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Abstract

Assessing and Enabling Independent Component Analysis as a Hyperspectral Unmixing

Approach

by

Matthew R. Stites, Doctor of Philosophy

Utah State University, 2012

Major Professor: Dr. Jacob H. Gunther
Department: Electrical and Computer Engineering

As a result of its capacity for material discrimination, hyperspectral imaging has been

utilized for applications ranging from mining to agriculture to planetary exploration. One of

the most common methods of exploiting hyperspectral images is spectral unmixing, which is

used to discriminate and locate the various types of materials that are present in the scene.

When this processing is done without the aid of a reference library of material spectra,

the problem is called blind or unsupervised spectral unmixing. Independent component

analysis (ICA) is a blind source separation approach that operates by finding outputs, called

independent components, that are statistically independent. ICA has been applied to the

unsupervised spectral unmixing problem, producing intriguing, if somewhat unsatisfying

results. This dissatisfaction stems from the fact that independent components are subject

to a scale ambiguity which must be resolved before they can be used effectively in the

context of the spectral unmixing problem.

In this dissertation, ICA is explored as a spectral unmixing approach. Various process-

ing steps that are common in many ICA algorithms are examined to assess their impact

on spectral unmixing results. Synthetically-generated but physically-realistic data are used

to allow the assessment to be quantitative rather than qualitative only. Additionally, two
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algorithms, class-based abundance rescaling (CBAR) and extended class-based abundance

rescaling (CBAR-X), are introduced to enable accurate rescaling of independent compo-

nents. Experimental results demonstrate the improved rescaling accuracy provided by the

CBAR and CBAR-X algorithms, as well as the general viability of ICA as a spectral un-

mixing approach.

(123 pages)
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Public Abstract

Assessing and Enabling Independent Component Analysis as a Hyperspectral Unmixing

Approach

by

Matthew R. Stites, Doctor of Philosophy

Utah State University, 2012

Major Professor: Dr. Jacob H. Gunther
Department: Electrical and Computer Engineering

Perhaps the most common way to distinguish materials is by color. For example, this

is typically how one determines, from some distance, whether a material on the ground is

grass (green), soil (brown), or asphalt (black). To accomplish this, most digital cameras

(along with the human eye) produce images that are comprised of three different colors,

called spectral bands: red, green, and blue. The combination of these bands enables material

discrimination. Working in the same way, but on a much larger scale, hyperspectral imaging

sensors produce images that are comprised of hundreds of spectral bands. This combination

of bands enables more accurate and sensitive discrimination of the materials in a scene.

One of the most common ways to make hyperspectral images useful is to perform spec-

tral unmixing. This process can determine what types of materials are in the image as well

as where those materials are located within the image. When this is done without access

to some sort of reference library of material spectra (i.e. material colors), the processing is

called blind or unsupervised spectral unmixing. One of many methods for performing blind

spectral unmixing is independent component analysis (ICA). ICA is an unmixing approach

that produces outputs, called independent components, that are statistically independent
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from one another. One problem associated with ICA in the context of the spectral unmix-

ing problem is scale ambiguity. The problem arises because multiplication by a constant

value does not affect the independence of two random variables. Scale ambiguity hinders

interpretation of spectral unmixing results by preventing comparison of different materials

(since they may be scaled differently).

In this dissertation, ICA is examined as a spectral unmixing approach. Various pro-

cessing steps that are common in many ICA algorithms are assessed to determine their

impact on spectral unmxing results. Synthetically-generated, but physically-realistic data

are used to allow the assessment to be quantitative rather than qualitative only. Addition-

ally, two algorithms, class-based abundance rescaling (CBAR) and extended class-based

abundance rescaling (CBAR-X), are introduced to enable accurate rescaling of independent

components. Experimental results demonstrate the improved rescaling accuracy provided

by the CBAR and CBAR-X algorithms, as well as the general viability of ICA as a spectral

unmixing approach.
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Chapter 1

Introduction and Motivation

Hyperspectral imaging is a passive remote sensing technique which collects images in

a large number of electromagnetic wavelengths, referred to as spectral bands. An intuitive

way of visualizing hyperspectral images is as a stack of hundreds of images, producing a

three-dimensional “cube” of data. Two of the cube dimensions represent the usual spatial

dimensions encountered in most imaging methods. The third dimension represents the

spectral content. Thus, for every pixel in a hyperspectral image a spectral profile—or

simply spectrum—is obtained. This concept is illustrated in Fig. 1.1.

A distinguishing feature of hyperspectral images is their large quantity of spectral

bands which typically number in the hundreds. These bands tend to be narrow (∼10 nm)

and closely spaced, providing a high-resolution spectrum for each pixel in an image. This

is important because the way in which matter reflects or emits electromagnetic radiation is

dependent on, among other things, its chemical and physical composition. Thus, a spectral

profile can be indicative of a specific material. This makes hyperspectral images especially

useful for applications that require discrimination of the various materials in a scene.

Utilization of hyperspectral image data can be found in a broad variety of disciplines.

Hyperspectral data have been employed for geological characterization of the surface of the

Earth [1–4] as well as the surface of Mars [5,6]. They are also used to assist in “precision-crop

management” [7–9] and ecological management efforts [10–12]. Targets such as land mines

and camouflage nets can be located using hyperspectral image data [13, 14]. Another field

employing hyperspectral imaging on a slightly different scale is food safety and inspection

[15,16].

One of the most common methods of extracting information from hyperspectral images

is hyperspectral unmixing, more frequently called spectral unmixing. Although it can be
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Fig. 1.1: The concept of a hyperspectral data cube.

performed in a variety of ways, spectral unmixing ultimately produces two fundamental re-

sults. The first is a set of spectra, referred to as endmembers. An endmember is a spectrum

that is representative of a class of materials in a scene. How endmembers are defined (as-

sociated with materials) depends on the data and the application. Material classes can be

broad and limited to those materials that appear frequently in the scene, resulting in a short

list of endmembers, such as vegetation, soil, rock, and shade. Alternatively, a narrow, one-

to-one association can be made resulting in an endmember for each and every discernible

material in the scene. Such an association is assumed in the remainder of this document.

Because of this, the terms endmember and material are used somewhat interchangeably. It

is important to remember, however, that in other applications endmembers and materials

are not necessarily the same thing.

The second spectral unmixing result is a set of images called abundance maps. An

abundance map is produced for each endmember in the scene, and indicates the degree to

which that endmember occupies each pixel. In order to be physically meaningful, abundance
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map values are typically required to fall between zero (endmember not present the pixel)

and one (endmember fills the pixel).

There are two general approaches to spectral unmixing. The first is to unmix the data

through some process of comparison with a known library of reference spectra. This is

referred to as supervised spectral unmixing. The second approach, known as unsupervised

(or blind) spectral unmixing, requires the data to be unmixed without any access to reference

spectra. The focus of this dissertation is on the unsupervised problem. There are a number

of motivations for taking an unsupervised approach. First, and perhaps most obvious, is

that access to a spectral library may not be available. Second, a spectral library may be

incomplete, leading to erroneous or misleading results. Third, the type of measurement

made by a hyperspectral sensor to produce a hyperspectral image may be different from

the type of measurement made to produce a reference spectrum. This necessitates some

type of additional processing before any type of comparison or matching can be performed.

Finally, spectral libraries tend to contain spectra of ideal or pristine materials obtained

under laboratory conditions. These may not be representative of real-world materials and/or

may not adequately describe the spectral variability of materials observed in the real world

which can result from surface contamination, oxidation, and bleaching, among other things

[17].

This dissertation explores the blind hyperspectral unmixing problem, focusing specif-

ically on one proposed unmixing approach called independent component analysis (ICA).

This exploration includes both assessing and enabling ICA. A quantitative assessment is

performed to determine whether ICA can be reasonably applied to the spectral unmixing

problem. The enabling component of this work consists of developing algorithms to over-

come some of the common criticisms levied against ICA in the context of spectral unmixing.

The specific contributions of this dissertation include:

• A thorough and quantitative assessment of the impact of dimension reduction using

principal component analysis (PCA) on spectral unmixing results (Chapter 4);
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• A thorough and quantitative assessment of the impact of orthogonalization on spectral

unmixing results (Chapter 4);

• The identification of a “splitting” behavior frequently exhibited by ICA wherein dis-

tinct regions from a single abundance map appear in separate ICA outputs (Chapter

4);

• A quantitative assessment of ICA as a hyperspectral unmixing approach that considers

materials with broad spatial coverage, as well as those with limited spatial coverage

(Chapter 4);

• The development and assessment of the class-based abundance rescaling (CBAR)

algorithm which is used to mitigate the problem of scale ambiguity associated with

ICA and significantly out-performs existing approaches (Chapter 5);

• The development and assessment of the extended CBAR (CBAR-X) algorithm which

is capable of retaining abundance information that would be lost by other rescaling

methods (Chapter 6).

All of these results combine to show that ICA—aided by rescaling algorithms—can do a

reasonably good job of unmixing those materials in a scene with limited spatial coverage.

This behavior is complementary to most existing spectral unmixing approaches which are

designed to extract the dominant materials.

The remainder of this dissertation is outlined as follows. First, two important models

are presented in Chapter 2. These models provide valuable insight into spectral unmixing al-

gorithms and also the relationship between material properties and measured hyperspectral

data. Additionally, many of the important terms and quantities associated with hyper-

spectral imaging are defined. Chapter 3 provides a survey of blind hyperspectral unmixing

approaches. This survey does not cover every single approach in the published literature

since such a survey would be unbearably long and almost immediately out of date. Instead,

various types of existing unmixing approaches are organized and characterized based on

the general assumptions underlying them, providing a “map” of unmixing approaches. In
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Chapters 4–6 the dissertation focus is narrowed to the more specific problem of using ICA as

a spectral unmixing approach. These three chapters are presented as three independently

publishable papers, resulting in some minor repetition of content. Chapter 4 introduces

ICA and some of the processing steps common to many ICA algorithms. A number of ex-

periments are described which allow for quantification of the effect of ICA processing steps

on unmixing performance. The problem of rescaling ICA results so that they are physically

meaningful as abundances is addressed in Chapters 5 and 6. A rescaling algorithm, called

class-based abundance rescaling (CBAR), is developed in Chapter 5 and compared against

existing approaches. This algorithm is extended in Chapter 6 to address certain circum-

stances where abundance information can be lost during CBAR rescaling. Finally, Chapter

7 provides some summarizing remarks and potential directions for future research.
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[5] S. Moussaoui, H. Hauksdóttir, F. Schmidt, C. Jutten, J. Chanussot, D. Brie, S. Douté,
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Chapter 2

Models

Before describing spectral unmixing approaches, it is informative to present the data

models that are assumed by these approaches. First, a model that describes sensor-reaching

radiance is introduced. This model describes the relationship between observed endmember

spectra and the underlying material properties that are often of interest. This makes it

especially useful in identifying endmember spectra. The linear mixing model (LMM)—

which motivates almost every spectral unmixing algorithm—is then presented. It describes

how multiple endmembers located in a single pixel combine to produce the observed data

for that pixel.

2.1 Model of Radiance Reaching the Sensor

In this section a formulation for the spectral radiance (a term for the quantity that is

measured by hyperspectral sensors) arriving at the sensor is presented. This presentation

summarizes a more thorough development by Schott. The reader is referred to his text [1]

or those by Wolfe [2, 3] for further details.

There are a number of terms that need to be defined prior to developing a radiance

model (including radiance). First are those that deal with scene illumination. These terms

originate in radiometry, the field of measuring radiation. The rate of flow of light energy

is called radiant flux or power and is given units of watts (W). The power incident onto

a surface, normalized by the surface area, is called irradiance and has units of watts per

square meter (W/m2). Similarly, the power exiting a surface, normalized by the surface area

is called exitance and also has units of watts per square meter (W/m2). Intensity describes

the power from a point source into a particular direction. It is defined as power, normalized

by solid angle, and has units of watts per steradian (W/sr). Solid angle, with units of
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steradian, is a two-dimensional analog of angle and can be thought of as the projection of

an area onto the unit sphere. The most useful of radiometric terms is radiance. It is defined

as the power, normalized both by surface area and solid angle, and has units of watts per

square meter per steradian (W/m2/sr). Radiance is useful because it can describe power

per unit solid angle from, through, or onto a surface. A summary of these quantities as well

as the symbols commonly used to represent them is given in Table 2.1.

Normalizing any of these quantities by the wavelength of the light yields a spectral,

or wavelength dependent, quantity. For example, normalizing radiance by wavelength

yields spectral radiance, with units of watts per square meter per micron per steradian

(W/m2/μm/sr). As stated earlier, spectral radiance is the quantity that is measured by

hyperspectral sensors. A subscript λ is sometimes attached to a spectral quantity to un-

derscore its wavelength dependence.

The remaining definitions needed to construct a radiance model center around the

interactions of radiation and matter. All matter emits electromagnetic radiation. This

radiation is associated with the energy inherent in matter due to temperature and is called

thermal or self-emitted radiation. It was shown by Planck that the spectral exitance of an

ideal emitter, called a blackbody, is given by

MBB
λ = MBB

λ (T ) =
2πhc2

λ5
(
e

hc
λkT − 1

) , (2.1)

where h is the Planck constant (6.6256 × 10−34 joules · s), c is the speed of light in a

vacuum (2.9979 × 108 m/s), k is the Boltzmann gas constant (1.38 × 10−23 joules/K), λ

Table 2.1: Common radiometric quantities.

