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ABSTRACT 

Biochemical Characterization of SAC9, a Putative Phosphoinositide Phosphatase in  

Arabidopsis thaliana, and Its Role in Cellular Abnormalities 

by 

Almut H. Vollmer, Doctor of Philosophy 

Utah State University, 2012 

Major Professor: Edmund D. Brodie, Jr. 
Department: Biology 

The phospholipid phosphatidylinositol and its phosphorylated derivatives, collectively 

referred to as phosphoinositides, form the basis for a multifaceted signaling pathway regulating 

many different cellular processes in eukaryotic cells. Phosphatidylinositol 4,5-bisphosphate, 

PI(4,5)P2, assumes a central position in this complex pathway. It can serve as a precursor for the 

generation of second messengers but can also act as a ligand to partner proteins. In order to 

mediate their physiological effects properly, the location and quantity of PI(4,5)P2 and other 

phosphoinositides have to be tightly controlled by enzymes. 

In general, phospholipid kinases lead to the activation of the pathway, whereas 

phospholipid phosphatases attenuate or terminate the signaling cascade. The SAC domain-

containing protein 9 from Arabidopsis thaliana has been identified as a putative 

phosphoinositide phosphatase, but very little has been published on this particular protein. In 

my dissertation research, I broadened our knowledge of this protein and the effects seen in 

Arabidopsis plants carrying the mutant allele. I used molecular, genetic, and biochemical 
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approaches to analyze the function of the putative phosphoinositide phosphatase, SAC9. To 

understand its physiological role, I investigated the cellular effects of a mutation in the SAC9 

gene at the light microscopy, confocal microscopy, and transmission electron microscopy levels. 

My studies show that AtSAC9 is a soluble protein with an apparent molecular mass of 

180 kDa and that it most likely is a phosphoinositide phosphatase. Furthermore, I show that the 

mutation of SAC9 induced unique cell wall defects that most likely have contributed to the 

stuntedness of the root. However, the cortical microtubule cytoskeleton was not disturbed in 

elongating root cells. These data are augmented by applying a novel approach for the 

mathematical analysis of cortical microtubule orientation. 

(154 pages) 
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PUBLIC ABSTRACT 

Biochemical Characterization of SAC9, a Putative Phosphoinositide Phosphatase in  

Arabidopsis thaliana, and Its Role in Cellular Abnormalities 

by 

Almut H. Vollmer, Doctor of Philosophy 

Utah State University, 2012 

Major Professor: Edmund D. Brodie, Jr. 
Department: Biology 

Since the early colonization of land by fungi and plants some 700 million years ago, 

plants have been continuously faced with changes in their environment. Unlike animals, plants 

are not free to move about, and can therefore not evade many stress factors. How plants sense 

and respond to their environment has been of interest not only to scientific research but also in 

more practical applications such as agriculture. 

Signals (such as light or salinity) from the outside of plant cells trigger a flow of 

information to the inside of the cell. The final target for most of the information is thought to be 

the nucleus, the structure that contains the cell’s hereditary information. Depending on the 

signal, DNA replication and RNA transcription in the nucleus may lead to the production of 

molecules which allow the plant to respond in a biologically relevant way. To get signals from 

the outside of the cell to the nucleus, both animals and plants can use the phosphoinositide (PI) 

signaling pathway. 
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In my research, I was interested in how plants use the PI pathway and what happens to 

plants and their cells when this pathway is disturbed. I focused on the model plant Arabidopsis 

thaliana. This is a small, weedy plant with a short life cycle. It has become a model plant because 

it can be grown easily in the laboratory and is amenable to genetic manipulation. Its genome is 

completely sequenced, which makes it easier to define segments of DNA as genes and to add 

explanatory notes to their possible function. 

Central to my research was an enzyme called SAC9 that was speculated to modify one of 

the main components of the PI pathway. The mechanism(s) by which SAC9 acts in the PI 

pathway is poorly understood. Plants with a defective copy of the gene that codes for SAC9 

show signs of being permanently stressed even though they are not exposed to any stress 

factor. They are slow growing with small leaves and short roots. In signaling terms, it looks like 

somebody forgot to turn off the light switch. Understanding the molecular and cytological 

effects of a dysfunctional SAC9 protein in plant cells is the basis for genetically improving crop 

species, so they can better withstand stresses from the environment. 

My work, which was funded by the National Foundation of Science (NSF), provides 

insights into the function of the protein SAC9 and its substrate, phosphatidylinositol 4,5-

bisphosphate, PI(4,5)P2. Using different types of microscopes (light microscope, confocal 

microscope, transmission electron microscope), I discovered that in plants that were defective 

for the SAC9 gene, some root cells had unique cell wall abnormalities, which might be the 

reason for why the roots are shorter. I also found that a network of fibers throughout the cell’s 

cytoplasm, called the cytoskeleton, had some subtle but important changes. 
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All truths are easy to understand once they are discovered; 

the point is to discover them. 

 

Galileo Galilei 

Italian astronomer & physicist (1564-1642) 
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CHAPTER 1 

INTRODUCTION 

Phosphoinositides are phosphorylated derivatives of the phospholipid 

phosphatidylinositol. Although of low abundance, they are found in membranes of all eukaryotic 

cells, predominantly on the cytosolic surface. As constituents of lipid bilayers, they are 

structurally important, but they are also strongly involved in signaling where they control 

growth, differentiation, and responses to the environment by diverse cellular activities, such as 

Ca2+ mobilization, protein and membrane trafficking, cytoskeletal rearrangement, and changes 

in mobility and cellular adherence characteristics (Berridge 1984; Di Paolo and De Camilli 2006). 

Even though phosphoinositides were discovered in the 1930s (Hawthorne et al. 1960), it 

was not until the early 1980s that their function as regulatory and signaling molecules was 

recognized (Streb et al. 1983). Since then there has been a major flood of discoveries from 

newly detected inositol lipids to specific enzymes that regulate this extraordinary system, 

binding partners and downstream targets. From these and other studies we have a decent 

understanding of what has become known as the canonical phospholipase C (PLC) signaling 

pathway in animals, which is now a staple in cellular and molecular textbooks (Alberts et al. 

2007). The pathway is triggered by the stimulation of extracellular receptors which activate 

phospholipase C (PLC). Activated PLC hydrolyzes its target, phosphatidylinositol 4,5-

bisphosphate, PI(4,5)P2, and leads to the generation of two second messengers, the soluble 

inositol 1,4,5-trisphosphate (IP3) and the lipid-bound diacylglycerol (DAG). Both second 

messengers can start signaling cascades but in different locations within the cell and with 

different targets (Berridge 1984). 

The detection of PI(4,5)P2 in plants coupled with the discovery of functional PLC 

homologs led to a widespread believe that plants, like animals, use the same canonical PLC 
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pathway. This was further solidified by microinjection experiments of caged IP3 which resulted in 

the same response as in animals, namely Ca2+ release (Blatt et al. 1990). Although we can rightly 

assume that phospholipid-based signaling is a conserved process among yeast, animals, and 

plants, various studies have shown that details for each system are different. Thus, the initial 

optimism over the similarity has yielded to the realization that plant phospholipid signaling has 

some distinctive modifications. To date, no clear homologs to the primary targets in animal PLC 

signaling has been identified in the plant genome. Instead, IP6 and not IP3 appears to trigger Ca2+ 

release in plants. Similarly, DAG is quickly phosphorylated to phosphatidic acid, which has 

emerged as a new signaling molecule in plants with its own set of downstream targets (Munnik 

and Testerink 2009). 

Regardless of the differences in the organization of phospholipid signaling in animals 

and plants, PI(4,5)P2 assumes a central position in both systems. It has become clear that 

PI(4,5)P2 is not only a precursor for the generation of new signaling molecules, but can also act 

as a signaling molecule in itself. In animals, PI(4,5)P2 is known to regulate vesicle trafficking, the 

activity of ion channels, and the state of the actin cytoskeleton (Di Paolo and De Camilli 2006). In 

plants, PI(4,5)P2 has been implicated in the response to osmotic stress (Meijer et al. 1999; Pical 

et al. 1999; DeWald et al. 2001; Takahashi et al. 2001; Zonia and Munnik 2004; Williams et al. 

2005; Im et al. 2007; van Leeuwen et al. 2007; Konig et al. 2008; Darwish et al. 2009; Mishkind 

et al. 2009). While higher-plant PI(4,5)P2 is hardly detectable, osmotic stress temporarily 

increased its levels 4-20-fold (DeWald et al. 2001). 

The canonical PLC signaling pathway in animals is terminated through the action of 

phosphatases that are either specific to IP3 or PI(4,5)P2. Temporary increases of PI(4,5)P2, such 

as seen in heat, cold, or salinity-treated plants as mentioned above, are assumed to be 

decreased to base levels by the action of polyphosphate 5-phosphatases, including bifunctional 
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SAC domain-containing phosphatases. One gene for such a SAC domain-containing protein is 

found to be disrupted in the Arabidopsis thaliana mutant sac9. Mutant analysis showed that 

PI(4,5)P2 and IP3 levels were elevated in the absence of any osmotic stimulation (Williams et al. 

2005). sac9 mutants showed a constitutive stressed phenotype, supporting the role of PI(4,5)P2 

as a universal osmotic stress response. Except for the identification of the affected gene and an 

initial phenotypic characterization by two independent labs (Williams et al. 2005; Gong et al. 

2006), not much is known about SAC9. Yet, this mutant might offer valuable insights into 

phospholipid signaling in plants and possible cellular downstream effects of stress responses. 

Phenotypic mutant analysis can shed light on gene function, specifically on a whole system-

level. By examining the pathology of the mutant, one can make inferences about the function of 

the protein of interest in non-mutated, healthy plants. Of particular interest to this study was 

the fact that sac9 mutant plants are dwarfed with much shorter roots which accumulate 

PI(4,5)P2. Therefore, in Chapter 2, I analyzed the primary root of sac9 mutants at the light 

microscopy and ultrastructural level, and report on unique cell wall aberrations and excessive 

membrane accumulation associated with these abnormal cell walls. In Chapter 3, I investigated 

the possible involvement of the cytoskeleton as an underlying factor for the unique cell wall 

aberrations and the overall shorter primary roots of sac9. Chapter 4 complements the 

phenotypic mutant analysis with functional studies of immunoprecipitated SAC9 protein. 
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CHAPTER 2 

UNIQUE CELL WALL ABNORMALITIES IN THE PUTATIVE PHOSPHOINOSITIDE 

PHOSPHATASE MUTANT AtSAC9* 

ABSTRACT 

SAC9 is a putative phosphoinositide phosphatase in Arabidopsis thaliana involved in 

phosphoinositide signaling. sac9-1 plants have a constitutively stressed phenotype with shorter 

roots which notably accumulate phosphatidylinositol 4,5-bisphosphate and its hydrolysis 

product inositol trisphosphate. We investigated the primary roots of sac9-1 seedlings at the 

cytological and ultrastructural level to determine the structural basis for this altered growth. 

Despite the normal appearance of organelles and cytoplasmic elements, our studies reveal 

extreme abnormalities of cell wall and membrane structures in sac9-1 primary root cells, 

regardless of cell type, position within the meristematic area, and plane of section. Cell wall 

material was deposited locally and in a range of abnormal shapes, sometimes completely 

fragmenting the cell. Simple protuberances, broad flanges, diffuse patches, elaborate folds, 

irregular loops and other complex three-dimensional structures were found to extend randomly 

from the pre-existing cell wall. Abundant vesicles and excessive membrane material were 

associated with these irregular wall structures. We argue that a perturbed phosphoinositide 

metabolism most likely induced these observed abnormalities and hypothesize that a 

disorganized cytoskeleton and excessive membrane trafficking mediate the cell wall defects. 

 

* Vollmer AH, Youssef NN, DeWald DB (2011) Unique cell wall abnormalities in the putative 
phosphoinositide phosphatase mutant AtSAC9. Planta 234 (5):993-1005 
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ABBREVIATIONS 

IP3   Inositol trisphosphate 

LM   Light Microscopy 

PtdIns(4,5)P2  Phosphatidylinositol 4,5-bisphosphate 

SAC domain  Suppressor of Actin domain 

TEM   Transmission Electron Microscopy 

WT   Wild Type 

½ MS   Half-Strength Murashige and Skoog Medium 

INTRODUCTION 

Phosphoinositides are important lipid signaling molecules in animals, plants, and yeast. 

In animals and yeast they were found to respond to growth factors, hormones and 

neurotransmitters. They translate the extracellular stimulus into intracellular signaling cascades 

and thereby control fundamental cellular processes such as cell proliferation and motility, exo- 

and endocytosis, and reorganization of the cytoskeleton (Berridge 2009). Phosphatidylinositol 

4,5-bisphosphate (PtdIns(4,5)P2) assumes a central role in this canonical receptor-mediated 

signaling pathway as precursor to two second messengers, the cytosolic inositol trisphosphate 

(IP3) and the membrane-bound diacylglycerol. Recent studies made it clear, however, that 

PtdIns(4,5)P2 is a signaling molecule in itself and has been implicated, among others, in the 

regulation of membrane and vesicle trafficking and control of the cytoskeleton under stressed 

and non-stressed conditions (Jost et al. 1998; Abe et al. 2008; Di Paolo and De Camilli 2006). 

Plants share many of the same components of the phosphoinositide signaling system, 

although some striking differences exist (Munnik and Testerink 2009). It was demonstrated that 
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phosphoinositides in plants were also central to signaling events regulating membrane and 

vesicle trafficking, the actin cytoskeleton, tip growth of pollen and root hairs, and stress and 

hormonal responses (reviewed in Munnik 2010). Recently, phosphoinositides have also been 

linked to cell morphogenesis, and, of particular interest to this study, secondary cell wall 

synthesis (Zhong et al. 2004; 2005). 

Phosphoinositide signaling is dynamic as evidenced by quantitative and qualitative 

changes in the phosphoinositide species profile brought about by the concerted action of 

kinases, phosphatases and phospholipases. For example, a dramatic increase in PtdIns(4,5)P2 

was detected only minutes after exposing plants to heat, salt, and polyamines (Mishkind et al. 

2009; Pical et al. 1999; DeWald et al. 2001; Takahashi et al. 2001; Zonia and Munnik 2004; 

Echevarria-Machado et al. 2005). In order to mediate physiological responses correctly to these 

various stimuli, PtdIns(4,5)P2 and other phosphoinositide species have to be under tight spatio-

temporal control. Therefore, elevated levels of PtdIns(4,5)P2 have to be down-regulated to basal 

levels after stimulation. This is done in part by type II inositol polyphosphate 5-phosphatases 

and SAC domain phosphatases (Majerus et al. 1999; Mitchell et al. 2002; Whisstock et al. 2002; 

Hughes et al. 2000). 

The suppressor of actin (SAC) domain is a highly conserved region of about 400 amino 

acids first found in yeast Sac1p, where it suppresses defects in certain actin mutants (Novick et 

al. 1989; Hughes 2001). A genome wide search in Arabidopsis thaliana identified a gene family 

(AtSAC1-AtSAC9) with high sequence similarity to the yeast protein Sac1p (Zhong and Ye 2003). 

Only three of the nine family members have been characterized so far (Despres et al. 2003; 

Williams et al. 2005; Zhong et al. 2005; Thole et al. 2008). AtSAC1/FRA7 encodes a 

phosphoinositide phosphatase with substrate specificity towards phosphatidylinositol 3,5-

bisphosphate (Zhong et al. 2005). Mutation of AtSAC1/FRA7 causes defects in the cell wall and 
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the actin cytoskeleton, accompanied by an overall dwarfed phenotype. AtSAC7/RHD4 

hydrolyzes preferentially phosphatidylinositol 4-phosphate and was proposed to organize the 

polarized secretion in root hair tip growth. Root hair-defective rhd4 mutant plants had shorter 

root hairs with random bulges along their length, a disturbed actin cytoskeleton, and 

accumulated phosphatidylinositol 4-phosphate in vivo (Thole et al. 2008). AtSAC9 has been 

characterized as a putative phosphoinositide phosphatase distinct from other SAC domain-

containing proteins and thought to be involved in stress signaling in A. thaliana (Williams et al. 

2005). sac9-1 plants have a constitutively stressed phenotype even when grown under non-

stress conditions and most notably accumulate PtdIns(4,5)P2 and IP3. Interestingly, this changed 

phosphoinositide profile was only detected in extracts of roots and not in shoots. sac9-1 plants 

are dwarfed with smaller hyponastic leaves and decreased root mass with shorter primary and 

fewer lateral roots. 

In our study we investigated the primary roots of sac9-1 seedlings at the cytological and 

ultrastructural level to address the cellular basis for this particular phenotype. A. thaliana roots 

are a paragon of simplicity in regard to development and structure. A small set of initial cells 

within the closed root meristem generates the root body in a predictable fashion and gives rise 

to four sets of continuous cell files: the root cap or columella, the epidermis and lateral root cap, 

the cortex and endodermis, and the stele or vascular cylinder. These cell files are arranged in 

symmetric radial layers which can be easily recognized in transverse sections (Dolan et al. 1993). 

The relatively simple cell and tissue organization of A. thaliana roots and the small variance in 

cell position and number facilitates characterization of structural abnormalities that are caused 

by a mutation rather than representing natural variability and plasticity. 

Here we report on aberrant cell wall formation in cells of the primary root meristem in 

seedlings carrying the mutant allele sac9-1 that might explain the stunted phenotype. Cell wall 
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material was deposited locally and in a range of abnormal shapes, sometimes completely 

fragmenting the cell. Excessive membrane material was associated with these irregular wall 

structures. We argue that a perturbed phosphoinositide metabolism most likely induced these 

observed abnormalities and hypothesize that a disorganized cytoskeleton and excessive 

membrane trafficking mediate the cell wall defects. 

MATERIAL AND METHODS 

Plant material and growth conditions 

Arabidopsis thaliana wild-type (WT) seeds (A. thaliana, ecotype Col-0, CS1092) and A. 

thaliana seeds carrying the mutant allele sac9-1 (kindly provided by Dr. Mary Williams formerly 

of Harvey Mudd College, Claremont, CA) were used in this study. For simplicity, the mutant 

seedline is referred to as sac9 without further allele specification. Seeds were surface-sterilized 

for 5 minutes in 5x diluted Clorox with 0.05% Tween-20, followed by 5 rinses with sterile 

distilled water. Seeds were sown on a layer of Phytagel-solidified medium (½ MS, half-strength 

Murashige and Skoog medium, Research Products International Corp, IL, M10200), 

supplemented with 0.05% MES (Sigma, M2933) and solidified with 0.6% Phytagel (Sigma, 

P8169), pH 5.8, without sucrose supplement. Petri dishes were sealed with Parafilm and 

stratified for 3-4 days at 4°C to synchronize germination, after which they were positioned 

vertically in racks in a growth chamber with day and night temperature at 22/20°C ± 1°C and 14 

hour lighting at ~200 μmol m-2s-2. Alternatively, seeds were surface-sterilized and cold-treated as 

above but germinated on sterile filter paper. Two to three days post germination, seedlings 

were carefully transferred to 2x2 inch pots containing wetted potting soil mix (Miracle Gro) and 

grown under a 14 hour day/10 hour night cycle and ambient temperature. 
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Primary root length measurements 

Six-day-old seedlings with primary roots of equal length (7 mm ± 1 mm) were 

transferred to freshly prepared Phytagel-solidified ½ MS medium in square Petri dishes. WT and 

sac9 seedlings were grown side by side on a plate and a total of 48 WT and 48 sac9 seedlings on 

16 independent Petri dishes were used. Root growth was monitored for 14 days by tracing roots 

with a permanent marker on the surface of the dish every other day. Root traces were scanned 

and digital images were converted to root length measurements using the RootLM program 

under MatLab (Qi et al. 2007). Statistical analysis (ANOVA) for significant differences in root 

length at day 20 was performed in SAS. 

Light and transmission electron microscopy 

Ten-day-old A. thaliana seedlings grown on Phytagel-solidified ½ MS plates were fixed in 

situ following a modified protocol by Sack and Kiss (1989). Briefly, the seedlings were carefully 

flooded in the dish with primary fixative (1% paraformaldehyde, 2% glutaraldehyde, in 50 mM 

sodium cacodylate buffer with 5 mM CaCl2, pH 7.2) for 15 minutes at room temperature. 

Primary root tips were then cut off and transferred immediately to vials with fresh primary 

fixative for an overnight incubation period at 4°C. Samples were rinsed in cacodylate buffer 

three times for 10 minutes and postfixed with 4% osmium tetroxide for 1 hour at room 

temperature followed by three 10-minute rinses in distilled water. Samples were dehydrated in 

an ascending series of acetone baths and stepwise infiltrated with Transmit epoxy resin, grade 

medium (TAAB Laboratories Equipment Ltd, UK), over 2 days. Flat-embedded root tips were 

cured at 70°C for 16 hours. For light microscopy, thick sections (1.5-2 μm) were dry-cut on a 

glass knife using an RMC MTX ultramicrotome (Boeckeler Instruments, Tucson, AZ), stained with 

epoxy tissue stain (EM Sciences, 14950) and viewed on an Olympus BH2 light microscope. 
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Images were captured with a PaxCam2+ digital microscope camera (MIS Inc., IL). For transmission 

electron microscopy, thin sections (100-130 nm) were cut on a diamond knife, collected on 

nickel grids, and double-stained with 2% aqueous uranyl acetate and lead citrate. Sections were 

examined either on a Hitachi 7100 transmission electron microscope at 75 kV or a Philips Tecnai 

12 transmission electron microscope at 80 kV at the Electron Microscopy Facility at the 

University of Utah, Salt Lake City, UT. Scanned negatives were digitally processed with 

Photoshop. Over 1200 images obtained from 8 WT and 8 sac9 primary root tips randomly 

chosen from more than 40 different seedlings were analyzed in the course of the study. 

RESULTS 

sac9 primary roots are stunted 

Primary roots of plate-grown (no sucrose supplement) sac9 seedlings elongated at a 

slower rate and were significantly shorter (Fig. 2-1). After 3 weeks (day 20 of the growth 

experiment), they were found to be only half as long as WT primary roots. A similar ratio was 

seen with sac9 seedlings grown on plates supplemented with 1% sucrose (data not shown). 

Mature sac9 plants grown in potting mix also showed a drastic reduction in root length and 

overall mass (Fig. 2-2a). 

sac9 primary roots have regular tissue organization 

Transverse sections cut through the meristematic region (100-150 μm distal to the root 

cap) revealed that both, sac9 and WT seedlings had the same radial tissue organization of the 

primary root which is characterized by concentric layers of remnants of the lateral root cap, 

epidermis, cortex, endodermis and pericycle surrounding the vascular tissue (Fig. 2-2d, e).  
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Fig. 2-1 Growth kinetics of WT and sac9 primary roots. 6-day-old A. thaliana wild-type and sac9 
seedlings with approximately equal primary root length were transferred to fresh Phytagel-
solidified ½ MS plates (no sucrose supplement) and primary root elongation was traced every 
other day for 2 weeks. Note that WT primary roots elongated much faster and were significantly 
longer at the end of the experiment. Asterisk marks statistical significance at day 20 (α=0.05, 
p<0.0001, n=96). Root measurements are given as mean ± SD 
 

The epidermis consisted of a variable number of cells, yet the kidney-shaped cortex cells and the 

endodermis cells almost invariably formed a ring of 8 cells. Xylem and phloem elements were 

not yet differentiated within the stele. At the light microscopy level, none of the cells of sac9 

were noticeably different in size, shape, or alignment. Median longitudinal sections also did not 

differ in gross cytological morphology (Fig. 2-2b, c). Cell fate seemed to be maintained as 

evidenced by the fact that all cell files could be traced to a small set of initial cells which gave 

rise to functionally related but developmentally different cells in a lineage. Most cell files 

exhibited an orderly pattern of anticlinal divisions (perpendicular to the growth axis) with the 

occasional sac9 root showing a slightly disturbed pattern in the epidermis and cortex cell lines of 

the meristematic region with some irregularly enlarged apoplastic spaces (data not shown). 
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Thus we conclude that despite the obvious differences in root growth and root mass appearance 

of sac9 and WT seedlings, cytological analysis of the meristematic region at the light microscopic 

level was not sufficient to reveal any major differences between sac9 and WT. 

sac9 root cells have normal appearing organelles and are metabolically active 

Since we could not find any obvious differences at the light microscopy (LM) level, we 

turned to transmission electron microscopy (TEM) to better understand root development in 

sac9 seedlings. The same root tissues that were embedded in TAAB resin and used for LM were 

analyzed by TEM. At low magnification (1000x), cell organization was the same as seen with LM. 

