

⌊
g

(∗ρ)
si

4h−1

⌋
.�(A.22)

Proof: The result clearly holds for h = 1. So, suppose that h > 1. Here,

fh−1
(
g

(∗ρ)
si

)
= fh−2

(
f
(
g

(∗ρ)
si

))
= fh−2

f
 sρ∑
j=(s−1)ρ+1

4j−(s−1)ρ−1g∗ji


= fh−2

g∗{(s−1)ρ+2}i +

sρ∑
j=(s−1)ρ+3

4j−(s−1)ρ−2g∗ji


= fh−3

g∗{(s−1)ρ+3}i +

sρ∑
j=(s−1)ρ+4

4j−(s−1)ρ−3g∗ji


...

= fh−(h−1)

g∗{(s−1)ρ+h−1}i +

sρ∑
j=(s−1)ρ+h

4j−(s−1)ρ−h+1g∗ji


= g∗{(s−1)ρ+h}i +

sρ∑
j=(s−1)ρ+h+1

4j−(s−1)ρ−hg∗ji

=

⌊
g

(∗ρ)
si

4h−1

⌋
,

by (A.20). Therefore, fh−1
(
g

(∗ρ)
si

)
=

⌊
g
(∗ρ)
si

4h−1

⌋
, for all h = 1, . . . , ρ.
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Proposition A.4. For each k ∈ {0, 1, 2} = G and each j = 1, . . . ,m, let πjk = Pr (Y = 1|Gj = k)

be as previously defined within §2.2.2. In terms of these πjk, the null hypothesis of no association

between Gj and Y , H
(j)
0 , can be expressed by

H
(j)
0 : πj0 = πj1 = πj2 ∀j = 1, . . . ,m.(A.23)

For each k ∈ G let Gj1k and Gj0k, denote the respective random numbers of cases and controls

carrying k copies of the minor allele at locus j. Under the null hypothesis H
(j)
0 , for each y ∈

{0, 1} = Y, it follows that

Gjy = (Gjy0, Gjy1, Gjy2) ∼ Multinomial (ny,πj = (π0j , π1j , π2j)) ,(A.24)

where πkj = Pr (Gj = k) for all k ∈ G.�

Proof: First, note that the vector Gjy follows a multinomial distribution, each y ∈ Y. We need

to show that Pr (Gj = k|Y = y) = πkj , for all k ∈ G and y ∈ Y. Here, for each y ∈ Y, let

π∗y = Pr (Y = y). Under the null hypothesis (A.23), for each y ∈ Y and k ∈ G, we have

π∗y = Pr (Y = y|Gj = k) =
Pr (Gj = k|Y = y)π∗y

Pr (Gj = k)
,

which implies that Pr (Gj = k|Y = y) = πkj and the result is established. Therefore, under the null

hypothesis (A.23),

Gjy = (Gjy0, Gjy1, Gjy2) ∼ Multinomial (ny,πj = (π0j , π1j , π2j)) ,

where πkj = Pr (Gj = k) for all k ∈ G.
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Proposition A.5. Consider SNP locus j with respective major and minor alleles, A and a. Fur-

thermore, let πAAj , πAaj , and πaaj denote the respective population frequencies for genotypes AA,

Aa, and aa at the locus. If fj denotes the inbreeding coefficient at locus j, we consider modeling

the vector of parameters
(
πaaj , πAaj , πAAj

)
by

πaaj = π2
j + πj (1− πj) fj ,

πAaj = 2πj (1− πj) (1− fj), and(A.25)

πAAj = (1− πj)2
+ πj (1− πj) fj ,

where recall, πj is the population frequency for allele a. It holds that

πj
πj − 1

≤ fj ≤ 1.�(A.26)

Proof: First, we note that πkj ∈ [0, 1], for all k ∈ {aa,Aa,AA}. With a little algebra, by (A.25) we

can demonstrate that this requires

fj ∈
[
max

{
1− 1

2πj (1− πj)
,
πj − 1

πj
,

πj
πj − 1

}
,min

{
1,

2− πj
1− πj

,
1 + πj
πj

}]
.

For every πj ∈ [0, 0.5], it holds that

min

{
1,

2− πj
1− πj

,
1 + πj
πj

}
= 1.

Also, since πj ≤ 0.5, it follows that

max

{
1− 1

2πj (1− πj)
,
πj − 1

πj
,

πj
πj − 1

}
=

πj
πj − 1

.

Therefore, (A.26) holds.
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Proposition A.6. For SNP locus j with respective major and minor alleles, A and a, let πaaj and πAaj

denote the respective population proportions of homozygotes for the minor allele and heterozygotes.

Let Q∗0j
(
πaaj , πAaj , n0, n1

)
denote the unconditional distribution of the CATT statistic under H

(j)
0 ,

as previously defined within §3.4. If Γ denotes the support of Q∗0j , then it follows that the number

of elements comprising Γ, n(Γ), is given by

n(Γ) =

(
n0 + 2

2

)(
n1 + 2

2

)
.�(A.27)

Proof: In terms of the notation provided upon Table 2.1, for each y ∈ {0, 1} = Y, let Γy be defined

by

Γy =

{
(njy0, njy1, njy2) :

2∑
k=0

njyk = ny

}
.

Now, since cases and controls are assumed unrelated, it follows that

n(Γ) = n(Γ0)n(Γ1).

Here, consider y ∈ Y arbitrarily. Note that njy0 = 0, . . . , ny, njy1 = 0, . . . , ny − njy0, and njy2 =

ny − njy0 − njy1, for which we have

n(Γy) =

ny∑
njy0=0

ny−njy0∑
njy1=0

(1)

=

ny∑
njy0=0

(ny − njy0 + 1)

= (ny + 1)
2 −

ny∑
njy0=1

njy0

= (ny + 1)
2 − ny (ny + 1)

2

=

(
ny + 2

2

)
.

Therefore,

n(Γ) = n(Γ0)n(Γ1) =

(
n0 + 2

2

)(
n1 + 2

2

)
.
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Proposition A.7. For each k ∈ G and each j = 1, . . . ,m, let πkj = Pr (Gj = k) be as previously

defined within the conjecture of Proposition A.4. If πj denotes the population minor allele frequency

at locus j and if the genotype frequencies at said locus adhere to Hardy-Weinberg equilibrium (HWE)

within the population, then under the null hypothesis of no genotype-phenotype association
(
H

(j)
0

)
,

the maximum likelihood estimator of πj , π̂j , is given by

π̂j =
2nj2 + nj1

2n
,(A.28)

where njk, k ∈ G are as defined within Table 2.1. Further,

E (π̂j) = πj , and V ar (π̂j) =
πj (1− πj)

2n
.�(A.29)

Proof: Let the random vector Gj = (Gj1, . . . , Gjn) denote the jth row of the genotype matrix G,

j = 1, . . . ,m, where G is the matrix defined within §2.2. Note that Gj corresponds to the random

values of Gj upon SNP locus j for the n-size sample of cases and controls. Here, under H
(j)
0 we

denote the joint PMF of Gj at realization g = (gj1, . . . , gjn) by fGj
(g;π0j , π1j , π2j), where gji is as

defined by (2.2). Under said null hypothesis, the likelihood function for the random sample is given

by

fGj
(g;π0j , π1j , π2j) =

n∏
i=1

∏
k∈G

π
I(gji=k)
kj .(A.30)

Taking the natural logarithm, the log-likelihood function – denoted as l (π0j , π1j , π2j ; g) – under the

HWE model is given by

l (π0j , π1j , π2j ; g) =

n∑
i=1

[2I(gji = 0) log (1− πj) + I(gji = 1) log (2πj(1− πj)) + 2I(gji = 2) log (πj)]

= 2nj0 log (1− πj) + nj1 log (2πj(1− πj)) + 2nj2 log (πj) .(A.31)

Taking the derivative of this expression with respect to πj , we get

dl (π0j , π1j , π2j ; g)

dπj
=
nj1 + 2nj2

πj
− nj1 + 2nj0

1− πj
.
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Setting this expression equal to zero and solving for the critical value(s) of πj , we find that

π̂j =
2nj2 + nj1

2n
.

Since the second derivative of (A.31) is strictly negative for all n0j , n1j , n2j , and πj ∈ (0, 1), it follows

that π̂j indeed maximizes the likelihood function. Also, under H
(j)
0 , for each y ∈ Y and k ∈ G we have

Gjyk ∼ Binomial (ny, πkj), where Gjyk is as defined within the conjecture of Proposition A.4. Since

the random vectors Gj0 and Gj1 (also defined within said Proposition) are mutually independent,

under H
(j)
0 it follows that

Gj0k +Gj1k ∼ Binomial (n, πkj) ∀k ∈ G.

Hence, assuming the HWE model under H
(j)
0 , we have

E (π̂j) = E

(
2 (Gj02 +Gj12) + (Gj01 +Gj11)

2n

)
=

2π2j + π1j

2

=
2π2

j + 2πj (1− πj)
2

= πj ,

as desired. Finally, under H
(j)
0 and the HWE model

V ar (π̂j) = V ar

(
2 (Gj02 +Gj12) + (Gj01 +Gj11)

2n

)
=

4π2j (1− π2j) + π1j (1− π1j)

4n
+

(
4

4n2

)∑
y∈Y

Cov (Gjy2, Gjy1)

=
4π2

j

(
1− π2

j

)
+ 2πj (1− πj)− 4π2

j (1− πj)2 − 8π3
j (1− πj)

4n

=
πj (1− πj)

2n
,

as required. Therefore, under H
(j)
0 and HWE at locus j, the MLE for πj is given by (A.28); and,

E (π̂j) and V ar (π̂j) are given by (A.29).
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Proposition A.8. We consider a SNP locus whose true penetrance is given by the pure interaction

model

logit (Pr (Y = 1|E,G)) = β0 + γGE,(A.32)

where Y is an indicator of disease, G is considered the dominant genotype coding at the locus, and

E is an indicator for exposure to a binary environmental factor. That is, this locus is assumed to

only affect disease risk among exposed individuals within the population, and disease risk is assumed

the same between the two exposure groups among non-carriers of the risk allele (measured by way

of the parameter β0). If πE|G=1 denotes the prevalence of exposure within the population, among

individuals carrying at least one copy of the risk allele at the locus, then a main genetic effect

may or may not be detectible amongst an n-size sample of cases and controls, dependent upon the

magnitude in the value for each of the parameters πE|G=1 and γ.�

Proof: Here, an association will exist between the genotype coding at this locus and the phenotype,

whenever

Pr (Y = 1|G = 1) = Pr (Y = 1|G = 0) + δ,

for some δ 6= 0; no association between these variables exists whenever δ = 0. Furthermore, for a

given n-size sample of cases and controls, all else being equal (e.g., the proportion of cases amidst

the [assumed fixed] n-size sample remains unchanged), the statistical power to detect a genotype-

phenotype association at the locus increases as δ traverses further away – positive or negative – from

the null value of zero. Now, Pr (Y = 1|G = 0) = expit (β0), where expit(·) = exp(·)(1 + exp(·))−1.

Also,

Pr (Y = 1|G = 1) =

∑
x∈{0,1} Pr (Y = 1, G = 1, E = x)

Pr(G = 1)

=
∑

x∈{0,1}

Pr (Y = 1|G = 1, E = x) Pr (E = x|G = 1)

= Pr (Y = 1|G = 0) + πE|G=1 (expit (β0 + γ)− expit (β0)) ,

which provides that δ = πE|G=1 (expit (β0 + γ)− expit (β0)). But, the degree to which δ deviates –

positive or negative – from the null value of zero, depends upon the magnitude of the parameters

πE|G=1 and γ, which establishes the desired result.
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Proposition A.9.

We consider testing the q-fold collection of null hypotheses {H(j,l)
0 }l=1,...,q for GEM, for some

j = 1, . . . ,m, where H
(j,l)
0 is as defined within §4.3. If Pj =

(
P ∗j1, . . . , P

∗
jq

)
denotes the vector of

unadjusted p-values corresponding with the test statistics Z∗jA1
, . . . , Z∗jAq – where Z∗jAl is given by

(4.10) with (4.7) substituted in lieu of (4.8) therein, for all l = 1, . . . , q – then in accordance with

Condition 2.1 of [62]:

The distribution of Pj is said to have the subset pivotality property if the joint distribution of

the subvector {P ∗jl : l ∈ K} is identical under the restrictions ∩l∈KH(j,l)
0 and H(j)

0 = ∩ql=1H
(j,l)
0 ,

for all subsets K = {l1, . . . , li} of true null hypotheses.