Name Symbol Units

Radiant flux (power) Φ W

Irradiance E W/m2

Exitance M W/m2

Intensity I W/sr

Radiance L W/m2/sr
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is the wavelength in microns, and T is the temperature in Kelvin. The formula in (2.1) is

often denoted B(λ, T ) or Bλ(T ) and referred to as the blackbody function. The dependence

on wavelength can be eliminated by integrating over wavelength, so that the exitance of a

blackbody is given by

MBB = MBB(T ) =

∫
λ

2πhc2

λ5
(
e

hc
λkT − 1

)dλ. (2.2)

A fundamental quantity of matter that is related to self-emitted radiation is emissivity

which describes how effectively an object emits radiation. It is defined as the ratio of

an object’s exitance, M(T ), to the exitance of an ideal emitter at the same temperature,

MBB(T ), i.e.,

ε =
M(T )

MBB(T )
. (2.3)

The definition of spectral emissivity, is identical with spectral exitances in place of exitances,

ελ =
Mλ(T )

MBB
λ (T )

. (2.4)

There are three other fundamental quantities that describe how matter interacts with

external or incident radiation. As with the quantities described above, each of these can

be defined with or without a dependence on wavelength. For brevity, formal definitions are

presented only for the case not dependent on wavelength. The associated spectral definition

follows the by replacing the terms in each formula with their spectral counterparts, as shown

for emissivity in (2.3) and (2.4).

Transmittance describes how effectively radiation propagates through a material and

is defined as the ratio of the exitance on the back of an object, Mback, to the irradiance on

the front, Efront, i.e.,

τ =
Mback

Efront
. (2.5)

Reflectance describes how effectively radiation is turned back into the region from whence

it came and is defined as the ratio of the exitance on the front of an object, Mfront, to the
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irradiance on the front, Efront, i.e.,

ρ =
Mfront

Efront
. (2.6)

Absorptance describes the ability of a material to convert incident radiation into another

form of energy, such as thermal energy. It is defined as the ratio of the power per unit area

converted to another form of energy, Mconverted, to the irradiance on the front, Efront, i.e.,

α =
Mconverted

Efront
. (2.7)

Each of these quantities is unitless and ranges from zero to one. Additionally, the conser-

vation of energy requires that all incident radiation be transmitted, reflected, or absorbed,

so that

Mback +Mfront +Mconverted = Efront, (2.8)

and

τ + ρ+ α = 1. (2.9)

Emissivity is associated with the internal energy of matter, while transmittance, re-

flectance, and absorptance are associated with external energy incident upon matter. But,

these quantities can be related, at least when an object is in thermodynamic equilibrium.

In that case emissivity is equal to absorption [4], which yields the relationships

α = ε, (2.10)

and

τ + ρ+ ε = 1. (2.11)

The concepts of illumination, radiometry, and the interaction of radiation with matter

described above are sufficient to develop a model for the spectral radiance that reaches the

sensor. This is done by considering individual radiance paths, i.e., all sources of radiation

and all of the paths by which that radiation reaches the sensor. The total spectral radiance
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reaching the sensor is the summation of all of these paths. It can be useful to group paths

by source. The two most common sources are the sun (assuming a daytime scene) and

thermal emission from the objects in the scene. Thus, the spectral radiance reaching the

sensor can be formulated as

Lsensor = LS + LT + Lother, (2.12)

where LS is total spectral radiance from solar radiance paths, LT from thermal radiance

paths, and Lother the contribution from radiance paths associated with other sources. Notice

that although spectral radiance is being described, the λ subscript has been dropped. This

will be the case for the remainder of this development to simplify notation. Only solar and

thermal paths are considered here. They tend to be the most ubiquitous and provide the

most significant contribution to the total radiance.

The specific solar and thermal paths examined here are shown in Fig. 2.1. The path

S1 is called solar upwelling radiance. It is the solar radiation that is scattered by the

atmosphere into the sensor without ever reaching the ground (assuming the ground to be

the object or surface of interest). The path S2 is called reflected solar downwelling radiance.

This is the solar radiation that is scattered by the atmosphere onto the ground, which is

subsequently reflected back to the sensor. The last path, S3, is the most obvious—reflected

solar radiance. This is the direct solar radiation that is reflected by the ground to the

sensor. The three thermal paths T1, T2, and T3 are analogous to the three solar paths with

the source of radiation being self-emitted radiation rather than solar radiation. So, T1 and

T2 arise from the energy of the atmosphere being emitted into the sensor or emitted onto

the ground and then reflected into the sensor, and T3 is the energy emitted by the ground

that reaches the sensor.

There are a number of assumptions that must be made before developing specific

formulations for each of the radiance paths in Fig. 2.1. First, and foremost, it is assumed

that the six paths shown are the only significant paths in the scene. Perhaps the most

glaring omission here is the contribution of adjacency paths. These are paths that result
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Fig. 2.1: Significant radiance paths used to calculate the radiance reaching the sensor. (a)
Solar radiance paths. (b) Thermal radiance paths.

when objects in the scene reflect solar energy and emit thermal energy onto the ground.

This energy can then be reflected from the ground to the sensor. The contribution from

adjacency paths may or may not be significant, depending on the geometry of the scene. The

reason these paths are omitted is because they do not lend themselves to a general model.

The contribution of these paths can vary greatly from scene to scene and from pixel to pixel

within a scene. If intimate knowledge of scene geometry, i.e., size, shape, orientation, and

location of every object in the scene, is available, then that knowledge can be utilized to

determine the contribution of adjacency paths. But, that information is seldom available.

Similarly, without knowledge of scene geometry it is difficult to determine what fraction of

the sky is obscured by objects in the scene for a given pixel. So, again because of a lack of

scene knowledge, a second assumption is that every pixel has a full view of the sky. This

assumption precludes the presence of clouds in the scene. It also implies that every pixel

lies in the same plane, i.e., the ground is flat. A third assumption is that the composition

of the atmosphere is constant across the scene. Depending on the size of the scene, this

tends to be a safe assumption. Similarly, it is assumed that for a given pixel the area on

the ground imaged by that pixel is homogeneous in composition and temperature.

A final, simplifying assumption has to do with the reflectance (or emittance) of the

materials in the scene. When reflectance was defined in (2.6), it was done by calculating

the reflected exitance of the object, which does not depend on direction. But reflectance
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is a directional property (consider shining a flashlight at a mirror). The observed energy

reflected by a material depends both on the angle of incident illumination as well as the angle

of observation. There are a number of ways to characterize this behavior in laboratory and

field measurements. To avoid the complexity associated with this directional variability,

the reflectance is assumed to be uniform in all directions, i.e., Lambertian. Under this

assumption, the orientation of the material with respect to the illumination source and

sensor does not matter. For many natural materials this is a realistic assumption, as long

as glancing angles are avoided.

With these simplifications and assumptions in place, the equations for each of the

radiance paths are fairly straight forward. The equations for solar radiance paths are given

in (2.13)–(2.16).

LS1 = LuS
(2.13)

LS2 = EdSρgτ2 (2.14)

LS3 = ES cos στ1ρgτ2 (2.15)

LS = (ES cos στ1 + EdS ) ρgτ2 + LuS
(2.16)

The spectral radiance of path S1 is defined in (2.13) simply to be the upwelling solar

radiance, LuS
, a term that is dependent on solar irradiance and atmospheric transmission

and scattering properties. The reflected solar downwelling radiance of path S2 is defined

in (2.14). The downwelling solar irradiance is denoted by EdS and, like the solar upwelling

radiance, depends on both the solar irradiance and atmospheric transmission and scattering

properties. The term τ2 denotes the atmospheric transmittance between the ground and

the sensor and depends on the composition of the atmosphere. The remaining term in this

equation, ρg, is the ground reflectance normalized based on the assumption that the ground

reflects uniformly in all directions. The final solar path, S3, is represented in (2.15). The

three new terms in this equation are ES , the solar irradiance at the top of the atmosphere,

σ, the angle of solar declination from zenith, and τ1, the transmittance of the atmosphere
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from the top of the atmosphere to the ground. These results are combined in (2.16), giving

a formula for the total spectral radiance arriving at the sensor due to the sun.

The equations for the thermal paths T1, T2, and T3, are almost identical to those for

the solar paths and are given in (2.17)–(2.19).

LT1 = LuT
(2.17)

LT2 = EdT ρgτ2 (2.18)

LT3 = B(Tg)εgτ2 (2.19)

LT = [B(Tg) + (EdT −B(Tg)) ρg] τ2 + LuT
(2.20)

The solar upwelling radiance and downwelling irradiance terms are replaced by their thermal

emission analogs, LuT
and EdT , and the solar irradiance is replaced by the exitance of

a blackbody at the temperature of the ground, Tg. Notice that this term is multiplied

by the emissivity of the ground rather than the reflectance, which was the case for the

corresponding solar path. Using the relationship ε = 1− ρ for an opaque object, i.e., τ = 0,

the combined spectral radiance reaching the sensor from self-emission can be written in

terms of ρg as in (2.20).

The equations for total solar radiance and and total self-emitted radiance can be added

to calculate the total spectral radiance reaching the sensor. But, in most cases this is un-

necessary. Figure 2.2 shows the spectral transmittance of the atmosphere from the ground

to a sensor at an elevation of 100 km. This was calculated using the MODTRAN atmo-

spheric modeling code [5]. Displayed along the top of the figure is a common partitioning

of this region of the electromagnetic spectrum. The acronyms for the four divisions stand

for, from left to right, visible/near infrared (VNIR), short-wave infrared (SWIR), mid-wave

infrared (MWIR), and long-wave infrared (LWIR). The two shortest wavelength regions are

often grouped together as VNIR/SWIR. Each of these partitions contains at least one spec-

tral region where the atmosphere is sufficiently transparent to collect hyperspectral data.

Hyperspectral sensors are typically designed to collect data in only one of these three di-
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visions (VNIR/SWIR, MWIR, or LWIR). In the VNIR/SWIR wavelengths the magnitude

of solar radiance is so much larger than the magnitude of self-emitted radiance that the

self-emitted radiance paths can be ignored for all but the most precise of applications. In

the LWIR wavelengths, just the opposite is true. So, for VNIR/SWIR, L ≈ LS and for

LWIR, L ≈ LT . It is only in the MWIR region where the magnitudes of solar radiance and

self-emitted radiance are comparable that all of the radiance paths must be included.

2.2 Linear Mixing Model

The model of radiance reaching the sensor developed in the previous section describes

how to model a “pure” endmember. It does not, however describe endmember mixing.

For this, the linear mixing model (LMM) is most frequently used. This model treats an

observed mixed pixel as a linear combination of the constituent endmembers in the pixel.

The weights of the linear combination are the fractional area of the pixel occupied by each

endmember [6]. The validity of this model depends on the nature of the distribution of the

materials within a pixel. If the distribution is such that radiation is most likely to interact

with only one of the materials on its way to the sensor, i.e., the materials in a scene comprise

a macroscopic mixture and are expressly separated one from another, then the linear model

tends to be accurate [7, 8].

LWIRMWIRSWIRVNIR

Fig. 2.2: Spectral transmittance of the atmosphere.
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Representing spectra as column vectors, the linear mixing model is formulated as

x(t) =
P∑

p=1

ap(t)mp + n(t), (2.21)

where x(t) is the measured spectrum of pixel t, ap(t) is the fractional abundance of endmem-

ber p in pixel t, mp is the spectrum associated with endmember p, and P is the number of

endmembers in the scene. The last term, n(t), is an additive noise term that is frequently—

but not necessarily—included in the model. The dimensions of both x(t) and mp are K×1,

where K is the number of spectral bands collected by the sensor. For simplicity, a single

index, t is used to indicate the spatial location of a pixel within the image, e.g., using

a raster-scan ordering. So, for a hyperspectral cube with spatial dimensions of M × N ,

t ∈ {1, 2, . . . , T = MN}.
To ensure the abundances are physically meaningful, the LMM almost always includes

two constraints. The nonnegativity constraint given by

ap(t) ≥ 0 ∀ p, t, (2.22)

prevents endmembers from filling a negative area of a pixel. The additivity constraint,

P∑
p=1

ap(t) = 1 ∀ t, (2.23)

requires the combination of endmembers in a pixel to fill nothing more or less than the area

of one pixel.

Equation (2.21) can be rewritten by assembling the individual endmember spectra into

an endmember matrix, M, and by stacking the abundance values into an abundance vector,

a, yielding

x(t) = Ma(t) + n(t). (2.24)
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Similarly, the entire data cube can be represented by assembling the pixel vectors into

matrices, so that

X = MA+N. (2.25)

The two models presented in this chapter are sufficient to explore most hyperspectral

unmixing approaches. The linear mixing model is used by the vast majority of unmixing

algorithms to describe the relationship between endmember spectra and observed data. The

sensor-reaching radiance model can be used to describe the relationship between library

spectra, environmental conditions, and endmember spectra. With this background, the

next chapter explores spectral unmixing algorithms in more detail.
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Chapter 3

Survey of Spectral Unmixing Approaches

The spectral unmixing problem can be partitioned into three distinct steps or oper-

ations. These operations are dimension reduction, endmember extraction, and inversion.