Investigation of the fine structure of primary root cells of sac9 demonstrated that organelles and 

cytoplasmic elements were normal. Both WT and sac9 nuclei were mostly spherical to 

spheroidal (Figs. 2-3a-c, 2-4f, 2-5d). The majority of sac9 interphase nuclei showed one 

prominent nucleolus and evenly dispersed chromatin suggestive of high transcriptional activity. 

The nuclear envelope appeared as a uniformly spaced distinct boundary layer between 

nucleoplasm and cytoplasm. Shorter and longer strands of rough endoplasmic reticulum (ER) 

ramified throughout the cytoplasm which was densely populated by free ribosomes, active Golgi 

stacks with numerous vesicles, mitochondria with regular morphology and simply structured 

proplastids, sometimes with dark plastoglobuli (Figs. 2-4, 5). These results indicate the 

preponderance of metabolically very active meristematic cells in sac9 primary roots with 

morphologically indistinguishable subcellular organelles when compared to WT. 
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Fig. 2-2 Phenotype and tissue organization of WT and sac9 primary roots. a Picture of 14-week-
old A. thaliana WT and sac9 plants demonstrating the dwarfed phenotype of sac9. Seeds were 
germinated on filter paper and 3-day-old seedlings were transferred to soilless potting mix and 
photographed on a weekly basis for 14 weeks. Note deeply purple older leaves, considerably 
less root mass and delayed bolting of the mutant. Bar increments, 5 cm; b-f Light micrographs of 
primary root tips from 10-day-old WT and sac9 seedlings grown on Phytagel-solidified ½ MS 
plates. Seedlings were chemically fixed, embedded in resin, and 2 µm sections were cut and 
stained. b, c Longitudinal median sections of primary roots of WT (b) and sac9 (c) seedlings, 
illustrating the closed organization of the root apical meristem with continuous cell files arising 
from initial cells. Sloughed off root cap cells are visible in (c). Bar, 20 µm; d-f Transverse sections 
of primary roots of WT (d) and sac9 (e, f) seedlings approximately 150 µm behind the root apex, 
showing characteristic radial tissue organization with concentric layers of (from the outside in) 
lateral root cap, epidermis, cortex, endodermis, and the central cylinder with biarch 
protophloem poles; f Enlargement of insert presented in (e). Arrow points to a sac9 cortex cell 
with an abnormal cell wall protuberance. Bar, 5 µm 
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Fig. 2-3 WT root cells with normal appearing cell walls. Transmission electron micrographs of 
meristematic WT root cells show regular cell walls in every cell type. Epidermal cells in 
transverse (a) and longitudinal median (b) section. Arrow in (a) points to a membrane whorl in 
one of the epidermis cells. Bar, 2 µm; c Cells from the central cylinder in transverse section. 
Note the normal appearance of the cell walls. Bar, 5 µm; d-f Consecutive stages of new cell wall 
formation during somatic cytokinesis as demonstrated by the preprophase band (d, arrow), 
nascent cell plate (e, arrow), and newly formed cell wall between two prominent nuclei (f). 
Membranes are associated with the new cell wall (f, arrow). Bar, 500 nm. CW cell wall, ER 
endoplasmic reticulum, G Golgi stack, M mitochondrion, N nucleus, Nu nucleolus, V vacuole 
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Some sac9 root cells have abnormal cell wall protuberances 

Examination of the cell wall revealed a different scenario. In sac9 roots, we found cells 

in almost every plane of section that had abnormalities, regardless of cell type and position 

within the meristematic region. These abnormalities included unusual spur-like protuberances 

of varying length and shape arising from the existing cell wall and intruding into the cytoplasm 

(Fig. 2-4a-d), pinching of cytoplasm resulting in fragmentation of cells (Figs. 2-4d-f, 2-5a), highly 

abnormal accumulation of cell wall material tight to membranes (Figs. 2-4d, 2-5b-e, 2-6, 2-7), 

and undulating internal cell walls (Fig. 2-7). The nature of the protuberances could be identified 

at higher magnification as cell wall comparable. They had the same electron dense staining 

pattern with striations as normal appearing cell walls of sac9 and control cell walls in WT. 

Furthermore, the cell wall material of the protuberances was contained by a continuation of the 

plasma membrane as seen in Figure 2-4a-c. The protuberances varied in size from undetectable 

at lower magnification to very conspicuous at higher magnification. The smallest protuberance 

measured less than 100 nm, whereas larger ones were found in the range of several µm. Some 

extended from one side of the cell to the other (Fig. 2-4d, e). The majority of the protuberances, 

however, were very small (< 1 μm). This explains why we were not able to observe them at the 

light microscopy level until we gathered information at higher levels of magnification, with the 

exception of very large protuberances (Fig. 2-2f). Some protuberances appeared to end in the 

middle of the cytoplasm in a bulbous (Fig. 2-4b) or branched structure (Fig. 2-4c) with 

amorphous looking cell wall areas. Flattened membrane vesicles could be seen embedded in the 

cell wall matrix of some protuberances (Fig. 2-4b). Other protuberances seemed to continue to 

expand centripetally by addition of multiple membrane vesicles to the growing end (Fig. 2-5b, c), 

similar to vesicles frequently associated with the nascent cell plate in freshly divided cells. 
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Fig. 2-4 Abnormal cell wall ingrowths in sac9 root cells. Transmission electron micrographs of 
meristematic sac9 root cells show irregular cell wall protuberances of varying size and shape. a 
Transverse section of an endodermis cell with a small cell wall stub protruding into the 
cytoplasm. Note the wavy layers of membranes at the tip of the protuberance (arrow). The 
arrowhead points to a developing shaved cell wall protuberance in the neighboring cell that, in 
this plane of section, is not connected to the wall. Bar 200 nm; b Transverse section of an 
endodermis cell with a long uniform cell wall protuberance ending in an enlarged bulbous 
structure (arrow). Note the flattened and curved vesicles embedded in the cell wall material of 
the bulb. A large membrane whorl can be seen within the vacuole in close proximity to the 
bulbous structure. Bar 500 nm; c Transverse section of a cell from the stele with a small 
branched cell wall protuberance. Note the uneven thickness of the cell wall material particularly 
at the branched area (arrow). Bar 1 µm; d Longitudinal median section of an endodermis cell 
with a large branched cell wall protuberance (arrowheads). Note also the membrane 
accumulation at the internal wall (arrow). Bar 1 µm; e Transverse section of a cell from the stele 
fragmented by uneven internal walls. The arrows point to pockets of cytoplasm which appear 
pinched off by the branched walls. Bar 1 µm; f Transverse section of a cortex cell showing an 
irregularly looped internal cell wall structure (arrow). Bar, 5 µm. CW cell wall, ER endoplasmic 
reticulum, G Golgi stack, M mitochondrion, P proplastid, N nucleus, V vacuole 
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However, it is interesting to note that none of the cells with protuberances were enlarged or 

were multi-nucleated, the typical morphological characteristics of cytokinesis mutants (Jaber et 

al. 2010). It looked as if the protuberances occurred randomly as a misdirected layering of cell 

wall material on the inner surface of the existing primary cell wall. In contrast to sac9 root cells, 

we did not observe any irregular wall protuberances in WT root cells (Fig. 2-3). 

sac9 wall protuberances are associated with excessive membrane material 

At the ultrastructural level, we noticed excessive membrane material in either direct 

contact or close to the wall forming the protuberances (Figs. 2-5, 2-6). Membranous vesicles and 

more complex membrane inclusions in tight or loose concentric layers similar to myelinated 

figures appeared to be associated with the aberrant wall formation. These whorl-like structure 

were not limited to the cytoplasm, but were also found in vacuoles (Fig. 2-4b). 

Membrane inclusions were also observed in the cytoplasm and vacuoles of WT root cells 

(Fig. 2-3a, arrow) and adjacent to newly formed cell walls after somatic cytokinesis (Fig. 2-3f, 

arrow). This most likely indicated a normal degenerative process of phagocytized cytoplasmic 

material and/or recycling of excessive membrane material. However, the extreme accumulation 

of these membranous inclusions in some sac9 root cells, as exemplified by Figure 2-6, was 

obvious and might point to either higher membrane turnover or trafficking or a combination of 

both. 

sac9 wall protuberances are randomly distributed and can be extensive 

In order to investigate the spatial distribution of these protuberances, we analyzed 

transverse, longitudinal and even oblique sections through the meristematic region of sac9 

primary roots. Protuberances of different sizes and shapes were found at random in all different 

planes of section (Figs. 2-2f, 2-4a-c, 2-5, 2-7 for transverse sections; Figs. 2-4d, 2-6 for 
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Fig. 2-5 Centripetal cell wall ingrowth in sac9 primary root cells and association of excessive 
membrane material with cell wall ingrowth. a Transmission electron micrograph of a cell from 
the central cylinder illustrating the centripetal elongation of a cell wall protuberance. Note that 
the cell is also fragmented by a branched internal wall. Bar, 1 µm; b Enlargement of insert 
shown in (a). Note the vesicles containing concentric layers of membranes and other electron 
dense material in close proximity to the tip of the protuberance. Bar, 200 nm; c The same 
protuberance as presented in (b) but from a succeeding section. Note that some of the vesicles 
seen in (b) have fused to the tip of the protuberance and are still recognizable as partially 
flattened membrane inclusions. It becomes evident that the protuberance arose as a 
continuation from the pre-existing cell wall and grew towards the center of the cell by fusion of 
vesicles to the elongating end. Note the uneven thickness of the aberrant cell wall suggesting 
undirected growth. Bar, 200 nm; d Transmission electron micrograph from a similar region as in 
(a) but from a different sac9 seedling showing two densely stained inclusions closely associated 
with the curved cell wall protuberance. Bar, 2 µm; e Enlargement of insert presented in (d). 
Note the direct connection from the plasma membrane surrounding the aberrant cell wall 
ingrowth to the smaller of the two membrane whorls (arrow). It appears that the smaller 
membrane whorl is partially engulfed into the vacuole. Also note the tight concentric membrane 
layers of both membrane whorls. Bar, 500 nm; CW cell wall; ER endoplasmic reticulum; G Golgi 
stack; M mitochondrion; N nucleus; P proplastid; V vacuole 
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Fig. 2-6 An extreme example of excessive membrane material associated with the aberrant 
deposition of irregular cell wall material in sac9 seedlings. a, b Transmission electron 
micrographs of two consecutive longitudinal median sections through the central cylinder of the 
primary root close to the apex revealing densely winding, parallel membranes in direct contact 
with cell wall material. Stars point to randomly deposited and diffuse-appearing cell wall 
material, whereas arrowheads indicate a normal-looking cell wall area with even thickness. Note 
the massive accumulation of vesicles presumably containing cell wall precursors in close 
proximity to the irregular cell wall deposition (arrows). Bar, 500 nm. M mitochondrion; P 
proplastid; V vacuole 
 

longitudinal sections; oblique sections not shown). These results suggest that protuberances 

could arise independently of the regular plane of anticlinal and periclinal cell divisions. 

Serial sections were cut to examine the architecture of the protuberances in more 

detail. A presentation of five serial sections illustrates the elaborate and peculiar appearance of 

the cell wall aberration seen in a sac9 epidermal cell of the root meristem (Fig. 2-7a-e). 
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Fig. 2-7 Serial sections of a cell wall ingrowth in an epidermal sac9 root cell and corresponding 
3D rendering. a-e Transmission electron micrographs of five transverse serial sections through 
the meristematic region of the primary root of sac9 showing a large cell wall protuberance 
forming a cylinder-like structure (boxed area in a). Note the extremely shifting internal cell wall 
(arrows). Bar, 2 μm. f Three-dimensional rendering of the cylinder-like cell wall aberration based 
on the previous and other serial sections of the same cell. Excessive membranes in the form of 
electron dense concentric whorls are closely associated with the aberrant cell wall (arrowheads) 

 

From these and other consecutive serial sections it became clear that the abnormal wall 

was undulating and shifting extremely throughout the cytoplasm in these sections (Fig. 2-7a-e, 

arrows). The abnormal cell wall branched off to one side and formed a complete circle which did 

not appear to change its position much; i.e. the circle in a two-dimensional section (Fig. 2-7a, 

boxed area) turned out to be a cylinder-like structure deeply penetrating the cytoplasm in a 

three-dimensional interpretation from serial sections (Fig. 2-7f). Membrane vesicles and whorls 

could be seen in close proximity to the cylinder, either adding more cell wall material to the 

structure or being recycled as excessive membrane material (Fig. 2-7f, arrowheads). 

These results indicate that the previously described cell wall protuberances were most 

likely part of a much larger three-dimensional cell wall aberration which appeared highly 

irregular in nature. To account for the varying architecture, we shall refer to these 

protuberances subsequently as cell wall ingrowths. 
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DISCUSSION 

AtSAC9 mutants are highly interesting because of their multifaceted phenotype, which 

might be a direct or indirect consequence of perturbed signal transduction pathways centering 

around elevated endogenous levels of PtdIns(4,5)P2 in sac9 roots. Williams et al. (2005) and 

Gong et al. (2006) both documented shorter primary roots and fewer lateral roots in sac9 

seedlings. To determine the structural basis for this altered growth, we examined the tissue 

organization as well as fine and ultrastructure of cells from sac9 primary root meristems. 

Although we found that the tissue organization and the cellular organelles appeared normal, we 

did observe unusual cell wall and membrane structures within many sac9 cells of the root 

meristem. The cell wall ingrowths ranged from simple protuberances to broad flanges, diffuse 

patches, elaborate folds, irregular loops and other complex three-dimensional structures. Serial 

sections showed that they were associated with abundant vesicles and excessive membrane 

inclusions. 

Is sac9 a cytokinesis mutant? 

Cell wall ingrowths related to various stages of somatic cytokinesis have been found in 

other A. thaliana mutants and have been described as cell wall stubs by several authors. 

Lukowitz et al. (1996) reported enlarged, multinucleated and polyploid cells in knolle embryos 

with wall defects in the form of incomplete cell walls with gaps in the middle and T-shaped cross 

walls attached to the parental cell wall. Assaad et al. (1996) described comparable cell wall 

defects in keule embryos. Similar abnormalities were induced by incubating different plant 

seedlings with drugs, such as caffeine in bean (Röper and Röper 1977), or treating with 

herbicides, such as dichlobenil in onion (Vaughn et al. 1996). Both treatments disrupted cell 

plate formation and led to extensions of the parental wall, referred to as centripetal wall 
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formation by Röper and Röper (1977). Abnormal embryos with variably enlarged cells, 

incomplete cell walls and multiple nuclei were also seen in A. thaliana mutants in which HINKEL, 

a kinesin-related protein, was not functional (Strompen et al. 2002). The authors speculated that 

the HINKEL protein was involved in the coordination of cell plate formation with phragmoplast 

microtubule depolymerization, which is necessary for lateral expansion of the phragmoplast 

(Jurgens 2005). Other typical cytokinesis defects were visible to varying degrees in pleiade 

seedlings (Muller et al. 2002), cyt1 embryos (Nickle and Meinke 1998), and kor1-1 embryos  

(Zuo et al. 2000). cyt1 and kor1-1 are notable, as they both seem to be involved in the regulation 

of cell wall synthesis in addition to cytokinesis. 

The phenotypic features of sac9 root cells, however, particularly the already described 

cell wall ingrowths, are not indicative of cytokinesis defects, as no enlarged or bi- or 

multinucleated cells were observed. In our study, cell wall defects were only found in cells with 

a single nucleus which was predominantly in interphase. In many cytokinesis mutants, the 

reported cell wall stubs were situated in the equatorial division plane attached to the parental 

wall at opposite ends, sometimes leaving a gap in the middle, suggesting that cell plate 

formation, expansion, or maturation, had failed at some point (Assaad et al. 1996; Jaber et al. 

2010; Lukowitz et al. 1996). In contrast, cell wall ingrowths in sac9 cells arose at random sites 

from the pre-existing wall growing towards the center of the cell, but not restricted to the 

position of a future cell plate. In addition, if cytokinesis had been affected in sac9 embryos, 

seedling lethality might be expected. Many cytokinesis mutants do not survive the embryo stage 

(Assaad et al. 1996; Jaber et al. 2010; Liu et al. 1995; Lukowitz et al. 1996; Strompen et al. 2002) 

or are merely conditional mutants (Eleftheriou et al. 2005). However, sac9 seeds germinated 

and seedlings successfully established, ruling out a primary defect in cytokinesis. This is also 

supported by the observation that sac9 cells without wall defects showed the typical Golgi-
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derived belt of fusing vesicles forming the nascent cell plate, which at the end of cytokinesis had 

matured into the plasma membranes and primary walls between daughter cells (data not 

shown). It is worth emphasizing that sac9 cells with wall protuberances were found in the 

meristematic area of the root but nonetheless never seen in the stage leading to or exiting 

mitosis. This might be interpreted as a failure of mitosis to take place in these particular cells. 

Are sac9 root cells with wall ingrowths modified transfer cells? 

It could be argued that the architecture of some type of cell wall ingrowths in sac9 cells 

(i.e., simple protuberances and flanges) bears resemblance to localized wall deposition in 

transfer cells. Transfer cells are anatomically and functionally specialized plant cells which 

facilitate membrane-mediated transfer of various solutes (Gunning et al. 1968; Gunning and 

Pate 1969). To achieve this, they develop extensive wall ingrowths with concomitant 

amplification of the plasma membrane surface for solute transport (Offler et al. 2003). 

Although the resemblance to transfer cells is only speculative, these specialized cells 

might provide insights into the formation of localized wall deposition in sac9 root cells. Cell wall 

ingrowth in transfer cells can be broadly categorized as either reticulate- or flange-like (Talbot et 

al. 2002). Transfer cells of the reticulate type have papillate projections of cell wall material that 

in later stages fuse to form a complex labyrinth-like network. Flange wall ingrowth is 

characterized by rib-shaped projections. 

Transmission electron microscopy and field emission scanning microscopy 

demonstrated that both types are not only morphologically very different, but they also seem to 

have different ontogenies (Talbot et al. 2002). The earliest signs of reticulate ingrowth were 

localized appositions of randomly oriented cellulose microfibrils over a new layer of parallel 
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cellulose microfibrils. In contrast, flange ingrowths emerged over bundles of parallel cellulose 

microfibers over otherwise randomly arranged cellulose microfibers (Talbot et al. 2007). 

Cell wall ingrowth in sac9 cells ranged from simple papilla-like projections to flanges but also 

encompassed clearly more complex structures which were very distinct from any cell wall 

ingrowth found in transfer cells. Varying staining patterns within some sac9 cell wall ingrowths 

also point to a unique deposition pattern of cell wall material. The cell walls of smaller, simple 

projections often appear regular whereas larger or convoluted ingrowths are less lamellated, 

more amorphous and of uneven thickness. Careful comparison between normal cell wall 

protuberances in transfer cells and abnormal cell wall ingrowths in sac9 root cells makes it clear 

that the aberrations found in sac9 root cells are morphologically unique. Furthermore, there is a 

clear structure-function-relationship in transfer cells, where function directly dictates structure. 

An analogous function of short distance solute transfer in sac9 cells with wall ingrowths seems 

physiologically not plausible. 

A possible role of the cytoskeleton in the formation of localized cell walls in sac9 

The cytoskeleton is a major contributor in the formation of cell walls. Actin filaments are 

known to organize the cellular architecture, to orchestrate endo- and exocytosis, and vesicle 

trafficking. In particular, the latter is essential for the delivery of vesicles containing cell wall 

precursors and cell wall synthesizing and modifying enzymes to the plasma membrane, although 

microtubules are also involved in this process, specifically at the cell plate (Jurgens 2005). 

It is more likely that the sac9 mutation is based on a defective actin rather than a 

defective microtubule cytoskeleton. The link between the actin cytoskeleton and phospholipid 

signaling has long been established in animals and lower eukaryotes (reviewed in Takenawa and 

Itoh 2001). Evidence is emerging that some phospholipids regulate actin organization and 
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dynamics in a comparable fashion in plants by binding and modulating the activity (and most 

likely the intercellular location) of actin-binding proteins (ABPs). More than 70 classes of ABPs 

are known in eukaryotes (Staiger and Blanchoin 2006) and they affect all aspects of the actin 

cytoskeleton. ABPs control the ratio of G- to F-actin and hence the pool of available subunits and 

state of polymerization and depolymerization. They influence filament length and breakage, and 

they nucleate new filaments and crosslink existing filaments in higher order structures such as 

bundles (reviewed in McCurdy et al. 2001). 

Some plant ABPs have also been shown to bind to PtdIns(4,5)P2, including profilin 

(Drøbak et al. 1994), ADF/cofilin (Gungabissoon et al. 1998) and capping protein, CP (Huang et 

al. 2003). Therefore, it seems plausible that the elevated levels of PtdIns(4,5)P2 in sac9 seedlings 

could serve as additional anchor points for binding of ABPs and localizing them to the plasma 

membrane. Thus, these ABPs seem attractive mediators of phospholipid-based changes in the 

actin cytoskeleton and, ultimately, the cell wall. 

At the current knowledge however, it would be premature to speculate about the 

phenotypic consequences of such possible binding in sac9 cells since many ABPs are also 

regulated by pH, Ca2+ concentrations, phosphorylation, and the presence of other ABPs 

(Wasteneys and Galway 2003; Hussey et al. 2006). 

Do other A. thaliana mutants with defects in SAC domain-containing proteins and/or elevated 

levels of PtdIns(4,5)P2 have cell wall aberrations? 

Another line of evidence that the SAC9 gene is potentially implicated in the indirect 

regulation of the actin cytoskeleton comes from detailed morphological characterization of SAC 

domain-containing mutants (Zhong et al. 2005) and mutants with a disturbed phospholipid 

metabolism (Zhong et al. 2004). There are several reports of a temporary increase of 
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PtdIns(4,5)P2 elicited by environmental stresses (Pical et al. 1999; DeWald et al. 2001; Zonia and 

Munnik 2004; Mishkind et al. 2009), hormones (Krinke et al. 2007) and polyamines (Echevarria-

Machado et al. 2005), but none of these investigations included morphological data. 

To our knowledge, there is only one A. thaliana mutant described with endogenous 

elevated levels of PtdIns(4,5)P2 and IP3 that is also cytologically characterized (Zhong et al. 

2004). fra3 inflorescence stems showed a two-fold increase in endogenous concentration of 

PtdIns(4,5)P2 and IP3, and a moderate but significant increase of PtdIns(4,5)P2 in seedlings. The 

FRA3 gene encodes a type II inositol polyphosphate 5-phosphatase with high substrate affinity 

for PtdIns(4,5)P2. Morphological analysis revealed abnormalities in the thickness of fiber cell 

walls and concurrent abnormal actin bundling in the same cell type while the microtubule 

cytoskeleton was not affected. Based on the mutant phenotype and functional assays of 

recombinant FRA3 protein, the authors concluded that the perturbed phosphoinositide 

metabolism, in particular the elevated levels of PtdIns(4,5)P2, likely caused the actin 

abnormalities and thus led to a decrease in cell wall thickness of fiber cells. It is worth pointing 

out that the FRA3 protein does not contain a SAC domain. 

AtSAC1 shares the SAC domain and other sequence similarity with SAC9 (Zhong and Ye 

2003). Results from morphological studies of sac1 mutants resembled those obtained from fra3 

mutants. Both showed reduced cell wall thickness and altered F-actin organization, mostly in 

fiber, but also in non-fiber cells of elongating stems. This explains why they were both 

discovered in the same screen for defective fiber mutants (Zhong et al. 2004). Again, a 

correlation between the actin cytoskeleton and cell wall synthesis was inferred. However, 

endogenous levels of PIs were not measured. This would be particularly informative in the light 

of biochemical data indicating in vitro substrate activity of the AtSAC1 phosphatase only against 

PtdIns(3,5)P2. 
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CONCLUSION 

In conclusion, this study links elevated PtdIns(4,5)P2 levels in the putative 

phosphoinositide phosphatase mutant sac9 with aberrant formation of wall ingrowths in a 

number of cells of the primary root. We provide evidence that cell walls could develop 

independently of cytokinesis by haphazard but localized deposition of cell wall material on pre-

existing cell walls without the typical formation of a cell plate. Because of the lack of direction 

and the spontaneous generation of these cell walls, normal cell division does not take place, and 

the cell becomes fragmented with concomitant growth retardation. We hypothesize that the 

formation and winding of these abnormal cell walls is a result of undirected development, 

probably due to a lack or disorganization of the cytoskeletal elements orchestrated by a 

perturbed phosphoinositide metabolism. 

The observed cell wall ingrowths in sac9 mutants provide a unique example of localized 

wall deposition, which has been extensively studied in tracheary elements and transfer cells. 