Subset pivotality is important for several reasons. First, it is convenient, as it allows for re-

sampling to be performed under the complete null hypothesis (H(j)
0 ), rather than under partial null

hypotheses. Second, when the condition holds, strong control of the family-wise Type I error rate

(FWER) results. On the other hand, when the condition fails, resampling under H(j)
0 can be as-

sumed to control the FWER only in the weak sense [62]. Here, we consider a binary environmental

factor and demonstrate that GEM fails adherence to the subset pivotality condition.

The Joint Distribution of a Pair of Standardized Test Statistics

Here, we assume all notation as previously defined within §4.1–§4.5, and we consider assigning

the set K = {r, s}, for some r 6= s = 1, . . . , q. To illustrate GEMs failure in adherence with the

property of subset pivotality, it suffices to show that the joint distribution of the test statistics Z∗jAr

and Z∗jAs is different under the partial null hypothesis H̃p
0 = {H(j,r)

0 , H
(j,s)
0 } and the complete null

hypothesis at locus j, H(j)
0 . To show this, we will demonstrate that the covariance between said test

statistics is different under H̃p
0 and H(j)

0 .

Indeed, suppose H
(j,r)
0 and H

(j,s)
0 hold true. If θrs denotes the product of the standard errors

for the statistics TjAr and TjAs (where these statistics are given by (4.6)) under H
(j,r)
0 and H

(j,s)
0 ,

since the random vectors Xj0 and Xj1 are independent (holds true, since cases and controls are
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assumed unrelated), under said null hypotheses it holds

θrsCov
(
Z∗jAr , Z

∗
jAs

)
= E (TjArTjAs)− E (TjAr )E (TjAs)

= E {(π̂jAr1 − π̂jAr0) (π̂jAs1 − π̂jAs0)}

=
∑

y∈{0,1}=Y

E (π̂jAryπ̂jAsy)−
∑

y,y′∈Y:y′ 6=y

E (π̂jAry)E (π̂jAsy′)

=
∑
y∈Y
{E (π̂jAryπ̂jAsy)− E (π̂jAry)E (π̂jAsy)} .(A.33)

Now,

E (π̂jAr1π̂jAs1) =

(
1

n1

)2

E

(∑
h∈Ar

Xj1h

∑
k∈As

Xj1k

)

=

(
1

n1

)2
∑
h∈A∗r

[
V ar (Xj1h) + (E (Xj1h))

2
]

+

∑
h ∈ Ar,

k ∈ As\A∗r

[Cov (Xj1h, Xj1k) + E (Xj1h)E (Xj1k)]


=

(
1

n1

)∑
h∈A∗r

πj1h −
∑

h ∈ Ar,
k ∈ As

πj1hπj1k

+ E (π̂jAr1)E (π̂jAs1) ,

where A∗r = (Ar ∩As). Similarly,

E (π̂jAr0π̂jAs0) =

(
1

n0

)∑
h∈A∗r

πj0h −
∑

h ∈ Ar,
k ∈ As

πj0hπj0k

+ E (π̂jAr0)E (π̂jAs0) .

Therefore, by (A.33), under H
(j,r)
0 and H

(j,s)
0 , we have

Cov
(
Z∗jAr , Z

∗
jAs

)
=

n0n1

∑
y∈Y


(

1

ny

)∑
h∈A∗r

πjyh − πjAr1πjAs1


(n0 + n1)

√
πjAr1πjAs1 (1− πjAr1) (1− πjAs1)

.(A.34)
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GEM Fails Adherence to the Property of Subset Pivotality

For clarity in discussion, here we consider a balanced case-control study (i.e., n0 = n1), for

which under H
(j,r)
0 and H

(j,s)
0 , (A.34) reduces to

Cov
(
Z∗jAr , Z

∗
jAs

)
=

∑
y∈Y

∑
h∈A∗r

πjyh − 2πjAr1πjAs1

2
√
πjAr1πjAs1 (1− πjAr1) (1− πjAs1)

.(A.35)

To illustrate GEMs failure in the subset pivotality property, it suffices to show that (A.35) differs

between the partial null H̃p
0 and the complete null hypothesis at locus j,H(j)

0 , for a single specification

in π1 – given the specification in said probability vector, we can then define the respective null

hypotheses, H̃p
0 and H(j)

0 , each through a unique specification of the probability vector π0. With

this notion in mind, we consider the following three candidate patterns [in particular] for GEM,

LA1 = (Gj = 0) ∧ (E = 0) ⇐⇒ A1 = {1}

LA3 = (Gj ∈ {0, 1}) ∧ (E = 0) ⇐⇒ A3 = {1, 2}

LA9
= (Gj = 0) ∧ (E ∈ {0, 1}) ⇐⇒ A9 = {1, 4},

against their corresponding respective complements (LBl , l = 1, 3, 9), such that q = 11 (the number

of candidate patterns consider by the GEM methodological development for a binary environmental

factor), with the intention of assigning K = {3, 9}. The initial two of these candidate patterns

correspond to tests involving GxE interaction, while the final candidate pattern corresponds to the

dominant GMI test for the main effect in Gj . These three candidate patterns are of particular

interest, insofar as the intersection A3 ∩A9 = A1 is not empty. To keep things simple, we consider

assigning the elements of the vectors πj1 and πj0, such that

πj1 = (πj11, λ, λ, λ, λ, λ)

πj0 = (πj11 + δ, λ− δ, κ, λ− δ, κ, κ)
,(A.36)

where the parameters 0 ≤ πj11, λ, κ, and δ are chosen to satisfy the condition
∑
k πjyk = 1, for each

y ∈ Y. Note that for any admissible choice of the vector of parameters (πj11, λ, κ, δ), by inspection

of (A.36), the null hypotheses H
(j,3)
0 and H

(j,9)
0 always hold true. Thus, by (A.35) – where, r = 3,



259

s = 9, and A∗3 = (A3 ∩A9) = A1 = {1} therein – we have

Cov
(
Z∗jA3

, Z∗jA9

)
=

2πj11 + δ − 2 (πj11 + λ)
2

2 (πj11 + λ) (1− πj11 − λ)
.

Moreover, the complete null hypothesis at locus j, H(j)
0 , holds if and only if κ = λ and δ = 0 within

(A.36), for admissible πj11 and λ thereto. Thus, for given admissible values in πj11 and λ, observe

Cov
(
Z∗jA3

, Z∗jA9
|H(j)

0

)
=

2πj11 − 2 (πj11 + λ)
2

2 (πj11 + λ) (1− πj11 − λ)

6= 2πj11 + δ − 2 (πj11 + λ)
2

2 (πj11 + λ) (1− πj11 − λ)

= Cov
(
Z∗jA3

, Z∗jA9
|H̃p

0

)
,

for some admissible δ 6= 0. Hence, for admissible πj11, λ, and δ 6= 0, such that H̃p
0 = {H(j,3)

0 , H
(j,9)
0 },

since Cov
(
Z∗jA3

, Z∗jA9
|H(j)

0

)
does not equal Cov

(
Z∗jA3

, Z∗jA9
|H̃p

0

)
, the joint distribution of the

test statistics Z∗jA3
and Z∗jA9

is not the same under H̃p
0 and H(j)

0 – for example, (πj11, λ, δ) =

(0.20, 0.16,−0.15). Therefore, GEM fails adherence to the property of subset pivotality.
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Proposition A.10. We consider testing the q-fold collection of null hypotheses {H(j,l)
0 }l=1,...,q for

GEM upon a sampled binary environmental factor, for some j = 1, . . . ,m, where H
(j,l)
0 is as defined

within §4.3. Then, the complete null hypothesis at the locus, H(j)
0 = ∩ql=1H

(j,l)
0 , is equivalent to

(4.20).�

Proof: We assume all notation as previously defined within §4.1–§4.5. We need to show that H(j)
0

is equivalent to H0 : πj0 = πj1. First, suppose that H(j)
0 holds true. We need to show that H0

holds. Since H
(j,l)
0 holds, for all l = 1, . . . , q, it follows that

πjAl1 = Pr (Xj ∈ Al|Y = 1) =

∑
x∈Al Pr (Xj = x, Y = 1)

Pr(Y = 1)
=

∑
x∈Al Pr (Xj = x, Y = 0)

Pr(Y = 0)
= πjAl0.

(A.37)

This implies that

Pr (Xj ∈ Al, Y = y) = Pr (Xj ∈ Al) Pr(Y = y),(A.38)

for each y ∈ {0, 1} = Y and all l = 1, . . . , q. Hence, for each l ∈ {1, 2, 7, 8} and y ∈ Y, we have

Pr (Xj ∈ Al = {k}, Y = y) = Pr (Xj ∈ Al = {k}) Pr(Y = y),(A.39)

for all k ∈ {1, 4, 3, 6}. Now, consider l ∈ {3, 4, 5, 6} to be arbitrary. Then, for some k ∈ {1, 4, 3, 6}

and h ∈ {2, 5}, we have

∑
x∈{k,h}

Pr (Xj = x, Y = y) = Pr (Xj ∈ {k, h}, Y = y)

(A.38)
= Pr (Xj ∈ {k, h}) Pr(Y = y)

(A.39)
= Pr (Xj = k, Y = y) + Pr (Xj = h) Pr(Y = y).

This result implies that

Pr (Xj = h, Y = y) = Pr (Xj = h) Pr(Y = y),(A.40)

for each h ∈ {2, 5} and y ∈ Y. In general, we find that (A.40) holds for all h ∈ X2 and y ∈ Y.

Hence, H0 holds.
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Conversely, suppose that H0 holds true. We need to show that H(j)
0 holds. Since H0 holds, it

follows that the random variables Y and Xj are independent. Thus, for each y ∈ Y and k ∈ X2, we

can define π∗jk = πjyk = Pr (Xj = k|Y = y). For any k ∈ X2, it holds

Pr (Xj = k) =
∑
y∈Y

Pr (Xj = k|Y = y) Pr(Y = y)

H0= π∗jk
∑
y∈Y

Pr(Y = y)

= π∗jk.

This expression implies that

Pr (Xj = k, Y = y) = Pr (Xj = k) Pr(Y = y),

for all k ∈ X2 and y ∈ Y. Thus, we have

πjAl1 =
∑
k∈Al

Pr (Xj = k|Y = 1)

=
∑
k∈Al

π∗jk

=
∑
k∈Al

Pr (Xj = k|Y = 0)

= πjAl0,

for all l = 1, . . . , q, for which H(j)
0 holds. Therefore, the complete null hypothesis at the locus,

H(j)
0 = ∩ql=1H

(j,l)
0 , is equivalent to (4.20).
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APPENDIX B

CUDA KERNELS

B.1 The GPER Algorithm

B.1.1 Permutation

Having prepared the response vector y∗ and genotype matrix G(∗ρ), as outlined within §2.3.1

and §2.3.2, we are poised to begin analyzing the data. Here, we describe a parallel processing

approach to ascertaining random permutations of the columns upon G(∗ρ). This approach can es-

sentially be implemented through the conglomeration of two components: (1) generate an n-sequence

of unit-uniform (i.e., U(0, 1)) random deviates, which we denote by U1, . . . , Un. We concatenate this

n-sequence, along with the sequence of their accompanying indices (i.e., the sequence 1, . . . , n – rep-

resentative of the column indices for G(∗ρ)), to form a 2 × n matrix (denoted Un); and (2) if the

sequence U1, . . . , Un resides upon row t of Un, t = 1, 2, we order the columns upon this matrix in

accordance to the values encompassing row t of the matrix. The elements upon row 2− I(t = 2) of

the ordered matrix Un depict a random permutation of the column indices upon G(∗ρ). This latter

component essentially reduces to sorting the sequence U1, . . . , Un, while simultaneously tracking the

indices of the accompanying elements during the sorting routine.

Each of these two components can be performed in a parallel manner within CUDA C, where it

is noted that the latter component is dependent upon the former (i.e., the algorithm we implement

for generation of the sequence U1, . . . , Un must complete its tasks prior to the column ordering of

Un). Because of this dependency, we create CUDA C kernel(s) to carry out the specific task upon

each of the two aforementioned components. Specifically, for the former component, we create a

CUDA C kernel, denoted mMTK (shorthand for modified Mersenne Twister kernel); for the latter

component, we create three CUDA C kernels, denoted respectively by BSK1 (BSK is shorthand for

bitonic sort kernel), BSK2, and BSK3. We describe the details encompassing mMTK and the BSK’s

within the respective two sections which follow.
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B.1.1.1 Parallel Random Number Generation

To generate the sequence U1, . . . , Un upon the GPU, we make use of the Mersenne Twister

(MT) pseudorandom number generator (RNG), developed in 1998 by Makoto Matsumoto and Takuji

Nishimura [100]. In particular, we modify the CUDA C MT kernel (MTK) developed by Victor

Podlozhnyuk of the NVIDIA Corporation, the CUDA C programming code of which is provided

as part of the CUDA toolkit (version 4.0, May 2011). The MT RNG possesses many important

properties for random number generation, including: (a) a long period length, equal to the [colossal]

value of 219937−1 (a Mersenne prime number – which is where the name of the generator originates).