Although dimension reduction is a common unmixing step—typically the first—it is not

always employed and might be optional in some situations. In contrast with dimension

reduction, some form of endmember extraction and inversion are always required in the

spectral unmixing process. In many cases these two steps are coupled, so that unmixing

is performed through an iterative process of computing endmembers based on abundances

and vice versa. Such coupling makes it difficult to discuss endmember extraction separately

from inversion. Each of these steps is discussed in more detail in the sections that follow.

The most common approaches to dimension reduction are introduced in Section 3.1. A

handful of commonly-used inversion approaches are described in Section 3.2. A brief survey

of endmember extraction algorithms is given in Section 3.3. Inversion approaches that are

uniquely coupled to a single endmember extraction approach are described along with that

endmember extraction approach in Section 3.3 rather than Section 3.2.

3.1 Dimension Reduction

The operation of dimension reduction is typically employed as a preprocessing step in

the spectral unmixing process. As such, it is often considered to be optional. The goal

of dimension reduction is not only to reduce the number of dimensions used to represent

the data, but to do so in a way that retains as much useful information as possible. This

reduces the computational complexity of subsequent algorithms and requires less physical

storage. It can also improve the signal-to-noise ratio (SNR) of the data so long as the

data that are discarded correspond to noise. Despite its wide application to the spectral
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unmixing problem, dimension reduction can produce undesired results by eliminating data

which are important [see Chapter 4]. The three most frequently used dimension reduction

approaches are principal component analysis (PCA) [1], maximum noise fraction (MNF)

transformation [2,3], and singular value decomposition (SVD) [4]. For a more broad survey

of dimension reduction approaches, the reader is referred to the paper by Bioucas-Dias [5].

3.2 Inversion

Inversion is the process of estimating the abundances, given a set of endmember spec-

tra. Although it is typically the final step in the spectral unmixing process, there are a

few inversion approaches that are frequently used which warrant presentation before end-

member extraction is discussed. The most common inversion approaches are least-squares

approaches based on the linear mixing model in (2.21). Using the LMM notation, and

ignoring constraints, the least-squares problem is mina‖x−Ma‖22, which is solved by

âLS =
(
MTM

)−1
MTx, (3.1)

as long as M has full column rank. A closed-form solution is also available when the

additivity constraint (2.23) is enforced:

âACLS = âLS − z
(
1T âLS − 1

)
, (3.2)

where 1 is a P -element column vector of ones, and z =
(
MTM

)−1
1
[
1T

(
MTM

)−1
1
]−1

[6].

The additivity constraint can also be incorporated in a less strict fashion by augmenting

the data vector and endmember matrix so that x̃ =

⎡
⎢⎣x
δ

⎤
⎥⎦ and M̃ =

⎡
⎢⎣ M

δ1T

⎤
⎥⎦ where δ is a

positive scalar value [7]. The least-squares solution is then calculated according to (3.1)

using the augmented data. In this formulation the additivity constraint is not strictly

enforced, rather the value of δ is used to weight the importance of the constraint relative

to the minimizing of the error in the representation.

The nonnegativity constraint (2.22) is incorporated less frequently because there is no
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closed-form solution associated with it. One approach is to use one of the least-squares

approaches described above and then set all the negative elements of the solution to zero,

rescaling if necessary to enforce the additivity constraint [7]. Solutions to a least-squares

formulation that incorporates the nonnegativity constraint can be obtained using quadratic

programming methods. One such algorithm that uses an active set approach is the nonneg-

atively constrained least squares (NCLS) method of Chang and Heinz [8]. This approach

has subsequently been combined with the augmented additivity constrained least squares

approach [7].

3.3 Endmember Extraction

As a step in the spectral unmixing process, the role of endmember extraction—as the

name makes obvious—is to produce a set of endmembers from a hyperspectral image. The

goal of finding a data set that is representative of an image is one that also appears in

the context of dimension reduction and image compression. But, in contrast with those

problems, the set of endmembers is required to be physically meaningful. Rather than

describing the variance or energy in an image as might be the case with a data set obtained

for dimension reduction or image compression, endmembers must describe the materials

in the image. Because the spectra of materials can be quite similar, endmembers can

be strongly correlated, which is usually not the case in dimension reduction and image

compression.

3.3.1 Non-Statistical Endmember Extraction

One non-statistical approach to endmember extraction is to find the spectra in the

image that are most extreme, based on some measure of extremity. Such an approach can

be justified by the geometry of the linear mixing model, although these approaches do not

explicitly exploit that geometry. In the absence of noise the LMM constrains mixed pixels

to fall inside a simplex whose vertices are the image endmembers, making the endmembers

the most extreme pixels in the data.

Pixel purity index (PPI) finds the extreme pixels in a scene by projecting all of the
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pixels onto a large number of randomly-generated vectors [9,10]. The pixels which produce

the minimum and maximum projected values for each vector are identified and a counter

associated with them is incremented. Those pixels which have the largest resulting counter

values after all of the projections are complete are selected as the endmembers.

An algorithm that is similar to PPI which incorporates spatial context is spatial-

spectral endmember extraction (SSEE) [11]. Instead of randomly-generated vectors, pixels

are projected onto the eigenvectors obtained by performing singular value decompositions

on square, non-overlapping subsets of the image. Those pixels corresponding to extreme

projections are retained as endmember candidates. A window is then scanned across the

image and any pixels in the window that are spectrally similar to endmember candidates in

the window are averaged together. This scanning and averaging process is repeated multiple

times.

Automated morphological endmember extraction (AMEE) uses the morphological op-

erations of dilation and erosion to extract endmembers [12]. As defined for hyperspectral

data, dilation finds the pixel that is most spectrally distinct from the other pixels in a spa-

tial kernel, and erosion finds the pixel which best represents all of the pixels in the spatial

kernel. Beginning with a kernel of some minimum size, the morphological eccentricity index

(MEI) is calculated. The MEI is an image which describes the distance between the two

pixels obtained from dilation and erosion. This is repeated for larger and larger kernels,

updating the MEI at each iteration until a maximum kernel size is reached. Endmembers

are then selected by thresholding the MEI image.

Other non-statistical approaches directly exploit the geometry of the linear mixing

model. Visual representations of some of the geometric constructs used by these methods

are shown in Fig. 3.1. These approaches include minimum-volume transformations (MVT)

which attempt to find a simplex (whose vertices are the endmembers) of minimum volume

which completely envelops the observed data. When the vertices of a simplex are stacked
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into a matrix, A, the volume enclosed by that simplex is given by

V (A) ∝ det

([
a1 − a0 a2 − a0 . . . aN − a0

])
. (3.3)

For the determinant above to be defined, A must be a N ×N + 1 matrix. For this reason,

dimension reduction is always performed for a volume-based method. It is also common for

a projection or normalization step to be performed so that the length of each observed pixel

is identical. This is a simplification to the problem which effectively eliminates spectral

variability due to scene topography.

MVT approaches include the dark-point-fixed transform (DPFT) which assumes a

known dark point that represents the sensor output when no energy is incident upon it. The

data are translated so this point is at the origin, making a0 = 0 in (3.3). The volume is then

(a) (b)

(c) (d)

Fig. 3.1: Geometric constructs used in non-statistical endmember extraction. (a) A two-
dimensional scatter plot of hyperspectral data. Hyperspectral data enclosed by (b) a convex
hull, (c) a simplex, and (d) a convex cone.
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minimized, one face of the simplex at a time, subject to the observed data being enclosed

by the simplex. This constrained optimization is performed using linear programming [13].

A similar approach is the fixed-point-free transform (FPFT) which makes no assumption

of a known dark point [13]. In this case, a row of some constant value is appended to

the dimension-reduced endmember matrix. This has the effect of creating a new, higher-

dimensional (by one) simplex with a new, fixed vertex at the origin. The volume of this

new simplex is proportional to the prior one, so the algorithm proceeds in the same fashion

as the DPFT. The simplex identification via split augmented Lagrangian (SISAL) is similar

to the DPFT, but uses soft nonnegativity constraints and convex approximations to reduce

computational complexity [14]. Another MVT approach is the shrink-wrap algorithm [15]

which minimizes the cost function

J(M,X) = V (M) + λ
∑
p

∑
t

1

ap(t)
, (3.4)

where the values of ap(t) are obtained from the augmented least-squares inversion described

in Section 3.2. The first term in the cost function is the volume enclosed by the simplex, and

the second term describes the distance of the observed data from a face of the simplex. The

relative emphasis of these two terms is controlled by λ. The algorithm begins with a large

value of λ and proceeds with the optimization, slowly lowering the value of λ. This forces

the simplex to be far from the data initially, so that the cost function can only be reduced

by reorienting the simplex to a more accurate position. Then, as λ decreases the simplex is

allowed to shrink to fit the data more tightly. This is done to make the approach more robust

to initialization, as local minima can be problematic for MVT approaches. Another MVT

approach that is intended to be robust to local minima is based on simulated annealing [16].

N-FINDR is another geometric approach that utilizes the volume of a simplex, but

instead of shrinking a simplex to envelop the data, it inflates a simplex that is wholly

contained within the data [17]. The volume calculation is formulated just as with the

FPFT, but rather than doing a constrained minimization, a combinatorial approach is taken.

Pixels are randomly selected from the observed data to be endmember candidates. Then,
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each pixel is substituted into the first endmember location, with the other endmembers

remaining fixed. If the substituted pixel increases the volume of the resulting simplex, the

pixel is retained, otherwise it is discarded. This process is repeated for each location in

the endmember matrix. A family of algorithms (AVMAX, SVMAX, and WAVMAX) based

on N-FINDR have been developed to improve convergence, especially in the presence of

noise [18].

Vertex component analysis (VCA) [19] attempts to find the vertices of the simplex by

using randomly-generated orthogonal projections. After normalizing the data, an iterative

process randomly generates a vector, makes it orthogonal to previously generated vectors,

and projects each pixel onto that vector. The pixels corresponding to the most extreme

projection are selected as endmembers.

Yet another geometric approach is convex cone analysis (CCA) [20]. This approach

attempts to find the vertices of a polygon that encloses all possible linear combinations of

the first N eigenvectors of the spectral correlation matrix. This is done by solving a large

number of systems of equations, making the approach very computationally expensive.

Although the method for finding a solution is quite different, the geometry of the problem

is nearly identical to the DPFT.

Other non-statistical approaches have been developed which attempt to find an accu-

rate representation of the data. Iterative error analysis (IEA) is such an approach [21].

The IEA algorithm proceeds by performing constrained inversion assuming the mean of the

data is the only endmember. The error of the representation is calculated and the pixel

corresponding to the largest error is selected as an endmember, replacing the mean. The

process is repeated and at each iteration one new pixel is appended to the endmember

matrix used for inversion. The process terminates when a specified number of endmembers

has been obtained or when the representation error falls below a certain threshold.

Fuzzy k-means (also called fuzzy c-means) is a classification approach that attempts

to find a minimum error representation for the data [22]. Unlike many other classification

classification approaches fuzzy k-means allows for fractional class membership, where the
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fractions must sum to one. This constraint is similar to the LMM additivity constraint,

motivating its application to hyperspectral data [23]. Unlike other approaches, fuzzy k-

means does not assume any sort of linear mixing model.

All of the non-statistical approached described above—except for fuzzy k-means classification—

make use either implicitly or explicitly of the linear mixing model. Most of these approaches

assume that pure endmember pixels are present in the observed data. Many are sensitive

to initialization due to local minima and non-unique solutions [24].

3.3.2 Statistical Endmember Extraction

Statistical endmember extraction approaches can be divided into parametric and non-

parametric categories. Non-parametric statistical methods are those that make an explicit

assumption that the data are random, without necessarily determining the specific proba-

bility distribution that describes that random behavior. Instead, these approaches tend to

use statistical quantities such as means and variances to obtain a solution.

Independent component analysis (ICA) is used to describe a variety of approaches that

separate mixed “sources” by forcing the unmixed data to be as independent as possible [25].

A linear mixing model is typically assumed, and frequently it is assumed that the mixing

matrix is square, necessitating some form of dimension reduction. In one case a contextual

ICA approach was employed where the endmembers were treated as the sources (which

are assumed to be independent), and the abundances as the mixing matrix [26]. Other

applications of ICA to the hyperspectral unmixing problem treat the abundances as the

sources and the endmembers as the mixing matrix. These include joint cumulant-based ICA

[27], joint approximate diagonalization of eigen-matrices (JADE) [28], and FastICA [28–31].

A modified version of FastICA that forces the separated sources to be orthogonal to one

another is linear spectral random mixture analysis (LSRMA) [32]. One of the complications

associated with ICA is scale ambiguity. This arises because multiplication by a scalar does

not affect the independence of two signals. In light of this, it has been suggested that ICA is

not applicable to the abundance quantification problem, but is better suited to classification

and target detection [33]. These topics are addressed in more detail in Chapters 4–6.
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Iterated constrained endmembers (ICE) is a statistical approach that is similar to both

representation-based and geometric non-statistical approaches [34]. The algorithm assumes

a representation error that is approximately Gaussian, motivating a least-squares approach

to representing the data. To prevent the simplex enclosed by the estimated endmembers

from becoming too small, i.e., due to a lack of pure endmembers, a penalty function, V (M),

is defined to be the sum of the variances of the endmembers. This leads to a cost function

of the form

J(M,A) = (1− λ) ‖X−MA‖22 + λV (M). (3.5)

This function is minimized in alternating fashion over M (using a closed-form solution) and

A (using quadratic programming to enforce additivity and nonnegativity constraints). An

extension of ICE that attempts to arrive at sparse estimates for A is sparsity promoting

iterated constrained endmembers (SPICE) [35]. The SPICE algorithm adds an additional

term to the ICE cost function in (3.5) to produce

J(M,A) = (1− λ) ‖X−MA‖22 + λV (M) + c
∑
t

∑
p

γpat,p. (3.6)

The constant c is used generally to control the degree to which abundance values are driven

to zero, while the value of γp changes based on the abundance estimates to drive small

abundance values more quickly to zero. This additional term can be viewed as assuming

a Laplacian prior for the abundances. As with ICE, the minimization of the cost function

is performed iteratively alternating between M and A. SPICE introduces an additional

step of “pruning” endmembers whose maximum abundance proportions drop below some

threshold.