Although much progress has been made in the organization and composition of these highly 

specialized cells, the underlying molecular mechanism(s) that regulate the formation of localized 

wall deposition remain(s) elusive. Understanding how PtdIns(4,5)P2 affects the cytoskeleton in 

sac9 seedlings might shed further light on the process of localized wall formation in A. thaliana. 
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CHAPTER 3 

ANALYSIS OF THE CORTICAL MICROTUBULE CYTOSKELETON IN THE DEVELOPING ROOT OF THE 

PUTATIVE PHOSPHOINOSITIDE PHOSPHATASE MUTANT AtSAC9 

ABSTRACT 

The cortical microtubule (MT) cytoskeleton was investigated in the stunted root of the 

putative phosphoinositide phosphatase mutant sac9-1 in Arabidopsis thaliana by means of 

immunofluorescence and transmission electron microscopy (TEM). On the TEM level, there 

were no apparent morphological differences of cortical MTs in sac9-1 root cells. Their spatial 

association with the plasma membrane also appeared undisturbed. The global distribution of 

cortical MTs was then observed with confocal microscopy of immunostained roots. To gain a 

better insight of microtubule orientation, I applied the filtered two-dimensional discrete Fourier 

transform (DFT) method (Marquez 2006). By using the modified Marquez’s DFT method, I 

showed that cortical MT arrays in sac9-1 root cells of the elongation zone were similar to wild 

type, but the orientation changed faster from perpendicular to oblique in respect to the growth 

axis in the differentiation zone. I also demonstrate the suitability and effectiveness of this 

method. Additionally, I discuss the advantages of the optimized DFT technique in accurately 

characterizing angular orientations of cortical MTs, and conclude that it is a valid additional 

technique to traditional and rather time-consuming methods. I speculate that factors other than 

cortical MT orientation might play a more dominant role in affecting the normal elongation of 

root cells in the sac9-1 mutant. 
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ABBREVIATIONS 

DFT Discrete Fourier Transform 

MT(s) Microtubule(s) 

PBS Phosphate-Buffered Saline 

PEMT Phosphate-EGTA-MgCl2-Triton X-100 buffer 

SAC Suppressor of Actin 1 (Sac1) homology domain 

SAC9 SAC domain-containing protein 9 

TEM Transmission Electron Microscopy 

WT Wild Type 

½ MS Half-strength Murashige and Skoog medium 

INTRODUCTION 

Microtubules (MTs) are slender, hollow structures, made up of a staggered lateral 

assembly of 13 protofilaments, each composed of the same alternating subunits (α- and β-

tubulin). The relative uniform appearance of MTs at the confocal and the electron microscopy 

level deceives their range of functions. Far from being static implants, they are part of the plant 

cytoskeleton, and are involved in basic processes such as cell division (Eleftheriou et al. 2005; 

Jurgens 2005; Kawamura et al. 2006) and cell morphogenesis (Bibikova et al. 1999; Roberts et al. 

2004; Wasteneys and Fujita 2006; Paradez et al. 2006; Wightman and Turner 2008; Crowell et al. 

2009). They further contribute to the positioning of the nucleus (Holzinger and Lutz-Meindl 

2003) and chloroplasts (Holzinger et al. 2007; 2008). 

MTs are dynamic structures that change in accordance with the progression through the 

cell cycle (Vantard et al. 2000; Azimzadeh et al. 2001), as well as along the growth axis of the 
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root (Hogetsu and Oshima 1986; Baluska et al. 1992; Sugimoto et al. 2000). Before a plant cell 

enters mitosis, MTs form a transient, narrow but densely packed band (preprophase band) 

encircling the cell at its periphery in the equatorial plane. In a yet unknown process, these MTs 

mark the plane of the future cell plate. In metaphase, MTs build the mitotic spindle 

perpendicular to the equatorial plane that leads to the separation of the chromosomes into the 

daughter cells. During late cytokinesis, MTs along with actin filaments and other associated 

proteins form the phragmoplast and guide the delivery of vesicles containing cell wall precursors 

to the nascent cell plate (reviewed in Jurgens 2005). Cortical MTs in rapidly dividing, 

isodiametric cells of the apical meristem are randomly arranged during interphase, whereas 

they are positioned in parallel bundles at right angles to the growth axis in elongating cells (like 

a thread on a spool), and obliquely in older cells that have ceased to enlarge (Laskowski 1990; 

Sugimoto et al. 2000; Granger and Cyr 2001). 

Over the last four decades, the conspicuous co-alignment of MTs with cellulose 

microfibrils in elongating cells has spawned an ongoing debate about the nature of this 

relationship and potential implications for MTs in cell morphogenesis (Ledbetter and Porter 

1963; Heath 1974; Giddings and Staehelin 1991; Fisher and Cyr 1998; Baskin 2001; Wasteneys 

2004; Paradez et al. 2006; Emons et al. 2007; Lloyd and Chan 2008; Baskin et al. 1999; Burk and 

Ye 2002). Cellulose microfibrils are the major load-bearing components of cell walls. By affecting 

the orientation of these crystalline polymers, the polarity of the growth axis is established by 

conferring a mechanical bias for extension in length rather than width. This anisotropic growth is 

a requirement for normal tissue development in the root and shoot of all plants. In an 

outstanding set of experiments Paradez et al. (2006) used the reporter constructs YFP:CESA6 

(yellow fluorescent protein fused to cellulose synthase component 6) and CFP:TUA1 (citrine 

fluorescent protein fused to α-tubulin 1) and elegantly demonstrated that the cellulose 



 

37 

microfibril synthesizing complex (CESA) was indeed functionally related to the organization of 

cortical MTs in elongating cells of Arabidopsis hypocotyls. Imaging of living samples showed that 

YFP:CESA6 followed on trajectories, even on discordant ones, determined by the position of 

CFP:TUA1. Concurrent changes in the orientation of MTs and the arrangement of YFP:CESA6 

were recorded for normal development as well as for blue-light stimulated reorientation of the 

cortical MT arrays. Partial disruption of the MT array by depolymerization with the herbicide 

oryzalin lead to correlated changes in the YFP:CESA6 localization. This study was the first explicit 

in vivo evidence to support the hypothesis put forward by Heath (1974) that MTs directly guide 

CESA complexes (molecular rail hypothesis). It also discredited the alternative (bumper-rail or 

constraint hypothesis), advanced by Giddings and Staehelin (1991), which proposed that MTs 

indirectly guided the CESA complexes by channeling and constraining them between MTs. The 

additional surprising observation by Paradez et al. (2006) that, in spite of the absence of MTs 

(i.e., in cells with completely disrupted MTs), the CESA complexes still can move in parallel, 

oblique trajectories, albeit only for some time, may explain the discord over the co-alignment 

hypothesis in general (Sugimoto et al. 2003; Wasteneys 2004; Himmelspach et al. 2003). 

Chapter 2 reported unique cell wall aberrations in A. thaliana sac9-1 root cells that 

possibly contributed to the development of shorter primary roots. Abnormalities were observed 

in some cells in the meristem and ranged from simple stubs to forked and undulating 

protuberances originating from the cell wall. These abnormalities were not related to specific 

cytokinesis defects. SAC9 is a unique member of the suppressor of actin (SAC) domain-

containing protein family in Arabidopsis (Zhong et al. 2003). Although the SAC domain in AtSAC9 

lacks motif seven, the catalytic core is conserved (Zhong et al. 2003), and therefore is presumed 

to confer phosphatase activity towards phosphoinositides (Williams et al. 2005). AtSAC9 has not 

been biochemically confirmed as a phosphoinositide phosphatase. However, its involvement in 
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phospholipid signaling is strongly hypothesized by the observation of endogenously elevated 

levels of inositol 1,4,5-trisphosphate, IP3, and phosphatidylinositol 4,5-bisphosphate, PI(4,5)P2, 

in roots of sac9-1 mutants (Williams et al. 2005). 

sac9-1 roots are much shorter than wild-type roots (Chapter 2), and given the 

importance of cortical MTs in elongating cells by dictating the location of the cellulose synthase 

complex and thus cell shape, I visualized the global MT organization of sac9-1 roots by 

immunolocalization and the ultrastructure of individual MTs by transmission electron 

microscopy. I applied a modified Discrete Fourier Transform (DFT) to characterize angular 

orientation distributions of cortical MTs from confocal images of root epidermal cells along a 

developmental gradient, and demonstrate the suitability and effectiveness of this method. In 

this study, I show that the cortical MT arrays in sac9-1 root cells of the elongation zone were 

wild-type-like but changed faster than WT from perpendicular to oblique in respect to the 

growth axis in the differentiation zone. TEM images indicated a wild-type-like ultrastructure of 

cortical MTs in sac9-1 root cells with a normal spatial association to the plasma membrane. I 

conclude that the DFT method is a valid addition to traditional and rather time-consuming 

methods of angular measurements of elongated objects, and that factors other than cortical MT 

orientation might play a more dominant role in affecting the normal elongation of root cells in 

the sac9-1 mutant. 

MATERIAL AND METHODS 

Plant material and growth conditions 

The A. thaliana genotypes used in this study were WT (Col-0) and sac9-1, a putative 

phosphoinositide phosphatase mutant (kindly provided by Dr. Mary Williams, formerly of 

Harvey Mudd College, Claremont, CA). In this report, the mutant genotype is referred to simply 
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as sac9 without further allele specification. Seeds were surface-sterilized by soaking for 5 min in 

20% commercial bleach containing 0.05% Tween-20 followed by five rinses with sterile distilled 

water. Seeds were directly plated on glass microscope slides (25 x 75 x 1 mm, precleaned and 

frosted) coated with growth medium just below the slide frosted area. The coating medium, 

one-mm-thick, consisted of ½ Murashige and Skoog medium (MS, Sigma, M5524), pH 5.7, 

supplemented with 1% sucrose and solidified with 0.6% bacto-agar (Difco Laboratories). Glass 

slides with plated seeds on ½ MS medium were kept in a sealed Petri dish for a stratification 

period of 3-6 days at 4°C in the dark, and then transferred to a growth chamber and maintained 

in a vertical position at 22/20°C ± 1°C (day/night) under a 14 h light/10 h dark cycle (~200 μmol 

m-2s-1). 

Root growth measurements 

Roots of live 8-10-day-old seedlings were visualized in bright field on an inverted 

Olympus FV1000-XY microscope with a dry 10x lens. Images with a size of 1024x1024 px were 

recorded and analyzed with PaxCam2+ software (MIS Inc., Villa Park, IL). Root diameter was 

measured in the differentiation zone where trichomes were well visible. The combined length of 

the meristematic region (zone I) and the elongation zone (zones II and III) was measured along 

the growth axis starting from the quiescent center to the onset of root hairs. When this length 

exceeded one field of view, as was the case for some wild-type roots, images of two overlapping 

field of views were stitched together prior to measuring. Results from 15-20 primary roots per 

genotype were scored and tested for differences by analysis of variance using SAS 9.2 (SAS 

Institute Inc, Cary, NC). Measurements were made from two independent growth experiments. 
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Immunofluorescence 

Six- and 7-day-old seedlings were used in this study. Microtubules were visualized using 

the combined techniques of Sugimoto et al. (2000) and Collings and Wasteneys (2005) with few 

modifications. All incubation steps were carried out at room temperature unless otherwise 

stated. This was especially important for the fixation step since microtubules are cold-labile. 

Whole seedlings were fixed in situ for 40 min in PEMT buffer (50 mM Pipes, 2 mM EGTA, 2 mM 

MgSO4, 0.1% Triton X-100, pH 7.2) containing 4% formaldehyde and 1% glutaraldehyde, 

followed by three 10 min washes with PEMT buffer. Samples were extracted by incubating in 

PEMT buffer with Triton X-100 adjusted to 1% for 1 h, followed by three 10 min rinses with 

PEMT buffer. Cell walls were digested by a twenty-minute treatment with 0.05% Pectolyase Y-23 

(Duchefa Biochemie, P8004, Haarlem, The Netherlands) in PEMT buffer with 0.4 M mannitol. 

The enzyme was removed by three 10 min washes with PEMT buffer. Samples were then 

treated with ice-cold (-20°C) methanol for 10 min to permeabilize membranes; this necessitated 

a subsequent 10 min rehydration step with PBS, pH 7.4 (Sigma, P3813). Samples were flooded 

with sodium borohydride (1 mg/ml in PBS, 20 min) to remove unreduced aldehydes from the 

fixation step. After three 10 min washes with PBS and 30 min blocking with incubation buffer 

(PBS, 1% BSA, 50 mM glycine), seedlings were incubated overnight with monoclonal mouse anti-

β-tubulin-antibodies (Sigma, T5201) at a concentration of 1:1000 in incubation buffer. Goat 

F(ab)2 fragments conjugated to Alexa Fluor 488 were used to recognize the mouse IgG and IgM 

(Molecular Probes, A-11017). Secondary antibodies were applied at 1:500 in PBS for 3 h. The 

labeled seedlings were then rinsed three times for 10 min each with PBS between and after 

antibody treatments. Excess liquid was removed from the surface of the growth medium and 

shoots were cut off and carefully removed. The remaining roots on the slide were mounted in 

Fluoromount G with DAPI (EMS, 17984-24) and covered with a 24 x 50 mm coverslip (No. 1). 
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Slides were kept at 4°C in the dark until examination with confocal microscopes at the 

Fluorescence Microscopy Facility, University of Utah, Salt Lake City, UT. 

Microscopy and image acquisition 

Confocal images were acquired on an inverted FV1000-XY Olympus IX81 microscope 

with a motorized stage. For tissue orientation, a dry 10x lens was used. Microtubules were 

imaged with a 60x (NA 1.42) oil immersion lens with a 2x digital zoom. The stains were excited 

with a 405/488 nm laser and the emission spectra were filtered between 425-475 nm for DAPI 

and 500-600 nm for Alexa Fluor 488. Images were acquired in sequential scan mode with 

Kahlman filtering applied over two frames. Z-stacks consisting of 1 µm steps were captured at a 

scan speed of 10 µs/px and with a resolution of 138 nm/px. Scan size was 1024x1024 pixels. 

Optical sections were projected with maximum intensity. The number of optical sections 

combined this way was determined empirically to maximize the signal-to-noise ratio. Images 

were taken along the main axis of the root at four stages: the meristematic area of the root tip 

(I), the rapidly growing region of elongating cells (II), the slowly growing region of elongating 

cells (III), and the early differentiation zone (IV). 

Analysis of cortical MT orientation 

The angular orientation distribution of cortical MTs in root cells was determined from 

confocal images with the filtered Discrete Fourier Transform (DFT) method described by 

Marquez 2006. The custom-written software running under MatLab (The MathWorks Inc, 

Natick, MA) was generously provided by Keith Carney (University of Utah, Salt Lake City, UT). 

RGB confocal images were changed to 8-bit black and white TIFF images in Photoshop (Adobe 

Systems Inc., San Jose, CA). Ten 11 x 11 µm squares (=79 x 79 px) were cropped from each image 

and used as subsamples. The square size was determined by the minimum cell size in the 
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meristematic region of the root. I am aware of the limitation that the samples I selected were 

not random, as the squares had to be placed intentionally inside the cell to minimize errors that 

may stem from interfering cell wall structures. To further minimize errors, the location of the 

squares was normalized by adjusting their orientation relative to the cell long axis. Five wild-

type and sac9 roots were analyzed this way resulting in 50 polar plots per zone and genotype, 

totaling 200 polar plots each. 

Transmission electron microscopy 

The reader is referred to Chapter 2 for a detailed protocol. Briefly, 10-day-old seedlings 

were fixed with 1% paraformaldehyde, 2% glutaraldehyde in 50 mM sodium cacodylate buffer 

with 5 mM CaCl2, pH 7.2 followed by osmification. Cut off root tips were dehydrated in 

increasing concentrations of acetone and stepwise infiltrated with Transmit epoxy resin (TAAB 

Laboratories Equipment Ltd, UK). Flat embedded samples were cured, trimmed and then 

sectioned on an RMC MTX ultramicrotome (Boeckeler Instruments, Tucson, AZ). Gold sections 

were double-stained and examined on a Philips Tecnai 12 transmission electron microscope at 

the Electron Microscopy Facility, University of Utah, Salt Lake City, UT. 

RESULTS 

sac9 primary roots have shorter tip regions than WT but are not swollen 

Measurements of the combined length of the zones of cell division and elongation 

indicated that sac9 primary root tips of six-to-seven-day-old seedlings were significantly shorter 

compared to WT (-35%, P<0.0001 by Student’s t-test). However, sac9 roots showed no sign of 

swelling at any point along the growth axis. Not surprisingly, sac9 root diameters were slightly 

smaller than WT (-13%, P<0.0001 by Student’s t-test, Table 3-1). 
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Table 3-1 Growth parameters of A. thaliana WT and sac9 primary roots 

Genotype Root tip length [µm] Root diameter [µm] 

WT 1223 ± 163   (13.3%) 140 ± 8   (5.9%) 

sac9 802 ± 170   (21.2%) 122 ± 8   (6.8%) 

p-value <0.0001 <0.0001 

Root tip length was defined as the combined length of zone I-III, starting from the quiescent 
center to the onset of root hair formation. Root diameter was taken in the mature region of the 
root where root hairs were clearly visible. Data represent means ± SD from 15-20 seedlings per 
genotype with two biological replicates of which only one is shown here. Although there were 
some differences between the two replicates, inferential testing provided similar P-values. The 
Coefficient variant is given in parentheses. P-values were calculated from Student’s t-test 
(α=0.05) 

 

The ultrastructure of cortical MTs appears unaffected in sac9 root cells 

To investigate if the structure of cortical microtubules or their association with the 

plasma membrane in non-dividing cells were affected in sac9, I analyzed WT and sac9 root cells 

at the TEM. After glutaraldehyde/formaldehyde-osmium-fixation, cortical MTs appeared well-

preserved (Fig. 3-1). In both genotypes, cortical MTs were visible as dark circles enclosing an 

electron-opaque center when sectioned transversely. These 25-nm-structures were found either 

in long single rows (Fig. 3-3d, black arrow) underlying the plasma membrane, or in short patches 

arranged in two to three rows and were uniform in shape (Fig. 3-3a-b). In shaving sections 

through the tangential cell walls, MTs appeared as those typically seen in sagital profiles (Fig. 3-

3d, f). The parallel array of individual cortical MTs was mostly perpendicular to the cell axis, 

confirming the assessment of immunolabeled images of elongating root cells at the confocal 

level. Taken together, these results indicate that cortical MTs were structurally normal in sac9 

root cells, and their association with the cell wall and underlying plasma membrane was not 

impaired. 
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Fig. 3-1 Cortical MTs in the elongation zone of WT and sac9 root cells as visualized by 
transmission electron microscopy (TEM). Transverse sections of (a) WT and (b) sac9 root cells 
show MTs as hollow tubes in close proximity to and at both sides of the cell wall (arrows). 
Asterisk in (a) points out the site of a plasmodesma. Bar 200 nm. In longitudinal sections (c-f), 
these hollow tubes can be seen as two parallel dark lines bridging a brighter center reminiscent 
of rail road tracks (white arrowheads). c Longitudinal section through the central cylinder of WT. 
Bar 5 µm. d Enlarged insert from (c), black arrow points to a row of single MTs in cross section in 
the adjacent cell. Bar 500 nm. It becomes evident that MTs in longitudinal view are only rarely 
encountered in glancing sections through the cell wall (diffusely dark area). e Longitudinal 
section through the central cylinder of sac9. Bar 2 µm. f Enlarged insert from (e). The spacing 
and alignment of MTs appears wild-type-like. As with (d), MTs can be seen in the adjacent cell in 
cross section (black arrow). Bar 500 nm 
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Meristematic and rapidly growing sac9 root epidermal cells have normal cortical MT arrays 

but the distribution differs in the root hair zone: qualitative assessment by IF 

Transmission electron microscopy is an irreplaceable tool for the detailed structural 

investigation of subcellar components. However, its advantage of high resolution images can 

also be its disadvantage if the focus of interest is the investigation of a more global distribution 

of subcellular components. In this case, confocal microscopy is better suited. 

To test the hypothesis that the distribution of cortical MTs is potentially the underlying 

cause for the reduced length of the root tip in sac9 mutants, I immunostained whole root 

mounts for β-tubulin. Figure 3-2b-i shows maximum intensity projections of confocal images and 

illustrates the cortical MT distribution patterns at four distinctive stages (zones I-IV) of the 

developing root in WT (Fig. 3-2b-e) and sac9 (Fig. 3-2f-i). Zone I includes the cells of the 

meristem, zone II and III comprise the region of rapid (II) and slow (III) cell elongation, 

respectively, and zone IV encompasses differentiated cells as marked by the onset of root hair 

formation (Fig. 3-2a). In WT, cortical MTs were seen in the tangential walls of non-dividing 

epidermal cells in characteristic arrays that correlated with the developmental status along the 

root axis. In cells from the meristem (that were not occluded from view by the overlying cells of 

the root cap), the cortical MTs were observed as short and randomly distributed (Fig. 3-2b). 

Once the disk-shaped to isodiametric cells started to elongate, first rapidly (Zone II), and then 

more slowly (Zone III), bundles of larger and parallel MTs with a net orientation perpendicular to 

the growth axis were visible (Fig. 3-2c,d). The parallel nature of these MT bundles was 

maintained in zone III but the orientation was no longer perpendicular to the growth axis. 

Although Fig. 3-2d gives the impression of a uniform deviation from 90°, this was not always the 

case. The orientation was sometimes different within the same cell and between adjacent cells 

(data not shown). With the differentiation of epidermal cells into root hairs, the angle of cortical  
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Fig. 3-2 Cortical MT orientation in developing WT and sac9 roots. a Resin-embedded longitudinal 
section through the primary root tip of WT depicting four developmental zones (zone I: 
meristem, zone II: proximal elongation with rapidly elongating cells, zone III: distal elongation 
with slowly elongating cells, zone IV: differentiation with the onset of root hair formation). The 
absolute length of each zone can vary. Bar 50 μm. b-i Representative confocal images of 
immunostained cortical MTs in the consecutive developmental zones of WT (b-e) and sac9 (f-I). 
Bar 20 μm. Confocal images with immunostained MTs were Fourier transformed and the 
relative strength (from 0-1) of the concentration of the periodic structures (here MTs) was 
plotted against the mean angular orientation distributions of cortical MTs along the 
developmental gradient in WT (j-m) and in sac9 (n-q). The plots are averages from ten 
subsamples per image from five individual primary roots per genotype. More detailed 
information is presented in the following text 
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MT bundles in respect to the 90°-axis became even more oblique, and occasionally, were almost 

parallel to the cell axis (Fig. 3-2e and unpublished data). Not only did the angular distribution of 

cortical MTs change with the progression through the different growth zones, but also MT 

bundle density appeared to correlate with the same zones. In WT, they were densely packed in 

the zone of rapid cell elongation, but seemed to lose their compactness as cells reached their 

maximum length (Fig. 3-2e). The orientation of cortical MTs in sac9 root cells as judged by 

confocal microscopy images of immunolabeled β-tubulin appeared qualitatively similar to that 

found in WT (Fig. 3-2f-i), although it looked as if some differences in the acuteness of the angle 

existed in the later growth zones. 

Quantitative assessment of angular orientation distributions of cortical MTs by DFT 

To characterize the angular orientation distribution of cortical MTs, I applied a fully 

automated and optimized two-dimensional Discrete Fourier Transform (DFT) technique on 

subsamples from each confocal image as discussed in Marquez (2006). The DFT uncovers 

periodic information in an image, and any feature in an image can be decomposed into a set of 

amplitudes corresponding to horizontal and vertical frequencies, where the magnitudes of these 

amplitude sets correspond to the particular size of the feature in the image. The location of 

peaks in the DFT can then be related to the orientation of the corresponding feature. The 

applied DFT is filtered to define elongated features, and thus can be effectively used on images 

depicting MTs. The data seen in Figure 3-2j-q represent polar plots of DFTs, where the relative 

strength (0-1) of a periodic structure (here MTs) was plotted against the angle (0-360°) of this 

particular structure. The plots are averages from ten subsamples per image from five individual 

primary roots per genotype. They quantitatively reflect the qualitative assessment of cortical MT 

orientation as seen in Figure 3-2b-i. The star-shaped polar plot for WT zone I (Fig. 3-2j) proved 
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the random orientation of cortical MTs as fibers were detected at any given angle. The polar 

plot for zone II (Fig. 3-2k), however, strongly indicated a high concentration of MTs with a shift 

in orientation towards 90°, like a needle on a compass points to north, with a value of 0.9 for its 

relative strength. The ‘needle’ tended to get broader, and its relative strength of 0.6 was smaller 

in zone III, implying more fibers deviating from 90° (± 10°). In zone IV, the relative strength of 

MT concentration that was oriented towards 90° was much smaller, with a value of 0.45 for its 

relative strength, with deviation exceeding 50°. A high concentration of some MTs was oriented 

towards 0°, translating in occasional fibers almost parallel to the cell axis. The polar plots based 

on data collected from zone I and II from sac9 primary roots were nearly identical with those 

from WT (Fig. 3-2j-q), in other words, there was no difference in the angular orientation 

distributions for cortical MTs in the meristematic and the proximal elongation zone between the 

two genotypes. The difference, however, started to show in zone III of sac9 roots with a higher 

degree of oblique fibers that deviated from 90° up to ± 40°. The angular orientation distribution 

was somewhat reminiscent of that in WT zone II. In zone IV, a drastic difference could be seen in 

the most mature cells of sac9 roots, where a high concentration of the fiber orientation was 

localized around 0° and 180° angles, and fibers were almost never seen transversely oriented to 

the cell axis. All generated polar plots are collectively presented in Figure 3-3 to demonstrate 

the different degrees of variability in the angular orientation distributions depending on 

subsample and individual root; information that was lost after averaging as seen in Figure 3-2j-q. 