As one will recall, the period of a random number generator essentially defines the number of [unique]

random numbers generated in a sequence before the generator begins re-generating the sequence – the

longer the period, the better the random number generator; (b) good distributional properties. The

MT generates numbers with an almost U(0, 1) distribution; and (c) high performance and efficient

use of memory. The speed, portability, and high quality of the MT RNG are desirable properties

for random number generation. In fact, for many applications the MT RNG is the pseudorandom

number generator of choice and is the default random number generator in the R software [103].

The host call for the CUDA C MTK – as provided within the CUDA toolkit (see §1.4.2 for

review of the CUDA toolkit) – is randomGPU<<< B, T >>>(d Rand, nPerRng), where d Rand is the

returned two-dimensional matrix of U(0, 1) random numbers whose row and column dimensions are

equal to nPerRng and B×T, respectively. Essentially, the tth thread for this kernel, t = 1, . . . , B×T,

generates the nPerRng-sequence of U(0, 1) random numbers pertaining to the tth column of d Rand.

Here, the row dimension of d Rand could essentially be considered the GWAS sample size, n,

while each of the columns for this matrix could represent a particular sequence U1, . . . , Un (e.g, to

assist the BSK’s in generation of a column permutation of G(∗ρ)). However, this value in the row

dimension of d Rand will not suffice for the sorting kernels we develop, in general, because said

kernels rely upon sorting sequences of length 2p, some p ∈ N. We propose utilizing a modified

MTK (i.e., mMTK), whose primary intention is to assist the BSK’s in generating permutations

of the indices upon the columns of G(∗ρ). These modifications are: (a) implementation of a seed

parameter for the MT RNG. This allows for clustering of GPER to multiple GPUs, and/or data

partitioning of the GWAS data set; and (b) if the row dimension of d Rand is 2p, where p is some

integer for which n ≤ 2p, we implement a parameter which informs mMTK to halt – upon each

of the columns for d Rand – random number generation of the sequence U1, . . . , U2p at the random
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number Un. This modification to MTK is essential, because – as previously elucidated to – the

BSK’s rely upon sorting sequences of length 2p, some p ∈ N. Algorithm B.1 describes the procedure

encompassing implementation of mMTK.

Algorithm B.1 Pseudorandom Number Generation

1. Allocate a matrix d Rand, of size 2p×B×T, within device memory, such that n ≤ 2p. Let Us,t

denote the (s+ 1, t+ 1)th element of d Rand.

2. Invoke mMTK, comprised of B blocks and T threads per block, within the host as follows:

for s = 0 to B− 1 in parallel do

for t = 0 to T− 1 in parallel do

h← t+ s× T. {Which column of d Rand does thread t work upon?}

for i = 0 to 2p − 1 do

if i < n then

Ui,h ← MT RNG generated random deviate.

else

Ui,h ← −1.

end if

end for

end for

end for

3. In brief, thread t within block s of the kernel, t = 0, . . . , T− 1 and s = 0, . . . , B− 1, generates

the sequence {Ui}i=1,...,2p , upon the appropriate column of d Rand, where

Ui = I(i ≤ n)U(0, 1)− I(i > n),

for all i = 1, . . . , 2p. Our BSK’s sort the sequence U1, . . . , U2p into decreasing order, so that

the elements Un+1, . . . , U2p are assured to reside upon the final (2p−n) elements of the sorted

sequence. Further details encompassing this notion are provided within Algorithm B.3 of the

next section.
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B.1.1.2 Parallel Bitonic Sort

To sort the sequence U1, . . . , Un upon the GPU, we make use of the bitonic sorting method.

Bitonic sort is a member of the class of sorting algorithms called sorting networks, and is among

the fastest algorithms in this class [101]. A sorting network is a special kind of sorting algorithm,

in which the sequence of comparisons is not data-dependent [102]. Thus, sorting networks lend

elegantly to the CUDA parallel framework. Overall, our BSK’s for bitonic sort encompass a six-step

algorithm (see Algorithm B.2), the implementation of which is guaranteed [101] to sort the sequence

U1, . . . , Un, into say decreasing order, where without loss of generality it is assumed that n = 2p,

for some p ≥ 3. We begin the description of our bitonic sorting algorithm, by way of first defining

what is meant by a bitonic sequence.

Definition – Bitonic Sequence:

A 0-1 n-sequence, say

a = {a1, . . . , an} with ai ∈ {0, 1}, i = 1, . . . , n,

is said to be a bitonic sequence, if it contains at most two changes between 0 and 1. That is, a is a

bitonic sequence if there exists k, l ∈ {1, . . . , n}, k ≤ l, for which

a1, . . . , ak = 0, ak+1, . . . , al = 1, al+1, . . . , an = 0, or

a1, . . . , ak = 1, ak+1, . . . , al = 0, al+1, . . . , an = 1.

Some examples of 0-1 bitonic sequences for n = 4:

{0, 0, 0, 0}︸ ︷︷ ︸
k=l=2

, {1, 1, 1, 1}︸ ︷︷ ︸
k=l=2

, {0, 0, 1, 0}︸ ︷︷ ︸
k=l−1=2

, {1, 1, 0, 1}︸ ︷︷ ︸
k=l−1=2

, {0, 1, 1, 1}︸ ︷︷ ︸
k=1,l=n

, {1, 0, 0, 0}︸ ︷︷ ︸
k=1,l=n

.

More generally, an n-sequence of real numbers, say

c = {c1, . . . , cn},

is bitonic if it contains at most one local extrema. That is, c is bitonic if there exists k = 1, . . . , n,

for which

c1 � c2 � · · ·� ck �′ ck+1 �′ · · ·�′ cn,
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where � ∈ {≤,≥} and �′ ∈ {≤,≥}\{�}. Some examples of real valued bitonic sequences for n = 4:

{1, 2, 3, 4}︸ ︷︷ ︸
k=n,�=≤

, {10, 6, 4, 2}︸ ︷︷ ︸
k=n,�=≥

, {1, 5, 3, 2}︸ ︷︷ ︸
k=2,�=≤

, {5, 1, 2, 3}︸ ︷︷ ︸
k=2,�=≥

, {1, 2, 4, 3}︸ ︷︷ ︸
k=3,�=≤

, {4, 3, 2, 5}︸ ︷︷ ︸
k=3,�=≥

.�

Having defined a bitonic sequence, we proceed by describing an algorithm for bitonic sort.

Algorithm B.2 Bitonic Sort

Consider an arbitrary sequence of real numbers

c = {c0, c1 . . . , cn−1},

for which it is desired to sort the elements of this sequence, say in decreasing order, where without

loss of generality it is assumed that n = 2p, some p ≥ 3. The following six-step algorithm applied

to c yields the desired sorted n-sequence:

1. for s = 0 to 2p−1 − 1 do

if c2s � c2s+1 then

Swap the values c2s and c2s+1, such that

� =

 ≤, if s = 2(k − 1), for some k ∈ N

≥, if s = 2k − 1, for some k ∈ N.
(B.1)

end if

end for

2. for s = 0 to 2p−1 − 1 do

if s = 2(k − 1), for some k ∈ N and c2s � c2(s+1) then

Swap the values c2s and c2(s+1), such that

� =


≤, if

⌊s
2

⌋
= 2(k − 1), for some k ∈ N

≥, if
⌊s

2

⌋
= 2k − 1, for some k ∈ N,

(B.2)

where b·c is the greatest integer function applied to the argument (·).

else if s = 2k − 1, for some k ∈ N and c2s−1 � c2s+1 then

Swap the values c2s−1 and c2s+1, such that � is given by (B.2).
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end if

end for

3. for s = 0 to 2p−1 − 1 do

if c2s � c2s+1 then

Swap the values c2s and c2s+1, such that � is given by (B.2).

end if

end for

4. Let h = 1, . . . , p − 2, denote the number of ‘visits’ to this step of the algorithm; let d = 2h+1

represent the maximum stride between two elements to be compared within c.

5. for s = 0 to 2p−2−h − 1 do

for w = 0 to h+ 1 do

for z = 0 to 2w − 1 do

for

t = 2d
(
s+

z

2w

)
, 2d

(
s+

z

2w

)
+ 1, . . . , 2d

(
s+

z

2w
+

1

21+w

)
− 1

do

u← 2h+1−w + t.

if ct � cu then

Swap the values ct and cu, such that � is as defined by (B.1).

end if

end for

end for

end for

end for

6. if h < p− 2 then

Repeat step 4 of the algorithm.

else

Terminate the algorithm.

end if
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In brief, the initial three steps of this algorithm create bitonic subsequences upon c, each of

length eight elements. Moreover, if k indexes these subsequences (within any iteration of steps four

thru six of the algorithm), the tth cycle (iteration) upon steps four thru six of this algorithm merges

the bitonic subsequences k′ and k′ + 1 to form a new bitonic subsequence of length 23+t, such that

bk′/2c = b(k′+1)/2c, where k′ and k′+1 are each equal to some k and t < p−2. The final iteration

upon steps four thru six of the algorithm yields the sorted sequence.

Note that implementation of Algorithm B.2 is readily carried out in a parallel manner upon the

GPU, where each binary operator � essentially depicts a CUDA thread execution. Having outlined

the algorithm, we are poised to describe our implementation of parallel bitonic sort upon the GPU.

Prior to doing this, we provide a simple example for the application of Algorithm B.2 and provide

a brief review of the bitwise AND operation.

Example: Consider the unsorted n-sequence of n = 24 = 16 positive integers,

{10, 11, 7, 3, 6, 16, 14, 13, 5, 8, 15, 12, 9, 2, 4, 1},(B.3)

for which it is desired to sort this sequence into decreasing order. Table B.1 summarizes the dynamics

encompassing the sorting of the sequence (B.3) upon application of Algorithm B.2.�

Table B.1: The Dynamics Entailing Application of Algorithm B.2 to the n-sequence (B.3).

Algorithm Step (h, d, w) Resulting Sequence
Unsorted Sequence {10, 11, 7, 3, 6, 16, 14, 13, 5, 8, 15, 12, 9, 2, 4, 1}

1 − {11, 10, 3, 7, 16, 6, 13, 14, 8, 5, 12, 15, 9, 2, 1, 4}
2 − {11, 10, 3, 7, 13, 6, 16, 14, 12, 15, 8, 5, 1, 2, 9, 4}
3 − {11, 10, 7, 3, 6, 13, 14, 16, 15, 12, 8, 5, 1, 2, 4, 9}

4-5 (1, 4, 0) {11, 13, 14, 16, 6, 10, 7, 3, 1, 2, 4, 5, 15, 12, 8, 9}
5 (1, 4, 1) {14, 16, 11, 13, 7, 10, 6, 3, 1, 2, 4, 5, 8, 9, 15, 12}

5-6 (1, 4, 2) {16, 14, 13, 11, 10, 7, 6, 3, 1, 2, 4, 5, 8, 9, 12, 15}
4-5 (2, 8, 0) {16, 14, 13, 11, 10, 9, 12, 15, 1, 2, 4, 5, 8, 7, 6, 3}
5 (2, 8, 1) {16, 14, 13, 15, 10, 9, 12, 11, 8, 7, 6, 5, 1, 2, 4, 3}
5 (2, 8, 2) {16, 15, 13, 14, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 1, 2}

5-6 (2, 8, 3) {16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1}

Next, we provide a brief review of the bitwise AND operation. Here, if z(10) denotes some

positive integer written in the decimal (base-10) number system, then we use z(2) to denote this
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integer written in the binary (base-2) number system. Now, z(10) can be expressed as

z(10) =

w−1∑
k=0

ak2k,(B.4)

where ak ∈ {0, 1}, for all k = 0, . . . , w−1, some w ≥ 1. Also, in terms of the sequence, a0, . . . , aw−1,

z(2) is given by

z(2) = (aw−1 · · · a0)(2) ,(B.5)

and for k = 0, . . . , w− 1, ak is called a bit. Hence, the relationship between the decimal and binary

representations of some positive integer z(10) is given through expressions (B.4) and (B.5). For

example, the binary representation of the integer 315(10) is 100111011(2).