Algorithms have also been developed for hyperspectral unmixing that attempt to find

signals that are minimally complex, or alternatively, that are maximally predictable [36].

These algorithms maximize a cost function that is a ratio of the variance of the signal

and its predictability which is defined as the difference between a pixel and an average of

its neighbors. By this definition, predictability might also be thought of as smoothness.
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The cost function is maximized using a gradient ascent algorithm, resulting in the spatial

complexity blind source separation (SCBSS) algorithm [36]. An extension of this algorithm

adds a term to the cost function to encourage spectral smoothness to produce the spectral

and spatial complexity blind source separation (SSCBSS) algorithm [36].

Nonnegative matrix factorization (NMF) is another approach that has been utilized for

hyperspectral unmixing. NMF encompasses a wide variety of problems in which the goal

is to find two nonnegative matrices, W ∈ R
m×k
+ and H ∈ R

k×n
+ , whose product provides

a reasonable approximation of another matrix, Y ∈ R
m×n
+ , i.e., Y ≈ WH [37]. At their

root, NMF hyperspectral unmixing approaches assume gaussian-distributed noise, which

motivates (in an ML sense) minimizing the Frobenius norm of the error in the representation,

‖X −MA‖2F . This minimization is subject to the nonnegativity of M and A. A common

approach to solving this problem is through iterative multiplicative updates [38]. Other

approaches use an additive update rule combined with setting negative results to zero,

since the additive steps do not guarantee nonnegative results [39]. In order to improve

the performance of NMF approaches, application-specific auxiliary constraints are often

incorporated into the problem formulation, resulting in cost functions of the form

J(M,A) = ‖X−MA‖2F +
∑
i

λiJi(M,A). (3.7)

These cost functions are typically minimized using modified multiplicative or additive up-

date rules. Under certain circumstances, they can also be solved using an alternating

least-squares (ALS) approach [39]. Additional constraints incorporated into the cost func-

tion for hyperspectral unmixing include additivity [40–42], smoothness [43], and simplex

volume [44].

Parametric methods assume specific distributions to describe the data and attempt to

find the best parameters for those distributions, usually using a maximum likelihood (ML)

or maximum a posteriori (MAP) approach. Gaussian class estimation is one example of a

parametric approach [45]. This approach models the observed data using a finite gaussian

mixture model. This model assumes that there are a finite number of “pure” classes, i.e.,
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endmembers, which are gaussian distributed. Linear mixtures of these endmembers are

also gaussian distributed. To make the problem more tractable the mixing coefficients are

discretized to produce a finite number of mixture classes. A variation of the expectation-

maximization (EM) algorithm [46] known as stochastic expectation-maximization (SEM)

[47] is used to determine class means and covariances and assign pixels into the most likely

class. Given initial values for all of the prior class probabilities, and means and covariances

for the endmember classes, posterior class probabilities are computed for each pixel. Based

on these posterior probabilities, each pixel is randomly assigned to a class. The prior, mean

and covariance of each class is then updated based on the pixels which have been assigned

to it. It has been suggested that this approach works better when the prior probabilities

are not updated from iteration to iteration, but instead remain constant [48].

A similar approach is dependent component analysis (DECA) [49, 50]. This approach

assumes that the abundances follow a K-component Dirichlet finite mixture:

pA (a|θ) =
K∑
q=1

εqD (a|θq) . (3.8)

The observed data are assumed to be i.i.d. samples from a random variable X. Using a

change of variables, a log-likelihood is formulated in terms of pA(a|θ). The parameters to

be estimated are W, a square unmixing matrix, and the Dirichlet mixing model parameters,

θ = {ε1, . . . , εK ,θ1, . . . ,θK}. This estimation is done using the EM algorithm, where the

hidden data are a set of labels for each observation indicating to which class the observation

belongs. At each iteration of the algorithm the parameter values are updated sequentially,

first the values of εq, then the values of θq, and finally W. The algorithm is actually a

generalized EM (GEM) algorithm as the update approaches for θq and W do not maximize

the Q-function, they only ensure that it does not decrease. This approach has been subse-

quently modified to infer then number of Dirichlet classes and to reduce the computational

complexity of the GEM algorithm [51].
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A MAP framework has been proposed [52] based on the model in (2.24) where

p(M,A|X) ∝ pn(X|M,A)pm(M)pa(A). (3.9)

The prior on the abundances is chosen to be zero if the additivity constraint is violated and

constant otherwise. The prior on the spectra is based on a linear auto-regressive model.

The noise is assumed to be gaussian distributed. The log of the posterior distribution is

treated as a cost function and iteratively maximized. Each iteration consists of a gradient

step for A and explicit constrained least-squares solution for M until the algorithm has

converged.

Bayesian positive source separation (BPSS) utilizes a hierarchical Bayesian model to

perform linear unmixing subject to nonnegativity and additivity constraints [53]. The

approach assumes gaussian-distributed noise, leading to a gaussian-distributed likelihood.

The endmembers and abundances are both assigned gamma distributions for priors. The

parameters of the gamma distributions are assumed constant for each endmember, but may

change from one endmember to another. The same is true for the abundances corresponding

to each endmember. Uninformative priors are chosen for the hyperparameters. The MAP

estimates for the endmembers and abundances are obtained using a Gibbs sampler [54,55]

to sample from the posterior density. BPSS is applied to hyperspectral image data in [56].

An approach that is similar to BPSS but perhaps more uniquely tailored for hyper-

spectral unmixing is joint Bayesian endmember extraction (JBEE) [57]. As with BPSS,

the likelihood is assumed to be gaussian. The endmembers are assumed to follow trun-

cated multivariate gaussian distributions which are proportional to standard multivariate

gaussian distributions, but are zero anywhere any component of the endmember is nega-

tive. The means of these distributions are obtained from a simpler endmember extraction

algorithm such as VCA [19] or N-FINDR [17]. The variance of these distributions are fixed

as large values to indicate relative uncertainty. The prior for the abundances is a uniform

distribution over a simplex which satisfies the additivity constraint. This is equivalent to a

Dirichlet distribution with all of its parameters equal to one. Finally, the noise variance is
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assumed to follow an inverse-gamma distribution with one parameter fixed and the other

assigned a noninformative Jeffrey’s prior [54]. Again, a Gibbs sampler is use to find the

MAP estimates of the model.

Bayesian approaches are appealing because they provide a framework for incorporating

all of the assumptions and constraints associated with a problem. Rather than a single esti-

mated value, these approaches provide a distribution allowing the confidence in an estimate

to be quantified. Their performance has been shown to be superior to other approaches such

as VCA and N-FINDR [57]. The trade though, is computational complexity. For example,

JBEE has been shown to be slower than N-FINDR by a factor of ∼65 and slower than VCA

by a factor of ∼1500! To unmix a hyperspectral cube with 200 bands and 128× 128 spatial

pixels, the BPSS approach required over four and a half days [56]. Such performance makes

these approaches computationally prohibitive in many cases.
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Chapter 4

A Quantitative Assessment of Independent Component

Analysis as a Hyperspectral Unmixing Approach1

4.1 Introduction

Hyperspectral imaging is a remote sensing approach that simultaneously collects both

spatial and spectral data. Spectral data are collected in hundreds of narrow contiguous

bands that may cover the visible, near-infrared, and short-wave infrared (0.4–2.5 μm), the

mid-wave infrared (3–5 μm), and/or the long-wave infrared (8–14 μm). Although the size

of a pixel on the ground varies, spatial measurements typically consist of hundreds of pixels

in both spatial dimensions. Such images contain a wealth of information and have found

application in a broad range of fields such as food safety [1], agriculture [2], mineralogy [3],

ecology [4], and target detection [5], as well as many others.

One method of exploiting hyperspectral image data is through spectral unmixing. This

process refers to one or both of two fundamental operations. The first is the identification

of spectra that are representative of the distinct materials in the scene. These spectra

are referred to as endmembers and the problem of identifying them is called endmember

extraction. The endmember spectrum associated with a material should not be confused

with the spectral signature for that material found in a library of reference spectra, as the

two are almost always different. It is possible that an endmember spectrum may not be

found in the observed data. This occurs when the material associated with that endmember

does not completely fill any single pixel in the image. In that case, the endmember spectrum

will only be found in the observed data in combination with other endmember spectra.

1M.R. Stites, J.H. Gunther, T.K. Moon, and G.P. Williams (to be submitted for publication)
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Because an endmember is uniquely associated with a specific material, the terms endmember

and material are used interchangeably throughout the remainder or this chapter.

The second operation is abundance quantification, which entails determining the pro-

portion of each endmember in each pixel of the image. Abundance maps provide useful

visualizations of this data, showing where each endmember is located in an image and

how completely each pixel is filled by that endmember. Depending on the algorithm and

the application, endmembers may be determined first and subsequently utilized for abun-

dance quantification, the endmembers and abundances may be found simultaneously, or

abundances may be computed without any prior endmember information [6].

There are a wide variety of algorithms that have been developed to unmix hyperspectral

data. Some of these attempt to find the most “extreme” pixels in the image, based on some

definition of distance or extremity. These include pixel purity index (PPI) [7], iterative

error analysis (IEA) [8], and automated morphological endmember extraction (AMEE) [9].

Other, similar approaches exploit the geometry imposed by the linear mixing model (LMM),

described later. Minimum volume transformation (MVT) [10], N-FINDR [11], convex cone

analysis (CCA) [12], vertex component analysis (VCA) [13], and shrink-wrapping [14] are

all algorithms of this type. Statistical approaches which assume specific probability distri-

butions for the observed hyperspectral data and/or abundances have also been developed,

such as dependent component analysis (DECA) [15], and Bayesian positive source separa-

tion (BPSS) [16].

A statistical unmixing approach that does not assume a specific distribution for the data

is independent component analysis (ICA) [17]. This approach attempts to unmix the data by

finding maximally independent abundances. A variety of ICA algorithms have been applied

to hyperspectral unmixing including contextual ICA [18], joint cumulant-based ICA [19],

joint approximate diagonalization of eigen-matrices (JADE) [20], and FastICA [20–23]. ICA

has also been employed as a hyperspectral classification approach [24,25].

Whenever spectral unmixing algorithms are assessed, two types of experiments are

typically performed. In the first, synthetic images are created according to a simple gener-
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ative model—usually the linear mixing model. The complexity of these images varies, but

they are typically composed of 2–10 endmembers whose spectra are obtained from a real

hyperspectral image or from a spectral reference library. In many cases spatial contiguity is

incorporated using abundance maps consisting of simple square or circular regions. These

kinds of test images are fairly common in the spectral unmixing literature [9,11,12,26,27].

Since many spectral unmixing approaches do not consider spatial context, synthetic images

can also be produced using randomly generated abundances which adhere to some prob-

ability distribution. In these cases a generative model is used which incorporates other

interesting behavior, such as topographic variation and endmembers with spectral vari-

ability [13, 20]. In the majority of these cases the endmembers are generated in relative

proportion one with another. That is, there is no single material which dominates the scene

spatially and no material that is present in only a very small fraction of pixels. These im-

ages are useful because they are relatively simple to generate, and because complete ground

truth data are available, including abundance maps accurate to small fractions of a pixel.

Spectral unmixing results can then be compared against the ground truth data to provide

quantitative assessments of spectral unmixing algorithms.

The second type of experiment is to test an algorithm by unmixing a real hyperspectral

data set. The results of the unmixing are often assessed visually by recognizing landmarks

in the original image and in the unmixed data [19,22]. In some cases ground truth data are

available and can be compared to unmixing results [18, 26]. Unfortunately, these ground

truth data often only provide information for a handful of the materials in the scene and

may be incomplete for certain areas/materials in the image. They do not provide the fine

abundance resolution of synthetic images and are not available for every image which might

be of interest.

Both of the experimental approaches described above are useful and even essential to

assessing the usefulness and behavior of a hyperspectral approach. There is, however, a

third approach that can be seen as something of a middle ground between the two. This

approach utilizes synthetic images that more closely approximate real data by modeling
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scene geometry, material properties, sensor behavior, atmospheric contributions, and so

forth. Complex scene geometry is desirable because it produces images that have regions of

spatial contiguity, topographic variation, and endmember spectral variability. It also leads

to broad variations in the spatial coverage of individual materials. Because the images are

synthetic, complete ground truth data are still available. Such an approach is not intended

to be a replacement for the existing methods described above. Instead, it should be treated

as a complementary approach, allowing for unique insights and observations to be explored.