It is interesting to note that the variability is higher among the ten subsamples than between 

the five independent roots. Taken together, the qualitative and quantitative analysis of cortical 

MTs indicated a wild-type-like distribution in the meristematic and early elongation zone of sac9 

primary roots. The distribution of cortical MTs in differentiated sac9 root cells, however, was on 

average markedly different from WT. 
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Fig. 3-3 Polar plots of angular orientation distributions of MTs according to growth zone from 
five WT and sac9 primary roots. Each circular plot contains the results from all ten subsamples 
per image (see Material and Methods) 
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Von Mises fitting of angular orientation distributions of cortical MTs 

To further evaluate the data obtained for angular orientation distributions of cortical 

MTs and to assess the suitability of the DFT method for this particular application, models were 

fitted to the values obtained from the DFT using non-linear maximum likelihood assuming a 

circular von Mises distribution (Fig. 3-4). 

 

 
Fig. 3-4 von Mises fitting probability density function for the angular orientation θ for cortical 
MTs in four zones from developing WT and sac9 roots. Data used for modeling included only 
DFT measurements for the vertically reflected angles from 10-170° (blue diamonds). The vertical 
axis presents the normalized intensity (probability density function) and the horizontal axis 
presents the angular orientation θ. The red line is a von Mises fitting. R2 represents the 
coefficient of determination that describes the fluctuation of normalized intensity as a function 
of θ. Charts are courtesy of Dr. James Powell (Utah State University, Logan, UT) 
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The following probability density function was used for the orientation angle θ: 

f(θ)=background + N exp [κ cos(θ-μ)] 

where, 

θ  angle of the cortical MT 

background certain background intensity at all angles 

N  a normalization constant 

Κ  the concentration of the data around its mean 

μ  the mean angle of the cortical MT. 

The fitted curves (Fig. 3-4) indicate that the probability density function peaks around 

90° for all zones except zone IV for sac9, which peaks around 26°. The strength of the probability 

density decreases as we move from zone II to zone IV, as seen by the Kappa values (Table 3-2). 

This is in excellent agreement with the observation of Figure 3-2j-q. These curves seem to 

overall support the contention that the angular orientation distributions of cortical MTs in sac9 

root cells started to differ from WT in zone III and displayed a drastic change in zone IV. The 

models appear to fit particularly well for zone II for WT and sac9, as indicated by the least 

standard deviation between fitted models and observations and expressed by the high values of 

the coefficient of determination, R2. To gain more understanding of the mathematical models, 

the parameters that were used in fitting of von Mises curves are presented in Table 3-2. 
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Table 3-2 Parameters used for fitting von Mises curves for the angular orientation distributions 
of cortical MTs from developing WT and sac9 roots 

Zone N κ (kappa) μ (mu) σ (sigma) background 

WT_zone I 0.101 44.107 88.659 0.098 0.396 

WT_zone II 0.339 31.635 88.981 0.053 0.113 

WT_zone III 0.252 21.477 84.398 0.081 0.141 

WT_zone IV 0.305 03.118 91.196 0.130 0.224 

sac9_zone I 0.116 32.848 90.493 0.110 0.329 

sac9_zone II 0.267 32.500 86.577 0.085 0.153 

sac9_zone III 0.412 03.879 94.384 0.101 0.197 

sac9_zone IV 0.334 06.611 25.506 0.124 0.119 

Zones I-IV refer to (in order of development): I-meristem, II-proximal elongation, III-distal 
elongation, IV-differentiation. N is a normalization constant. It is capturing what fraction of the 
data is rising above the background level of intensity as well as distinguishing from a uniform 
distribution across angles. Kappa is the concentration of the data around its mean with a higher 
value translating into tighter distributions (= smaller variance). Mu corresponds to the mean 
angle of the cortical MTs. Sigma is the average standard deviation between the fitted model and 
observations. Background reflects both background and illuminance in the images as well as the 
fraction of the data described by a uniform distribution. Courtesy of Dr. James Powell 

 

DISCUSSION 

The main goal of this study was to address the underlying factors governing the 

shortened root tip, here defined as the combined length of meristem and cell elongation zone, 

in sac9 mutants. In pharmacological studies, seedlings treated with MT-stabilizing and 

destabilizing drugs, as well as many tubulin and MT-associated mutants, often display reduced 

elongation, radial swelling of the root and/or disturbed arrays of cortical MTs (Baskin et al. 1994; 

Bao et al. 2001; Burk and Ye 2002; Sugimoto et al. 2003; Bannigan et al. 2006; Kawamura et al. 

2006; Chu et al. 2007). Therefore, I speculated that the stuntedness of sac9 roots may have 

resulted from abnormal or disorganized cortical microtubules. 
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The shortened root tips in the sac9 mutant were not caused by a disturbed cortical MT array 

Since my electron microscopy studies revealed that cortical MTs were structurally 

normal in non-dividing sac9 root cells (Fig. 3-1), immunolocalization experiments were 

conducted to evaluate the spatial arrangement and distribution patterns of cortical MTs. The 

results from immunolocalization experiments showed a random distribution of cortical MTs in 

the meristematic area for both WT, and sac9 root cells (Fig. 3-2b,f, j, n). Contrary to my 

assumptions, cortical MT arrays were also not disturbed in the elongation zone of sac9 root 

cells, as confocal images showed a wild-type net transverse orientation of MTs. Thus I conclude 

that cortical MT orientation did not affect elongation in sac9 roots. 

Discrete Fourier Transform as an additional method to calculate angular MT orientation 

distributions 

As a follow-up step, I decided to use a mathematical approach (Discrete Fourier 

Transform and von Mises probability fitting) to see if visual results were sufficient to come to my 

conclusion that the MTs in both genotypes were similar and that MTs were not involved in the 

stuntedness of sac9 roots. 

In the past, analysis of MT orientation ranged from basic, qualitative-descriptive 

(Hogetsu and Oshima 1986), to the use of a broad classification system, where MTs were 

grouped into 30° sectors (Laskowski 1990). For a more detailed analysis, angles of individual MTs 

or MT bundles were measured manually with respect to the long axis to the cell (Burk and Ye 

2002). For large numbers of samples, this approach is very tedious and time-consuming. More 

advanced image analysis codes can decrease sampling time, but are dependent on thresholding 

and other image processing steps to enable computational pattern recognition. The data thus 

obtained are commonly presented in frequency distribution histograms. The filtered DFT 
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technique as optimized by Marquez (2006), on the other hand, can be used on raw images, 

provided they are in the form of black-and-white 8-bit TIFF files with square side dimensions. 

The resultant data are typically shown as polar plots with the relative intensity of a periodic 

structure plotted against the particular direction (angle) of this structure. 

The main advantage in applying the filtered DFT technique to confocal images of cortical 

MTs lies in the automated measurement of angular orientation distributions, which translates 

into great time-efficiencies. Measurements can be done in seconds, and since they are 

automated and follow basic computer algorithms, are bias-free. 

The second compelling advantage of this method is its reliability and the ease of 

interpretation of the presented data in form of polar plots. For tightly parallel objects, the polar 

plot shows the orientation distribution in a particular angle like a needle on a compass. This is 

thus intuitive to comprehend and allows for rapid comparison of MT orientation between 

different developmental zones and genotypes. 

Results from my Discrete Fourier Transform and the fitting of von Mises probabilities 

showed that there was no difference in distribution patterns of cortical MTs between WT and 

sac9 in the meristem and in the elongation zone. Therefore I conclude that the orientation of 

cortical MTs did not contribute to the stuntedness of the root in sac9. In differentiated sac9 root 

cells, though, there was an clear difference in the orientation of microtubules. This was not 

obvious from qualitative description of confocal images and proved the strength of the 

quantitative assessment by DFT and von Mises probability fitting. It appeared that microtubules 

had changed their position from transverse to oblique much faster than wild type in the zone of 

differentiation (zone IV, Fig. 3-2m, q). 
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Possible physiological effects of altered MT orientation in mature sac9 root cells 

It was shown that once root cells slowed to grow longitudinally and showed signs of 

differentiation (root hair formation), cortical MTs arrays assumed an oblique position in respect 

to the growth axis (Sugimoto et al. 2000). This transition was visible in the sac9 mutants as well. 

However, it appeared to happen earlier than in developmentally comparable regions from WT. 

Two possibilities arise: either the different zones in sac9 roots are a physically shorter (i.e. with 

fewer or smaller cells per zone or a combination of both), or if one assumes a correlation 

between relative cell age and cortical MT array, cells from the same zone might be 

physiologically older in sac9 mutants than WT; an interesting hypothesis in the light of the 

overall retarded growth in sac9 plants. 

The fact that the polar plots from Figure 3-2o and p (sac9, zone II and III) are almost 

congruent with Figure 3-2l and m (WT, zone III and IV) leads to the question if a similar angular 

distribution of cortical MTs as seen in Figure 3-2q (sac9, zone IV) might also be found in more 

distal cells of the differentiation zone in wild-type roots. Unfortunately, this cannot be answered 

with the technique used here as it was reported that cortical MTs were not reliably labeled in 

cells beyond the elongation zone after mild enzymatic digestion and cold methanol treatment 

(Sugimoto et al. 2000). Although immunolabeling in this study was successful for all reported 

zones, I can confirm that epidermal cells from the distal differentiation zone were only 

irregularly labeled and therefore had to be excluded from any statistical analysis. 

Possible mechanical effects of altered MT orientation in mature sac9 root cells 

The relevance of the finding that cortical MTs in early differentiated cells of the sac9 

root were markedly different from wild type is not apparent. Although we now know that the 

parallel-transverse bands of MTs serve as direct guidance for the movement of the CESA 
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complex and thus indirectly for the structured deposition of cellulose microfibrils, the current 

literature does not provide any insights into the biological function(s) of the change to oblique 

angles in cells that have ceased to grow longitudinally. Experiments in the field of material 

science show that the orientation distribution of fibers in a short-fiber reinforced composite is 

fundamentally affecting the mechanical properties of the composite (Fu and Lauke 1996). 

Corresponding functions in the field of biology are not hard to find (Thomopoulos et al. 2006). 

From experiments on the stress needed to produce a given strain in one delignified sisal fiber, 

Spark et al. (1958) found that an almost parallel orientation of cellulose fibers (10°) required 

much more force (6x) than a more oblique orientation of cellulose (42°). With the additional 

assumption that there was some cellulose microfibril deposition even in cells that had ceased to 

grow, Laskowski (1990) interpreted these findings as a possibility for increasing the strength to 

withstand tensile stresses, such as bending, in epidermal cells. However, roots are exposed to 

different forces in relation to the soil-environment compared to the air-environment for shoots, 

and air-driven bending does not occur in most roots. It is reasonable to assume though, that 

bending forces experienced by the shoot are relayed to the root, and by mechanical 

reinforcement of the non-growing part of the root and thus providing anchorage, the shoot is 

better protected from toppling over in the event of severe air movement. In this light, it would 

be interesting to measure tensile stresses required for breakage of the shoot, such as they were 

applied in screens for the fragile fiber mutants (Zhong et al. 2004). 

Unique cell wall abnormalities likely as an indirect cause for root stuntedness 

Since cells in the differentiation zone had ceased to elongate, I postulated that the 

reported differences in the orientation of cortical MTs in mature sac9 root cells (zone IV) were 

not the cause for the observed stuntedness in sac9 roots. Now I ask the question, what might be 
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responsible for the stuntedness? I propose that the abnormalities associated with the cell wall in 

some meristematic cells as reported in Chapter 2 are indirectly responsible for the stuntedness. 

It is possible that cellular or subcellular disturbances in MT orientation were not detected with 

the method I used because the DFT is based on averaging large amounts of data. The unique cell 

wall aberrations were very small, on average less than one micrometer, and thus are not readily 

visible with techniques that are limited by the resolution of the light microscope, such as 

confocal microscopy. Due to fact that only a small number of cells showed abnormalities 

coupled with the small size of the aberrations themselves, makes it likely that information was 

lost in the averaging process and therefore was not reflected in the results. In addition, cortical 

MTs in epidermal cells in the meristem were difficult to visualize with confocal microscopy, as 

the strong fluorescent signal originating from root cap cells with transverse bands of cortical 

MTs directly overlying the epidermal cells sometimes obscured the weaker fluorescent signal 

from these shorter and randomly distributed MTs. That these aberrations were seen in 

ultrastructural investigations of sac9 root cells emphasizes the importance of transmission 

electron microscopy for mutant analysis. 

It should also be noted, as mentioned earlier in Chapter 2, that meristematic cells with 

cell wall abnormalities probably did not divide. Interestingly, it looked like these cells could 

elongate. Since the total number of dividing cells was reduced, this may explain the stuntedness. 

CONCLUSION 

Here I showed that the distribution of cortical MTs in elongating sac9 root cells was not 

disturbed, and therefore was not the reason for the shortened root tips. As evident from the 

current literature, MTs are not static structures in the cytoplasm simply providing a scaffold for 

other molecules. Therefore, the defect in sac9 root cells might still be MT-related, but not 
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resolved with images providing only snapshots of a fast-changing process. Also, resolution was 

limited by the light microscopy level. Alternatively, the spatial and temporal network of actin 

fibers as the other dominant cytoskeletal component might be a good candidate for the 

underlying mechanisms leading to cell wall aberrations and a shortening of the root in sac9 

mutants. As of now, it seems reasonable to assume that the unique cell wall abnormalities in 

sac9 root cells are indirectly responsible for the shortened roots. 

The difference in the orientation of cortical MTs in differentiated sac9 cells might 

indicate differences in physiological or physical properties of the main root axis and stem. 

However, this needs to be further tested. 

For the first time, I successfully applied a recently optimized technique (DFT) to 

quantitatively assess the angular orientation distributions of cortical MTs and found it a very fast 

method enabling large data collections. I deem this method particularly suited to accurately 

characterize the orientation patterns for cortical MTs in cells of the elongation and early 

differentiation zone. 
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CHAPTER 4 

MOLECULAR AND BIOCHEMICAL CHARACTERIZATION OF SAC9 IN ARABIDOPSIS THALIANA 

ABSTRACT 

The SAC9 gene in Arabidopsis thaliana is predicted to encode a protein with 

phosphoinositide phosphatase activity based on mutant analysis and the presence of a SAC 

domain (suppressor of actin1 homology domain). I tested this hypothesis. Anti-peptide-

antibodies against sequences from the SAC9 gene were generated and used to 

immunoprecipitate SAC9 from wild-type extracts. Functional assays for phosphatase activity 

were performed with PI(4,5)P2 as the substrate. In a parallel approach, SAC9 protein was 

obtained as a fusion protein expressed in yeast, followed by purification with affinity 

chromatography. Western blots with anti-SAC9-antibodies indicated that SAC9 is a soluble 

protein with an apparent molecular mass of 180 kDa and that the protein exists possibly in a 

splice variant with an apparent molecular mass of 140 kDa. Malachite Green Assays suggested 

that immunoprecipitated SAC9 most likely has phosphatase activity towards PI(4,5)P2. However, 

more studies are warranted to confirm or refute this conclusion. 

ABBREVIATIONS 

AB(s) Antibody(ies) 

AGI Arabidopsis thaliana Gene Index 

aa Amino acid 

bp Base pair 

BSA Bovine Serum Albumin 

dH20 Distilled water 
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EDTA Ethylenediaminetetraacedic Acid 

ELISA Enzyme-Linked Immunosorbent Assay 

IgA, G, M Immunoglobulin A, G, M 

IMAC Immobilized Metal Affinity Chromatography 

IP Immunoprecipitation 

IP3 Inositol 1,4,5-trisphosphate 

HRP Horse Radish Peroxidase 

kDa Kilo Dalton 

LB Luria-Bertani medium 

PI Phosphatidylinositol 

PI(3)P Phosphatidylinositol 3-phosphate 

PI(4)P Phosphatidylinositol 4-phosphate 

PI(3,5)P2 Phosphatidylinositol 3,5-bisphosphate 

PI(4,5)P2 Phosphatidylinositol 4,5-bisphosphate 

PI(3,4,5)P3 Phosphatidylinositol 3,4,5-trisphosphate 

PBS Phosphate-Buffered Saline 

Ptase Phosphatase 

PVDF Polyvinyl Difluoride 

RT Room Temperature 

SAC Suppressor of Actin1 (Sac1) homology domain 

SAC9 SAC domain-containing protein 9 

SC-U Synthetic minimal medium without Uracil 

SDS-PAGE Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis 

TAIR The Arabidopsis Information Resource 
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TBS-T Tris-Buffered Saline with Tween-20 

WT Wild Type 

½ MS Half-strength Murashige and Skoog medium 

6xHis Polyhistidine tag 

INTRODUCTION 

Phosphatidylinositol and its phosphorylated derivatives are components of all 

eukaryotic membranes. They function in various cellular processes, such as vesicle trafficking, 

cytoskeletal rearrangements, ion channel activity, and signal transduction (Odorizzi et al. 2000; 

Takenawa and Itoh 2001; Di Paolo and De Camilli 2006; Berridge 2009). They bring about these 

changes by either physically providing a scaffold for protein binding, or by presenting substrates 

for the generation of other signaling molecules. Key to this versatility is a tightly controlled 

distribution of phospholipids in time and space by a plethora of phospholipid-modifying 

enzymes, such as phospholipases, lipid kinases, and lipid phosphatases. 

Several classes of phospholipases hydrolyze phospholipids into fatty acids and other 

substances. As an example, phospholipase C plays a central role in signal transduction in yeast 

and animals by releasing two new second messengers, diacylglycerol and inositol trisphosphate, 

the later one being a powerful activator of protein kinase pathways (Berridge 1984). It was 

shown that the action of phospholipase D leads to the generation of phosphatidic acid, a potent 

signaling molecule emerging in plants (Munnik and Nielsen 2011; Testerink and Munnik 2011). 

Kinases on the other hand catalyze the transfer of phosphate groups from high energy 

donor molecules, such as ATP, to the 3-, 4-, or 5-hydroxyl position of the inositol head group of 

phosphatidylinositol (PI), thereby generating seven known PI derivatives. Phosphatases act in 

opposition to kinases; they enzymatically remove a phosphate group from the substrate by 
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hydrolyzing phosphoric acid monoesters. The concerted action of kinases and phosphatases 

builds the regulatory framework of phospholipid metabolism. Whereas phospholipid kinases 

have attracted much attention over the last decades, phospholipid phosphatases were poorly 

studied until the discovery of a novel group of phospholipid-specific phosphatases called SAC 

domain (for suppressor of actin1 homology domain) phosphatases (McPherson et al. 1996; 

Srinivasan et al. 1997; Stolz et al. 1998a; Stolz et al. 1998b; Guo et al. 1999; Hughes et al. 2000a; 

Hughes et al. 2000b; Nemoto et al. 2000; Minagawa et al. 2001; Despres et al. 2003; Zhong and 

Ye 2003; Williams et al. 2005; Zhong et al. 2005; Manford et al. 2010). The SAC domain is a 

region of homology between the amino terminus of synaptojanin, a mammalian inositol 5-

phosphatase involved in synaptic recycling (McPherson et al. 1996), and Sac1p, a yeast protein 

genetically implicated in phospholipid metabolism and actin organization (Novick et al. 1989). 

Phosphatase activity was found to be associated with the SAC domain of yeast Sac1p, rat 

Sac1,rat Sac3, human synaptojanin and human Sac2 (Guo et al. 1999; Nemoto et al. 2000; 

Minagawa et al. 2001; Yuan et al. 2007). The SAC domain encompasses seven highly conserved 

motifs over a 400 amino acid-long region, including the conserved catalytic CX5R(T/S) site within 

the sixth motif responsible for the hydrolytic release of phosphate groups from several positions 

on the inositol head group (Hughes 2001). SAC domain-containing proteins fall into two sub-

families. Class I includes phosphoinositide phosphatases with only the SAC domain, such as the 

founding member Sac1p. Members of class II have an additional 5-phosphatase domain and are 

thus more like the bi-functional synaptojanin (Hughes et al. 2000a). Several proteins have been 

indentified in both classes as summarized in Table 4-1. 
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Table 4-1 SAC domain-containing proteins from mammals, yeast, and plants 

Organism Protein Function / 
Class 

Substrate Domain(s) Reference(s) 

Human  
(Homo sapiens) 

synaptojanin Ptase / II PI(4,5)P2, 
IP3 

SAC, 
5-Ptase 

McPherson et al. 1996; 
Guo et al. 1999 

Human  
(H. sapiens) 

hSac2 Ptase / I PI(4,5)P2, 
PI(3,4,5)P3 

SAC Minagawa et al. 2001 

Rat (Rattus 
norvegicus) 

rSac1 Ptase / I PI(3), PI(4),  
PI(3,5)P2 

SAC Nemoto et al. 2000 

Rat  
(R. norvegicus) 

rSac3 Ptase / I PI(3),  
PI(4),  
PI(3,5)P2 

SAC Yuan et al. 2007 

Yeast 
(Saccharomyces 
cerevisiae) 

Sac1p Ptase / I PI(3),  
PI(4),  
PI(3,5)P2 

SAC Guo et al. 1999;  
Hughes et al. 2000b;  
Foti et al. 2001;  
Manford et al. 2010 

Yeast  
(S. cerevisiae) 

Inp51p/Sjl1p 

Inp52p/Sjl2p 
Inp53p/Sjl3p 

Ptase / II PI(3),  
PI(4),  
PI(3,5)P2, 
PI(4,5)P2 

SAC, 
5-Ptase 

Srinivasan et al. 1997; 
Stolz et al. 1998a;  
Stolz et al. 1998b;  
Guo et al. 1999;  
Stefan et al. 2002;  

Yeast  
(S. cerevisiae) 

Fig4p Ptase / I PI(3,5)P2 SAC Erdman et al. 1998; 
Rudge et al. 2004 

Plant  
(Oryza sativa) 

AAK92639 Putative 
Ptase 

None tested SAC, 
5-Ptase 

Zhong and Ye 2003 

Plant  
(O. sativa) 

BAB19411 Putative 
Ptase 

None tested SAC, 
WW 

Zhong and Ye 2003; 
Williams et al. 2005 

Plant  
(Arabidopsis 
thaliana) 

AtSAC1a 

AtSAC1b 
AtSAC1c 

Putative 
Ptase 

None tested  
but PI(4) 
suggested 

SAC Despres et al. 2003 

Plant  
(A. thaliana) 

AtSAC1 Ptase / I PI(3,5)P2 SAC Zhong et al. 2005 

Plant  
(A. thaliana) 

AtSAC7/ 
RHD4 

Ptase / I PI(4)P SAC Thole et al. 2008 

Plant  
(A. thaliana) 

AtSAC9 Putative 
Ptase 

None tested 
but PI(4,5)P2 
suggested 

SAC, 
WW 

Williams et al. 2005; 
Gong et al. 2006 

 



 

67 

A genome wide search of Arabidopsis thaliana with the SAC domain sequence of Sac1P 

resulted in the identification of a protein gene family with nine members (AtSAC1-AtSAC9, Table 

4-2; Zhong and Ye 2003). 