Recall, the bitwise AND operation takes a binary representation for each of two integers z(10),1

and z(10),2, say z(2),1 and z(2),2, respectively, and performs the logical AND operation on each pair

of corresponding bits thereof. For each pair of bits, the result is 1 if both bits are 1, and 0 otherwise.

To illustrate the bitwise AND operation, consider the integers, z(10),1 = 550 and z(10),2 = 300. It is,

(
z(10),1 = 550

)
AND

(
z(10),2 = 300

)
=
(
1000100110(2)

)
AND

(
0100101100(2)

)
= 0000100100(2)

= 36(10).

Now, our BSK1 kernel sorts a sequence of length 2p, p ≥ 10, into bitonic subsequences, where

each subsequence is of length 210. Each bitonic subsequence is the result of a single thread block

sorting routine. Each thread block sorting routine is performed within shared memory upon the

device, resulting in exceptionally efficient pairwise element swapping (i.e., pairwise element ex-

change/sorting). However, since thread blocks cannot communicate amongst each other, we require

some subsequent CUDA kernel to merge the bitonic subsequences together. The BSK2 and BSK3

kernels perform this task. Algorithm B.3 describes the methodology for implementation of parallel

bitonic sort.

The host call to BSK1 is bitonicSort1<<< B, T >>>(d Rand, d index, sml, col offset),

where: d Rand is the returned matrix from implementation of Algorithm B.1; d index is a matrix

whose respective row and column dimensions equal those of the matrix d Rand, where it is assumed
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that p ≥ 10 (recall, 2p is the row dimension of d Rand); sml is the CUDA shared memory limit for

pairwise element comparisons within BSK1 (specifically, we assign sml to the value of 1024 = 210);

col offset is a parameter used to offset the columns upon each of d Rand and d index; the number

of blocks for BSK1, B, is equal to max{1, 2p/sml}; and T is the number of threads-per-block for BSK1,

equal to min{2p−1, sml/2}.

Algorithm B.3 Parallel Bitonic Sort Implementation

1. Implement Algorithm B.1. Allocate a matrix d index, of size equal to that of d Rand, within

device memory. Unless otherwise stated, the pairwise arguments for all bitwise AND operations

to follow are assumed base-10 integers.

2. Let nc denote the number of columns for the matrix d Rand and let p ∈ N, p ≥ 10, satisfy

n ≤ 2p.

1: for k = 0 to nc − 1 do

2: Invoke BSK1, comprised of B = 2p−10 blocks and T = 29 = 512 threads per block within

the host as follows:

3: for s = 0 to B− 1 in parallel do

4: for t = 0 to T− 1 in parallel do

5: Allocate shared memory object s val, to warehouse elements from mMTK re-

turn. Allocate shared memory object s key, to warehouse the column labels

(keys) of G(∗ρ) to be ordered. Copy device memory to shared memory.

6: s val[t]← d Rand[k + (t + 2sT)(nc)]. {Load a U(0, 1) deviate.}

7: s key[t]← t+ 2sT. {Initialize a column label.}

8: s val[t + T]← d Rand[k + (t + 2sT + T)(nc)].

9: s key[t + T]← t+ 2sT + T.

10: d← 2. {Initialize the stride for pairwise comparisons.}

11: while d < 2T do

12: {Continue until sequence of keys is bitonic.}

13: if t AND (d/2) is not equal to zero then

14: c← 1. {Corresponding thread sorts in ascending order.}

15: else

16: c← 0. {Corresponding thread sorts in descending order.}
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17: end if

18: h← d/2. {Initialize stride length between pairwise elements.}

19: while h ≥ 1 do

20: {Continue until stride is of length one.}

21: Synchronize threads.

22: l ← 2t−(t AND (h − 1)). {Which elements in the sequence does the

thread examine?}

23: if (s val[l] > s val[l + h]) equals c then

24: {Does the thread swap comparative values?}

25: Swap the values s val[l] and s val[l + h].

26: Swap the values s key[l] and s key[l + h].

27: end if

28: h← h/2. {Halve the stride between paired elements.}

29: end while

30: d← 2d. {Double the number of elements comprising a bitonic subsequence.}

31: end while

32: c← s AND 1. {Determine the sorting order of the bitonic sequence.}

33: h← T. {Initialize the stride between paired elements.}

34: Repeat the while loop upon lines 19-29 above.

35: Synchronize threads and copy shared memory to device memory.

36: d index[k + (t + 2sT)(nc)]← s key[t].

37: d Rand[k + (t + 2sT)(nc)]← s val[t].

38: d index[k + (t + 2sT + T)(nc)]← s key[t + T].

39: d Rand[k + (t + 2sT + T)(nc)]← s val[t + T].

40: end for

41: end for

42: bsl← 2T {Initialize bitonic subsequence length (bsl).}

43: while bsl < 2p do

44: {Continue until the bitonic sequence is of length 2p.}

45: hs← bsl/2 {Initialize host stride (hs).}

46: while hs ≥ 1 do
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47: {Continue until host stride is one.}

48: if hs ≥ 2T then

49: Invoke BSK2 comprised of B1 = 2B blocks and T1 = T/2 threads per block

within the host as follows:

50: for s = 0 to B1 − 1 in parallel do

51: for t = 0 to T1 − 1 in parallel do

52: l← t+ sT1. {Which order does the thread sort?}

53: if l AND (bsl/2) is not equal to zero then

54: c← 1. {Sort elements in ascending order.}

55: else

56: c← 0. {Sort elements in descending order.}

57: end if

58: l ← 2l − (l AND (hs − 1)). {Which elements does thread load into

the kernel?}

59: v1 ← d Rand[k + (l)(nc)]. {Load U(0, 1) deviate.}

60: v2 ← d Rand[k + (l + hs)(nc)].

61: k1 ← d index[k + (l)(nc)]. {Load a column index element.}

62: k2 ← d index[k + (l + hs)(nc)].

63: if (v1 > v2) equals c then

64: Swap the values of v1 and v2.

65: Swap the values of k1 and k2.

66: end if

67: d Rand[k + (l)(nc)] ← v1. {Copy ordered elements out to device

memory.}

68: d Rand[k + (l + hs)(nc)]← v2.

69: d index[k + (l)(nc)]← k1.

70: d index[k + (l + hs)(nc)]← k2.

71: end for

72: end for

73: else
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74: Invoke BSK3 comprised of B blocks and T threads per block within the host

as follows:

75: for s = 0 to B− 1 in parallel do

76: for t = 0 to T− 1 in parallel do

77: Allocate shared memory for U(0, 1) deviates, denoted s val. Allo-

cated shared memory for column indices of G(∗ρ), denoted s key.

78: l← t+ 2sT. {Which elements does the thread load into shared mem-

ory?}

79: s val[t] ← d Rand[k + (l)(nc)]. {Copy elements from device

memory to shared memory.}

80: s val[t + T]← d Rand[k + (l + T)(nc)].

81: s key[t]← d index[k + (l)(nc)].

82: s key[t + T]← d index[k + (l + T)(nc)].

83: l← l − sT. {Which order does thread sort?}

84: if l AND (bsl/2) is not equal to zero then

85: c← 1. {Sort elements into ascending order.}

86: else

87: c← 0. {Sort elements into descending order.}

88: end if

89: ds← T. {Initialize device stride.}

90: while ds ≥ 1 do

91: Synchronize threads.

92: l ← 2t − (t AND (ds − 1)). {Which elements does thread com-

pare?}

93: if (s val[l] > s val[l + ds]) equals c then

94: Swap the elements s val[l] and s val[l + ds].

95: Swap the elements s key[l] and s key[l + ds].

96: end if

97: ds← ds/2. {Halve the device stride.}

98: end while

99: Synchronize threads and copy shared memory to device memory.
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100: l ← t+ 2sT. {Which elements does thread copy out to device mem-

ory?}

101: d Rand[k + (l)(nc)]← s val[t]. {Copy U(0, 1) deviate to device

memory.}

102: d Rand[k + (l + T)(nc)]← s val[t + T].

103: d index[k + (l)(nc)] ← s key[t]. {Copy an index element to

device memory.}

104: d index[k + (l + T)(nc)]← s key[t + T].

105: end for

106: end for

107: end if

108: hs← (hs)/2. {Halve the host stride.}

109: end while

110: bsl← 2(bsl). {Double the length of bitonic subsequences.}

111: end while

112: end for

3. Insofar as the sequence U0,k, . . . , U2p−1,k, each k = 0, . . . , nc−1, is sorted into decreasing order

and the elements Un,k, . . . , U2p−1,k (for the unsorted sequence U0,k, . . . , U2p−1,k) are initialized

to the value of minus one (−1) (see Algorithm B.1), the initial n elements upon column k of

the matrix d index comprise a random permutation of the column indices for G(∗ρ). That

is, one call to Algorithm B.1 and one pass through the first two steps of [this] Algorithm B.3,

yields a total of nc random permutations of the column indices for G(∗ρ).

B.1.2 Contingency Table Construction

Given a random permutation of the column indices for G(∗ρ), here we develop a parallel pro-

cessing approach to generating, say, the control row upon the 2× 3 table at SNP locus j. Insofar as

the column margin for the table at locus j is fixed (i.e., permutation invariant), reconstruction of a

single row of the table is sufficient for: reconstruction of the table, and computation of the CATT

statistic under H
(j)
0 (2.5). To construct the control rows across the m tables, we create a CUDA

C kernel, denoted CTK. In brief, given a random permutation of the column indices for G(∗ρ), the
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threads upon block s of CTK, s = 0, . . . , B − 1: decompress the random genotype data upon loci

sρ+ 1, . . . , (s+ 1)ρ, and construct the control rows for the 2× 3 tables at these loci. Algorithm B.4

provides the details for implementation of CTK.

The host call for CTK is

controw rand perm<<< B, T >>> (d compdata, d index, index offset,

n, cols d index, iters perthread,(B.6)

resid iters, d controw),

where: d compdata is a m′ × n matrix, where m′ = m/ρ and ρ are defined within §2.3.2; d index is

the returned matrix from implementation of Algorithm B.3; index offset is a parameter to offset

column reads upon d index; n is the GWAS sample size; cols d index is the column dimension

of the matrix d index; iters perthread depicts the number of data reads upon the columns of

d compdata each thread of the kernel will undergo; assuming the number of controls, n0, is not a

multiple of T, the parameter resid iters represents the number of kernel threads which read-in the

final (i.e., residual) control data upon the columns of d compdata; d controw is the returned m× 3

matrix of control rows across the m tables for a given permutation of the columns upon G(∗ρ); B,

the number of blocks for the kernel, is equal to the row dimension of d compdata, m′; and T is the

number of threads per block of the kernel.

Algorithm B.4 Contingency Table Construction

1. Copy the [compressed] genotype matrix G(∗ρ) to device memory as object d compdata. Allo-

cate device memory to warehouse the m × 3 matrix of control rows, d controw. If thread t

within block s of CTK reads control data upon the (s+1)st row of d compdata, t = 0, . . . , T−1

and s = 0, . . . , B − 1, then said thread reads a total of bn0/Tc + I (t < n0 − (T)bn0/Tc) ele-

ments from said row of d compdata. Hence, let δ = bn0/Tc and let rt = n0 − (T)bn0/Tc. If

r = 1, . . . , R indexes the permutations of the columns upon G(∗ρ), then let o = r − 1 denote

the column offset for reads upon the columns of d index, where it is assumed that the column

dimension of d index is R = nc, where nc is as previously defined within Algorithm B.3.

2. Invoke the CTK, comprised of B = m′ blocks and, say T = 64 threads1 per block, within the

host as follows:
1Here, we assign two (2) warps (64 threads) per thread block, because each multiprocessor of the NVIDIA

GeForce GTX 470 GPU is comprised of two warp schedulers [69].
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1: for s = 0 to B− 1 in parallel do

2: for t = 0 to T− 1 in parallel do

3: Allocate a shared memory object, denoted s compdata, to warehouse data reads

from the device memory object d compdata.

4: for k ∈ G = {0, 1, 2} do

5: Allocate a shared memory object, denoted s sum k, to generate the appropriate

control rows for thread t of block s.