This complementary approach could be employed to explore a variety of hyperspectral

unmixing algorithms. Throughout the remainder of this chapter, it is used to assess the

behavior of ICA—specifically FastICA. Although application of FastICA to the problem has

been explored before [20–23], there are still questions regarding its utility as a hyperspectral

unmixing approach. A common opinion—though not a consensus—is that ICA can produce

interesting and useful results, but that it is common for some materials to be incorrectly

unmixed [20, 22, 23]. Thus, further exploration is warranted to confirm existing assertions

regarding FastICA and also provide further insight into the behavior of the algorithm.

The remainder of the chapter proceeds as follows. Section 4.2 provides a basic overview

of ICA and the FastICA algorithm. It also outlines the ICA data model and compares it

with the linear mixing model used to describe hyperspectral data. Section 4.3 explains the

approach taken to generate synthetic—but realistic—hyperspectral data cubes. Examples

of both image data and abundance maps are shown. Section 4.4 describes the experiments

performed, presents the results of those experiments, and provides insight into those results.

Finally, Section 4.5 contains a few concluding observations and remarks.

4.2 Independent Component Analysis

The generalized blind source separation (BSS) problem is modeled as

x(t) = f (s(t)) , (4.1)

where x(t) = [x1(t) x2(t) . . . xK(t)]T is the observed data vector, s(t) = [s1(t) s2(t) . . . sL(t)]
T
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is a vector of the sources of interest, and f(·) describes the mixing process which operates

on the sources to create the observed data. The observations and sources are indexed by

t which, depending on the application, may represent time, spatial location, or some other

quantity. In the case of hyperspectral unmixing, t is used to index spatial location, i.e.,

individual pixels. The goal of BSS is to estimate the original sources from the observed data

with limited or no knowledge of either f(·) or s(t). The estimation process is often referred

to as unmixing. BSS has found application in many varied areas including biomedical signal

processing [28,29], telecommunications [30,31], and finance [32,33].

ICA is an approach that attempts to perform BSS by exploiting the statistical indepen-

dence of the original sources. While this can be accomplished in a number of ways, many

ICA algorithms invoke the central limit theorem [34], observing that the distribution of

mixed random variables tends toward a Gaussian distribution. Hence, sources can be sep-

arated by optimizing a cost function that reflects some measure of gaussianity. Commonly

used cost functions include kurtosis, a fourth-order cumulant, and negentropy which is the

difference between the entropy of the data and a Gaussian random vector of the same corre-

lation. Negentropy can be approximated using a non-quadratic, symmetric function. Other

ICA approaches include minimization of mutual information [35], and joint diagonalization

of eigenmatrices [36].

Although nonlinear ICA methods exist [37, 38], linear mixing is most commonly as-

sumed. In this case the mixing is represented by

x(t) = As(t), t = 1 . . . T, (4.2)

where x(t) is K×1, s(t) is L×1, the mixing matrix, A, is K×L and T is the total number of

observations (pixels). Stacking the observed and source data as X = [x(1) x(2) . . . x(T )]

and S = [s(1) s(2) . . . s(T )], the model becomes

X = AS, (4.3)
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with the K × T observation matrix X, and L× T source matrix S. Notice that using this

notation s(t), which is a column of S, references all of the sources at a specific location.

Alternatively, a row of S, denoted sTi , is used to describe a single source over all locations.

The mixed data must satisfy two important conditions for ICA to be a valid unmixing

approach. First, since ICA attempts to unmix the data by exploiting the independence of

the sources, the sources must be independent. Second, because the methods of separation

utilized by ICA algorithms attempt to maximize nongaussianity (based on the central limit

theorem), no more than one source may be gaussian distributed.

4.2.1 FastICA

FastICA is an ICA algorithm that assumes the linear mixing model in (4.3) with the

additional constraint that K = L, making the mixing matrix A square. The unmixing

model then becomes Y = BX, where Y contains the estimates of the original sources.

Defining the unmixing matrix to be

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

bT
1

bT
2

...

bT
K

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (4.4)

a single independent component can be obtained as

yi(t) = bT
i x(t), (4.5)

or equivalently,

yT
i = bT

i X. (4.6)

Since neither reordering nor scaling of the estimates affects their independence, ICA outputs

are subject to scale ambiguity and order uncertainty. Because of this the unmixing matrix,

B, is not necessarily the inverse of A. Rather, BA = DP, where D is a diagonal matrix
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and P is a permutation matrix. Due to this ambiguity, any result of the form yT
i = γsTj ,

where γ is a constant scalar value, is generally considered a success.

Prior to performing any source separation the observed data are whitened so that

z(t) = Vx(t), where E [z] = 0, and E
[
zzT

]
= I. Incorporating the whitened data, the

unmixing model becomes Y = WZ = WVX, and B = WV, where W is comprised of

stacked vectors as B in (4.4).

As part of the whitening process the dimension of the observed data is reduced via

principle component analysis (PCA). Unless specified by the user, the number of dimensions

is determined automatically from the relative magnitudes of the eigenvalues of the covariance

matrix of the observed data. This dimension reduction step is an attempt to estimate the

number of sources and make the mixing matrix square, as required by the FastICA model.

After whitening and dimension reduction, the source separation is achieved by using

a simple fixed-point algorithm to maximize a cost function. Thus, the source separation

problem becomes

max
wi

E
{
G
(
wT

i z(t)
)}

, i = 1, . . . ,K. (4.7)

Typically, G(·) in (4.7) is defined to be

G1(y) = y4, (4.8)

G2(y) =
1

a1
log cosh(a1y), (4.9)

or

G3(y) = − 1

a2
exp(−a2y

2/2). (4.10)

The derivatives of these functions are

g1(y) = 3y3, (4.11)

g2(y) = tanh(a1y), (4.12)
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and

g3(y) = y exp(−a2y
2/2). (4.13)

The first function is an approximation of the kurtosis of y. Incorporating either of the other

two functions gives an approximation of the negentropy of y.

Because the whitening step effectively orthogonalizes the observed data, the unmixing

matrix, W is constrained to be an orthogonal matrix with WWT = WTW = I. This

constraint is enforced at each iteration of the cost function optimization in one of two ways.

If the components are extracted one at a time, deflationary orthogonalization is performed.

This approach updates a single unmixing vector using the gradient optimization algorithm.

That vector is then made orthogonal to all of the previously computed unmixing vectors:

w̃i = wi −
i−1∑
j=1

(wT
i w̃j)w̃j. (4.14)

The unmixing vector is then normalized as

w̃i = w̃i/‖w̃i‖. (4.15)

Alternatively, if all of the components are estimated simultaneously then symmetric orthog-

onalization is performed. In this case all L unmixing vectors are updated and subsequently

orthogonalized using the update formula

W̃ =
(
WWT

)−1/2
W. (4.16)

4.2.2 Application to Hyperspectral Data

One approach to modeling the radiance of a single pixel in a hyperspectral image is

the linear mixing model [39]. This model is typically formulated as

x(t) =
L∑
l=1

mlal(t) + n(t) = Ma(t) + n(t). (4.17)
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In this model x(t) is the observed K × 1 pixel where K is the number of spectral bands

of the sensor. As described previously, the index t is used to indicate the spatial location

of the pixel. The K × 1 vector ml represents an endmember spectrum and al(t) is the

fractional abundance of that endmember in the pixel. The total number of endmembers

is L. Instrument noise and model error are represented by n(t). The K × L matrix M

is the endmember matrix and contains the L individual endmembers in its columns. The

L× 1 abundance vector, a(t), is formed by stacking the relative abundances. The relative

abundances are subject to two constraints:

al(t) ≥ 0, l = 1, . . . , L, (4.18)

L∑
l=1

al(t) = 1. (4.19)

These constraints impose the physically meaningful requirements that the fractional abun-

dances be nonnegative and sum to one. This model is valid only when the materials in the

pixel are well-partitioned from one another [40]. Even though this is not always the case in

nature, this model is still widely used.

The pixels in the observed cube can be indexed in row-scanned order so that each

spectral band is represented as a one-dimensional vector, rather than a two-dimensional

image. Then, the terms on both sides of (4.17) can be stacked as

X = MA+N, (4.20)

where X and N are K × T matrices, A is an L × T matrix, and T is the total number of

pixels in the image. In this arrangement a column of X is the spectrum of a specific pixel

in the image and a row of X contains all of the pixels from one spectral band of the data, in

row-scanned order. Similarly, a column of A describes the fractional abundances for every

material in a single pixel while a row of A contains the fractional abundance in every pixel

of a single material again in row-scanned order. Each row of A can be re-indexed into an

image to create a material abundance map.
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The hyperspectral mixing model in (4.20) is structurally similar to the linear ICA

model in (4.3). The endmember matrix is analogous to the mixing matrix and the abun-

dance matrix corresponds to the source matrix. The one difference is the addition of noise

in the hyperspectral model. If the SNR is sufficiently large, this term may be safely ignored,

in which case the models are identical. Otherwise, the noise effects could be minimized by

smoothing, dimension reduction, or some other preprocessing step. Recall that the ICA

model requires the sources to be nongaussian, implying that the fractional abundances for

each material must not have a Gaussian distribution. This requirement is satisfied as abun-

dance values tend to accumulate near zero or one depending on their spatial coverage and

have a predominantly one-sided distribution. Figure 4.1 shows histograms for abundance

maps of two different materials generated from a three-dimensional model of a real-world

scene which demonstrate this behavior. The other requirement imposed by ICA is that the

sources be independent. For the hyperspectral data model the abundance of each material

is required to be independent of every other material. This requirement is violated by the

additivity constraint in the linear mixing model (4.19). Although this is a violation of the

ICA assumptions, as the number of endmembers and/or signature variability increases, the

statistical dependence of the sources decreases and ICA performance improves [20].
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Fig. 4.1: Histograms of row-scanned abundance maps for (a) a sparse material, and (b) a
dense material. Both of these are distributed in a way that is clearly nongaussian. Notice
the change of scale in (a) required to display the non-zero abundance values. The left-most
bin corresponding to zero actually extends above 16,000 pixels.



45

4.3 Experimental Data Description

In order to perform the kind of complementary experiments described earlier, a means

of producing realistic images and the associated ground truth data is needed. This section

describes the tool employed to produce the synthetic data that were incorporated into the

experiments described in subsequent sections of this chapter.

The Digital Image and Remote Sensing Image Generation (DIRSIG) software is a

physics-based image simulation tool developed at the Rochester Institute of Technology

(RIT) [41]. The tool allows the user to describe complex scene geometry, viewing geometry,

and the spectral and thermal properties of materials in the scene. The user can also describe

a variety of sensor properties including sensor type, scan behavior, focal length, detector

layout, and spectral and spatial response [42]. MODTRAN [43] is incorporated to simulate

realistic atmospheric behavior from user-provided atmospheric and weather information.

The software makes use of all of this information to generate realistic remote sensing images.

Additionally, DIRSIG can also export the ground truth associated with each image.

For our experiments, two test images were generated using DIRSIG. Both images incor-

porate the “MegaScene” geometric scene description, which models a 0.6 square mile area

of Rochester, New York. A pushbroom spectrometer model that incorporates a spectral

response between 0.4 μm and 2.5 μm with 224 bands was used. The spectral response is

similar to the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) [44]. The altitude

of the sensor was 2 km. With these settings in place, 1024×1024 pixel cubes and truth

maps were generated with a ground sampling distance (GSD) of 0.25 m. These were then

binned spatially to produce 128×128 pixel cubes and truth maps with a GSD of 2.0 m. The

binning was performed to produce data with the desired linear mixing behavior.

The first cube generated is referred to as “Mega1” because of its location within the

first tile of the MegaScene. The scene is dominated by two large buildings surrounded by

a parking lot. At the top of the image is a residential road with homes on either side

that are mostly obscured by trees. Three tennis courts are located at the bottom of the

image. The remainder of the scene is grass. There are 43 unique materials in this scene.
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The second cube comes from the fourth MegaScene tile and is aptly named “Mega4.” This

scene contains ten large industrial tanks surrounded by some buildings and parking lots.

Around the periphery of the scene are areas of trees and grass. This scene contains 21

unique materials. Examples of the synthetic data are shown in Fig. 4.2.

A list of the materials contained in each scene is provided in Appendix A. These

materials are sorted by the number of pixels in which they appear and are loosely segregated

into four categories based on their spatial coverage in the image. Super-sparse materials

are those with a combined coverage of less than one pixel. Materials in the sparse category

typically are present in 1% or less of the image pixels and cover less than 0.5% of the

image. They may or may not appear in the image as pure pixels. Dense materials appear

in over half of the pixels in the image and consequently also constitute a large number

of pure pixels. Materials falling between the sparse and dense categories are classified as

intermediate materials. This categorization is used to analyze how materials of varying

spatial distribution are affected in the spectral unmixing process. This is an example of

the type of assessment that is not ususally made in the two most common experimental

scenarios referred to in Section 4.1.

4.4 Experimental Results

Three sets of experiments were performed to characterize the utility of FastICA as a

spectral unmixing approach. The first set of experiments examined the impact of dimension

reduction on the best-case unmixing scenario. Second, the effects of orthogonalization were

explored, again considering a best-case unmixing scenario. Because dimension reduction

and orthogonalization are not unique to FastICA, these two experiments are of interest be-

yond the scope of FastICA. In the final set of experiments, unmixing was performed using

FastICA. The results of these experiments are quantified by comparing estimated material

abundances with corresponding abundance ground truth. The quality of endmember extrac-

tion was not considered in these experiments. Some observations are made in the following

narrative on the effects of adding noise to the synthetic images, but a characterization of

the impact of noise on the unmixing process is beyond the scope of this chapter.