Table 4-2 SAC domain-containing protein gene family members in Arabidopsis. Adopted from 
Zhong and Ye (2003) with additional information obtained from TAIR 

Gene family 
name 

Predicted  
protein length 
(amino acids) 

Predicted 
molecular 
weight (kDa) 

Chromosomal 
location 

AGI (TAIR) 
accession 
(cDNA) 

GenBank 
accession 
(cDNA) 

AtSAC1 912 103 I At1g22620 AY227244 

AtSAC2 808 92 III At3g14205 AY227245 

AtSAC3 818 93 III At3g43220 AY227246 

AtSAC4 831 94 V At5g20840 AY227247 

AtSAC5 785 90 I At1g17340 AY227248 

AtSAC6 593 68 V At5g66020 AY227249 

AtSAC7 597 68 III At3g51460 AY227250 

AtSAC8 588 66 III At3g51830 AY227251 

AtSAC9 1630 182 III At3g59770 AY227252 

 

All nine family members share the SAC domain as a characterizing feature without any 

other recognizable phosphatase domains. Therefore, they are all members of class I SAC 

domain-containing proteins. Based on sequence similarity and intron-exon structures, 

hydropathy profiles and phylogenetic relationships, these nine members were grouped into 

three distinct subgroups. Subgroup (I) has five members (AtSAC1-AtSAC5) of medium length 

(785-913 residues) with 13 exons. Subgroup (II) has only three members (AtSAC6-AtSAC8) - all 

short proteins (588-597 residues) synthesized from 16 exons. They also contain two putative C-

terminal transmembrane helixes. AtSAC8 is predicted to have an additional prenylation site at 
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the C-terminus. All members of subgroup (II) therefore seem to be membrane-integrated or at 

least membrane-associated. Subgroup (III) has only one member, AtSAC9. AtSAC9 is set apart 

from members of subgroup (I) and (II) by its length (1630 residues), intron-exon structure, and 

the fact that it has an additional protein domain (WW domain) instead of motif seven in the SAC 

domain. The catalytic site in motif six is conserved, although the second cysteine is changed to a 

serine. However, this was hypothesized not to affect catalytic activity, as only the first cysteine 

in the CX5R(T/S) site was required for activity (Williams et al. 2005). Phylogenetic analysis also 

showed a clear separation of AtSAC9 from members of the other two subgroups. 

Both Williams et al. (2005) and Gong et al. (2006) identified and characterized mutants 

in the AtSAC9 gene. These mutants constitutively express a systemic stressed phenotype in the 

absence of any stress factors. The phenotype was speculated to be caused by altered cellular 

signaling resulting from elevated levels of PI(4,5)P2 and IP3 in the sac9 mutants. Both molecules 

are considered important in various signal transduction pathways in yeast, animals, and also in 

plants. Other described phenotypes of the mutant included overexpression of stress-induced 

genes, accumulation of reactive oxygen species and anthocyanin in the leaves, constitutively 

closed guard cells, shorter primary roots, fewer lateral roots, and overall retarded growth. Gong 

et al. (2006) expanded this list of phenotypes when they studied cfs (coupling factor slow 

recovery) mutants and saw that the ATP synthase was dysfunctional in cfs leaves. It turned out 

that the cfs mutation was situated on the same locus as SAC9 but that a different allele was 

affected. Following Williams’ nomenclature, they denoted the cfs allele as sac9-4. 

Williams et al. (2005) showed that sac9 roots accumulate PI(4,5)P2 and - to a lesser 

extent - its hydrolysis product IP3. This and the fact that the N-terminal region of SAC9 defines it 

as a member of the SAC domain-containing gene family, prompted Williams et al. (2005) to 

speculate that SAC9 encodes a putative phosphoinositide phosphatase. Others went further by 
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inattentively pronouncing SAC9 to be a 5-phosphoinositide phosphatase (Munnik and Testerink 

2009), even though this still awaits biochemical evidence. 

Although many phosphoinositide phosphatases have activity against a broad number of 

substrates in vitro, their in vivo activities may be quite different due to restricted access to 

substrates based on their subcellular localization (Hughes et al. 2000a). The endogenously 

elevated levels of PI(4,5)P2 in SAC9-deficient roots suggest that this lipid is the major in vivo 

substrate. 

In this chapter, I provide data for the in vitro function of SAC9 based on recombinant 

expression of His-tagged SAC9 from yeast and the purification of the fusion protein by 

immobilized metal affinity chromatography. Since mass spectrophotometry indicated that the 

protein purified by GenScript was not the target protein, I used an alternative approach. I 

obtained anti-peptide-antibodies against sequences specific to SAC9, immunoprecipitated and 

purified SAC9 protein with these antibodies; I then tested the resultant protein for phosphatase 

activity towards PI(4,5)P2 as detected by inorganic phosphate release with the Malachite Green 

Assay. 

MATERIAL AND METHODS 

Cell culture 

Saccharomyces cerevisiae strain INVSc1 carrying the galactose-inducible plasmid pYES-

DEST52+SAC9 was propagated at 30°C with shaking (130 rpm) in liquid synthetic minimal 

medium without uracil (SC-U, 0.85 g/l yeast nitrogen base without amino acids and (NH4)2S04, 

2.5 g/l (NH4)2SO4, 0.3 g/l drop-out mix, US Biological #D9535; all w/v, pH 6-6.3) and in the 

presence of 2% (w/v) glucose as a carbon source. SAC9 expression was induced by changing the 

medium to SC-U containing 2% (w/v) galactose. 
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Recombinant expression of SAC9 

Transformed yeast colonies harboring the Gateway™ destination and inducible 

expression vector pYES-DEST52 (Invitrogen #12286-019) with the cDNA of the full length AtSAC9 

were generously provided by Dr. Mary Williams (formerly of Harvey Mudd College, Claremont, 

CA). The cDNA had been inserted by the Williams’ lab between the two recombination sites 

(attR1 and attR2) through a lambda phage site-specific recombination event, thereby 

inactivating the ccdB gene (the ccdB gene encodes a lethal toxin which kills E. coli carrying the 

plasmid without insert). The cDNA was in frame with a C-terminal V5 epitope and polyhistidine 

(6xHis) tag for detection and purification. A plasmid map of pYES-DEST52+SAC9 is presented in 

Figure 4-1. 

 
Fig. 4-1 Plasmid map of pYES-DEST52 with the complete cDNA for SAC9. The plasmid contained 
the following elements: yeast GAL1 promoter for high-level, galactose-inducible protein 
expression in S. cerevisiae; two recombination sites, attR1 and attR2, downstream of the GAL1 
promoter for recombinational cloning of the gene of interest – here AtSAC9; the V5 epitope and 
6xHis tag for detection and purification; 2 micron for episomal maintenance and high copy 
replication; URA3 auxotrophic marker for selection of yeast transformants; the pUC origin for 
high copy replication and maintenance of the plasmid in E. coli; APr, the ampicillin (bla) 
resistance gene for selection of transformants in E. coli; the T7 promoter to regulate expression 
in E. coli; the f1 intergenic region for production of single-strand DNA in F plasmid-containing  
E. coli. +A denotes the site of a point mutation in this vector as confirmed by DNA sequencing 

pYES-DEST52+SAC9 
10830 bp 

SAC9 
AP r 

URA3 

V5 epitope 
6xHis tag 

2 micron 

Poly A site 

GAL1 promoter 

T7 promoter 

f1 

pUC origin +A 

attR1 

attR2 
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Time course of SAC9 induction, SDS-PAGE, and Western blotting 

A time course of protein induction was performed as follows: A single colony was picked 

from plate-grown INVSc1 carrying pYES-DEST52+SAC9 and used to inoculate 15 ml of SC-U 

medium supplemented with 2% (w/v) glucose and grown overnight. The optical density of the 

overnight culture was determined and used to calculate the amount of starter culture needed to 

reach a final absorption 0.4 at 600 nm in a volume of 50 ml. Calculated amounts of overnight 

culture were taken, centrifuged at 4°C, and resuspended in either 50 ml induction medium or 

regular growth medium (control). Cultures were grown for 48 h in a shaker. At certain time 

intervals (t = 0, 4, 8, 12, 24, 48 h), 5 ml aliquots were aseptically removed. Cells were centrifuged 

and washed in sterile water, and the collected pellet was stored at -20°C until further usage. 

Thawed cells were resuspended in Y-PER® Yeast Protein Extraction Reagent (Thermo Fisher 

Scientific, Pierce Protein Products #78991) containing 1X Halt™ Protease Inhibitor Cocktail 

without EDTA (Thermo Fisher Scientific, Pierce Protein Products #78410), and detergent-lysed 

according to manufacturer’s suggestions. The homogenous mixture was gently agitated for 20 

min at room temperature (RT), and soluble proteins were separated from cell debris by 

centrifugation. The total protein concentration of the cleared lysate was estimated with the BCA 

method (Thermo Fisher Scientific, Pierce Protein Products #23225). Twenty µg of the cleared 

lysate were mixed with 6x SDS loading buffer and denatured by boiling for 5 min at 95°C. 

Samples were analyzed by 10% SDS-PAGE (100 V, 20 mA, ~ 3.5 h), and proteins were 

subsequently electro-transferred (30 V, overnight at 4°C) to a polyvinyl difluoride (PVDF) 

membrane (Thermo Fisher Scientific, Pierce Protein Products #88518) in Tris-Glycine buffer 

(BioRad #161-0771) containing 20% methanol. After transfer, membranes were blotted in 

blocking buffer (TBS-T with 7% dry milk powder w/v; 150 mM NaCl, 10 mM Tris-base, 0.1% 

Tween, pH 7.2) for 2 h at RT. The membranes were incubated overnight at 4°C with mouse anti-
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V5-antibody (Invitrogen, #R96025) diluted 1:5,000 in 0.2X blocking buffer or mouse anti-His(C-

term)-antibody (Invitrogen, #R93025). The membranes were rinsed three times with TBS-T for 5 

min each, then incubated with secondary antibody (horse anti-mouse IgG, HRP-linked, 2 mg/ml 

stock, diluted 1:10,000 in TBS-T; Cell Signaling Technology, #7076) for 1 h at RT followed by 

another set of three washes with TBS-T. Enzyme activity was detected by chemiluminescence 

(Thermo Fisher Scientific, Pierce Protein Products #32106). Membranes were exposed to CL-

XPosure™ Film (Thermo Scientific, Pierce Protein Products #34091) for various time periods and 

developed. 

Purification of recombinant SAC9 by IMAC (Immobilized Metal Affinity Chromatography) 

Cleared soluble protein lysate extracted from induced cells after a 24 h growth period 

was purified by nickel-agarose chromatography (Thermo Fisher Scientific, Pierce Protein 

Products #78994). The lysate was loaded directly on the equilibrated pre-packed columns 

containing Ni2+-chelated iminodiacetic acid that had been covalently immobilized to 4% beaded 

agarose. Cell lysate was allowed to flow through the gel bed gravimetrically. The flow through 

fraction was collected for later analysis of binding efficiency. After several wash steps with two 

different wash buffers (Wash Buffer 1 contained sodium phosphate buffer, 10 mM imidazole, pH 

7.4, and 0.5X concentration of proprietary Y-PER Reagent additives; Wash Buffer 2 contained 50 

mM Tris, 300 mM NaCl, 25 mM imidazole, 10% glycerol, pH 6.8), the purified 6xHis-tagged 

protein was eluted with an imidazole buffer (Elution Buffer contained 50 mM Tris, 300 mM NaCl, 

200 mM imidazole, 10% glycerol, pH 6.8). All collected fractions were analyzed by SDS-PAGE and 

Western blotting as described above, and by SDS-PAGE and silver staining with the Silver Stain 

Plus Kit® according to the manufacturer’s protocol (Bio-Rad, #161-0449). 
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Verification of the construct sequence, pYES-DEST52+SAC9 

To make sure that the 6xHis tag was present in the plasmid, a Western blot was 

performed on crude protein extracts from induced yeast cells carrying pYES-DEST52+SAC9 as 

described earlier, and probed with the C-terminal anti-6xHis-antibody instead of the anti-V5-

antibody. 

A second approach of construct and insert verification was undertaken by sequencing 

through the complete insert + 500 bp upstream and 500 bp downstream to the insert. This 

included several steps: 

1. DNA extraction from yeast cells harboring the construct pYES-DEST52 with the full 

length SAC9 gene, 

2. transformation of yeast plasmid into competent Escherichia coli by electroporation, 

3. propagation of the plasmid in E. coli, 

4. plasmid isolation from E. coli, 

5. restriction digest of plasmid to confirm insert presence in the E. coli clone, 

6. large scale propagation of E. coli with plasmid carrying the insert, 

7. large scale plasmid isolation from E. coli, 

8. DNA concentration estimates, 

9. design and synthesis of 23 primers for sequencing of ~500 bp long overlapping 

fragments for 1-3X coverage through the promoter region of the plasmid, the full length 

cDNA insert, and the C-terminal V5 epitope and 6xHis tag, 

10. sequencing reactions and, 

11. assembly of contigs and alignment with AtSAC9 cDNA. 

 



 

74 

Construct repair 

The repair of the construct was generously performed by Dr. Dennis Welker (Utah State 

University, Logan, UT). It included excising the area around the mutation by restriction digest 

and cloning a repaired version of that exact region by site-directed mutagenesis. An LB plate 

with ampicillin as a selection marker was provided and contained several E. coli clones with the 

fixed construct (marked as SAC9_76A-F). All E. coli clones were subcultured in fresh LB medium 

supplemented with 50 mM ampicillin, and glycerol stocks were made. 

Verification of the repaired construct, pYES-DEST52+SAC9-76F 

E. coli plasmids were isolated with the Plasmid Mini Kit® according to manufacturers’ 

instructions (Qiagen, #12123), and sequencing cocktails were prepared with plasmid DNA from 

clone SAC9_76F. Sequencing was performed at the DNA Sequencing Facility, University of Utah, 

Salt Lake City, UT. Contigs were assembled in Vector NTI (Invitrogen), and a consensus sequence 

of all aligned contigs was compared to the cDNA of AtSAC9 (GenBank accession number 

AAP49842.1). 

Plasmid transformation into yeast 

Transformation of S. cerevisiae strain INVSc1 was performed with the S.c. Easy Comp 

Transformation Kit® (Invitrogen, #K5050-10) following manufacturer’s suggestions. 

Transformations included 1) INVSc1 with pYES-DEST52 + SAC9-76F, 2) INVSc1 with pYES-DEST52 

only, and 3) only INVSc1 as a negative control, as only yeast cells that have incorporated either 

1) or 2) would grow on selective plates due to the uracil auxotrophy gene URA3 on the plasmid. 
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Verification of the insert from new transformants 

Yeast DNA was extracted with the Yeast DNA Extraction Kit® according to 

manufacturer’s suggestions (Thermo Fisher Scientific, Pierce Protein Products #78870), DNA 

concentrations were estimated, and nested PCRs were performed to amplify first a 700 bp, and 

then a 500 bp region around the site of the mutation. These PCR fragments were used for 

sequence analysis at the Sequencing Facility at the University of Utah, Salt Lake City, UT. 

Generation of anti-SAC9-antibodies 

Production of antigens 

The protein sequence of AtSAC9 was analyzed with Antigen Profiler™ (Thermo Fisher 

Scientific), and three candidate peptides that optimized synthesis, solubility and antigenicity 

were identified. After consultation with Dr. Joseph Li (Utah State University, Logan, UT) and 

Open Biosystems (Open Biosystems, Thermo Fisher Scientific), two peptides were chosen for 

synthesis and subsequent antibody production (Table 4-3). The decision for selection was based 

on unique features of the protein (WW motif for SAC9:515-533 and longer carboxy-terminus for 

SAC9:940-961). 

Table 4-3 Selected antigen peptides for the production of anti-SAC9-antibodies 

 Name Peptide sequence Position Length (aa) 

Peptide 1 SAC9:515-533 EKRADAVTGKSYYIDHNTK 515 19 

Peptide 2 SAC9:940-961 EYRGSDTVPDGSVPQNKRPKD 940 21 

 

Production of antibodies 

Open Biosystems synthesized the selected peptides and conjugated them to a carrier 

protein (KLH, keyhole limpet hemocyanin). Certified specific pathogen-free (SPF) New Zealand 
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white rabbits were injected subcutaneously with the immunogen mixed with Freund’s adjuvant 

according to the company’s 90-day protocol. Four rabbits were immunized with either 

conjugated-peptide immunogen in one primary immunization followed by three booster shots. 

Serum was collected two weeks after each booster shot by Open Biosystems. 

Quality control of crude and purified sera by modified ELISA (immunodot blot) 

Crude sera collected from all four animals two weeks after the final immunization shot 

were tested for affinity towards the synthetic peptides. The minimum concentration of peptide 

and antibody required for a chemiluminescent signal was determined in a modified ELISA 

procedure. Frozen aliquots of reconstituted synthetic peptide (5 mg/ml in sterile 1x PBS) were 

thawed and diluted to a final concentration of 1 mg/ml in PBS. A two-fold dilution series was 

prepared in PBS, covering a concentration range from 1-500 µg of peptide. A 9x12 cm sheet of 

nitrocellulose membrane with 0.45 µm pore size (BioRad, #162-0117) was soaked in dH2O for  

5 min, followed by a change to PBS, and then air-dried. One microliter of each peptide dilution 

was spotted on five millimeter wide strips, allowed to air-dry before placing in the incubation 

chamber (Hoefer Scientific Instruments), and blocked with 5% BSA (Calbiochem® #126575, EMD 

Chemicals) in PBS for 1.5 h at RT. Strips were then incubated with serially diluted crude sera 

over night at 4°C. The next morning, strips were washed three times in PBS for 5-10 min and 

incubated with the secondary antibody (anti-rabbit-IgG, HRP-linked, 2 mg/ml stock diluted 

1:1,000 in PBS, #7074, Cell Signaling Technology) for 2 h at RT, after which they were washed 

again three times with PBS for 5-10 min. The substrate for the enzyme was provided (Millipore 

Visualizer™ Spray and Glow™ ECL Western Blotting Detection System, #17-373), and the 

resultant reaction was visualized by chemiluminescence and recorded on x-ray film. 
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Affinity purification of anti-SAC9-antibodies 

Affinity purification of pooled crude antisera from two animals per immunogen was 

performed by Open Biosystems. It included an ammonium sulfate precipitation pre-step to 

isolate IgGs from the crude sera which contained predominantly IgG with IgA and IgM as well. 

Affinity of the now purified anti-SAC9-antibodies towards the synthetic peptides was tested in 

immunodot blots as described above for the crude sera. 

Specificity testing of purified antisera towards SAC9 isolated from A. thaliana 

Growth conditions 

A. thaliana WT plants were either grown in soil for up to 2 months under long-day 

conditions (14 h day/10 h night) and ambient temperature, or seedlings were grown on 

Phytagel-solidified ½ MS plates for up to 3 weeks under long-day conditions and 22/20°C 

(day/night) in a growth chamber. 

Harvest, lysis, and extraction of total protein content 

The protein extraction protocol used here was adapted from Harris et al. (1999). Plant 

material was harvested and pulverized to a powder with a pre-chilled mortar and pestle under 

liquid nitrogen. For soil-grown plant material, whole plants were removed from growing 

medium, cleaned and blotted dry. Plate-grown seedlings did not need any cleaning and could 

therefore be used directly after weighing. Pulverized plant material was quickly transferred to a 

centrifuge tube and suspended in grinding buffer (50 mM HEPES, pH 7.5, 5 mM DTT, and 0.1X 

Protease Inhibitor Cocktail Set VI, Calbiochem #539133, EMD Chemicals) in a 1:2 ratio (plant 

material/buffer) and vortexed for 30 sec. The Protease Inhibitor Cocktail contained six protease 

inhibitors with broad specificity for the inhibition of aspartic, cysteine, serine, and 

metalloproteinases, as well as aminopeptidases. The final concentration of inhibitors used was 
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as follows: 2 mM AEBSF, HCl (serine protease), 200 µM betastatin (aminopeptidase B and 

leucine peptidase), 20 µM E-64 (cysteine protease), 20 µM leupeptin hemisulfate (cysteine 

protease and trypsin-like protease), 5 mM 1,10-phenanthroline (metalloprotease), 20 µM 

pepstatin (aspartic protease). The homogenate was centrifuged at 12,000 x g for 10 min at 4°C. 

The supernatant was filtered through two layers of cheesecloth before being centrifuged again 

at 17,000 x g for 10 min at 4°C. The supernatant was carefully collected and 1-ml-aliquots were 

kept on ice and subsequently immunoprecipitated with anti-SAC9-antibodies, or stored at -20°C 

until further analysis. 

Western blotting 

Protein content of plant extracts was estimated with the BCA assay. Soluble proteins 

were mixed with 6x SDS loading buffer and denatured by boiling for 5 min at 95°C. Variable 

amounts were loaded onto polyacrylamide gels and separated by 10%, 4-15% or 4-20% SDS-

PAGE and electro-transferred to a PVDF membrane as described earlier. The membrane was 

blocked by standard procedures and probed for the target protein with either or both anti-

SAC9-antibodies (3 mg/ml stock diluted 1:500 in PBS). Membranes were incubated with HRP-

conjugated secondary antibodies (horse anti-rabbit IgG, HRP-linked, 2 mg/ml stock diluted 

1:1,000 in PBS, #7074, Cell Signaling Technology). The signal was detected by 

chemiluminescence. 

Immunoprecipitation of SAC9 from plant cell lysates 

Immunoprecipitation of SAC9 from plant cell lysate was performed with the 

Immunoprecipitation Kit – Dynabeads® Protein A (or Protein G, Invitrogen, #100-06D or -07D) as 

follows. Sedimented Dynabeads were brought back into suspension by slowly rotating the beads 

for 5 min. A quantity of Dynabeads (50 µl) was transferred to a test tube and separated on the 
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magnet until the supernatant was clear. The supernatant was removed and 3-300 µg anti-SAC9-

antibodies, diluted in 200 µl AB-Binding and Washing Buffer, was added and incubated with 

rotation for 10 min at room temperature (RT). The Dynabeads-AB-complex was gently washed 

with 200 µl AB-Binding and Washing Buffer. After magnetic separation and removal of the 

supernatant, typically 1 ml of cell lysate was added and gently pipetted to resuspend the 

Dynabeads-AB-complex, and incubated for 10 min at RT while rotating. The supernatant was 

removed by magnetic separation, and the Dynabeads-AB-antigen-complex was washed three 

times using 200 µl Washing Buffer for each step. The beads were resuspended in 100 µl Washing 

Buffer and transferred to a clean tube to avoid eluting proteins that adhered non-specifically to 

the wall of the tube. The antigen was eluted either under denaturing conditions, which included 

the addition of 20 µl Elution Buffer (0.1 M glycine, pH 3) and 10 µl 6x SDS loading buffer, and 

heating for 5 min at 95°C followed by a final magnetic separation. The supernatant containing 

the eluted antigen was removed and analyzed by SDS-PAGE and Western blotting. The non-

denaturing elution was accomplished by shearing forces generated through rotation while 

incubating in 20 µl Elution buffer for 2 min. The eluted antigen was magnetically separated and 

transferred to a clean tube. In order to use the eluted antigen in functional assays, the native 

conformation of the eluted antigen was restored by adjusting the pH of the elute with 0.5 M 

Tris, pH 7.5. 

Functional assay of immunoprecipitated SAC9 with the Malachite Green Assay for inorganic 

phosphate release 

The activity test and quantification of the reaction product was adopted from Maehama 

et al. (2000) and Taylor and Dixon (2004). The substrate phosphatidylinositol 4,5-bisphosphate 

diC8 (Echelon, #P-4508) was reconstituted in 25 mM TBS for a final concentration of 2 mM. The 
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carrier lipid dioleoylphosphatidilserine (1,2-dioleoyl-sn-glycero-3-phospho-L-serine sodium salt, 

Sigma #P-1060) was reconstituted in an organic solvent mixture (9:1, CHCl3/MeOH) for a final 

concentration of 10 mM. After use, lipid stock solutions were flash frozen in liquid nitrogen and 

kept at -20°C. The Malachite Green Reaction Buffer contained 100 mM sodium acetate, 50 mM 

bis-tris, 50 mM Tris (pH 5-8), 2 mM DTT, and was freshly prepared from stock solutions. Usually, 

1 ml of Malachite Green Reaction Buffer was sufficient for up to 50 reactions. Equal amounts of 

lipid stock solutions (1 µl each per sample) were combined in a test tube and dried under 

nitrogen. Malachite Green Assay Buffer (18 µl per sample) was added and the lipids were 

brought in suspension by sonication until the suspension was taking on a uniform, pearlescent 

shine, indicating complete dispersal. Eighteen microliters of substrate preparation per reaction 

was transferred to a clean test tube and pre-warmed for 10 min in a dry bath (30°C). The 

reaction was initiated by adding two microliters of immunoprecipitated SAC9 and incubated for 

15 min at 30°C, after which the reaction was terminated by adding an equal volume (20 µl) of 

100 mM NEM (n-ethylmaleimide, Sigma #04260-5G-F), followed by centrifugation at 18,000 x g 

for 10 min at 4°C to sediment lipid aggregates that might interfere with subsequent 

spectrophotometric measurements. Twenty five microliters of the supernatant was combined 

with 100 µl Malachite Green Reagent (Echelon, K-1500) and incubated for 15-30 min at RT 

followed by absorbance readings at 630 nm. The amount of inorganic phosphate released in 

each lipid sample was calculated based a phosphate standard curve. Under this protocol, the 

total amount of inorganic phosphate liberated in each sample was 1.6 times that of the 

calculated value from the standard curve, because the total sample volume after termination of 

the reaction mixture was 40 µl (25 µl x 1.6 = 40 µl). 
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RESULTS AND DISCUSSION 

SAC9 is hypothesized to be a phosphoinositide phosphatase (Williams et al. 2005). This 

assumption is solely based on sequence homology of SAC9 to other phosphoinositide 

phosphatases and elevated levels of PI(4,5)P2 and IP3 in sac9 mutant roots, but lacks biochemical 

proof. Preliminary experiments by Elizabeth Drake suggest a phosphatase function towards 

PI(4,5)P2. However, the tested SAC9 protein was immunoprecipitated with polyclonal anti-SAC9-

antibodies, which showed non-specific cross-reactivity (personal communication with Dr. Mary 

Williams). To remedy this shortcoming, I attempted to obtain functional SAC9 protein by two 

different approaches. I first expressed the protein from pYES-DEST52+SAC9 in yeast using the S. 

cerevisiae strain INVSc1 (Invitrogen), a fast-growing diploid strain ideal for recombinant protein 

expression. I purified the recombinant protein by immobilized metal affinity chromatography 

(IMAC). The other approach consisted of generating similar-to-monoclonal anti-SAC9-antibodies 

and to use these antibodies for immunoprecipitation of SAC9 from A. thaliana plant extracts. 