6: end for

7: for d = 0 to ρ− 1 do

8: for k ∈ G do

9: s sum k[t + dT]← 0. {Initialize shared memory.}

10: end for

11: end for

12: for d = 0 to δ − 1 do

13: s compdata[t]← d compdata[d index[o + (t + dT)(nc)]+(s)(n)] {device-

to-shared memory copy.}

14: for h = 0 to ρ− 2 do

15: for k ∈ G do

16: if

⌊
s compdata[t] + 4− k

4

⌋
=

⌊
s compdata[t] + 7− k

4

⌋
then

17: s sum k[t + hT]← s sum k[t + hT]+1. {Decompress data; g∗{sρ+h+1}i =

k (see Proposition A.3 and Corollary A.1), where i ≤ n0 corresponds

to some column index upon the initial n0 columns of G(∗ρ)}.

18: end if

19: end for

20: s compdata[t]← bs compdata[t]/4c. {Update pursuant to Corollary A.1.}

21: end for

22: for k ∈ G do

23: if s compdata[t] = k then

24: s sum k[t + (ρ - 1)T] ← s sum k[t + (ρ - 1)T] + 1. {Final com-

parison per Proposition A.3.}

25: end if
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26: end for

27: end for

28: if t < rt then

29: s compdata[t]← d compdata[d index[o + (t + (dρ)(T))(nc)]+(s)(n)].

30: Repeat lines 14-27 above.

31: end if

32: Synchronize threads.

33: for d = 0 to ρ− 1 do

34: h← T/2. {Initialize parallel reduction}.

35: if t < h then

36: for k ∈ G do

37: s sum k[t + dT]← s sum k[t + dT] + s sum k[t + h + dT].

38: end for

39: end if

40: if h > 1 then

41: h← h/2. Synchronize threads. Proceed to line 35.

42: end if

43: end for

44: Synchronize threads.

45: if t < 3ρ then

46: k ← bt/ρc. {Which shared memory vector do we read from?}

47: d← t− ρk. {Which row upon the shared vector do we read from?}

48: d controw[t + 3ρs] ← s sum k[dT]. {Copy shared memory to device mem-

ory.}

49: end if

50: end for

51: end for

3. By combining the initial column upon each of the shared memory objects s sum k within block

s of the kernel, each k ∈ G and s = 0, . . . ,m′ − 1, we have obtained the constructed control

rows which correspond with the genotype data upon rows sρ + 1, . . . , (s + 1)ρ of G(∗ρ) for a

random permutation of the columns upon this genotype matrix.
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B.1.3 Test Statistic Computation

Having constructed the control rows of the 2 × 3 tables across the m loci for, say, the rth

permutation of the columns upon G(∗ρ), some r = 1, . . . , R, we are poised to compute the test

statistics {tj,r}mj=1. For simplicity, we demonstrate the application of the maxT MTP, but note here

that provided one has correctly identified the null distribution for Tj under H0, the minP MTP

essentially entails the implementation of one additional step, namely the computation of pj,r under

H0. To calculate the realization of Tj (2.5), tj,r, all j = 1, . . . ,m, we create a CUDA C kernel,

denoted TSK. In brief, each thread upon TSK computes tj,r, some j = 1, . . . ,m. Algorithm B.5

outlines the details for the implementation of TSK.

The host call for TSK is maxT CATT<<< B, T >>> (d controw, d cmargin, d calcTS, offset),

where: d controw is the returned m × 3 matrix of control row from implementation of Algorithm

B.4; d cmargin is a m × 3 matrix whose jth row warehouses the column margin of the 2 × 3 table

for locus j; d calcTS is the m-vector of returned test statistics, (t1,r, . . . , tm,r); offset is used to

offset thread reads upon the rows of d controw, provided that the value of m is not a multiple of

the size of a CUDA warp (i.e., 32 threads); B is the number of blocks for TSK; and T is the number

of threads per block for TSK.

Algorithm B.5 Test Statistic Calculation

1. Allocate the device memory object d cmargin. Copy the elements comprising the column

margins upon G∗ to said device memory object. Allocate device memory to warehouse the

m-vector of computed test statistics, d calcTS.

2. Here, we consider implementation of TSK whose number of threads per block, T, satisfies

T ≤ 512. Two calls to TSK are invoked: the first call, comprises B = bm/512c blocks of

T = 512 threads each; and the second call, comprises B = 1 block of T = m − (512)bm/512c

threads. Assign d, a parameter used to offset thread reads upon the rows of d controw, to

the value of m− T.

3. Upon the initial call to TSK:

for s = 0 to B− 1 in parallel do

for t = 0 to T− 1 in parallel do

Read the elements of row 512s + t + 1 upon each of the matrices d cmargin and

d controw. Compute t{512s+t+1},r in accordance with (A.3), the equivalent form of
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Tj (2.5) under the additive GMI. Store the computed value to element 512s+ t+ 1

of the vector d calcTS.

end for

end for

4. Upon the second call to TSK:

for t = 0 to T− 1 in parallel do

Read the elements of row d+ t+ 1 upon each of the matrices d cmargin and d controw.

Compute t{d+t+1},r in accordance with (A.3). Store the computed value to element

d+ t+ 1 of the vector d calcTS.

end for

B.1.4 Locating the Maximum Test Statistic: Parallel Reduction

The final parallel component to GPER lies with locating the maximum test statistic amongst

the collection {tj,r}mj=1, some r = 1, . . . , R (see step 5 upon the GPER pseudocode §2.4). To do this,

we will make use of a parallel processing technique called reduction. Reduction uses an algorithmic

pattern that arises often in parallel computing: balanced trees [71]. The idea is to build a balanced

binary tree upon the collection {tj,r}mj=1 – where without loss of generality we [temporarily] assume

m = 2p, some p ∈ N – and sweep it to locate the maximum test statistic value. In the case of

reduction for this set of m elements, a binary tree can be depicted as a (log2(m)+1)-level tree based

structure of connected nodes, such that each disjoint pairing – of the 2m−(x+1) total pairings – of

adjacent nodes at level x of the tree (the pair of nodes in which we denote as parent nodes) extend

and connect to a single common node upon level x+ 1 of the tree (this node is denoted as the child

node) by way of a pair of arcs, each x = 0, . . . , log2(m)− 1. Figure B.1 displays an example of such

a tree based structure for m = 8.
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Fig. B.1: A Binary Tree of Connected Nodes for Parallel Reduction of the Elements, tj , j = 1, . . . , 8,
Where tj Represents a Realization of (2.5). Each Pair of Arrows (Arcs) Extends from Two Disjoint
Parent Nodes at Level x of the Tree and Terminates upon a Common Child Node at Level x+ 1 of
the Tree, Some x ∈ {0, 1, 2}. The Child Node Warehouses the Resultant from Applying the Binary
Operator � upon the Values Comprising Its Parent Nodes.

Here, the reduction begins by assigning the jth parental node at the initial level (x = 0) of the

tree to the value of tj,r. We progress through the levels of the tree, by assigning to each child node

the maximum value of its corresponding parent nodes. Reduction terminates upon the child node

of level log2(m), where it is noted that the assigned value for said child node is the desired sought

maximum value (result) over the collection {tj,r}mj=1.

This tree based structure is well suited to a CUDA C approach, because we can assign a thread

to compute the maximum value upon each of the parental node pairings, irrespective of the level

of the tree. Unfortunately, locating the maximum of the collection {tj,r}mj=1 within CUDA C is

not quite as simple as depicted above for two reasons: first, it is unlikely that m is exactly equal

to 2p, some p ∈ N. Thus, we need to somehow modify this binary tree approach to incorporate

collections {tj,r}mj=1 for m taking any possible value over N; and second, we need to use multiple

thread blocks within the kernel we develop for reduction, so that all of the multiprocessors of the GPU

are active [72]. However, each thread block has no means by which to broadcast its corresponding
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result to other thread blocks of the kernel. Hence, we need to somehow modify this binary tree

approach, so that thread blocks can communicate amongst each other.

First, consider the latter problem. If we could synchronize across thread blocks of the kernel

(called global synchronization), such that the synchronization occurs upon all thread blocks complet-

ing their corresponding operations, then reduction could continue in a recursive manner. However,

CUDA does not possess the ability for [device] global synchronization, because it is expensive to

build into hardware for GPUs with high processor counts [72]. To resolve the problem, [72] suggests

multiple kernel executions, because kernel execution acts as a [host] global synchronization point.

Furthermore, kernel execution has negligible hardware overhead and low software overhead [72].

Here, to resolve the latter problem, we adopt the aforementioned suggestion of [72], and denote

our reduction kernel by MTSK (shorthand for maximum test statistic kernel). In doing this, the

former problem can be resolved as follows. We partition the collection of test statistics {tj,r}mj=1

into blocks of size, say, 210 elements each – here, we choose to invoke a maximum of 512 threads

(12 warps) per thread block of MTSK. Within each thread block of MTSK, 210 parental nodes are

created upon the initial level of a binary tree, and reduction is carried out upon the tree, where

threads evaluate particular parental node pairings. To this end, reduction has lead to each thread

block comprising a maximum test statistic upon the child node at level ten of its corresponding

binary tree, and a global synchronization point upon the host has been reached. These maximum

test statistic values are aggregated, along with any test statistics not having been processed by some

thread block. We partition these test statistic elements and invoke MTSK. This recursive process of

partitioning test statistic elements and executing MTSK, continues until which time the execution

of MTSK is comprised of a single thread block and all test statistics are processed within the thread

block. Algorithm B.6 summarizes our implementation of MTSK.

The host call for MTSK is max list<<< B, T >>> (d list1, d list2, blockoffset,

tsrem, d maxT, permindex), where: d list1 is the list of test statistics to be processed upon some

binary tree; d list2 is the list of test statistics which require processing upon subsequent calls to

MTSK; blockoffset is a parameter to offset test statistic reads upon d list1, so that test statistics

are read into the proper thread block; tsrem represents the number of test statistics within d list1

which are not processed upon any thread blocks of MTSK; d maxT is the returned maximum test

statistic value for the collection {tj,r}j=1,...,m; permindex is the value of r; B is the number of thread

blocks; and T is the number of threads per block.
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Algorithm B.6 Locating and Retrieving the Maximum Test Statistic

1. Let k index the invocations over MTSK (the value of k denotes the number of ‘visits’ to this

step of the algorithm), and let dk and rk be defined by

dk = max
{
l ∈ N, l ≤ 10 :

⌊mk

2l

⌋
∈ N

}
; and

rk = mk −
⌊mk

2dk

⌋ (
2dk
)
,

where m1 = m. Essentially, the values of dk and rk represent the respective numbers of test

statistics assigned to some thread block and test statistics not assigned to any thread block

(i.e., rk > 0 whenever the value of mk is not divisible by a power of two).

2. If k = r = 1, then: (a) initialize device objects (vectors) d list1 and d list2, each of length

m1 −
⌊m1

2d1

⌋ (
2d1 − 1

)
.

These memory objects serve as data repositories for updated maximum test statistics upon

successive calls to MTSK. Their lengths equal the number of test statistics which require

processing upon the second call to MTSK; and (b) initialize the device object (vector) d maxT,

of length R, which will warehouse the maximum test statistics over the R column permutations

of G(∗ρ).

3. Assign the parameters tsrem and permindex to the respective values of rk and r. Invoke

MTSK, with B =
⌊
mk/2

dk
⌋

and T = 2dk−1, as follows: if k = 1, then it is

max list<<< B, T >>> (d calcTS, d list1, 2T, tsrem, d maxT, permindex),

where d calcTS is the returned vector of calculated test statistics from implementation of

Algorithm B.5; if k = 2l, for some l ∈ N, then it is

max list<<< B, T >>> (d list1, d list2, 2T, tsrem, d maxT, permindex);

otherwise, it is

max list<<< B, T >>> (d list2, d list1, 2T, tsrem, d maxT, permindex).
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4. (Parallel reduction) Within each of the thread blocks, initialize a shared memory object (vec-

tor) of length 2T, denoted s nodes, the elements of which depict the parent nodes of the initial

level of a binary tree.

1: for s = 0 to B− 1 in parallel do

2: for t = 0 to T− 1 in parallel do

3: for c = 0 to 1 do

4: s nodes[2t + c] ← d listx[2t + (s)(offset) + c], where d listx is the

first parameter within the call to MTSK (e.g., d calcTS for k = 1, d list1 for

k = 2, etc. – see step 3 above).

5: end for

6: h← T/2. Synchronize threads.

7: if t < h then

8: s nodes[t]← max {s nodes[t], s nodes[t + h]} .

9: end if

10: if h > 1 then

11: h← h/2. Synchronize threads. Proceed to line 7.

12: else if B = 1 and rk = 0 then

13: d maxT[r-1]← s nodes[0]. Terminate algorithm.