47

(a) (b)

(c) (d)

Fig. 4.2: Examples of the test images generated in DIRSIG. (a) RMS image of Mega1. (b)
RMS image of Mega4. (c) Mega1 abundance map for “Roof, Gravel, Gray.” (d) Mega4
abundance map for “Roof, Gravel, Gray.”
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For the remainder of this chapter, whenever performance is plotted versus material,

i.e., the x-axis is “Material Number,” the materials are numbered according to the lists in

Table A.1 and Table A.2. The first (left-most) material in the plot is the most sparse and

the last (right-most) is the most dense. Markers are used to denote the four categories of

spatial coverage of materials. A circle (◦) is used to identify super-sparse materials, an x

(×) for sparse materials, a diamond (♦) for intermediate materials, and a square (�) for

dense materials.

4.4.1 Computation of Optimal Estimates

Because complete ground truth abundance maps are available, the optimal, linear un-

mixing vector and corresponding abundance estimate can be calculated for each material.

This was done prior to performing any experiments. These results constitute a best-case un-

mixing scenario, i.e., the best result FastICA could produce, and provide a baseline against

which experimental results can be compared. A common metric used in such comparisons

is mean-square error (MSE)

MSE ≡ 1

T

T∑
t=1

(â(t)− a(t))2 , (4.21)

where â(t) is an estimated abundance and a(t) is the ground truth abundance. However,

MSE is not invariant to scaling, which is essential when considering ICA outputs, since

they are subject to scale ambiguity. Thus, a preferred metric to MSE is the correlation

coefficient, defined as

r(â,a) ≡
(

â− μâ

‖â− μâ‖
)T (

a− μa

‖a− μa‖
)
, (4.22)

where μâ and μa are the sample means of â and a, respectively. The absolute value of this

metric is invariant to scaling of the arguments, as desired. Conveniently, it also always falls

in the range [0, 1]. It is used throughout the remaining experiments to quantify performance.

The unmixing formula (4.5) in combination with the linear mixing model for hyper-

spectral data (4.17) provides a formula for extracting individual abundances, âi(t) = bT
i x(t).
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Stacking this result to eliminate the spatial indexing yields âTi = bT
i X. The unmixing vector

that maximizes r(â,a) is given by

b̌ =
[
(X− μX)(X− μX)

T
]−1

(X− μX)
(a− μa)

‖a− μa‖ . (4.23)

The optimal abundance estimate is then

ǎT = b̌TX. (4.24)

The optimal unmixing vectors and abundance estimates were calculated according to

(4.23) and (4.24), respectively, for every material in both of the test cubes. In the absence

of noise, as shown in Fig. 4.3, the maximum correlation coefficient, r(ǎi,ai), overall is

very high. It can be seen that the correlation coefficient tends to improve with an increase

in spatial coverage. The fact that the correlation coefficient is not exactly one for every

material in the scene stems from illumination, endmember, and atmospheric variability in

the DIRSIG-generated cubes. Figure 4.4 provides a visual comparison between ground

truth and optimal estimates from Mega1 for one material from each of the four material

coverage classifications. From these images it can be seen that material locations can be

clearly discerned for values of |r| ≥ 0.8. Below this threshold, the material locations are less

clear and background artifacts become more obvious. Depending on the spatial coverage

and congruency of a material, correlation coefficient values as low as 0.5 may be useful.

4.4.2 Dimension Reduction

Because it is typically used as a preprocessing step in a variety of spectral unmix-

ing approaches, including FastICA, an experiment was performed to examine the effect of

dimension reduction on the best-case unmixing scenario. To do this, the maximum corre-

lation abundance estimates were calculated using dimension reduced data obtained from

PCA. The same maximum correlation formulas (4.23) and (4.24) were used, replacing X

with the dimension-reduced data, XN , given by XN = VT
NX, where VN is the K × N
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Fig. 4.3: Correlation coefficient between optimal estimates and corresponding ground truth.
(a) Mega1 results. (b) Mega4 results. Note that Mega1 contains twice as many materials
as Mega4.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4.4: A comparison of material truth maps (first row) with their maximum correlation
estimates (second row). (a) and (e) Material 4, Siding, Cedar, Stained Dark Brown, Fair,
r = 0.4617. (b) and (f) Material 19, Roof Shingle, Asphalt, Eclipse Sample Board, Twilight
Gray, r = 0.8185. (c) and (g) Material 38, Tree, Norway Maple, Leaf, r = 0.9840. (d) and
(h) Material 43, Grass, Brown and Green w/ Dirt, r = 0.9999.
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whitening matrix associated with the N most energetic principal components of X.

The results of this experiment are shown in Fig. 4.5 and Table 4.1. The plots in Fig.

4.5 demonstrate how the correlation coefficient of the optimal estimate with the ground

truth decreases as the dimensionality of the data is reduced. The correlation coefficient (y-

axis) in these plots is normalized by the correlation coefficient obtained when there has been

no dimension reduction. The slope of each curve illustrates the contribution of individual

principal components to the correlation coefficient of the optimal estimates for a specific

material. It is clear from the sharp jumps in the correlation for the dense and intermediate

materials that they are well described by the first several principal components. What is

also clear is that there is no similar region for the sparse and super-sparse materials. The

information associated with these materials appears to be almost uniformly scattered across

all of the principal components. For this reason, a relatively large number of dimensions

must be retained to achieve near-optimal estimates of these materials. Table 4.1 underscores

this conclusion, showing the average number of dimensions that must be kept to obtain

95% and 75% levels of the correlation coefficient obtained when no dimension reduction

was performed.

One approach to determining the number of dimensions that should be retained when

doing PCA is to keep as many dimensions as are needed to retain some percentage of the

total variance in the image. Retaining 99.9% of the total variance in the Mega1 and Mega4

images requires only six and five dimensions, respectively. Based on the results in Table

4.1, that would allow only the dense materials to be extracted at near-optimal levels.

Table 4.1: Number of dimensions necessary to obtain 95% and 75% levels of optimal corre-
lation, by material classification.

Mega1 Mega4

95% 75% 95% 75%

super-sparse 150 110 138 102

sparse 116 53 46 29

intermediate 36 10 23 8

dense 16 6 12 4



52

0 100 200
0

0.5

1

Number of Dimensions

N
or

m
al

iz
ed

 | 
r 

|

(a)

0 100 200
0

0.5

1

Number of Dimensions

N
or

m
al

iz
ed

 | 
r 

|

(b)

0 100 200
0

0.5

1

Number of Dimensions

N
or

m
al

iz
ed

 | 
r 

|

(c)

0 100 200
0

0.5

1

Number of Dimensions

N
or

m
al

iz
ed

 | 
r 

|

(d)

0 100 200
0

0.5

1

Number of Dimensions

N
or

m
al

iz
ed

 | 
r 

|

(e)

0 100 200
0

0.5

1

Number of Dimensions

N
or

m
al

iz
ed

 | 
r 

|

(f)

0 100 200
0

0.5

1

Number of Dimensions

N
or

m
al

iz
ed

 | 
r 

|

(g)

0 100 200
0

0.5

1

Number of Dimensions

N
or

m
al

iz
ed

 | 
r 

|

(h)

Fig. 4.5: Normalized correlation coefficient of the maximum correlation estimates obtained
using dimension reduced data. The first row shows the Mega1 results and the second shows
the results for Mega4. (a) and (e) Super-sparse materials. (b) and (f) Sparse materials. (c)
and (g) Intermediate materials. (d) and (h) Dense materials.

4.4.3 Orthogonalization

Next, the effect of constraining the unmixing vectors to be orthogonal was examined.

Because the PCA and whitening step decorrelates the observed data, it is expected that

the unmixing vectors for the whitened data should be orthogonal. In the FastICA imple-

mentation, this constraint is enforced on the unmixing vectors at the end of each iteration

of the cost function optimization.

To apply the orthogonality constraint to the optimal unmixing vectors requires a minor

modification to the orthogonalization formula, since the optimal vectors were not calculated

using whitened data. When the data are not whitened, the formulas for deflationary or-

thogonalization (4.14) and (4.15) become

b̃i = bi −
i−1∑
j=1

(bT
i Cxb̃j)b̃j , (4.25)
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and

b̃i =
b̃i√

b̃T
i Cxb̃i

, (4.26)

respectively, where Cx is the covariance matrix of X. The symmetric orthogonalization

formula (4.16) changes in a similar way,

B̃ =
(
BCxB

T
)−1/2

B. (4.27)

These changes result from the fact that orthogonality of the unmixing vectors of whitened

data is equivalent to BCxB
T = I, whereB contains the unmixing vectors of the unwhitened

data.

The optimal unmixing vectors calculated by (4.23) were forced to be orthogonal using

the formulas above. Abundance estimates were then calculated from the orthogonalized
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Fig. 4.6: Normalized correlation coefficient of estimates obtained by orthogonalizing the
optimal unmixing vectors for Mega1 (first row) and Mega4 (second row). (a) and (d)
Symmetric orthogonalization. (b) and (e) Deflationary orthogonalization (sparse to dense).
(c) and (f) Deflationary orthogonalization (dense to sparse).
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vectors. The effect on the correlation coefficient of the estimates due to orthogonalization

is shown in Fig. 4.6. Because the deflationary orthogonalization approach is sequential,

the ordering of the vectors matters. The deflation was performed in both ascending and

descending material order (most sparse to most dense and vice versa). As would be expected,

the results show that better estimates are obtained for those materials that are used earlier

in the deflation process. So, to obtain better estimates of a material, it would be desirable

for the cost function optimization algorithm to extract the unmixing vector corresponding

to that material before any others. The results also show that deflating the estimates for

more sparse materials first has less of an effect on the more dense materials than deflating

in the opposite order. The symmetric approach is something of a compromise, balancing

the negative effects of the orthogonalization across all of the materials.

The results show that, in most cases, orthogonalization does not cause significant degra-

dation of the estimates. This is true even in the presence of additive noise. There are a

few exceptions, however, where the degradation is noticeable. Obvious examples of this are

materials two and six in the Mega1 results. When symmetric orthogonalization is used,

both show an appreciable decrease from the optimal correlation. When the ascending defla-

tionary approach is used, material two is fine, but material six shows significant loss. Both

are affected when the deflation is performed in descending material order. This behavior

implies that there must be some information shared between the two materials. Thus, if

material two is extracted first, it leads to a degradation when extracting material six and

vice versa. Both experience degradation when the symmetric approach is used. This pat-

tern can be explained by looking at an image representation of the matrix BCxB
T , shown

in Fig. 4.7. If the materials were truly uncorrelated when whitened, then the image would

be that of a diagonal matrix with white pixels on the diagonal and the remainder black.

But, the off-diagonal bright spots in Fig. 4.7 are indications of correlation between the

optimal unmixing vectors, even when the data are whitened. It turns out that material

two only shows up in one pixel and material six only shows up in two pixels, one of which

is shared with the lone material two pixel. Wherever there is a drop in correlation due to
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orthogonalization similar results are found, i.e., a more sparse material shows up entirely

in a subset of the pixels containing a more dense material. In these cases the additivity

constraint in (4.19) leads to stronger correlation than for those materials which share pixels

with many different materials. So, while it is true that as the number of endmembers in

the data increases, the statistical dependence among sources decreases and ICA performs

better [20], co-located materials with limited spatial coverage will still be poorly estimated.

4.4.4 FastICA Performance

As a final experiment, FastICA was used to generate abundance maps for the Mega1

and Mega4 data. Each of the three cost functions in (4.8)–(4.10) was considered, as well as

both symmetric and deflationary orthogonalization. The number of components was left to

be determined by the algorithm. In each case the algorithm was initialized with a random

matrix. As noted earlier, there is a scale ambiguity associated with the FastICA outputs.

To be useful in abundance quantification these outputs should fall in the range [0, 1]. The

best method of rescaling the outputs is not explored in this chapter. Instead, a metric that

is invariant to scale is used to assess the results.
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Fig. 4.7: An image representation of the correlation coefficient of the optimal unmixing
vectors for Mega1. Off-diagonal bright spots indicate correlation between the vectors, de-
spite whitening. Notice the dark area in the bottom-right of the image due to the negative
correlation between the dense materials.
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Because the number of components was not specified, more independent components

were generated than there are materials in the scene. A method has been proposed for

prioritizing independent components obtained from hyperspectral data [23]. For this ex-

periment the normalized correlation coefficient of every independent component with every

material ground truth was calculated, and the maximum was retained for each material.