Immunoprecipitated protein was tested with the Malachite Green Assay for the quantification 

of inorganic phosphate release. 

Time-course of induction 

In order to determine the time of maximum induction for the SAC9 protein from pYES-

DEST52+SAC9, a time course was performed. At certain time intervals (t = 0, 4, 8, 12, 24, 48 h), 

induced cells were collected, lysed, and the soluble protein extracts were analyzed by 10% SDS-

PAGE. After transfer to a PVDF membrane, proteins were probed with two different antibodies 

to detect recombinant SAC9. Contrary to theoretical predictions, several bands showed signs of 

induction-related expression. As can be seen in Figure 4-2A (arrow), a prominent band around 

140 kDa was getting stronger over time. Although this band was not of the predicted size for the 
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SAC9 protein (180 kDa), I thought it was a good candidate. Two other polypeptides with an 

apparent size of 55 and 65 kDa, respectively, were also detected in increasing amounts with 

anti-V5-antibodies (Fig. 4.2A, grey arrowheads). These could represent proteolytic breakdown 

products of the antigen. It should be noted that the presence of several bands is not necessarily 

the result of suboptimal experimental conditions or cross-reactivity since many proteins have 

several isoforms, and an antibody may detect more than one of them. 

Since the plasmid contained a sequence not only for the V5 epitope, but also for a 

polyhistidine tag at the far C-terminus, anti-His(C-term)-antibodies were used to probe the same 

samples obtained from the time course of induction as seen in Figure 4-2A. 

 

 
Fig. 4-2 Time course of recombinant SAC9 induction in yeast. 
A Soluble proteins were extracted from S. cerevisiae carrying the plasmid pYES-DEST52+SAC9 
and separated by 10% SDS-PAGE, electro-transferred to a PVDF membrane, and probed with 
anti-V5-antibodies. 
B The same samples as in (A) but probed with anti-His(C-term)-antibodies 
M, molecular weight markers. Note that a band of ~ 140 kDa (arrow) was detected with 
prolonged induction with the highest concentration seen after 24-48 h. Two other bands with an 
apparent molecular weight of ~ 55 and 65 kDa were also induced (arrowheads). None of these 
bands were detected with the anti-His(C-term)-antibodies 
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Although not necessary, Western blotting with anti-His(C-term)-antibodies was a good 

check for the presence of the C-terminal 6xHis tag, since this tag was essential for the following 

purification procedure with nickel-chelated agarose. The results were somewhat discouraging. 

None of the higher molecular weight proteins were detected with the anti-His(C-term)-

antibodies (Fig. 4-2B). 

Assuming that there was no SAC9 expressed by yeast host cells before the switch to 

galactose/raffinose in the medium, I did not include protein extracts from non-induced yeast 

cells in the analysis. The first aliquot collected at t = 0 in Figure 4-2A, however, already showed 

some signs of low concentrations of SAC9 (the 140 kDa band, arrow), which might be attributed 

to a slightly leaky promoter region on the plasmid. Therefore I repeated the experiment and 

grew yeast cells in induction or non-induction medium for 24 h, a time period which previously 

yielded good expression. The results are shown in Figure 4-3. 

 

 
Fig. 4-3 Recombinant SAC9 expression after 24 h growth in induction or control medium. 
Western blot analysis with anti-V5-antibodies. M, molecular weight markers. Note a strong band 
around 140 kDa was present in the induced cell lysate, but not in the non-induced control 
(arrow). Two other bands ~ 55 and 65 kDa, respectively, seemed increased upon induction 
(arrowheads). However, they were also detected in the control, albeit to a lesser degree 
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Figure 4-3 demonstrates that the 140 kDa polypeptide was strongly detected in induced 

cells but not at all in non-induced (control) cells (Fig. 4-3, arrow). Hence it could be concluded 

that the 140 kDa polypeptide indeed was recombinant SAC9 protein. The other two 

polypeptides recognized by anti-V5-antibodies in Figures 4-3 (grey arrowheads) were present in 

the control but to a lesser degree. These smaller polypeptides might indicate degradation 

products of SAC9 that still had the 6xHis tag intact and accessible. However, it is more likely that 

they were SAC9-unrelated proteins that were non-specifically bound by the antibody. The 

almost identical banding pattern below 50 kDa in all lanes also indicated a certain amount of 

cross-reactivity or non-specific binding. 

In conclusion, recombinant SAC9 protein was strongly detected with anti-V5-antibodies 

in soluble yeast protein extracts, particularly after an induction period of 24 hours. Therefore, I 

proceeded with metal affinity chromatography to purify the recombinant protein using a nickel 

column. 

Purification of recombinant SAC9 by IMAC 

The fusion protein collected after 24 h induction was purified by immobilized metal 

affinity chromatography (IMAC) using mini columns pre-packed with Ni2+-chelated agarose. The 

6xHis tag at the C-terminus of the recombinant SAC9 protein was utilized for the separation of 

the recombinant protein from other non-specific proteins, since the string of histidine residues 

binds to several types of immobilized metal ions, including nickel. Nickel provides good binding 

efficiency to His-tagged proteins but also tends to bind nonspecifically to endogenous proteins 

that contain histidine clusters. Samples from each fraction (one flow through, four wash steps, 

two elutions) were collected for later analysis by 10% SDS-PAGE and visualized by silver staining 

(Fig. 4-4). This purification procedure resulted in one small polypeptide with an estimated 
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molecular weight of less than 40 kDa (Fig.4-4, arrow). A white band (aka ghost band) was visible 

in the non-purified protein extract, in the flow through, and in the first wash fraction (Fig. 4-4, 

lanes 1, 3 and 4, grey arrowhead). This band seemed to correlate with the 140 kDa polypeptide 

seen in Figures 4-2 and 4-3. It was barely visible in the non-induced (control) cell lysate mirroring 

the findings in Figure 4-2 (t = 0). Conspicuous ghost bands of the same size were also visible in 

the flow through and the first wash fraction. Ghost bands typically appear as a halo with no 

signal in the middle of the band, or the entire band appears white in a dark background. Ghost 

bands are commonly caused by overloading the gel with excess protein. In Western blots, they 

are sometimes seen as a result of antibodies cross-reacting with component(s) of the blocking  

 

 
Fig. 4-4 Purification of histidine-tagged recombinant SAC9 protein from S. cerevisiae (I): Silver-
stained SDS gel. Fractions were analyzed by 10% SDS-PAGE followed by Silver staining. 
Lane 1 : crude lysate extracted from S. cerevisiae grown under inducing (Ind) 
Lane 2 : crude lysate extracted from S. cerevisiae grown under non-inducing conditions (Con) 
Lane 3 : flow through (FL) of the lysate after loading onto a Ni2+-chelated column 
Lanes 4-5 : two washes with 6xHis Wash Buffer 1 (Wash 1) 
Lanes 6-7 : two washes with 6xHis Wash Buffer 2 (Wash 2) 
Lanes 8-9 : 6xHis-tagged protein eluted from column with 6xHis Elution Buffer (E1 and E2) 
Lane M : molecular weight markers 
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solution. Whatever the identity of the 140 kDa ghost band was, it apparently did not contain a 

histidine patch sufficient for binding to the nickel-chelated agarose beads and was therefore 

most likely lost in the wash fraction. 

The same samples as in Figure 4-4 were separated by 10% SDS-PAGE, and a Western 

blot was performed with anti-His(C-term)-antibodies (Fig. 4-5). The results shown here 

confirmed that the ghost band seen in Figure 4-4 contained a 6xHis tag and was therefore most 

likely recombinant SAC9 protein (Fig. 4-5, arrowhead). Western blotting also confirmed that it 

was in the wash fraction and therefore did not bind to the Ni-column and was subsequently lost 

(Fig. 4-5, arrow). 

 

 
Fig. 4-5 Purification of histidine-tagged recombinant SAC9 protein from S. cerevisiae (II): 
Western blot with anti-His(C-term)-antibodies. The same samples as in Figure 4-4 were analyzed 
by 10% SDS-PAGE followed by electro-transfer and Western blotting. 
Lane 1 : crude lysate extracted from S. cerevisiae grown under inducing conditions (Ind) 
Lane 2 : crude lysate extracted from S. cerevisiae grown under non-inducing conditions (Con) 
Lane 3 : flow through (FL) of the lysate after loading onto a Ni-chelated column 
Lanes 4-5 : two washes with 6xHis Wash Buffer 1 (Wash 1) 
Lanes 6-7 : two washes with 6xHis Wash Buffer 2 (Wash 2) 
Lanes 8-9 : 6xHis-tagged protein eluted from column with 6xHis Elution Buffer (E1 and E2) 
Lane M : molecular weight markers 
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The stark difference between induction and control demonstrated the activation of the 

galactose-stimulated GAL1 promoter and subsequent expression of SAC9. As expected though, 

there was some base level of recombinant SAC9 protein visible even in the non-induced sample, 

which was attributed to a slightly leaky promoter region. The anti-6xHis(C-term)-antibody 

detected a polypeptide in the wash and elution fractions above the 50 kDa marker – not as seen 

in the SDS-gel from Figure 4-4 below the 50 kDa marker. This might reflect a different migration 

pattern of the proteins through the gel. 

At this point of time, I was uncertain about the validity of the results obtained from the 

purification procedure, particularly because the 6xHis tag was not recognized in the Western 

blot of the time course of induction experiment (Fig. 4-2B), but it was essential for purification. 

Therefore I decided to sequence the plasmid from the promoter region through the insert, the 

V5-epitope, and the 6xHis tag. Plasmid DNA isolated directly from yeast was not sufficiently pure 

and not concentrated enough for successful sequencing runs. Therefore, plasmids were 

transformed into E. coli for large scale replication of DNA. Plasmids were then isolated and 

purified from E. coli in large quantities. DNA sequencing showed two differences between the 

sequence obtained from the plasmid and the cDNA posted by Zhong and Ye (2003) at the 

National Center for Biotechnology Information (NCBI, US. National Library of Medicine, 

Bethesda, MD) with the GenBank accession number AAP49842.1. The first difference was a G-

to-A change at position 544 of the construct (data not shown). This was a silent mutation and 

did not affect the codon (CTA vs. CTG, both encoding for leucine). The second difference, 

however, seemed to have enormous consequences for the open reading frame (ORF). The 

plasmid contained an additional adenine at position 4022. This was predicted to cause a 

frameshift and to dislocate the sequence for two stop codons to 1/3 upstream. Consequently, 

the recombinant protein should be shorter by one third as demonstrated by Figure 4-6. The SAC 
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domain, however, was not affected by this frame shift as it is present from amino acids 147-543 

(Zhong and Ye 2003) and 146-640 (Williams et al. 2005), respectively. 

 

 
Fig. 4-6 Prediction of open reading frames (ORFs) translated from the SAC9 gene in pYES-
DEST52+SAC9. The whole insert, including the promoter region on the plasmid and the C-
terminal V5 epitope and 6xHis tag, was sequenced with 14 different sequencing primers to 
obtain overlapping fragments (contigs, open arrows) from this 6 kb region. Contigs were aligned 
and the consensus sequence was used to predict ORFs (green bars). Three possible reading 
frames on each strand are given (A-C). The insertion of a single nucleotide was predicted to 
cause a frame shift and the introduction of two stop codons with the result of a shorter reading 
frame (A). The relative position of the SAC domain is marked by the red bar. Sequence coverage 
was up to 5x as indicated by the purple cross-hatched boxes below the contigs; hatched black 
boxes indicated 1x coverage. Sequence alignment and ORF prediction was performed in Vector 
NTI (Invitrogen) 
 

To test for the presence of the mutation in other plasmids, seven more E. coli clones 

were picked randomly for plasmid isolation and checked for the exact sequence around the 

mutation site with three overlapping primers. All seven clones contained the additional adenine 

as marked by the turquoise A in the alignment of plasmid DNA with the cDNA of SAC9 (Fig. 4-7). 

To evaluate whether the original yeast colonies, provided by Dr. Mary Williams, were 

possibly a mixed population with some yeast colonies carrying the mutation and others 

mutation-free, more than twenty colonies were randomly picked and used for starter cultures in 

liquid SC-U. Unfortunately, not a single colony from the original plate was viable. 
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Fig. 4-7 Alignment of plasmid DNA (pYES-DEST52+SAC9) with the cDNA for SAC9. 
DNA was sequenced from seven different E. coli clones and aligned with the cDNA sequence for 
SAC9 downloaded from NCBI (GenBank accession number AAP49842.1).The alignment shows 
only a fraction of the gene from3978 bp – 4163 bp, but with a far-reaching difference in the 
sequence obtained from all E. coli clones at position 4022 (additional adenine in turquoise) 
 

However, colonies used from subcultured SC-U plates were successfully grown in liquid media. 

DNA was extracted and the region around the mutation was PCR-amplified. Nested PCR 

fragments were sequenced, which demonstrated, unfortunately again, that none of the tested 

yeast colonies harbored a mutation-free plasmid (data not shown). 

Repair of the point mutation and sequence verification 

Given the puzzling nature of the results, I consulted with Dr. Dennis Welker (Utah State 

University, Logan, UT) who generously volunteered to repair the point mutation of the construct 

through restriction digest of DNA around the site of the mutation, followed by ligation of a PCR-

amplified corrected fragment back into the plasmid. Dr. Welker provided me with several E. coli 

clones of the repaired construct on LB plates, referred to SAC9_76A-F. 

To verify the sequence of the plasmid and to check for any other potentially introduced 

new mutations, the E. coli plasmids were isolated and sequencing cocktails were prepared with 

plasmid DNA from clone SAC9_76F to provide overlapping sequencing coverage of the full insert 

and bordering plasmid regions. Sixteen fragments were obtained and contigs were assembled as 

previously. Sequence alignments showed a 100% sequence similarity with the cDNA of AtSAC9 

posted at the NCBI (GenBank accession number AAP49842.1) except for one minor silent 

mismatch at position 9 bp of the insert. The V5-epitope and 6xHis tag were at the correct 
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position (in-frame), followed by two stop codons after the C-terminal 6xHis tag (data not 

shown). The repaired construct was transformed into the yeast expression strain INVSc1. 

Transformation efficiency was high for the transformation of the plasmid + insert and vector 

only, as several hundred colonies were detected each. As expected, no colonies were observed 

for the transformation of the yeast strain only (data not shown). 

In order to verify the sequence of the new insert in the positive transformants, yeast 

DNA was extracted, concentrations were estimated and nested PCRs were performed to amplify 

first a 700 bp, and then a 500 bp region around the site of the mutation. These PCR fragments 

were used for sequence analysis at the University of Utah. DNA sequencing confirmed that the 

yeast transformants harbored the repaired construct without the additional adenine. 

Recombinant expression of SAC9 with the repaired construct 

Recombinant expression studies with the new construct (pYES-DEST52+SAC9_76F) were 

performed as previously described for the original construct. Surprisingly, the new construct 

without the point mutation did not lead to expression of a 180 kDa protein (data not shown). A 

faint band was detected around 140 kDa in protein extracts from induced and in non-induced 

yeast cells, similar to the 140 kDa band found in lysates from yeast cells carrying the original 

construct. A comparable banding pattern obtained with both, the original and the fixed 

construct, indicated that the expression from both constructs did not lead to the synthesis of 

different recombinant proteins. Banding pattern intensity seemed to differ though, which might 

reflect differences in expression levels. It is possible that slight differences in cell growth, lysis, 

and extraction procedures, could also have contributed to these observed differences. Since Ni-

purification resulted in only one exceedingly small band of ~ 40 kDa, which was assumed not to 

be the target, I looked into different ways of obtaining SAC9 protein for functional assays. 



 

91 

Development and testing of anti-SAC9-antibodies 

Any protein can be isolated from a complex mixture of proteins by means of IP provided 

that a specific antibody for the target protein exists. Anti-SAC9-antibodies are not commercially 

available until today, thus we decided to raise antibodies against SAC9. A third party (Open 

Biosystems, Thermo Fisher Scientific) was selected for the task. The company recommended 

using recombinant protein, when possible, to develop monoclonal antibodies, particularly, 

considering the very large size of the protein. Since I did not have any recombinant protein at 

this point and due to cost restraints, we decided to go the peptide route to generate so-called 

“similar-to-monoclonal” antibodies (sAB). Instead of the complete protein as the immunogen, 

peptides from SAC9 were synthesized and conjugated to a carrier protein. Antibodies generated 

against a synthetic peptide by direct injection into animals are technically not monoclonal 

antibodies. Although antisera from animals immunized with peptide-conjugated antigen are 

generated in the same way as polyclonal antibodies, they are specific to only one epitope, the 

synthetic peptide, and therefore they are referred to as sAB (similar-to-monoclonal antibodies). 

Selected synthetic peptides conjugated to a carrier protein were injected repeatedly 

into four rabbits (two rabbits received immunizations with peptide 1, and the other two animals 

received injections with peptide 2). Serum was collected two weeks after each immunization. I 

tested the crude sera collected after the final immunization for binding affinity towards the 

synthetic peptides in a modified ELISA (immunodot blot). Basically, a two-fold dilution series of 

the peptides was spotted on a nitrocellulose membrane and probed with crude serum at 

different concentrations. HRP-linked secondary antibodies were used, and the signal was 

visualized by chemiluminescence. Results obtained from immunodot blots indicated that the 

antisera recognized the synthetic peptides, as predicted, in a peptide-concentration and 

antibody-dilution-dependent manner with no cross-reactivity in the pre-immune serum (data 
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not shown). The response from the two animals per antibody was similar enough to allow for 

pooling of the antisera before further affinity purification by the company. 

I then tested the binding affinity of the ammonium-sulfate-precipitated anti-SAC9-

antibodies towards the synthetic peptides in immunodot blots as described above for crude 

sera. Results are presented in Figure 4-8. Both purified antisera showed similar concentration-

dependent responses to the synthetic peptides as already seen for the crude sera. Purified 

antibodies raised against the second peptide (anti-SAC9-AB_940) consistently showed a stronger 

affinity towards the target than purified antibodies raised against the first peptide (anti-SAC9-

AB_515). The minimum concentration recognized by the second antibody was 2-4 μg, whereas 

the detection limit for the first antibody was around 16 μg of peptide (Fig. 4-8). The immunodot 

blots and immune response was repeated one year later with the same antibodies kept at 4°C, 

and the results were very similar (data not shown). 

 

 
Fig. 4-8 Affinity tests with anti-SAC9-antibodies. 
A Immunodot blot with anti-SAC9-AB_515 and peptide 1 (aa 915-933) 
B Immunodot blot with anti-SAC9-AB_940 and peptide 2 (aa 940-961) 
 

Detection of SAC9 in plant extracts with anti-SAC9-antibodies 

Strong antibody binding and recognition of micromolar quantities of the synthetic 

peptide did not guarantee that the developed antibodies could also recognize the SAC9 protein 

from A. thaliana WT plants. Therefore, soluble proteins from plants were extracted, separated 
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by SDS-PAGE, transferred to a PVDF membrane and probed for the target protein with either 

antibody. Results are presented in Figures 4-9 and 4-10. Anti-SAC9-AB_515 recognized four 

proteins of increasing size: 45, 48, 80, and 140 kDa. However, the first two were almost too faint 

to see. Anti-SAC9-AB_940 also recognized several proteins. Size estimation was difficult, as one 

slightly smeared band was visible (Fig. 4-9C). A second Western blot (Fig. 4-10) led to better 

results, and the proteins were estimated to be around 140, and 180 kDa. There was no cross-

reactivity apparent in the control. 

 

 
Fig. 4-9 Western blots with anti-SAC9-antibodies (I). 
A Protein extracts from A. thaliana WT probed with anti-SAC9-AB_515 
B Protein extracts from A. thaliana WT probed with preimmune serum (control) 
C Protein extracts from A. thaliana WT probed with anti-SAC9-AB_940 
D Protein extracts from A. thaliana WT probed with preimmune serum (control) 
M and M+, different molecular weight markers 
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Fig. 4-10 Western blot with anti-SAC9-antibodies (II). 
A Protein extracts from A. thaliana WT probed with anti-SAC9-AB_940 
B Protein extracts from A. thaliana WT probed with preimmune serum (control) 
M and P, different molecular weight markers. Proteins were extracted the same way as for 
Figure 4-9, but from a different batch of A. thaliana WT seedlings 
 

Immunoprecipitation with anti-SAC9-antibodies 

In order to isolate SAC9 protein from the complex mixture of extracted proteins from 

seedlings and plants, both anti-SAC9-antibodies were used in pull down experiments with 

Invitrogen’s Immunoprecipitation Kit – Dynabeads® Protein A (or G). The results of a typical 

immunoprecipitation (IP) procedure can be seen in Figure 4-11. Wild-type extracts were used as 

a positive control to show the presence of the predicted 180 kDa large SAC9 protein. Different 

antibodies for the IP led to slightly different eluted proteins, despite the fact that both 

antibodies were raised against synthetic peptides from the same protein, namely SAC9. The 180 

kDa band of the predicted SAC9 protein was clearly visible with anti-SAC9-AB_940 (Fig. 4-11, 

Lane 6) but very faint with the other antibody, anti-SAC9-AB_515. The 180 kDa band was not 

present in either preserum. Other smaller proteins were detected with preimmune serum, with 

a prominent band showing up around 50 kDa. 
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Fig. 4-11 Western blot of proteins immunoprecipitated with anti-SAC9-antibodies. 
Lanes 1-3 : 20, 2, and 0.2 μg A. thaliana WT extract 
Lane 4 : Immunoprecipitated sample with anti-SAC9-AB_515 
Lane 5 : Immunoprecipitated sample with anti-SAC9-AB_515-preserum 
Lane 6 : Immunoprecipitated sample with anti-SAC9-AB_940 
Lane 7 : Immunoprecipitated sample with anti-SAC9-AB_940-preserum 
Lane M : Molecular weight markers 
Protein extracts from A. thaliana plants were prepared as previously described, and 
immunoprecipitated (IP) with either anti-SAC9-AB_515 (515) or anti-SAC9-AB_940 (940) and the 
respective preserum (515N, 940N). Various amounts of WT extracts and immunoprecipitated 
samples were separated by 10% SDS-PAGE, transferred to a PVDF membrane and incubated 
with anti-SAC9-AB_940 (3 mg/ml stock diluted 1:500, overnight at 4°C). Note that WT extract 
showed a faint band of 180 kDa (arrow) similar to the one seen in Figure 4-10. This band was still 
visible on x-ray when both antibodies were used for IP, but the faint band in Lane 4 did not scan 
well and is therefore hardly noticeable here. The same band was much stronger for the IP with 
anti-SAC9-AB_940 (Lane 6, red oval). Note that several other smaller proteins were detected in 
samples immunoprecipitated with preserum 
 

Functional assay of immunoprecipitated SAC9 with the Malachite Green Assay for inorganic 

phosphate release 

To test the activity of the putative phosphoinositide phosphatase SAC9, 

immunoprecipitated protein was used in a reaction with its putative substrate, PI(4,5)P2. The 

reaction product, inorganic phosphate, was measured colorimetrically with the Malachite Green 

Assay. Any free orthophosphate released during the enzymatic reaction binds to malachite 

green molybdate and forms a green molybdophosphoric acid complex (D'Angelo et al. 2001). 
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The color formation can be measured at 620-640 nm and is directly related to the free inorganic 

phosphate concentration. The Malachite Green Assay was used because it is well suited to 

detect and quantify minimal amounts of inorganic free phosphate in aqueous solutions under 

acidic environments. 