14: else

15: d listy[s] ← s nodes[0], where d listy is the second parameter within the

call to MTSK (i.e., d list1 for k = 2l − 1 and d list2 for k = 2l, where l ∈ N

– see step 3 above).

16: end if

17: if s = B− 1 then

18: for c = 0 to rk − 1 do

19: d listy[B + c]← d listx[2BT + c].

20: end for

21: mk+1 ← rk +
⌊mk

2dk

⌋
.

22: Proceed to step 1 above.

23: end if

24: end for
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25: end for

Table B.2 summarizes the dynamics in the values of mk, dk, and rk, upon implementing Algo-

rithm B.6 against m = 769672 SNP markers of a GWAS data set (see §2.6 for data set details).

Table B.2: The Dynamics of Algorithm B.6 Applied Against a GWAS Data Set Comprised of
m = 769672 SNP Markers.

k mk dk rk B T

1 769672 10 648 751 512
2 1399 10 375 1 512
3 376 8 120 1 128
4 121 6 57 1 32
5 58 5 26 1 16
6 27 4 11 1 8
7 12 3 4 1 4
8 5 2 1 1 2
9 2 1 0 1 1

B.2 Efficient Generation of the P-value Lookup Table

Here, we provide the underlying details for the CUDA kernels which encompass Algorithm 3.5.

In particular, given: some [initial value] δ (essentially, can be thought of as δ1 within Algorithm

3.4); the collection O of vectors θ =
(
πaa, πAa

)
; the collection of upper interval endpoints for the

CATT statistic, T ; and user specified precision ε for the estimates of po
u,w = [P]u,w, here we develop

the CUDA kernels of Algorithm 3.5 which assist in generating Pε.

Algorithm B.7 CUDA Kernel Pseudocode for Estimating the Pointwise P-value Lookup Table

1. (TURK1) For each y ∈ Y = {0, 1}, let d gammay warehouse the elements of Γy. Also, let d pi

warehouse those elements θw, such that w ∈ W. We make a call to TURK1, for each y ∈ Y,

comprised of B = n (W) blocks and T = 256 threads per block. Given the value in δ, the threads

within block s, s = 1, . . . , B− 1, will read over the elements within Γy and determine the value

of e (Γ (θs+1)). Let ty = bn (Γy) /Tc (i.e., the number of elements upon Γy processed by each

thread within a given thread block) and for t = 0, . . . , T − 1, let ry = I(t < n (Γy) − (T)(ty))

(i.e., those threads which process ‘residual’ elements upon the collection Γy, whenever the

number of elements for this collection is not divisible by T).

1: for y ∈ Y do
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2: Invoke TURK1 upon the host, whose pseudocode follows.

3: for s = 0 to B− 1 in parallel do

4: for t = 0 to T− 1 in parallel do

5: if y = 0 and t = 0 then

6: e (Γ (θs+1))← 0. {Initialize (3.14).}

7: end if

8: s sum[t]← 0. {Initialize shared memory.}

9: for k = 0 to ty − 1 do

10: zy ← d gammay[t + kT] and θ ← d pi[s].

11: if h (zy|θ) ≤ δ then

12: s sum[t] ← s sum[t] + h (zy|θ). {Increment appropriate sum upon

(3.14).}

13: end if

14: end for

15: if ry = 1 then

16: zy ← d gammay[t + (ty)(T)] and θ ← d pi[s]

17: Repeat the conditional statement given by lines 11-13 above.

18: end if

19: d← T/2. {Synchronize threads and prepare for reduction.}

20: if t < d then

21: s sum[t]← s sum[t] + s sum[t + d].

22: end if

23: if d > 1 then

24: d← d/2; Synchronize threads; and, proceed to line 20.

25: else if t = 0 then

26: e (Γ (θs+1))← e (Γ (θs+1)) + s sum[0].

27: end if

28: end for

29: end for

30: end for

2. (TURK2) Let w ∈ W and δ be given. For each y ∈ Y, let d indy be the device memory object,
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such that the elements upon said object indicate those elements over the collection Γy which

are also contained within the collection Γy (θw). We make a call to TURK2, for each y ∈ Y,

comprised of B blocks and T threads per block, such that B× T = n (Γy). Given the value in

δ, the threads over all blocks will: read over the elements within Γy; determine which of these

elements are contained within the collection Γy (θw); and, copy the appropriate elements from

Γy to the collection Γy (θw).

for y ∈ Y do

n (Γy (θw))← 0. {Initialize the number of elements contained within Γy (θw).}

for s = 0 to B− 1 in parallel do

for t = 0 to T− 1 in parallel do

h← t+ sT. {Which element upon d gammay does thread t examine?}

zy ← d gammay[h].

if h (zy|θw) > δ then

d ind[h]← 1. {zy ∈ Γy (θw).}

n (Γy (θw))← n (Γy (θw)) + 1.

else

d ind[h]← 0. {zy ∈ Γ′y (θw).}

end if

end for

end for

Allocate device memory object, d gammayw, to warehouse the elements of Γy (θw).

h← 0.

for d = 0 to n (Γy) do

if d ind[d] = 1 then

d gammayw[h]← d gammay[d]. {Copy the appropriate element within d gammay[d]

to d gammayw[h].}

h← h+ 1.

end if

end for

end for

3. (TURK3) Here, given: θw; the collections Γ0 (θw) and Γ1 (θw); and τι ∈ T , we derive the value
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pι,w (Γ (θw)). We make a call to TURK3, comprised of B = min {n (Γ0 (θw)) , n (Γ1 (θw))}

(for clarity, we assume B = n (Γ0 (θw))) blocks and T = 128 threads per block. Let t1 =

bn (Γ1 (θw)) /Tc (the number of elements upon the collection Γ1 (θw) processed by each thread

within a given thread block) and for t = 0, . . . , T− 1, let rt = I(t < n (Γ1 (θw))− (T)(t1)). Al-

locate device memory (vector) of length B, say d prob, which will warehouse each blocks’ contri-

bution to the value pι,w (Γ (θw)). The pseudocode for TURK3 follows:

1: for s = 0 to B− 1 in parallel do

2: for t = 0 to T− 1 in parallel do

3: z0 ← d gamma0w[s]. {Load an element from Γ0 (θw).}

4: s sum[t]← 0. {Initialize shared memory.}

5: for d = 0 to t1 − 1 do

6: z1 ← d gamma1w[t + dT]. {Load an element from Γ1 (θw).}

7: Under H0, compute the realization in the CATT statistic and denote it by

T (z0, z1).

8: if T (z0, z1) ≥ τι then

9: s sum[t]← s sum[t] + g (z0, z1|θw). {Contribute to p-value.}

10: end if

11: end for

12: if rt = 1 then

13: x1 ← d gamma1w[t + (t1)(T)]. {Load an element from Γ1 (θw).}

14: Repeat lines 7-10 above.

15: end if

16: h← T/2. Synchronize threads. {Prepare for reduction.}

17: if t < h then

18: s sum[t]← s sum[t] + s sum[t + h].

19: end if

20: if h > 1 then

21: h← h/2; synchronize threads; and, proceed to line 17.

22: else if t = 0 then

23: d prob[s]← s sum[0]. {Copy shared memory to device memory.}

24: end if
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25: end for

26: end for

27: for d = 1 to B− 1 do

28: d prob[0]← d prob[0] + d prob[d].

29: end for

30: pι,w (Γ (θw))← d prob[0].

4. (PPTK1) Here, for w ∈ W, given the collection Γ (θw) we compute the table probabilities

g (z0, z1|θw) for all (z0, z1) ∈ Γ (θw) and we evaluate (3.21) over said truncated unconditional

reference set. As with TURK3, here we assume that n (Γ0 (θw)) = min{n (Γ0 (θw)) , n (Γ1 (θw))}.

Allocate two vectors within device memory, denoted d prob and d lambda, each of length

n (Γ1 (θw)) which will warehouse the respective returned values of g (z0, z1|θw) and (3.21),

upon calling PPTK1. Our invocation of PPTK1 entails taking B = bn (Γ1 (θw)) /Tc blocks,

where T = 512 threads per block. For each t = 0, . . . , T−1, let rt1 = I(t < n (Γ1 (θw))−(T)(B)),

denote: those threads which will process two elements upon the collection Γ1 (θw) (rt1 = 1);

and, those threads which will process one element upon the collection Γ1 (θw) (rt1 = 0).

(PPTK2) Here, for each τu ∈ T , we evaluate (3.22) over the collections d prob and d lambda

returned from PPTK1, where the PPTK2 returned values (i.e., pu,w (Γ (θw)), for all u =

1, . . . , n (T )) are to be contained within the allocated device memory object (vector) d Pw

(of length equal to that of T ). Said device memory object is to warehouse column w upon

Pε. Our invocation of PPTK2 entails taking B1 = n (T ) blocks and T1 = 64 threads per

block. For each t = 0, . . . , T − 1, let t2 = bn (Γ1 (θw)) /T1c, denote the number of el-

ements upon the collection Γ1 (θw) each thread (within each thread block) will process;

and let rt2 = I(t < n (Γ1 (θw)) − (T1)(B1)) be an indicator for ‘residual’ thread process-

ing over the collection Γ1 (θw). The pseudocode for invocation of PPTK1 and PPTK2 fol-

lows:

1: for d = 0 to n (Γ0 (θw)) do

2: Invoke PPTK1:

3: for s = 0 to B− 1 in parallel do

4: for t = 0 to T− 1 in parallel do

5: z0 ← d gamma0w[d].

6: h← t+ sT.
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7: z1 ← d gamma1w[h].

8: Compute T (z0, z1).

9: d lambda[h]← evaluation of (3.21).

10: d prob[h]← g (z0, z1|θw).

11: if rt1 = 1 then

12: h← t+ BT.

13: Repeat lines 7-10 above.

14: end if

15: end for

16: end for

17: Invoke PPTK2:

18: for s = 0 to B1 − 1 in parallel do

19: for t = 0 to T1 − 1 in parallel do

20: s sum[t]← 0. {Initialize shared memory.}

21: for h = 0 to t2 − 1 do

22: c← t+ hT1.

23: if d lambda[c] > s then

24: s sum[t]← s sum[t] + d prob[c].

25: end if

26: end for

27: if rt2 = 1 then

28: c← t+ (t2)(T1).

29: Repeat lines 23-25 above.

30: end if

31: h← T1/2. Synchronize threads. {Prepare for reduction.}

32: if t < h then

33: s sum[t]← s sum[t] + s sum[t + h].

34: end if

35: if h > 1 then

36: h← h/2; synchronize threads; and, proceed to line 32.

37: else if t = 0 then
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38: d Pw[s]← s sum[t].

39: end if

40: end for

41: end for

42: end for
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APPENDIX C

R-PACKAGE FOR GEM

Here, we provide a brief description for the implementation of our proposed R package (ten-

tatively denoted GEM). We assume that: a random sample of n1 cases and n0 controls has been

obtained from the population of interest; a total of m tSNP loci have been sampled from amongst

those within the human genome and genotyped across the n (= n0 + n1) study subjects; and, data

has been collected from each of the n study subjects upon either a binary or 3-level categorical

environmental factor.

The package is essentially comprised of two functions, GEM 2e and GEM 3e flex. The former

function conducts the GEM methodology, as outlined within Chapter 4, upon a binary environmental

factor. The latter function conducts the GEM methodology upon a 3-level environmental factor,

and gives the user the task (i.e., flexibility) over the construction – both in the number of- and in

the form of- – the candidate patterns. These functions each carry out Algorithm 4.1 and share a

common set of 6 user input parameters (here, we use the prefix ‘I’ upon the following numbered list

to signify that these are function inputs):

I1. The number of controls within the case-control sample, n0.

I2. The number of study subjects within the sample, n.

I3. The number of tSNP loci, m.

I4. The data, consisting of an m×n matrix – rows correspond to tSNP loci and columns correspond

to study subjects. The matrix is identical to that of GE∗ (defined within §4.5.3), and should

be ordered such that the initial/final n0/n1 columns comprise the control/case data for the

realizations in the random variables Xj (4.2), j = 1, . . . ,m.

I5. The number of desired column permutations upon the matrix GE∗, R.

I6. A vector, whose length is equal to the number of candidate genes under study, and whose ith

element equals the number of tSNPs sampled from the ith candidate gene – the elements of

this vector should sum to m.
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In addition to the aforementioned 6 parameters, the function GEM 3e flex requires 2 additional user

input parameters:

I7. The q×9 [indicator] matrix, I: as defined within step 1 of Algorithm 4.1, where q = 16 therein.