These results are shown in Fig. 4.8. Average performance across material classifications is

shown in Table 4.2. Generally, it appears that no single cost function or orthogonalization

approach is vastly superior to any other. For extracting dense materials, it seems that

the pow3 cost function should be avoided and that deflationary orthogonalization usually

outperforms symmetric. This might imply that dense materials tend to be found earlier

than materials from other categories. For sparse and super-sparse materials only the gauss

cost function combined with symmetric orthogonalization gave consistently poor results.
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Fig. 4.8: Normalized correlation coefficient of estimates obtained using FastICA for Mega1
(first row) and Mega4 (second row). The deflationary orthogonalization results are shown
with a solid line, symmetric orthogonalization with a dotted line. (a) and (d) Cost function
“pow3” described by (4.8) and (4.11). (b) and (e) Cost function “tanh” described by (4.9)
and (4.12). (c) and (f) Cost function “gauss” described by (4.10) and (4.13).
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Table 4.2: Average normalized correlation coefficient FastICA based on material classifica-
tion.

pow3 tanh gauss

defl symm defl symm defl symm

Mega1, super-sparse 0.8027 0.8095 0.7916 0.8023 0.6808 0.3745

Mega4, super-sparse 0.7229 0.7146 0.7106 0.6943 0.6893 0.3547

Mega1, sparse 0.7303 0.7191 0.7871 0.7435 0.7966 0.5463

Mega4, sparse 0.7882 0.7765 0.8222 0.8174 0.8551 0.7446

Mega1, intermediate 0.6055 0.5945 0.5841 0.5837 0.5876 0.5745

Mega4, intermediate 0.6140 0.5909 0.5915 0.5787 0.6912 0.6012

Mega1, dense 0.5566 0.4660 0.6390 0.4060 0.6467 0.3910

Mega4, dense 0.5729 0.4881 0.6996 0.4120 0.7081 0.7384

Mega1, all 0.7192 0.7084 0.7437 0.7145 0.7184 0.4964

Mega4, all 0.6858 0.6636 0.6960 0.6586 0.7392 0.5965

Three ground truth images as well as the independent components most strongly cor-

related with them are shown in Fig. 4.9. The correlation coefficients of the truth maps and

estimates are, from left to right, |r| = 0.5054, |r| = 0.7443, and |r| = 0.8853. These values

are not normalized by the best-case coefficients. The images give an idea of the quality of

the unmixed data for a range of correlation coefficients.

The images in the first row of Fig. 4.10 show two independent components obtained

using FastICA to unmix the Mega1 data. They illustrate two interesting features that have

been frequently noticed in the FastICA output. First, there is an intensity gradient across

the horizontal dimension of the images. The DIRSIG tool uses a pushbroom sensor model

to generate these data with the sensor moving from bottom to top. So, FastICA seems to

be extracting information that is associated with the view angle of the sensor and/or path

length. Further examination of the associated endmember and atmosphere data is needed

to determine exactly what is being highlighted in this gradient. ICA has been shown to

extract components corresponding to solar angle effect [16], and this may be something

similar.

The second observation is that these two components are both strongly correlated to

the same material. The correlation coefficient of the first with the truth map is |r| = 0.6011.
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(a) (b) (c)

(d) (e) (f)

Fig. 4.9: Material truth maps from Mega1 (first row) and the independent components
most correlated with them (second row). (a) and (d) Tree, Norway Maple, Leaf truth map
and best estimate, |r| = 0.5054. (b) and (e) Sheet Metal, White, Fair truth map and best
estimate, |r| = 0.7443. (c) and (f) Brick, Brampton Brick, Old School, Brown, truth map
and best estimate, |r| = 0.8853.
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For the second, |r| = 0.4673. A linear combination of the two can be used to produce the

image in Fig. 4.10(d) for which |r| = 0.7606. This splitting of a single material into

two components seems to occur frequently. The clustering of independent components of

hyperspectral images has been examined [45], but an attempt to automate and optimize

the process based on results from synthetic data remains a future research effort.

(a) (b)

(c) (d)

Fig. 4.10: Two independent components, (a) and (b), that are strongly correlated to the
same truth map, shown in (c). A linear combination of the two, (d), provides an improve-
ment to the correlation coefficient.
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4.5 Conclusion

The utility of realistic, but synthetic data to assess spectral unmixing approaches was

demonstrated using two hyperspectral images generated by DIRSIG. A number of experi-

ments which use this data were then described. In the first, the effect of dimension reduction

using PCA was quantified. This experiment demonstrated that to achieve near-optimal re-

sults, more dimensions needed to be retained than would be expected based on an analysis

of eigenvalues. Just how many more dimensions are necessary depends on the spatial distri-

bution of the materials of interest. In the second experiment the impact of orthogonalization

was considered. The impact was found to be minimal except in the case where sparsely

distributed materials were found to be consistently co-located. The method of orthogonalzi-

ation as well as the order of material extraction determines the severity of the effect. In

the final experiment it was shown that FastICA is effective at unmixing some, but not all

materials. This is in agreement with an assessment made in existing literature [20]. How-

ever, this complementary experimental approach allowed for the identification of a splitting

behavior in which FastICA produces multiple outputs containing distinct pieces of a com-

mon material. It was shown that these outputs can be merged in a way that produces

improved results. The automation of identifying and merging these outputs is an area of

future research.
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Chapter 5

An Algorithm to Rescale Independent Components for

Abundance Quantification1

5.1 Introduction

Hyperspectral imaging is a remote sensing approach that simultaneously collects both

spatial and spectral data. Spectral data are collected in hundreds of narrow contiguous

bands that may cover the visible, near-infrared, short-wave infrared (0.4–2.5 μm), the mid-

wave infrared (3–5 μm), and/or the long-wave infrared (8–14 μm). Because of their high

spectral fidelity, hyperspectral images are especially useful in discriminating between the

materials in a scene. Although the size of a pixel on the ground varies, spatial measurements

typically consist of hundreds of pixels in both spatial dimensions. Such images contain a

wealth of information and have found application in a broad range of fields such as food

safety [1], agriculture [2], mineralogy [3], ecology [4], and target detection [5], as well as

many others.

Spectral unmixing is a common hyperspectral exploitation approach that extracts in-

formation about the constituent materials in an image. It is the process of decomposing

a hyperspectral image into two products. The first is a set of endmembers, which are the

spectra that are representative of the materials (or classes of materials) in a scene. The

second spectral unmixing product is a set of abundance maps which are images that show

the proportion of each endmember in each pixel of the image.

There are a wide variety of algorithms that have been developed to unmix hyper-

spectral data. Some of these attempt to find the most “extreme” pixels in the image, based

on some definition of distance or extremity. These include pixel purity index (PPI) [6],

1M.R. Stites, J.H. Gunther, T.K. Moon, and G.P. Williams (to be submitted for publication)
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iterative error analysis (IEA) [7], and automated morphological endmember extraction

(AMEE) [8]. Other, similar approaches exploit the geometry imposed by a linear mix-

ing model (LMM). Minimum volume transformation (MVT) [9], N-FINDR [10], convex

cone analysis (CCA) [11], vertex component analysis (VCA) [12], and shrink-wrapping [13]

are all algorithms of this type. Statistical approaches which assume specific probability

distributions for the observed hyperspectral data and/or abundances have also been devel-

oped, such as dependent component analysis (DECA) [14], and Bayesian positive source

separation (BPSS) [15].

A statistical unmixing approach that does not assume a specific distribution for the data

is independent component analysis (ICA) [16]. This approach attempts to unmix the data by

finding maximally independent abundances. A variety of ICA algorithms have been applied

to hyperspectral unmixing including contextual ICA [17], joint cumulant-based ICA [18],

joint approximate diagonalization of eigen-matrices (JADE) [19], and FastICA [19–22]. ICA

has also been employed as a hyperspectral classification approach [23,24].

Traditionally, an endmember is expected to represent a general class of spectra, rather

than a specific material. Endmembers of this nature are expected to be spatially dominant

within the scene. A traditional set of endmembers is relatively small, e.g., grass, trees,

roads, and soil. ICA is one of the few spectral unmixing approaches that operates by

exploiting abundance properties, rather than endmember properties. Because of this, it

can discriminate materials with limited spatial distribution—anomalies—that would not

normally be considered endmembers. Applying ICA to the spectral unmixing problem

allows for a larger, more varied, and more specific set of endmembers.

There are potential problems associated with using ICA to perform spectral unmixing.

One problem is the ICA requirement that the abundances be statistically independent. The

linear mixing model that is at the heart of most spectral unmixing approaches guarantees

that the abundances are, in fact, statistically dependent [25]. However, it has been shown

that this statistical dependence decreases as the number and variability of endmembers

increases, and useful results can be obtained from ICA [19].
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A second problem arises due to the fact that scalar multiplication does not affect the

statistical independence of two random variables. Thus, ICA results are subject to scale

(and sign) ambiguity. This ambiguity requires ICA outputs to undergo some sort of rescaling

in order to be meaningful. A linear rescaling based on finding the minimum and maximum

values of an ICA output has been proposed [22]. However, this approach can perform

poorly in the presence of outliers in the ICA output or when there is an unexpected offset

in the ICA output. To remedy these shortcomings, a new, nonlinear rescaling approach is

presented in this chapter that is based on a statistical model for abundance values. When

estimated abundances are compared to true abundances, rescaling based on this model

shows significant improvement over other methods. This improvement is observed both in

the reduction of mean-square error (MSE) and the increase of the correlation coefficient.

This chapter is organized as follows. The abundance model is constructed in Section

5.2. The rescaling algorithm that has been developed based on the proposed abundance

model is described in Section 5.3. Section 5.4 contains experimental description and results.

Section 5.5 provides some final observations and conclusions.

5.2 Abundance Model

The development of the abundance model is based on the simple observation that there

are three types of pixels in an abundance map. Empty pixels do not contain the material

and always take an abundance value of zero. Filled pixels contain only the material and

always take an abundance value of one. Finally, mixed pixels are partially filled by the

material and have an abundance value between zero and one. This model can be stated

probabilistically as

pideal(a) = Peδ(a) + Pfδ(1 − a) + Pmfm(a), (5.1)

where Pe, Pf, and Pm are the proportions of empty, filled, and mixed pixels, respectively,

and fm(a) is a probability density function (pdf) that describes the distribution of the

abundance values of mixed pixels. Since every pixel must be either empty, filled, or mixed,

Pe, Pf, and Pm must sum to one. The continuous uniform and beta distributions have
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both been considered as the mixed pixel distribution, fm(a). The uniform distribution with

pdf given by, fu(x) = 1, 0 < x < 1, is simple, making it easy to work with. The beta

distribution with pdf

fβ(x|α, β) = Γ(α+ β)

Γ(α)Γ(β)
xα−1 (1− x)β−1 , 0 < x < 1, (5.2)

is much more complicated, but allows for much more variability in the shape of the distri-

bution.

Figure 5.1(a) shows an abundance map obtained from DIRSIG, a synthetic imagery

generation tool [26, 27]. Although the imagery is synthetic, it is generated from a physical

model of existing structures, making the abundance distributions very realistic. The mate-

rial highlighted in Fig. 5.1(a) is a gray roofing gravel. A histogram of the abundances from

the image is shown in Fig. 5.1(b). This distribution of abundance values shows large values

at zero and one corresponding to empty and filled pixels, and a very small percentage of

mixed pixels in the image (less than 3%). Such a distribution—with a small number of

mixed pixels—should be expected for any scene where the spatial coverage of a material is

significantly larger on average than the spatial resolution of the sensor.
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Fig. 5.1: DIRSIG-generated abundance truth data for gray roofing gravel. (a) Abundance
map image. (b) Histogram of abundance values. This histogram conforms well to the ideal
abundance model given by (5.1).
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When ICA is used to unmix a hyperspectral image, the ideal abundances are not ob-

tained in the independent components. Instead, each independent component is a corrupted

version of the ideal abundances for a given material, modeled as

aic = c1aideal + c0 + ν. (5.3)

In this model, c1 is a constant that incorporates the scale ambiguity associated with ICA

outputs. Occasionally, a small offset is present in the observed data, motivating the inclusion

of the constant term, c0, in the model. The final term, ν, is a zero-mean Gaussian random

variable with variance σ2. This term is included to account for both sensor noise and

endmember variability.

The model in (5.3) implies that for an independent component both the empty and

filled abundance classes have Gaussian pdfs. The mean of the empty class is at c0, i.e.,

pe(a) = φ(a|c0, σ2), (5.4)

and the mean of the filled class is at c1 + c0, i.e.,

pf(a) = φ(a|c1 + c0, σ
2), (5.5)

where

φ(x|μ, σ2) =
1√
2πσ2

e−
(a−μ)2

2σ2 . (5.6)

The distribution of the mixed class is somewhat more complicated. If the ideal model

assumes a uniform distribution, then the independent component model yields a distribution

with the form

pm(a) =
1

2 (c1 − c0)

[
erf

(
a− c0√
2σ2

)
− erf

(
a− c1√
2σ2

)]
, (5.7)

where erf(·) is the error function given by

erf(x) =
2√
π

∫ x

0
e−t2dt. (5.8)
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When the ideal model assumes a beta distribution for the mixed class, the pdf for the mixed

class in the independent component model is the convolution of a zero-mean Gaussian pdf

with a beta pdf, i.e.,

pm(a) =

∫ 1

0
fβ(τ |α, β)φ(a − τ |0, σ2)dτ. (5.9)

Values for this distribution can be obtained by using numerical convolution methods.

The independent component class distributions described above can be combined with

the ideal abundance model (5.1) to produce a pdf for the independent component as

pic(a) = Pepe(a) + Pfpf(a) + Pmpm(a). (5.10)

This distribution is just a sum of the class distributions scaled by the relative class propor-

tions in the ideal model.

Figure 5.2(a) shows an independent component that is strongly correlated to the abun-

dance map shown in Fig. 5.1(a). The corresponding histogram is shown in Fig. 5.2(b). The

histogram of the independent component shows good agreement with the the independent

component model (5.10).
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Fig. 5.2: Independent component obtained using ICA corresponding to gray roofing gravel.
(a) Independent component image. (b) Histogram of independent component values. This
histogram conforms well to the observed abundance model given by (5.3), showing an ob-
vious scaling error and blurring of the sharp peaks of the ideal abundance.
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5.3 Rescaling Algorithm

An algorithm has been developed that leverages the independent component model

(5.10) to perform the rescaling necessary to make an independent component useful as an

abundance map. The algorithm consists of two fundamental steps: 1) parameter estimation;

and 2) nonlinear mapping.