Micelles with PI(4,5)P2 and a five-fold molar excess of a carrier lipid 

(dioleoylphosphatidilserine) were prepared and brought into suspension in the reaction buffer 

by sonication. The enzyme obtained through immunoprecipitation from wild-type extracts was 

added and incubated for 15 min at 30°C, after which the reaction was terminated by addition of 

an alkylating agent. It should be noted here that immunoprecipitated proteins were eluted from 

the Dynabeads under two different elution conditions: denaturing conditions for SDS-PAGE and 

Western blots, and gentle, non-denaturing conditions for activity tests. To test the effect of 

antibody concentration on the quantity of the final elution product, IP reactions were 

performed with either low (10 μl at ~ 3 mg/ml) or high (100 μl at ~ 3 mg/ml) amount of anti-

SAC9-antibodies. After termination of the reaction, the complete mix was centrifuged to 

sediment the lipids. A fraction of the supernatant was combined with the Malachite Green 

Reagent and incubated again until color saturation. Absorbance at 630 nm was measured and 

used for quantification of released inorganic phosphate. The assay was repeated three times 

with the same samples over a period of five days.  

Results are presented in Figures 4-12 and 4-13 (absolute and net amount of recorded Pi, 

respectively) and indicate that phosphate measurements were slightly variable but did not 

correlate with time. Therefore, it can be concluded that frozen protein samples did not degrade 

appreciably over time, at least not within five days. Wild-type extracts had the highest amount 

of recorded free inorganic phosphate (Pi) with or without the addition of the substrate. This was 

not surprising as the extract likely contained many different phosphatases, as well as possibly 
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some hydrolysis products in the form of free inorganic phosphates. Yet, the release of almost 

1000 pmol of orthophosphate indicated that the assay had worked and that the lipids were 

provided in a functional way. Both antibodies used for immunoprecipitation seemed to have 

resulted in the isolation of protein(s) that could liberate phosphate, although some differences 

existed in the absolute amount of released phosphate, i.e. immunoprecipitation with anti-SAC9-

AB_940 led to the isolation of polypeptides that caused a higher absolute amount of liberated Pi 

than polypeptides immunoprecipitated with anti-SAC9-AB_515 (Fig. 4-12). However, this 

difference was negligible for the net release of phosphate (Fig. 4-13). Also, the amount of 

antibodies used for immunoprecipitation of SAC9 (low vs. high) seemed not to have an influence 

on the net release of phosphate.  

 

 
Fig. 4-12 Absolute release of inorganic phosphate (Pi) from wild-type extracts and extracts 
immunoprecipitated (IP) with anti-SAC9-antibodies. Two different anti-SAC9-antibodies (515 
and 940) and two different antibody concentrations (L and H, low and high, respectively) were 
used for IP. The same samples were assayed with the Malachite Green Assay in three 
independent runs on consecutive days. Samples were kept frozen at -20°C between runs. Bars 
with gradient fill represent samples with substrate addition (lipids in buffer), whereas solid bars 
represent samples without substrate addition. Error bars show positive SD 
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All components of the Malachite Green Assay were tested and found essentially 

phosphate free (Appendix C). Minor phosphate amounts were detected in samples of 

reconstituted substrate in assay buffer (Fig. 4-12 and Appendix C) most likely reflecting some 

hydrolysis of the substrate, PI(4,5)P2. Raw data for all performed experiments are listed in 

Appendix C. 

 

 
Fig. 4-13 Net release of inorganic phosphate (Pi) from wild-type extracts and extracts 
immunoprecipitated (IP) with anti-SAC9-antibodies. Two different anti-SAC9-antibodies (515 
and 940) and two different antibody concentrations (L and H, low and high, respectively) were 
used for IP. The same samples were assayed with the Malachite Green Assay in three 
independent runs on consecutive days. Samples were kept frozen at -20°C between runs. Error 
bars show positive SD 
 

In conclusion, there was no difference in Pi release due to antibody type used for IP 

(AB_515 vs. AB_940) or antibody amount used for target capture (high vs. low), i.e. higher 

absolute amounts of released Pi for samples immunoprecipitated with anti-SAC9-AB_940 did 

not translate into higher net phosphate release from the same samples. 
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Although these experiments were the first corroborative evidence for the hypothesis 

that the SAC9 protein was most likely a phosphatase with at least one specific substrate, 

PI(4,5)P2, I was not completely sure of the identity of the immunoprecipitated proteins, nor did I 

know which of the detected bands in Figure 4-11 caused the phosphate release. I conducted a 

repeat of the Malachite Green Assay with another negative control, namely immunoprecipitates 

from the preserum in addition to the anti-SAC9-antibodies. I further tested the effect of an 

additional purification step by utilizing a 30 kDa protein filter (Centricon 30, # 4208, Amicon Inc.) 

after immunoprecipitation, based on the idea that any smaller proteins were either inactive 

SAC9 fragments or other non-specific proteins. I also changed the acidic environment of the 

assay to near neutral to test the effect of pH on phosphatase activity, since it was shown in an 

earlier report to affect the release of phosphate (D'Angelo et al. 2001). 

The results of the repeated Malachite Green Assays are presented as described 

previously in two bar diagrams (Figs. 4-14 and 4-15, absolute and net release of Pi). Again, the 

highest quantity of liberated phosphate was measured for wild-type extracts. Phosphate release 

was slightly greater for wild-type extracts than in Figure 4-12, reflecting different batches of 

plant material. Also, the absolute amount of liberated Pi was higher in all samples when the 

assay was run under slightly acidic conditions (pH 5 vs. pH 7). As reported by D’Angelo et al. 

(2001), the pH of the reaction solution had to be slightly acidic for optimal phosphate release. 

The data in Figure 4-14 supported this statement. The use of a 30 kDa filter after 

immunoprecipitation led to a minor decrease of measured phosphate release. 

The addition of the substrate to the protein immunoprecipitated with anti-SAC9-AB_940 

led to a sizable release of measured orthophosphate (Fig. 4-15), which was corroborative 

evidence for a phosphoinositide phosphatase function of SAC9. This conclusion cannot be 

drawn, however, without acknowledging the fact that measured phosphate released from 
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Fig. 4-14 The effect of pH and an additional purification step on the absolute release of inorganic 
phosphate (Pi) from WT extracts and extracts immunoprecipitated with anti-SAC9-antibodies 
(940). The Malachite Green Assay was performed with samples obtained from the same IP 
procedure under slightly acidic (pH 5) or neutral (pH 7) conditions. The additional purification 
step included the application of a 30 kDa separation filter after the IP procedure. The 
experiment was performed without biological replicates 

 

samples immunoprecipitated with the preserum was higher than expected for a negative 

control. However, and as already pointed out, running the assay under slightly acidic conditions 

was beneficial; not only was the absolute amount of released Pi higher than for the same 

samples run under neutral conditions, but it also seemed to have suppressed the non-specific 

release of Pi from control samples (IP-prebleed). The very similar net amount of released Pi from 

protein samples with and without the additional purification step suggested that the filter did 

not have an effect. The generally low levels of free phosphate in all but wild-type extracts might 

indicate that either the Malachite Green Assay was susceptible to unobserved minor changes in 

the experimental conditions, or immunoprecipitations varied significantly from one batch to 

another. 
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Fig. 4-15 The effect of pH and an additional purification step on the net release of inorganic 
phosphate (Pi) from WT extracts and extracts immunoprecipitated with anti-SAC9-antibodies 
(940) and the respective preserum. The Malachite Green Assay was performed with samples 
obtained from the same IP procedure under slightly acidic (pH 5) or neutral (pH 7) conditions. 
The additional purification step included the application of a 30 kDa separation filter after the IP 
procedure. The experiment was performed without biological replicates 
 

Optimization of Immunoprecipitation 

Since the basis for the Malachite Green Assay is the protein obtained through 

immunoprecipitation (IP), several parameters, such as affinity and concentration of the 

antibody, incubation time of the antibody-antigen complex, number and times of wash steps, 

and elution conditions, can affect the elution product in quantity as well as quality. 

I assumed at that time, that either the 140 or the 180 kDa band represented SAC9 as 

seen in Figure 4-10, because the molecular weight for SAC9 was estimated to be around 180 

kDa. Ideally, IP procedures should lead to only one eluted antigen, yet I also knew that detection 

of multiple bands was not uncommon, which could be proteolysis products, isoforms, splice 

variants, or possible binding partners. I therefore tried to optimize conditions by testing 
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different antibody concentrations, incubation times, cross-linking, preclearing, and extensive 

washing. 

First, I tested different concentrations of antibody used for antigen binding and 

subsequent IP. The recommended amount of antibody added to the Dynabeads ranged from  

1-10 μg. I applied anti-SAC9-AB_940 in three different amounts (3, 30, 300 μg) with no apparent 

effect (Fig. 4-13 and other data). Thus for routine immunoprecipitation, I used the lowest 

concentration of antibody tested. 

I further tested the effect of incubation time of antibody-antigen complex, keeping in 

mind that the standard protocol suggested a ten-minute incubation period for the formation of 

antibody-antigen complex. Increasing incubation times for optimal binding to one or four hours, 

respectively (at RT or 4°C), did not lead to the elution of a stronger 140 or 180 kDa band when 

visualized on a Western blot (data not shown). 

Next, I tested the effect of cross-linking the antibody to the beads. In the standard 

protocol, the antibody is added to the Dynabeads and forms an antibody-Dynabeads complex. 

The target antigen binds then to the antibody. After binding, the beads are washed extensively 

to get rid of non-bound sample components and the antigen is eluted from the support using an 

appropriate elution buffer. Depending on elution buffer, dissociation of the complex does not 

only lead to elution of the target antigen, but also to co-elution of the antibody since the 

antibody is not permanently bound to the beads. Co-elution of antibody fragments and their co-

migration with the antigen in SDS-PAGE can pose a significant obstacle in analysis. Downstream 

processes such as the Malachite Green Assay might also be negatively affected. Using the cross-

linking reagent BS3 (Bis[sulfosuccinimidyl] suberate), Thermo Scientific, Pierce Protein Products 

#21585), before adding the protein extract should covalently link adjacent amines of the 

antibody and Protein A (or G). Cross-linking with BS3 should therefore allow for target antigen 
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elution without antibody contamination. Cross-linking with BS3, however, can potentially 

decrease antibody binding efficiency by modifying too many of the amine groups in the antibody 

binding site. 

Figure 4-16 shows the results of immunoprecipitations performed with cross-linked anti-

SAC9-antibodies. The effect of two other parameters on the quality of the elution was also 

tested. These were preclearing of the beads and additional wash steps before elution. 

Preclearing included incubation of WT extract with a volume of beads followed by magnetic 

separation of beads and extract. The beads were discarded and the supernatant (now without 

proteins that non-specifically bind to Protein G) was used with new beads for the IP. Generally, 

the same results were obtained for all different treatments with neither the 140 nor the 180 kDa 

band in the elute. Instead a very prominent polypeptide of 50 kDa was detected as already seen 

in Figure 4-11. No proteins were found in the last wash regardless of the number of washes. The 

140 and 180 kDa bands visible in the wild-type extracts were also detected in the flow through 

fraction; this indicated that the proteins did not bind to the Dynabeads-antibody-complex. 

Optimization of extraction conditions 

The previous results demonstrated that immunoprecipitation with anti-SAC9-antibodies 

was surprisingly insensitive to varying conditions. Therefore I turned my attention to the protein 

extraction procedure and consulted with Dr. Joanie Hevel (Utah State University, Logan, UT) for 

additional optimization approaches. I tested the effect of two recommended additives on the 

extraction of soluble proteins from plant material. NaCl was used to disrupt non-specific protein 

interactions, and NP-40 was included to reduce background. Both components were made up as 

2X strength in extraction buffer, and separately added to previously made wild-type extracts in a 

1:1 ratio. After complete mixing, extracts were allowed to sit for 15 min on ice, with occasional 
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Fig. 4-16 Optimization strategy I: The effect of BS3 conjugation, preclearing, and extra washes on 
the immunoprecipitation of SAC9. Protein extracts and fractions from the IP procedure were 
analyzed by 10% SDS-PAGE followed by Western blotting with anti-SAC9-AB_940. 
a IP procedure with BS3-conjugated beads, preclearing and three wash steps 
b IP procedure with BS3-conjugated beads, preclearing and six wash steps 
c IP procedure with BS3-conjugated beads, no preclearing and three wash steps 
Lanes 1 and 9 : 100 μg A. thaliana wild-type (WT) extract 
Lanes 2 and 10 : 200 μg WT extract 
Lanes 3, 6, 11 : Flow through (FL) 
Lanes 4, 7, 12 : Last wash (LW) 
Lanes 5, 8, 13 : Elution (E) 
Lane M : Molecular weight markers  
Note that the three different treatments did not lead to elution of higher molecular weight 
proteins. The 140 and 180 kDa bands, respectively (arrows), were detected in WT extracts and in 
the flow through fraction collected from the supernatant after antigen binding. The last wash 
was always free of any measurable proteins. The eluted fraction still contained a highly 
concentrated polypeptide of approx. 50 kDa (arrowhead) as already seen in Figure 4-11 
 

agitation by inverting the tube, before proceeding with standard IP. NaCl concentrations ranged 

from 0-1000 mM and NP-40 concentrations ranged from 0-2%. Fractions from the flow through 

and first elution were visualized by Western blotting. WT extracts served as control. Since 

aliquots of WT extracts showed some cloudiness after thawing, they were centrifuged in the 

cold for 10 min at maximum speed (13,500 rpm) in a table top centrifuge. The cleared 

supernatant was loaded in two different concentrations. Results presented in Figure 4-17 show 

that neither additive led to the elution of the 140 kDa or the 180 kDa band. 
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Fig. 4-17 Optimization strategy II: The effect of extraction buffer additives on the 
immunoprecipitation of SAC9. Protein extracts and fractions from the immunoprecipitation (IP) 
procedure were analyzed by 10% SDS-PAGE and Western blotting with anti-SAC9-AB_940. 
A Flow through fraction from the IP procedure performed with NaCl in the extraction buffer 
B Flow through fraction from the IP procedure performed with NP-40 in the extraction buffer 
C Eluted fraction from the IP procedure performed with NaCl in the extraction buffer 
D Eluted fraction from the IP procedure performed with NP-40 in the extraction buffer 
Note that none of the buffer additives led to the elution of the target protein (arrows). Instead a 
prominent 50 kDa polypeptide was strongly detected (arrowhead) as previously seen, albeit 
with less background. M, molecular weight markers in kDa; WT -c, A. thaliana wild-type extract - 
not centrifuged after thawing; WT +c, A. thaliana wild-type extract - cleared supernatant after 
centrifugation 
 
 



 

106 

On the contrary, a 50 kDa band was the only band detected in the elution. Again, both bands 

(140 and 180 kDa) were only visible in the wild-type extracts and in the flow through, and 

therefore were not recognized by the antibody. Centrifugation of the lysate after thawing led to 

a much reduced background. However, the 180 kDa band was also lost to the pellet. If this was 

SAC9, then it was barely soluble and centrifugation led to its precipitation and sedimentation 

into the non-soluble fraction. 

GenScript project 

Since both anti-SAC9-antibodies seemed not to be that efficient in the reported IP 

experiments regardless of extraction parameters, I revisited my recombinant protein strategies, 

and Dr. DeWald, my former major professor, suggested to have this part of the project 

outsourced to a third party (GenScript USA Inc, Piscataway, NJ). GenScript was contracted to 

synthesize the complete SAC9 gene with optimized codons for expression in yeast and to add a 

TEV cleavage site for later proteolytic tag removal. After synthesis, the gene was planned to be 

subcloned into a proprietary yeast expression vector containing two different tags: a Flag tag as 

well as a 6xHis tag at the C-terminus. Expression evaluation and 1L yeast expression was 

expected, followed by a two-step affinity purification process, tag removal, and quality control 

by MALDI-TOF. Unfortunately, GenScript failed over several months to synthesize the gene. 

Since I had constructs with the cDNA sequence for the complete SAC9 protein in an expression 

vector (pYES-DEST52+SAC9 and pYES-DEST52+SAC9_76F), I decided to have GenScript use these 

constructs for expression studies. According to GenScript, they grew yeast cells harboring either 

construct under comparable conditions and induced expression with galactose for 48 h. Soluble 

proteins were extracted with acid-washed glass beads, and recombinant SAC9 was purified with 

Ni-NTA columns. Collected fractions were analyzed by SDS-PAGE and Western blotting with anti-
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His(C-term)-antibodies. Results are presented in Appendix D. The company’s purification 

procedure ended with the isolation of several proteins with two prominent bands around 40 

and 95 kDa, respectively, but none above 100 kDa, as seen by my expression and 

immunoprecipitation experiments. Anti-His(C-term)-antibodies recognized two bands in 

Western blots of slightly lower apparent molecular weight (40 and 70 kDa for pYES-

DEST52+SAC9 and 60 and 90 kDa for pYES-DEST52+SAC9_76F). Only protein bands visualized by 

Coomassie Brilliant Blue staining were abundant enough for identification through mass 

spectrometry. The prominent 40 and 95 kDa bands were excised from an SDS gel. Isolated 

proteins were identified by mass spectrometry using enzymatic digestion patterns based on the 

primary sequence. They confirmed that neither band was the target protein SAC9 or a fragment 

of SAC9. Based on these results, the project with GenScript was terminated. 

CONCLUDING REMARKS 

SAC9 is a unique protein in Arabidopsis thaliana. Its precise function is not known but 

the identification of a mostly conserved Sac1p homology domain (SAC) at the C-terminus of 

SAC9 strongly suggested a phosphoinositide phosphatases function. Further evidence came 

from the fact that sac9 roots accumulated PI(4,5)P2 and its hydrolysis product IP3. Combining 

these two pieces of information, Williams et al. (2005) hypothesized that SAC9 most likely was a 

phosphoinositide phosphatase involved in lipid signaling, particularly under stress conditions. 

The study presented in this chapter was designed to test this hypothesis. 

Recombinant expression of SAC9 

The goal of this study was to provide evidence for the in vitro function of AtSAC9. To 

achieve this, I initially expressed recombinant SAC9 from yeast and purified the 6xHis tag fusion 
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protein with immobilized metal affinity chromatography. This procedure was complicated by the 

fact that the construct contained a point mutation, which was predicted to result in a shortened 

open reading frame. The point mutation was repaired with site-directed mutagenesis (courtesy 

of Dr. Dennis Welker) and then used for SAC9 expression. Surprisingly, induction with galactose 

did not lead to the expression of a 180 kDa protein. On the contrary, the expression pattern was 

similar to that of the old construct with the additional nucleotide, but expression was generally 

lower. This unexpected result opens up a new line of future investigations, beginning with 

amino acid sequencing of various bands to determine what polypeptides exactly were expressed 

under this particular expression system. 

Immunoprecipitation of SAC9 

In an alternative approach, I planned to obtain SAC9 protein from A. thaliana WT 

seedlings through IP. Since no antibodies against SAC9 were commercially available, we had to 

raise anti-peptide-antibodies against sequences specific to SAC9. Crude sera from the 

immunization were tested for affinity towards the synthetic peptides, further affinity-purified, 

and then re-tested for affinity. Immunodot blots indicated similarly strong responses of both 

antibodies towards the respective peptide. Western blots demonstrated slightly different 

specificities of the antibodies with extracted proteins from wild-type plants. Anti-SAC9-AB_940 

consistently showed a stronger affinity than anti-SAC9-AB_515 and detected two polypeptides 

with apparent molecular weight of 140 and 180 kDa, respectively. The predicted molecular 

weight of AtSAC9 is around 180 kDa. The smaller second polypeptide was thought to be a 

possible splice variant or isoform and not a cleaved protein fragment, since the extraction buffer 

contained sufficient concentrations of various protease inhibitors. A thorough online re-

investigation on the SAC9 gene led to the discovery of a splice variant with a predicted 
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molecular mass of 155 kDa (Fig. 4-18) explaining the detection of two bands instead of only the 

expected one. A 15-kDa difference between the 140 kDa polypeptide detected with anti-SAC9-

AB_940 and the 155 kDa splice variant was hard to separate by SDS-PAGE. It was interesting that 

the splice variant was deposited only at TAIR (The Arabidopsis Information Resource) and not at 

GenBank at NCBI (National Center for Biotechnology Information). GenBank generally has more 

deposited sequences than TAIR, but it appeared that TAIR was curated with more detail. The 

presence of a putative splice variant of SAC9 greatly emphasizes the importance of regular 

literature search and the utilization of a variety of online resources. 

 
Fig. 4-18 Gene model of AtSAC9 with the exon-intron structure of the SAC9 transcript. Exons are 
represented by black boxes, introns by a black line. Grey arrows symbolize the 5’untranslated 
region (5’utr), whereas grey boxes denote the 3’untranslated region (3’utr). The SAC9 gene is 
located on locus AT3G59770 of chromosome three of A. thaliana and encodes a 1630 aa protein 
with an estimated molecular weight of 180 kDa. One splice variant is additionally predicted with 
1405 aa and a molecular weight of 155 kDa. Adopted from TAIR 
(http://www.arabidopsis.org/servlets/TairObject?type=locus&id=36642) 
 

Activity of SAC9 

Both antibodies were used for immunoprecipitation with magnetic beads, and the 

resultant immunoprecipitated proteins were tested for the presumed activity towards PI(4,5)P2 

with the Malachite Green Assay. Preliminary results were encouraging and indicated that 

AtSAC9 immunoprecipitated with either antibody hydrolyzed PI(4,5)P2. In repeated experiments, 

including negative controls with preimmune serum, however, negative controls had higher than 

anticipated phosphate release. Upon closer inspection, most of the phosphate release was non-

http://www.arabidopsis.org/servlets/TairObject?type=locus&id=36642
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specific, as measured phosphate levels were almost identical regardless of substrate addition.  

I ascribe the differences in measured amounts of phosphate release from different 

immunoprecipitates partially to minute and unnoticeable variations in the extraction method, as 

well as to differences in SAC9 expression from plants depending on age, organ, and possibly 

other fluctuating environmental parameters. Similar conflicting results on SAC9 expression have 

been reported in the literature. Microarray and RT-PCR data suggested that AtSAC9 was 

expressed throughout the whole plant body with higher expression levels in the root (Zhong and 

Ye 2003; Schmid et al. 2005; Williams et al. 2005). Contrary to this, Gong et al. (2006) found 

AtSAC9 transcript levels to be highest in leaves and reduced in roots. 

Gene expression studies performed by GenScript 

GenScript was contracted to codon-optimize and completely synthesize the SAC9 gene 

for improved expression in heterologous systems, to subsequently subclone the gene into an 

appropriate expression vector and perform expression studies with this new construct. Codon 

optimization was desirable for genes that originate from plants but are expressed in lower 

eukaryotes. The insertion of a TEV site for proteolytic cleavage of the C-terminal FLAG and 6xHis 

tag was also thought to be highly advantageous. Unfortunately, the company was not successful 

in synthesizing the gene. Thus, I decided instead to use their resources to conduct recombinant 

expression of SAC9 from both of our constructs. The original and the newly repaired vector 

pYES-DEST52+SAC9 were sent to GenScript for recombinant expression and purification. 

Fractions obtained from the nickel purification procedure and analyzed by SDS-PAGE showed 

nearly identical banding patterns between the two constructs. It was difficult to see if the cell 

lysate contained any bands around 140 kDa since the company did only include size markers 

below 94 kDa. This was surprising and disappointing since the company was informed that the 
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full length SAC9 protein was predicted to have a molecular weight of 180 kDa and that a 

prominent band of approximately 140 kDa was visible in some of my Ni-purified fractions (Figs. 

4-4 and 4-5). Two proteins of slightly different size were recognized with the anti-His(C-term)-

antibodies in Western blots in the final elute. Corresponding bands were excised from the SDS 

gel and both bands (40 and 95 kDa, respectively) were subjected to trypsin digestion and 

peptide fragments were identified with mass spectrometry. MS results confirmed that neither 

band was the target protein. These results led us to terminate the project with GenScript. 

Two different expression constructs and one protein? 

The similar banding pattern in SDS gels and Western blots observed in samples from 

both constructs expressed by GenScript, as well as my results, point to the possibility that the 

mutation in the original construct had no effect on the expression of recombinant SAC9. If that 

was the case, it would be very surprising, since one additional adenine at position 4022 in the 

sequence of the original construct was predicted to cause a frame shift followed by the insertion 

of two stop codons. Since I did not have sequence confirmation of the original construct and due 

to the problem with the detection of the 6xHis tag, I believed that the sequence for this tag was 

possibly incorrect, or that the tag was either not functional or accessible. Sequencing showed 

the 6xHis tag to be complete. A truncated protein around position 4022 would not contain the 

C-terminal V5 epitope and 6xHis tag. The truncation therefore would preclude it from being 

detected with either antibody. The fact that I detected induced SAC9 protein with the anti-V5 

antibody but not the anti-His antibody was confusing. Possible mechanisms for the suppression 

of the first and subsequently the second stop codon to generate a 180 or a 155 kDa SAC9 

protein include readthrough (McCaughan et al. 1995), alternative splicing (Szabo et al. 1994), or 

RNA editing (Sommer et al. 1991). In view of the reported splice variant of AtSAC9 at TAIR, 
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which is smaller protein but still with the N-terminus and the SAC domain intact, it seems likely 

that the original inducible vector might lead to the expression of the target protein. 