This would allow for application of the GEM methodology as outlined within Chapter 4 upon

a 3-level environmental factor; or, any variation of I the user desires, such that the (l, k)th

matrix entry, denoted [I](l,k), is coded by

[I](l,k) = I (k ∈ Al)− I
(
k ∈ (Al ∪Bl)′

)
,

for all l = 1, . . . , q and k = 1, . . . , 9.

I8. The row dimension of I, q.

To illustrate application of the function GEM 2e, here we apply it against: the colon cancer

data set (see §4.10.1), comprised of n1 = 1555 cases of cancer and n0 = 1956 healthy controls;

the recent use of NSAIDs binary environmental factor; and, the 29 tSNPs upon the 4 candidate

genes – 8 markers for the EPX gene, 4 markers for the HIF1A gene, 2 markers for the MPO

gene, and 15 markers for the NOS2A gene. The data are assumed to reside within the ASCII file,

GEM colon nsaid.txt, whose structure is 29 rows (the order of the SNPs are assumed in accordance

with the aforementioned listing of candidate genes), each row with n = 3511 space-delimited columns.

Each of the functions GEM 2e and GEM 3e flex are accessed via the dynamic linked library (DLL),

GEM DLL.dll (this DLL file was compiled from C code and designed to be interfaced with R). The

ASCII and DLL files are assumed to reside within the folder C:\GEM project\DLL. The following

R code changes the working directory and ‘sources-in’ the DLL test main.R file (see §D.2) – this file

more-or-less prepares the R environment for use over the functions GEM 2e and GEM 3e flex:

setwd(‘C:/GEM_project/DLL’)

source(‘DLL_test_main.R’)

The following R code reads in the contents of the ASCII file (GEM colon nsaid.txt) and calls the

GEM 2e function, where R = 100K column permutations upon GE∗ are requested – the return from

the function call is stored within the GEM return R object (list):

### INITIALIZE CPU TIME

#

beg.time.stamp = proc.time()[3]

#
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### READ-IN THE CONTENTS OF THE ASCII FILE (STORE TO OBJECT x)

#

x = read.table(‘GEM_colon_nsaid.txt’, header = F)

#

### NOW, MAKE THE CALL TO THE GEM_2e FUNCTION...

#

GEM_return = GEM_2e( n.controls = 1956,

n.sample = dim(x)[2],

n.snps = dim(x)[1],

dat = as.vector(t(as.matrix(x))),

n.perms = 100000,

nsnps.per.geneset = c(8, 4, 2, 15) )

#

### FINALIZE CPU TIME

#

end.time.stamp = proc.time()[3]

#

### DISPLAY REQUIRED COMPUTATIONAL TIME FOR GEM_2e CALL (SECONDS)

#

end.time.stamp - beg.time.stamp

#

### UNLOAD THE .dll FILE

#

dyn.unload(‘GEM_DLL.dll’)

The GEM return R object is a list comprised of the following 6 elements (here, we use the prefix ‘R’

upon the following numbered list to signify that these are function returns – note that m = 29 and

q = 11):

R1. A m× 10 data frame summarizing the table margins for the 2× 6 contingency table Xj (e.g.,

Table 4.5), j = 1, . . . ,m. The jth row of the data frame essentially summarizes the random

variable Xj for the jth row of the ASCII file GEM colon nsaid.txt. Collectively, the values

upon the initial 6 columns of the jth row of the data frame represent the elements of the vector

cj (see (4.15)). The values upon the latter 4 columns of the jth row of the data frame represent

the respective values, [M](j,8), [M](j,7), [M](j,9), and n0 − [M](j,7), where the [M](j,k) are as

defined within step 1 of Algorithm 4.1.

R2. A m × q data frame, whose jth row warehouses the standardized Wald-based test statistics,

ZjA1
, . . . , ZjAq (4.10), j = 1, . . . ,m.

R3. A m × q data frame, whose jth row warehouses the estimated [locus-level adjusted] maxT

permutation adjusted p-values, p̃∗j1σ, . . . , p̃
∗
jqσ (4.18), j = 1, . . . ,m.



294

R4. A m × q data frame, whose jth row warehouses the estimated [gene-level adjusted] maxT

permutation adjusted p-values, p̃∗j1µ, . . . , p̃
∗
jqµ (4.19), j = 1, . . . ,m.

R5. A m × q data frame, whose (j, l)th element warehouses the estimated log-odds ratio of colon

cancer, comparing subjects satisfying candidate pattern Al to subjects satisfying candidate

pattern Bl, for all j = 1, . . . ,m and l = 1, . . . , q.

R6. A m×q data frame, whose (j, l)th element warehouses the standard error of the corresponding

(j, l)th element of R5 above, for all j = 1, . . . ,m and l = 1, . . . , q.
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APPENDIX D

SELECT PROGRAMMING CODE

D.1 Implementation of Algorithm 3.4

The following C program code reads in data from an ASCII file entitled, input.txt. The first

line of the ASCII file must contain the numbers for each of cases and controls of the GWAS sample,

where the corresponding data values within the file should be separated by a space. Each subsequent

line of data within the ASCII file warehouses a particular realization of the elements upon the vector

θw =
(
πaa, πAa

)
, where w indexes the columns upon P (the pointwise p-value table). The values of

πaa and πAa, as listed within the ASCII file, should each: be separated by at least one space; and,

be multiplied by 106 and stated as a counting (i.e., positive integer) value. The programming code

follows:

// LOAD REQUIRED C HEADER FILES //

#include <stdlib.h>

#include <stdio.h>

#include <time.h>

#include <direct.h>

#include <process.h>

#include <conio.h>

#include <string.h>

#include <math.h>

// NATURAL LOGARITHM OF THE GAMMA FUNCTION -- NUMERICAL RECIPES //

double gammln(double xx)

{

double x, y, tmp, ser;

static double cof[6] = {76.18009172947146,

-86.50532032941677,

24.01409824083091,

-1.231739572450155,

0.1208650973866179e-2,

-0.5395239384953e-5

};

int j;

y = x = xx;

tmp = x + 5.5;

tmp -= (x + 0.5) * log(tmp);

ser 0 =1.000000000190015;

for(j = 0; j <= 5; j++) ser += cof[j] / ++y;

return -tmp + log(2.5066282746310005 * ser / x);

}
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// A FUNCTION TO SQUARE THE VALUE OF THE ARGUMENT x //

double SQR (double x)

{

return x * x;

}

// LOCATE THE COLLECTION Gamma_y(theta_k) //

void probmargins( unsigned int n, unsigned int *row, double thresh, double *fact,

double *prob, unsigned long *num_elems_overall,

unsigned long *num_elems_new, char *row_ind_member,

unsigned long *row_ind_update, unsigned long *row_ind_old, double pi1,

double pi2, double *row_prob )

{

unsigned long pos = 0, pos1 = 0, cnt = 0, pos2 = 0;

double egamthetak = 0.0, tmpprob;

unsigned int i, j;

for(i = 0; i <= n; i++)

for(j = 0; j <= (n - i); j++)

{

tmpprob = (double) (fact[n] - fact[i] - fact[j] - fact[n - i - j]);

tmpprob += (double) i * log( (double) pi1) + (double) j * log( (double) pi2) +

(double) (n - i - j) * log( (double) 1.0 - pi1 - pi2 );

if(tmpprob >= thresh)

{

row[0 + 3 * pos] = i;

row[1 + 3 * pos] = j;

row[2 + 3 * pos] = n - i - j;

row_prob[pos] = tmpprob;

if(row_ind_member[cnt] == 0)

{

row_ind_member[cnt]++;

row_ind_update[pos1] = pos;

pos1++;

}

else

{

row_ind_old[pos2] = pos;

pos2++;

}

pos++;

}

else

egamthetak += (double) exp( (double) tmpprob);

cnt++;

}

*num_elems_overall = pos;

*num_elems_new = pos1;

*prob = egamthetak;

}
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// COMPUTE p_{i,k}(Gamma(theta_k))

void probtruncuncondrefset( unsigned int n1, unsigned int n2, unsigned int *row1,

unsigned int *row2, unsigned long pos1, unsigned long pos2,

unsigned long pos1_new, unsigned long pos2_new,

unsigned long *row1_update, unsigned long *row2_update,

unsigned long *row1_old, double test_stat_crit,

double var_common, double *pvalue, double *row1prob,

double *row2prob, double pval_init )

{

unsigned int col_marg0, col_marg1, col_marg2;

unsigned long i, j, deno;

double TS_num, TS, tmpprob, PV;

long num;

PV = pval_init;

for(i = 0; i < pos1_new; i++)

for(j = 0; j < pos2; j++)

{

col_marg0 = (unsigned int) row1[0 + 3 * row1_update[i]] + row2[0 + 3 * j];

col_marg1 = (unsigned int) row1[1 + 3 * row1_update[i]] + row2[1 + 3 * j];

col_marg2 = (unsigned int) row1[2 + 3 * row1_update[i]] + row2[2 + 3 * j];

deno = (unsigned long) 4 * col_marg0 * col_marg2 + col_marg0 * col_marg1 +

col_marg2 * col_marg1;

if(deno)

{

num = n2 * (row1[0 + 3 * row1_update[i]] - row1[2 + 3 * row1_update[i]]) +

n1 * (row2[2 + 3 * j] - row2[0 + 3 * j]);

TS = (double) var_common * SQR( (double) num) / deno;

}

else

TS = 0.0;

if( TS >= test_stat_crit )

PV += (double) exp(row1prob[row1_update[i]] + row2prob[j]);

}

for(i = 0; i < (pos1 - pos1_new); i++)

for(j = 0; j < pos2_new; j++)

{

col_marg0 = (unsigned int) row1[0 + 3 * row1_old[i]] +

row2[0 + 3 * row2_update[j]];

col_marg1 = (unsigned int) row1[1 + 3 * row1_old[i]] +

row2[1 + 3 * row2_update[j]];

col_marg2 = (unsigned int) row1[2 + 3 * row1_old[i]] +

row2[2 + 3 * row2_update[j]];

deno = (unsigned long) 4 * col_marg0 * col_marg2 + col_marg0 * col_marg1 +

col_marg2 * col_marg1;



298

if(deno)

{

num = n2 * (row1[0 + 3 * row1_old[i]] - row1[2 + 3 * row1_old[i]]) +

n1 * (row2[2 + 3 * row2_update[j]] - row2[0 + 3 * row2_update[j]]);

TS = (double) var_common * SQR( (double) num) / deno;

}

else

TS = 0.0;

if( TS >= test_stat_crit )

PV += (double) exp(row1prob[row1_old[i]] + row2prob[row2_update[j]]);

}

*pvalue = (double) PV;

}

// MAIN SECTION //

int main(void)

{

double *h_lfact, var_const, delta, tmpprob, egamthetak1, egamthetak2, t_iota, p_iotak;

unsigned int i, j, n, n1, n2, *row1, *row2, tmp;

unsigned long n_row1, n_row2, pos, pos1, pos2, pos1_new, pos2_new, *row1_ind_update,

*row2_ind_update, *row1_ind_old, *row2_ind_old;

FILE *rstream1, *wstream1;

char filo[15], one[2];

double pi1, pi2, prob, *row1_prob, *row2_prob, epsilon, p_asy, multiplier, dura,

prob_old;

char ind, *row1_ind_evermember, *row2_ind_evermember;

clock_t start, finish;

time_t curr = time(0); // TIME STAMP

// PREPARE HEADER ROW OF OUTPUT FILE //

fopen_s(&wstream1, "results.txt", "w");

fprintf_s(wstream1, "CASES CONTROLS PI1 PI2 ERROR_ROW1 ERROR_ROW2 NUM_ROW1 NUM_ROW2

P_VALUE_EST DELTA_S TIME\n");

fclose(wstream1);

// SAMPLE SIZE //

// n_1 = cases; n_2 = controls

fopen_s(&rstream1, "input.txt", "r");

fscanf_s(rstream1, "%d", (unsigned int *) &n1);

fscanf_s(rstream1, "%d", (unsigned int *) &n2);

// LARGEST VALUE OF CA-TEST STATISTIC WITHIN THE PPT //

t_iota = 40.0;

// DESIRED RELATIVE ACCURACY OF P-VALUE ESTIMATES //

epsilon = 0.9999;

// ASYMP CHI-SQUARE P-VALUE FOR REALIZATION t_iota //

p_asy = 2.54e-10;

n = (unsigned int) n1 + n2;

// COMMON COMPONENT OF VARIANCE FOR CA-TREND TEST STATISTIC //

var_const = (double) n / (n1 * n2);
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// NUMBER OF ELEMENTS FOR EACH ROW WITHIN THE UNCONDITIONAL REFERENCE SET //

n_row1 = (unsigned long) (n1 + 2) * (n1 + 1) / 2;

n_row2 = (unsigned long) (n2 + 2) * (n2 + 1) / 2;

// MEMORY ALLOCATION //

h_lfact = (double * ) malloc( (n + 1) * sizeof(double) );

row1 = (unsigned int * ) malloc(3 * n_row1 * sizeof(unsigned int) );

row2 = (unsigned int * ) malloc(3 * n_row2 * sizeof(unsigned int) );

row1_prob = (double * ) malloc( n_row1 * sizeof(double) );

row2_prob = (double * ) malloc( n_row2 * sizeof(double) );

row1_ind_evermember = (char * ) malloc( n_row1 * sizeof(char) );

row2_ind_evermember = (char * ) malloc( n_row2 * sizeof(char) );

row1_ind_update = (unsigned long *) malloc( n_row1 * sizeof(unsigned long));

row2_ind_update = (unsigned long *) malloc( n_row2 * sizeof(unsigned long));

row1_ind_old = (unsigned long *) malloc( n_row1 * sizeof(unsigned long));

row2_ind_old = (unsigned long *) malloc( n_row2 * sizeof(unsigned long));

// LOG-FACTORIALS

for(i = 0; i <= n; i++) h_lfact[i] = (double) gammln( (double) (i + 1.0) );

// LOOP OVER THE ROWS OF ASCII INPUT FILE

for(j = 1; j <= 120; j++)

{

system("CLS");

printf("piset: %d\n\nIteration 1: %s", (unsigned int) j, ctime(&curr));

// DELTA_1; pi^{aa} (pi1); pi^{Aa} (pi2)

delta = (double) log( (double) (1.0 - epsilon) * p_asy / epsilon );

fscanf_s(rstream1, "%d", (unsigned int *) &tmp);

pi1 = (double) tmp / 1000000.0;

fscanf_s(rstream1, "%d", (unsigned int *) &tmp);

pi2 = (double) tmp / 1000000.0;

// INITIALIZE ROW MEMBERSHIP

for(i = 0; i < n_row1; i++) row1_ind_evermember[i] = 0;

for(i = 0; i < n_row2; i++) row2_ind_evermember[i] = 0;

start = clock();

// GIVEN DELTA, LOCATE PROBABLE ROWS FOR ROW1

probmargins( (unsigned int) n1, (unsigned int *) row1, (double) delta,

(double *) h_lfact, (double *) &egamthetak1, (unsigned long *) &pos1,

(unsigned long *) &pos1_new, (char *) row1_ind_evermember,

(unsigned long *) row1_ind_update, (unsigned long *) row1_ind_old,

(double) pi1, (double) pi2, (double*) row1_prob );

// GIVEN DELTA, LOCATE PROBABLE ROWS FOR ROW2

probmargins( (unsigned int) n2, (unsigned int *) row2, (double) delta,

(double *) h_lfact, (double *) &egamthetak2, (unsigned long *) &pos2,

(unsigned long *) &pos2_new, (char *) row2_ind_evermember,

(unsigned long *) row2_ind_update, (unsigned long *) row2_ind_old,

(double) pi1, (double) pi2, (double*) row2_prob);
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probtruncuncondrefset( (unsigned int) n1, (unsigned int) n2, (unsigned int*) row1,

(unsigned int*) row2, (unsigned long) pos1,

(unsigned long) pos2, (unsigned long) pos1_new,

(unsigned long) pos2_new, (unsigned long *) row1_ind_update,

(unsigned long *) row2_ind_update,

(unsigned long *) row1_ind_old,

(double) t_iota, (double) var_const, (double *) &prob,

(double *) row1_prob, (double *) row2_prob, 0.0 );

finish = clock();

dura = (double)(finish - start) / CLOCKS_PER_SEC;

dura /= 60;

fopen_s(&wstream1, "results.txt", "a");

fprintf_s( wstream1, "%d %d %0.10f %0.10f %0.10e %0.10e %d %d %0.10e %5.3f %3.3f\n",

(unsigned int) n1, (unsigned int) n2, (float) pi1, (float) pi2,

(double) egamthetak1, (double) egamthetak2, pos1, pos2,

(double) prob, (float) delta, (float) dura );

fclose(wstream1);

if( prob >= (epsilon * (egamthetak1 + egamthetak2) / (1.0 - epsilon)) ) ind = 0;

else ind = 1; i = 2;

while(ind)

{

prob_old = prob;

curr = time(0);

printf("Iteration %d: %s", (unsigned int) i, ctime(&curr));

start = clock();

multiplier = (double) 0.1;

delta += (double) log( (double) multiplier);

// GIVEN DELTA, LOCATE PROBABLE ROWS FOR ROW1

probmargins( (unsigned int) n1, (unsigned int *) row1, (double) delta,

(double *) h_lfact, (double *) &egamthetak1, (unsigned long *) &pos1,

(unsigned long *) &pos1_new, (char *) row1_ind_evermember,

(unsigned long *) row1_ind_update,

(unsigned long *) row1_ind_old,

(double) pi1, (double) pi2, (double*) row1_prob);

// GIVEN DELTA, LOCATE PROBABLE ROWS FOR ROW2

probmargins( (unsigned int) n2, (unsigned int *) row2, (double) delta,

(double *) h_lfact, (double *) &egamthetak2, (unsigned long *) &pos2,

(unsigned long *) &pos2_new, (char *) row2_ind_evermember,

(unsigned long *) row2_ind_update,

(unsigned long *) row2_ind_old,

(double) pi1, (double) pi2, (double*) row2_prob);

// UPDATE THE P-VALUE

probtruncuncondrefset( (unsigned int) n1, (unsigned int) n2, (unsigned int*) row1,

(unsigned int*) row2, (unsigned long) pos1,

(unsigned long) pos2, (unsigned long) pos1_new,

(unsigned long) pos2_new, (unsigned long *) row1_ind_update,

(unsigned long *) row2_ind_update,

(unsigned long *) row1_ind_old, (double) t_iota,

(double) var_const, (double *) &prob, (double *) row1_prob,

(double *) row2_prob, (double) prob_old);
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finish = clock();

dura = (double)(finish - start) / CLOCKS_PER_SEC;

dura /= 60;

fopen_s(&wstream1, "results.txt", "a");

fprintf_s(wstream1, "%d %d %0.10f %0.10f %0.10e %0.10e %d %d %0.10e %5.3f %3.3f\n",

(unsigned int) n1, (unsigned int) n2, (float) pi1, (float) pi2,

(double) egamthetak1, (double) egamthetak2, pos1, pos2,

(double) prob, (float) delta, (float) dura );

fclose(wstream1);

if( prob >= (epsilon * (egamthetak1 + egamthetak2) / (1.0 - epsilon)) ) ind = 0;

i++;

}

}

}

D.2 R Code for GEM Implementation

Contents of the DLL test main.R file:

### LOAD THE .DLL FOR GEM

#

dyn.load(’GEM_DLL.dll’)

#

### C FUNCTION TO CARRY OUT THE GEM METHODOLOGY -- BINARY ENVIRONMENTAL FACTOR;

### DEFAULT CANDIDATE PATTERNS; I = USER INPUT, R = FUNCTION RETURN

#

GEM_2e = function(n.controls, n.sample, n.snps, dat, n.perms, nsnps.per.geneset)

{

y = .C( "GEM_2e", ### C FUNCTION NAME (I)

as.integer(n.controls), ### NUMBER OF CONTROLS (I)

as.integer(n.sample), ### SAMPLE SIZE (I)

as.integer(n.snps), ### HOW MANY SNPs (I)

as.integer(dat), ### THE DATA -- n.snps x n.sample MATRIX (I)

as.integer(n.perms), ### HOW MANY COLUMN PERMUTATIONS (I)

as.integer(nsnps.per.geneset), ### HOW MANY SNPs PER GENE (VECTOR) (I)

maxT.n = double(n.snps * 11), ### maxT P-VALUES (ADJ AT SNP LEVEL) (R)

maxT.a = double(n.snps * 11), ### maxT P-VALUES (ADJ AT GENE LEVEL) (R)

margins = integer(10 * n.snps), ### COLUMN/ROW MARGINS BY SNP (R)

raw_wald = double(11 * n.snps), ### WALD TEST STAT BY PATTERN/SNP (R)

log_OR = double(11 * n.snps), ### ODDS-RATIO (LOG) BY PATTERN/SNP (R)

selog_OR = double(11 * n.snps) ### se(LOG-OR) (R)

)

table.margins = as.data.frame(matrix(y[[9]], nrow = n.snps, ncol = 10, byrow = TRUE))

for(i in 1:6) names(table.margins)[i] = paste(‘nGE’, i, sep = ‘’)

names(table.margins)[7:10] = c(‘nonmisscase’, ‘nonmisscontrol’, ‘nonmisstot’,

‘misscontrol’)

wald = as.data.frame(matrix(y[[10]], nrow = n.snps, ncol = 11, byrow = TRUE))

maxT.nom = as.data.frame(matrix(y[[7]], nrow = n.snps, ncol = 11, byrow = TRUE))

maxT.adj = as.data.frame(matrix(y[[8]], nrow = n.snps, ncol = 11, byrow = TRUE))

log.OR = as.data.frame(matrix(y[[11]], nrow = n.snps, ncol = 11, byrow = TRUE))

se.log.OR = as.data.frame(matrix(y[[12]], nrow = n.snps, ncol = 11, byrow = TRUE))



302

list(tm = table.margins, ts = wald, maxT_nom = maxT.nom, maxT_adj = maxT.adj,

logOR = log.OR, selogOR = se.log.OR)

}

#

### C FUNCTION TO CARRY OUT THE GEM METHODOLOGY -- THREE-LEVEL ENVIRONMENTAL FACTOR;

### USER-SPECIFIED CANDIDATE PATTERNS; I = USER INPUT, R = FUNCTION RETURN

#

GEM_3e_flex = function(n.controls, n.sample, n.snps, dat, n.perms,

nsnps.per.geneset, ind.mat, num.tests.per.snp)

{

y = .C( "GEM_3e_flex", ### C FUNCTION NAME (I)

as.integer(n.controls), ### NUMBER OF CONTROLS (I)

as.integer(n.sample), ### SAMPLE SIZE (I)

as.integer(n.snps), ### NUMBER OF SNPs (I)

as.integer(dat), ### DATA (MATRIX) (I)

as.integer(n.perms), ### NUMBER OF COLUMN PERMUTATIONS (I)

as.integer(nsnps.per.geneset), ### NUMBER OF SNPs PER GENE (I)

maxT.n = double(n.snps * num.tests.per.snp), ### maxT P-VAL (ADJ SNP LVL) (R)

maxT.a = double(n.snps * num.tests.per.snp), ### maxT P-VAL (ADJ GENE LVL) (R)

margins = integer(13 * n.snps), ### COLUMN/ROW TABLE MARGINS BY SNP (R)

raw_wald = double(num.tests.per.snp * n.snps), ### WALD TEST STAT BY PAT/SNP (R)

as.integer(ind.mat), ### CANDIDATE PATTERN INDICATOR MATRIX (I)

as.integer(num.tests.per.snp) ### NUMBER OF CANDIDATE PATTERNS (I)

)

table.margins = as.data.frame(matrix(y[[9]], nrow = n.snps, ncol = 13, byrow = TRUE))

for(i in 1:9) names(table.margins)[i] = paste(‘nGE’, i, sep = ‘’)

names(table.margins)[10:13] = c(‘nonmisscase’, ‘nonmisscontrol’, ‘nonmisstot’,

‘misscontrol’)

wald = as.data.frame(matrix(y[[10]], nrow = n.snps, ncol = num.tests.per.snp,

byrow = TRUE))

maxT.nom = as.data.frame(matrix(y[[7]], nrow = n.snps, ncol = num.tests.per.snp,

byrow = TRUE))

maxT.adj = as.data.frame(matrix(y[[8]], nrow = n.snps, ncol = num.tests.per.snp,

byrow = TRUE))

ind = as.data.frame(matrix(y[[11]], nrow = num.tests.per.snp, ncol = 9,

byrow = TRUE))

n.tests = y[[12]]

list(tm = table.margins, ts = wald, maxT_nom = maxT.nom, maxT_adj = maxT.adj,

ind.mat = ind, num.tests = n.tests)

}
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