Co-factors for activity 

Some phosphoinositide phosphatases are metal-dependent. Rudge et al. (2004) 

demonstrated the absolute requirement for magnesium in the activation of the yeast 

phosphoinositide phosphatase Fig4. His-tagged recombinant Fig4 phosphatase activity was 

observed only when 1 mM magnesium was included in the assay mixture. It is conceivable, that 

SAC9 also needs a metal for activity, although the results from the Malachite Green Assay 

indicated that this requirement most likely is not absolute. However, I cannot exclude the 

possibility that metal ions would act as activity enhancers. 

WW domain 

Several authors have noted on the WW domain inserted in motif seven of the SAC 

domain in AtSAC9 (Zhong and Ye 2003; Williams et al. 2005; Gong et al. 2006). The WW domain, 

also known as the WWP or rsp5 domain, is a stretch of around 40 amino acids with two 

conserved tryptophans spaced 20-22 amino acids apart. It is thought of as an interaction module 

that binds specific proline-rich sequences and thus functions in a diverse set of signaling 

proteins. With only 40 amino acids, it is the smallest domain known (Ilsley et al. 2002). The 

precise function of this domain in SAC9 at such an interesting location begs the question of 

possible binding partners. It is tempting to speculate about the nature of this hypothetical 

binding and the downstream consequences. What if the putative binding partner conferred 

phosphatase activity? It is equally likely though that a binding partner would not contain any 

enzyme activity but rather specify subcellular location. A third possibility for the function of a 

binding partner might lie in the regulation of the phosphatase activity of SAC9 by either 
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competitive binding or potentially changing the confirmation of SAC9. One of the anti-SAC9-

antibodies (anti-SAC9-AB_515) that we generated was raised against a synthetic peptide from 

the seventh motif of the SAC domain and included part of the WW motif. When used to 

immunoprecipitate SAC9 from wild-type extracts, this antibody routinely performed not as well 

as the other anti-SAC9-antibody (anti-SAC9-AB_940), which was raised against a peptide closer 

to the C-terminus. I contributed this to the fact that the epitope in anti-SAC9-AB_515 was too 

close to the active site, and antigen binding therefore was most likely negatively affected by 

impaired physical accessibility. It is conceivable though that with this antibody a possible binding 

partner was isolated and not SAC9, an interesting avenue which leads the way for new 

experiments. 

SUMMARY 

Results from several Malachite Green Assays for the quantification of inorganic 

phosphate release neither support nor refute the hypothesis that SAC9 is a phosphoinositide 

phosphatase. Phosphatase activity was detected in protein samples immunoprecipitated with 

specific anti-SAC9-antibodies. However, immunoprecipitation (IP) experiments led to the 

isolation of more than one polypeptide. It is conceivable that other co-isolated polypeptides 

caused the measured release of free inorganic phosphate. At this point, it is not known which of 

the polypeptides in the IP mixture caused the activity. Optimization strategies of protein 

extraction and IP techniques did also not lead to the isolation of only the target protein SAC9. 

Further IP experiments with other anti-SAC9-antibodies are therefore needed for clarification. 

Although all reagents and glassware used for the Malachite Green Assays were 

phosphate-free, the minor amount of phosphate detected in reconstituted PI(4,5)P2 might have 

skewed the data to some degree. To rule this out, a complimentary way of testing the enzyme 
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for phosphatase activity could be employed, namely the utilization of fluorescent 

phosphoinositide substrates in combination with thin-layer chromatography (Tayler and Dixon 

2004). With this method, phosphoinositide reaction products are detected instead of the 

release of inorganic phosphate. This would not only confirm the enzyme activity but also assess 

phosphatase specificity more effectively. 
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CHAPTER 5 

CONCLUSIONS 

Phospholipid signaling has been an area of intensive research in the last three decades 

reflective of its involvement in a multitude of diverse cellular processes in yeast, animal, and 

plant cells. Much progress has been made in mammalian systems fueled largely by medical 

implications of dysfunctional phospholipid signaling leading to devastating diseases, such as 

cancer. Plant phospholipid signaling on the other hand, has seen less attention. Much of the 

knowledge is only starting to emerge, leaving us with an incomplete understanding of how 

plants translate extracellular information into intracellular signaling molecules. Our 

comprehension of how plants interpret these signaling molecules and respond in a biologically 

relevant manner is equally patchy. This seems surprising in the light of fundamental cellular 

processes that are regulated in animals by phosphorylated derivatives of phosphoinositol. 

Normal plant development, but also responses to changes in the environment, are 

dependent on signal transduction processes. Salinity and drought are major environmental 

stresses which adversely affect plant growth and productivity. New and more salt tolerant crop 

cultivars are needed to cope with progressive salinization of arable land. Genetic engineering 

applied to agricultural breeding techniques holds great promise and has already been successful 

in some herbicide and insect resistance. Such tactics are also being applied to counter salinity. 

However, a deeper understanding of how plants respond to salinity and other stress factors is 

required for further manipulation. Basic research in elucidating stress signal perception, 

transduction and response, is an imperative and the cornerstone for the development of stress 

tolerant crops. Particularly, characterizing the changes in phospholipid signaling and the specific 
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effects they mediate as plants mature and respond to environmental conditions is important 

and will lead to a better understanding of the nature of these physiological responses. 

In my dissertation research, I studied phosphoinositide functions indirectly by 

phenotypic mutant analysis of sac9 and functional characterization of the affected protein in  

A. thaliana with the hope that this research will contribute to the development of stress-

resistant plants and ultimately increased crop yields. 

In Chapter 2 of my dissertation, I used phenotypic mutant analysis to examine the 

cellular effects of SAC9 gene disruption. In-depth ultrastructural investigations revealed unique 

cell wall aberrations in some cells of the root meristem that were hypothesized to contribute to 

the stuntedness of the root. Excess membrane material was associated with these 

abnormalities, an indication of unregulated membrane trafficking in sac9 mutants. 

The possibility that a defective cytoskeleton was involved in the generation of the above 

mentioned cell wall aberrations was investigated in Chapter 3 where I visualized microtubules in 

the developing root of A. thaliana. Quantitative analysis by Discrete Fourier Transform of 

confocal images led to the conclusion that the orientation of cortical microtubules was not 

different in elongating but in differentiated root cells. This might have implications for the 

mechanical strength of the mutant shoot. The analysis of cortical microtubule distribution in the 

meristematic area was complicated by resolution limits imposed by light microscopy techniques. 

The cell wall aberrations seen in this area with transmission electron microscopy might be 

caused in part by disorganized microtubules, but at this point I cannot prove this hypothesis. 

Immunolocalization experiments for the actin cytoskeleton did not reveal any gross 

morphological differences (Appendix B). However, this statement is only based on qualitative 

analysis of confocal images. Quantitative analysis with morphometric software might lead to a 
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more differentiated conclusion as seen for the analysis of microtubule arrays. Unfortunately, 

appropriate commercial software for computational pattern recognition was not available. 

Phenotypic mutant analysis is a powerful tool to investigate gene function. However, it 

does not come without its drawbacks. One of the limitations in this study is the fact that the 

mutation in the SAC9 gene is constitutive, and the visible effects of the mutation are building up 

over time. For example, wild-type and sac9 seedlings are impossible to distinguish before day 

five post germination. This makes it difficult to decipher what the primary effect is and what 

possible downstream effects are. Compounding to this is the nature of the affected protein, i.e. 

SAC9 is not a structural protein but an enzyme involved in signaling. It is hardly surprising then 

that sac9 mutants display a pleiotropic phenotype affecting the shoot and root but to different 

degrees and at different developmental stages. Because signal transduction pathways are 

intertwined and more resemble networks than top-to-bottom cascades, the effects seen in a 

plant with defects in a phospholipid-modifying enzyme are equally diverse. The redundancy and 

overlapping functions of many genes involved in signaling provides a certain buffer capacity to 

the system. This makes it very challenging to establish cause-and-effect-relationships. 

As a complimentary approach, I analyzed the size and biochemical function of the 

putative phosphoinositide phosphatase SAC9 in Chapter 4. I showed that the soluble protein has 

an apparent molecular mass of 180 kDa, which is in agreement with its predicted mass. 

Functional assays revealed that a protein mixture immunoprecipitated with anti-SAC9-

antibodies can hydrolyze PI(4,5)P2 in vitro. Thus, SAC9 is most likely a phosphoinositide 

phosphatase and able to catalyze the hydrolysis of phosphate from its substrate, PI(4,5)P2. 

However, a disclaimer to this statement is warranted based on data presented in Chapter 4 and 

Appendix C. Therefore, further experiments are strongly recommended. 
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In this dissertation I have presented molecular and biochemical data proposing the 

biochemical function of SAC9, a unique protein in Arabidopsis thaliana. Detailed morphological 

investigations of cellular defects in the mutant helped to further understand the downstream 

functions of PI(4,5)P2, the in vivo lipid substrate of SAC9. These functions include involvement in 

membrane dynamics, cell wall deposition, and possibly the arrangement of cortical 

microtubules in differentiated root cells. More functions are envisioned but are beyond the 

scope of this dissertation. 
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APPENDIX B 

THE ACTIN CYTOSKELETON IN THE DEVELOPING ROOT OF ARABIDOPSIS THALIANA 

MATERIAL AND METHODS 

Arabidopsis thaliana seedlings (wild type, WT, and sac9) were grown on Phytagel-

solidified ½ MS plates as described in Chapter 3. Seven-day-old seedlings were used for 

immunolocalization experiments of plant actin. Whole seedlings were in situ fixed and 

immunostained for plant actin according to Sugimoto el al. (2000) with slight modifications. 

Slides with stained and mounted root tips were examined under the confocal microscope at the 

Fluorescence Microscopy Facility, University of Utah, Salt Lake City, UT. Confocal images were 

taken with the same settings as outlined in Chapter 3, Material and Methods, Microscopy 

acquisition. 

RESULTS AND CONCLUSIONS 

Immunolocalization experiments with anti-plant-actin-antibodies were successful and 

marked globular (G) and fibrillar (F) actin in both genotypes of A. thaliana roots. Examples of 

immunolocalized actin in different areas of wild-type and sac9 roots are given in Figure B-1. 

Actin localization was difficult to visualize in the meristematic zone due to the very small cell size 

(Fig. B-1, zones Ia, Ib). However, a gradual change along the growth axis was observed from 

uniform, dense, and mostly globular cytoplasmic actin, with a few short strands of fibrillar actin 

in the meristematic area, to mostly fibrillar actin in the periphery of elongating cells (Fig. B-1, 

zones IIb, III). 
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Fig. B-1 Immunolocalization of actin in the developing root of Arabidopsis thaliana. Cell 
differentiation patterns along the growth axis are exemplified with the longitudinal section of a 
resin-embedded wild-type (WT) root on the left side of the panel. In confocal images, actin was 
stained with anti-actin-antibodies (green), and nuclei were stained with DAPI (blue). Three 
different growth zones are presentedS: Ia, root cap cells and peripheral epidermis cells from the 
meristem; Ib, cytoplasmic epidermis cells from the meristem; IIa cytoplasmic epidermis cells 
from the zone of rapid cell elongation; IIb peripheral epidermis cells from the zone of rapid cell 
elongation; III peripheral epidermis cells from the zone of slow cell elongation. The position of 
cells from confocal images corresponds roughly with the position of cells in the resin-embedded 
root. Bar for resin-embedded root, 50 μm; bar for confocal images 20 μm 
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Visual inspection did not reveal any gross differences in the distribution pattern of actin 

between WT and sac9. However, to come to a significant conclusion, quantitative analysis of the 

data needed to be performed. This was initiated at the University of Utah, but the tested 

software did not lead to satisfactory results. This was mainly due to poor computational pattern 

recognition. It became clear that custom-written software was the key to actin quantification 

and analysis. 
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APPENDIX C 

ADDITIONAL RESULTS FOR CHAPTER 4: MALACHITE GREEN ASSAYS 

The Malachite Green Assay (MGA) was repeated with additional controls and performed in 

triplicates following manufacturer’s recommendations. 

 

 
Fig. C-1 Phosphate standard curve. The Malachite Green Assay covered a phosphate range of 
200-2000 pmol. The linear regression formula y=0.00002+0.037 was used to calculate the 
released phosphate amounts from tested samples 
 

 
Fig. C-2 Malachite Green Assay results: calculated Pi release. Sample 1: Buffer only, Sample 2: 
Buffer + lipids, Sample 3: PIP2 reconstituted in dH20, Sample 4: WT extract 11 in Buffer only, 
Sample 5: WT extract 11 in Buffer + lipids, Sample 6: dH20, Sample 7: NEM in dH20. All samples 
were run in triplicates. Bars indicate SD 
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Table C-1 Raw data for Figure C-2. Absorbance (A) readings at 630 nm and calculated release of 
inorganic phosphate (Pi) from additional Malachite Green Assay 

# Sample A630 
Rep 1 

A630 
Rep 2 

A630 
mean 

A630 
blanked 

Pi*2 
blanked 

Pi*3 
x1.6 

Pi*4 
x2 

Pi 
Mean 

Pi 
Stdev  

1 Buffer 0.052 0.047 0.050 0.005 25 40 80 32 42 

2 Buffer 0.046 0.046 0.046 0.001 5 8 16 
  

3 Buffer 0.045 0.045 0.045 0.000 0 0 0 
  

4 Buffer+lipids 0.059 0.051 0.055 0.010 50 80 160 128 28 

5 Buffer+lipids 0.056 0.048 0.052 0.007 35 56 112 
  

6 Buffer+lipids 0.051 0.053 0.052 0.007 35 56 112 
  

7 PIP2 0.051 0.051 0.051 0.006 30 48 96 91 9 

8 PIP2 0.051 0.051 0.051 0.006 30 48 96 
  

9 PIP2 0.049 0.050 0.050 0.005 25 40 80 
  

10 WT11*1 in Buffer 0.306 0.331 0.319 0.274 1370 2192 4384 4160 204 

11 WT11 in Buffer 0.285 0.303 0.294 0.249 1245 1992 3984 
  

12 WT11 in Buffer 0.314 0.291 0.302 0.257 1285 2056 4112 
  

13 WT11 in Buffer+lipids 0.344 0.333 0.339 0.294 1470 2352 4704 4859 180 

14 WT11 in Buffer+lipids 0.364 0.359 0.361 0.316 1580 2528 5056 
  

15 WT11 in Buffer+lipids 0.348 0.343 0.346 0.301 1505 2408 4816 
  

16 dH20 0.046 0.046 0.046 0.001 5 8 16 21 24 

17 dH20 0.045 0.046 0.045 0.000 0 0 0 
  

18 dH20 0.046 0.050 0.048 0.003 15 24 48 
  

19 NEM in dH20 0.046 0.046 0.046 0.001 5 8 16 11 9 

20 NEM in dH20 0.045 0.046 0.046 0.001 5 8 16 
  

21 NEM in dH20 0.044 0.045 0.045 0.000 0 0 0 
  

 
*1 WT11, WT extract number 11 
*2 Pi blanked, calculated Pi amount based on Pi-standard curve 
*3 Pi x 1.6, calculated Pi amount multiplied by 1.6 due to dilution with NEM as a stopping reagent 
*4 Pi x 2, calculated Pi amount multiplied by 2 due to dilution factor of 2 
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Table C-2 Raw data for Figures 4-12 and 4-13: Day 1. Absorbance (A) readings at 630 nm and 
calculated release of inorganic phosphate (Pi) from samples run on Day 1 

No 
 

Name 
 

A630 
Rep1 

A630 
Rep2 

A630 
mean 

A630 
blanked  

Pi 
blanked 

Pi 
x 1.6 

Pi 
x 2 

Net 
release 

1 Lipids in buffer 0.052 n/a n/a -0.002 0 0 n/a - 

2 WT extract in buffer 0.377 n/a n/a 0.323 2368 3789 n/a - 

11 WT extract in buffer + lipids 0.429 n/a n/a 0.375 2927 4683 n/a 895 

3 IP_SAC9-515_L 0.156 n/a n/a 0.102 626 1001 n/a - 

7 IP_SAC9-515_L + lipids 0.205 n/a n/a 0.151 923 1477 n/a 476 

4 IP_SAC9-515_H 0.177 n/a n/a 0.123 747 1195 n/a - 

8 IP_SAC9-515_H + lipids 0.220 n/a n/a 0.166 1024 1639 n/a 444 

5 IP_SAC9-940_L 0.261 n/a n/a 0.207 1325 2120 n/a - 

9 IP_SAC9-940_L + lipids 0.378 n/a n/a 0.324 2378 3805 n/a 1685 

6 IP_SAC9-940_H 0.275 n/a n/a 0.221 1436 2298 n/a - 

10 IP_SAC9-940_H + lipids 0.311 n/a n/a 0.257 1740 2784 n/a 486 

 

Table C-3 Raw data for Figures 4-12 and 4-13: Day 2. Absorbance (A) readings at 630 nm and 
calculated release of inorganic phosphate (Pi) from samples run on Day 2 

No 
 

Name 
 

A630 
Rep1 

A630 
Rep2 

A630 
mean 

A630 
blanked 

Pi 
blanked 

Pi 
x 1.6 

Pi 
x 2 

Net 
release 

1 Lipids in buffer 0.051 0.049 0.050 0.003 200 320 639 - 

2 WT extract in buffer 0.258 0.267 0.263 0.216 1189 1902 3804 - 

11 WT extract in buffer + lipids 0.299 0.302 0.301 0.254 1468 2348 4696 892 

3 IP_SAC9-515_L 0.096 0.099 0.098 0.051 337 539 1078 - 

7 IP_SAC9-515_L + lipids 0.119 0.122 0.121 0.074 421 673 1346 268 

4 IP_SAC9-515_H 0.133 0.136 0.135 0.088 477 763 1527 - 

8 IP_SAC9-515_H + lipids 0.134 0.138 0.136 0.089 483 774 1547 20 

5 IP_SAC9-940_L 0.172 0.173 0.173 0.126 652 1043 2086 - 

9 IP_SAC9-940_L + lipids 0.183 0.184 0.184 0.137 708 1133 2266 180 

6 IP_SAC9-940_H 0.161 0.164 0.163 0.116 603 965 1929 - 

10 IP_SAC9-940_H + lipids 0.194 0.196 0.195 0.148 770 1232 2463 534 
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Table C-4 Raw data for Figures 4-12 and 4-13: Day 5. Absorbance (A) readings at 630 nm and 
calculated release of inorganic phosphate (Pi) from samples run on Day 5 

No 
 

Name 
 

A630 
Rep1 

A630 
Rep2 

A630 
mean 

A630 
blanked 

Pi 
blanked 

Pi 
x 1.6 

Pi 
x 2 

Net 
release 

1 Lipids in buffer 0.053 0.052 0.053 0.008 175 280 560 - 

2 WT extract in buffer 0.221 0.184 0.203 0.158 1051 1682 3365 - 

11 WT extract in buffer + lipids 0.254 0.201 0.228 0.183 1244 1990 3981 616 

3 IP_SAC9-515_L 0.111 0.111 0.111 0.066 460 736 1472 - 

7 IP_SAC9-515_L + lipids 0.138 0.136 0.137 0.092 610 976 1952 480 

4 IP_SAC9-515_H 0.127 0.113 0.120 0.075 510 816 1633 - 

8 IP_SAC9-515_H + lipids 0.147 0.141 0.144 0.099 653 1044 2089 456 

5 IP_SAC9-940_L 0.212 0.199 0.206 0.161 1074 1718 3436 - 

9 IP_SAC9-940_L + lipids 0.222 0.19 0.206 0.161 1078 1724 3448 12 

6 IP_SAC9-940_H 0.196 0.196 0.196 0.151 1004 1606 3211 - 

10 IP_SAC9-940_H + lipids 0.216 0.198 0.207 0.162 1085 1736 3472 261 

 

Table C-5 Raw data for Figures 4-12 and 4-13: Days 1-5. Released inorganic phosphate (Pi ) in 
pmol/25ul from the same samples obtained with the Malachite Green Assay in three 
independent runs (Day 1, 2, and 5) 

No 
 

Name 
 

Run 1 
(Day 1) 

Run 2 
(Day 2) 

Run 3 
(Day 5) 

Mean 
 

SD 
 

Net 
release 

1 Lipid in buffer 0 639 560 400 349 - 

2 WT extract in buffer 3789 3804 3365 3652 249 - 

3 WT extract in buffer + lipids 4683 4696 3981 4454 409 801 

4 IP_ SAC9-515_L 1001 1078 1472 1184 253 - 

5 IP_SAC9-515_L + lipid 1477 1346 1952 1592 319 408 

6 IP_SAC9-515_H 1195 1527 1633 1452 228 - 

7 IP_SAC9-515_H + lipid 1639 1547 2089 1758 290 307 

8 IP_SAC9-940_L 2120 2086 3436 2547 770 - 

9 IP_SAC9-940_L + lipid 3805 2266 3448 3173 806 626 

10 IP_SAC9-940_H 2298 1929 3211 2479 660 - 

11 IP_SAC9-940_H + lipid 2784 2463 3472 2907 516 428 
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Table C-6 Raw data for Figures 4-14 and 4-15: pH 5. Absorbance (A) readings at 630 nm and 
calculated release of inorganic phosphate (Pi) from samples immunoprecipitated from WT 
extracts and further separated with a 30-kDa-filter. The Malachite Green Assay was performed 
under slightly acidic conditions (pH 5) 

No 
 

Name 
 

A630 
Rep1 

A630 
Rep2 

A630 
mean 

A630 
blanked 

Pi 
blanked 

Pi 
x 1.6 

Pi 
x 2 

Pi 
net 

1 Lipids in buffer 0.050 0.054 0.052 0.006 156 249 499 - 

2 WT extract in buffer 0.353 0.357 0.355 0.309 2047 3275 6550 - 

3 WT extract in buffer + lipids 0.392 0.399 0.396 0.350 2397 3835 7670 1120 

4 IP-SAC9-30kDa - lipids 0.065 0.063 0.064 0.018 206 330 661 - 

7 IP-SAC9-30kDa + lipids 0.079 0.080 0.080 0.034 275 439 879 218 

5 IP-SAC9+30kDa - lipids 0.092 0.078 0.085 0.039 300 479 959 - 

8 IP-SAC9+30kDa + lipids 0.104 0.102 0.103 0.057 384 615 1230 271 

6 IP-prebleed-30kDa - lipids 0.100 0.114 0.107 0.061 404 646 1292 - 

9 IP-prebleed-30kDa + lipids 0.113 0.107 0.110 0.064 419 670 1339 47 

 

Table C-7 Raw data for Figures 4-14 and 4-15: pH 7. Absorbance (A) readings at 630 nm and 
calculated release of inorganic phosphate (Pi) from samples immunoprecipitated from WT 
extracts and further separated with a 30-kDa-filter. The Malachite Green Assay was performed 
under neutral conditions (pH 7) 

No 
 

Name 
 

A630 
Rep1 

A630 
Rep2 

A630 
mean 

A630 
blanked 

Pi 
blanked 

Pi 
x 1.6 

Pi 
x 2 

Pi 
net 

1 Lipids in buffer 0.050 0.050 0.050 0.006 94 150 300 - 

2 WT extract in buffer 0.355 0.349 0.352 0.308 1615 2584 5168 - 

3 WT extract in buffer + lipids 0.418 0.408 0.413 0.369 1908 3054 6107 939 

4 IP-SAC9-30kDa - lipids 0.058 0.059 0.059 0.015 138 221 442 - 

7 IP-SAC9-30kDa + lipids 0.072 0.073 0.073 0.029 211 338 675 233 

5 IP-SAC9+30kDa - lipids 0.087 0.082 0.085 0.041 273 437 875 - 

8 IP-SAC9+30kDa + lipids 0.096 0.094 0.095 0.051 328 524 1049 174 

6 IP-prebleed-30kDa - lipids 0.114 0.085 0.100 0.056 351 561 1123 - 

9 IP-prebleed-30kDa + lipids 0.112 0.107 0.110 0.066 402 644 1288 165 
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APPENDIX D 

ADDITIONAL RESULTS FOR CHAPTER 4: RECOMBINANT EXPRESSION REPORT FROM GENSCRIPT 
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