5.3.1 Parameter Estimation

The goal of the parameter estimation step is to find values for the parameters in (5.10)

to best fit the observed data. These parameters consist of the class probabilities: Pe, Pf,

Pm, the scale ambiguity, c1, the offset, c0, and the noise variance, σ2. Note that because

the source of the noise is identical for all three classes there is only one noise parameter

to estimate. Also, rather than estimating c1 and c0 explicitly, we instead estimate the

means of the Gaussian classes. We denote these parameters as μ0 and μ1. This results

in a sign ambiguity—μ0 could correspond to the empty or the filled class—which is re-

solved in the nonlinear mapping step. Additionally, there are two parameters, α and β,

associated with the beta distribution that must be estimated if that distribution is used to

describe the mixed pixel class. Collecting everything, we have the following parameters:

θu = {Pe, Pf, Pm, μ0, μ1, σ
2} (uniform distribution) or θβ = {Pe, Pf, Pm, μ0, μ1, σ

2, α, β}
(beta distribution).

The approach for estimating the parameters described above is based on the expectation-

maximization (EM) algorithm [28]. The EM algorithm and a slight variation of it, stochastic-

expectation-maximization (SEM) [29], have been applied directly to the hyperspectral un-

mixing problem [30, 31], but not to the problem of rescaling abundances. The EM algo-

rithm is especially useful for maximum-likelihood (ML) estimation problems where there is

a many-to-one mapping from an underlying distribution to the distribution governing the

observation [32]. In this case, the underlying distribution is given by the class distributions

in (5.4), (5.5), and (5.7), and the observation is given by (5.10).

The expectation step of the algorithm consists of computing the expected value of class

membership given the observed data and current parameter estimates. In similar problems
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these values have been referred to as responsibilities [33] or posterior class probabilities [31].

Let a ≡
[
a(1) a(2) . . . a(T )

]
be an observed independent component with T pixels that

has been row-scanned to form a vector. The posterior class probabilities can be computed

for a given observation, a(t), as

Π̃0(t) = P̂0 · φ(a(t), μ̂0, σ̂
2), (5.11)

Π̃1(t) = P̂1 · φ(a(t), μ̂1, σ̂
2), (5.12)

Π̃m(t) = P̂m · pm(a(t)). (5.13)

These responsibilities must be normalized according to

Πk(t) =
Π̃k

Π̃0(t) + Π̃1(t) + Π̃m(t)
, k ∈ {0, 1,m}. (5.14)

The maximization step of the algorithm computes the ML estimates of the parameters,

given the results from the expectation step. The class probabilities are computed as

P̂k =
1

T

T∑
t=1

Πk(t), k ∈ {0, 1,m}, (5.15)

where T is the number of pixels in the image. The estimates of the mean are computed

according to

μ̂k =

∑T
t=1 Πk(t) · a(t)∑T

t=1 Πk(t)
, k ∈ {0, 1}. (5.16)

The estimate of σ2 can be obtained by estimating σ2 for each class and combining

those estimates, weighted by the estimated class probabilities, i.e.,

σ̂2 = P̂0σ̂
2
0 + P̂1σ̂

2
1 + P̂mσ̂

2
m. (5.17)
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For the pure-pixel classes, the estimates of σ2 are given by

σ̂2
k =

∑T
t=1Πk(t) · (a(t)− μ̂k)

2∑T
t=1 Πk(t)

, k ∈ {0, 1}. (5.18)

For the mixed-pixel class, estimating σ2 is somewhat more complicated. In the case of the

uniform distribution, it requires equating the derivative of the log-likelihood to zero and

solving for σ, i.e.,

(
2√
π

) T∑
t=1

exp
[−z1(t)

2
] z1(t)

σ − exp
[−z0(t)

2
] z0(t)

σ

erf [z0(t)]− erf [z1(t)]
= 0, (5.19)

where

zk(t) ≡ a(t)− μ̂k√
2σ

, k = 0, 1. (5.20)

Because there is no closed-form solution to (5.19), it must be solved numerically using an

optimization approach such as Newton’s method.

When the beta distribution is used to describe the mixed-pixel class the parameters α

and β must be estimated along with or prior to estimating σ2. It turns out that obtaining

ML estimates for the parameters of a beta distribution requires solving a system of equations

with no closed-form solution, typically employing a numerical approach such as Newton’s

method. An alternative approach that is more straightforward is the method of moments.

Not only is method of moments estimation simpler, it is also more accurate than ML

estimation for small sample sizes [34]. Because the problem here is even more complicated

due to the addition of Gaussian noise, a method of moments approach was implemented

to estimate α, β, and σ2. Because of their complexity, the estimation formulas are shown

in Appendix B. Initial testing has shown that the formulas work well when α and β take

sufficiently different values and the number of samples is large. However, when the number

of samples is small or α ≈ β, the estimation results are questionable.

Because of the complexity of the estimation process and potential unreliability of the



74

estimation results, the decision was made to estimate σ2 without considering the contribu-

tion of the mixed-pixel class. In this case the estimate is obtained from

σ̂2 =
P̂0σ̂

2
0 + P̂1σ̂

2
1

P̂0 + P̂1

. (5.21)

This modification yields an estimate that is not necessarily the ML estimate, which could

affect the convergence of the EM algorithm. In practice, however, no negative effects have

been observed. This is most likely because only a small number of pixels make up the

mixed-pixel class and a reliable estimate of σ2 can be obtained from (5.21). Although the

small number of pixels in the mixed-pixel class enables this simplification, it also precludes

application of the SEM algorithm to this problem.

Under normal circumstances, the EM algorithm is guaranteed to converge to a local

solution, although not necessarily to the global optimum. As such, it is dependent on

initial conditions. Testing of the algorithm has shown that the algorithm is not particularly

sensitive to the initial values of μ0, μ1, or σ2, but is a bit more sensitive to the class

probabilities, P0, P1, and Pm. Based on observations from testing of the algorithm, a

standard initialization scheme has been developed. In this scheme μ0 is set to the minimum

observed value, μ1 to the maximum, and σ2 to the sample variance of the observed data.

The class probabilities are initialized to P0 = 0.98, P1 = 0.01, and Pm = 0.01, assuming an

extremely rare material. Obviously, when the material is rare in the scene this is a good

assumption, but when the material is common in the scene the algorithm is still able to

converge to an acceptable solution. The converse of this is not true.

One other observation that has been made regarding the class probabilities is that

in certain situations when the observed data contain outliers on both sides of the large

Gaussian mode corresponding to the empty-pixel class, the algorithm may converge to a

solution with an overly large proportion of mixed-pixels. This behavior is restricted in the

algorithm by checking the estimated value of Pm at each iteration. If the value is greater

than 0.5 it is reset to 0.01 and the other class probabilities are normalized accordingly.
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5.3.2 Nonlinear Mapping

Once the distribution parameters have been determined, all that remains is to map the

observed data back to the ideal. The first step is to determine to which class each indepen-

dent component value should belong. This is done by calculating the class responsibilities,

Π̃k, defined in (5.11), (5.12), and (5.13). Each independent component value is assigned to

the class for which Π̃k is largest.

The next step is to determine which pure-pixel class each of the two Gaussian classes

should be associated with. This is done in either of two ways. First, since c0 is expected

to be small, the Gaussian class with estimated mean closest to zero can be assigned to the

empty class. Second, the estimated class probabilities, P̂0 and P̂1, can be inspected and

the empty-pixel class associated with the larger of these two values. This assignment could

be wrong if there is a material in the scene which completely fills more than half of the

pixels in the image. Although it depends on the type of scene, this condition does not

occur frequently and can only happen at most once per image. Also, when a material fills

a large area of the image it is fairly common for ICA to split that material into multiple

independent components, each of which would fill less than half of the image [see Chapter

4].

The final step is to reassign independent component values to conform to the ideal

model. Pixels belonging to the empty-pixel class are set to zero, and pixels assigned to

the filled-pixel class are set to one. Finally pixels belonging to the mixed class are mapped

linearly to the range [0, 1], i.e.,

â(t) =
a(t)− amin

amax − amin
, (5.22)

where amax and amin are the maximum and minimum values, respectively, of the pixels

assigned to the mixed pixel class.

5.4 Experimental Results

A variety of experiments have been performed to assess the behavior and performance

of the proposed algorithm. Each of these experiments used synthetic hyperspectral data
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generated using DIRSIG. Synthetic data are especially useful for quantitative assessments of

new algorithms because they provide accurate ground truth. For the experiments described

below a hyperspectral radiance cube was generated using an AVIRIS-like spectral response

with 224 bands. The spatial dimensions of the cube are 128 pixels by 128 pixels. A

broadband image of the cube is shown in Fig. 5.3.

From this one synthetic cube a number of test cubes were produced by adding various

realizations of Gaussian noise. Each of these cubes was processed using the FastICA algo-

rithm [35], varying the processing options to produce a variety of independent components.

These independent components were then rescaled to produce estimated abundances.

In each experiment the estimated abundances are compared to the true abundances

associated with the DIRSIG-generated cube. Two metrics are used to quantify this com-

parison. The first is mean-square error, defined as

MSE(x,y) =
1

T

T∑
t=1

(x(t)− y(t))2 , (5.23)

Fig. 5.3: Broadband image of synthetic data used in algorithm assessment. The scene
contains large buildings to the left, a parking lot in the center, grassy areas on the right,
and trees intermingled with residential roofs at the top.



77

where x and y are T -element vectors. The other proposed metric is the correlation coeffi-

cient, given by

r(x,y) =

∑T
t=1 (x(t)− x) (y(t)− y)√∑T

t=1 (x(t)− x)2
√∑T

t=1 (y(t)− y)2
. (5.24)

The correlation coefficient is useful in assessing ICA performance since it is invariant to

scale, and thus unaffected by the scale ambiguity inherent in ICA outputs. Mean-square

error is intuitive and widely used, but is not useful in examining (non-rescaled) ICA outputs.

It can also be somewhat misleading when comparing sparse abundance maps.

The proposed method, referred to hereafter as class-based abundance rescaling (CBAR)

is compared to two other rescaling approaches. The first is an intuitive linear mapping

of the independent component to the range [0, 1]. This approach is referred to as linear

abundance rescaling (LAR). The formula for this mapping is given by (5.22) with amax and

amin corresponding to the maximum and minimum values, respectively of the independent

component. A final rescaling approach is the abundance quantification algorithm (AQA)

[22] given by

â(t) =
|a(t)| −mint |a(t)|

maxt |a(t)| −mint |a(t)| . (5.25)

This approach is the LAR approach applied the absolute value of the independent compo-

nent.

The remainder of this section demonstrates the performance of the CBAR algorithm. In

the next two subsections, CBAR behavior is demonstrated by showing rescaling results for

two specific independent components. One of these components is is fairly dense, while the

other is relatively sparse. In the final subsection the average performance of the algorithm

across a variety of independent components is shown. In all of these scenarios CBAR

performance is compared to the LAR and AQA approaches.

5.4.1 Dense Material Example

The independent component shown in Fig. 5.2 and corresponding to the roofing mate-

rial shown in Fig. 5.1 is an example of an independent component that conforms well to the
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model in (5.10). This independent component was rescaled using the CBAR algorithm. A

histogram of the independent component with the estimated pdf is shown in Fig. 5.4. The

figure shows good agreement between the data and the model. The true class probabilities

can be obtained from the truth data by determining the number of empty, filled, or mixed

pixels in the truth map and dividing by the number of pixels in the image. Comparing these

results to the values obtained by the parameter estimation step of the CBAR algorithm we

have: P0 = 0.8552, P̂0 = 0.8580, P1 = 0.1126, P̂1 = 0.0942, and Pm = 0.0322, P̂m = 0.0478.

The estimation error for all of these values is less than 0.02. The estimated mean values are

μ̂0 = −3.0359 and μ̂1 = 0.1066 and the estimated variance is σ̂2 = 0.0638. The threshold

values obtained by the nonlinear mapping step of the CBAR algorithm are t0 = −2.4947

and t1 = −0.6504. Because this component is inverted, any value less than t0 is mapped

to the filled-pixel class and any value greater than t1 is mapped to the empty-pixel class.

The image resulting from the rescaling is shown in Fig. 5.5 along with the truth map, the

original independent component, and the AQA-rescaled image. Also shown are the his-

tograms associated with each image. The histograms and figures show the denoising effect

that the CBAR algorithm has, compared to other approaches. The mean-square error and

correlation coefficient associated with each of these are shown in Table 5.1. These results

show that the CBAR approach has the lowest MSE and largest correlation coefficient of any

of the approaches. Note that the negative correlation coefficients for some of the estimates

indicates that the estimate is inverted.

Table 5.1: Mean-square error and correlation coefficient for gray roofing gravel abundance
estimates.

MSE r

Independent component 1.8652 -0.9097

LAR abundance 0.4961 -0.9097

AQA abundance 0.0244 0.9090

CBAR abundance 0.0168 0.9222
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Fig. 5.4: A histogram of the independent component associated with the gray roofing gravel
material along with the estimated pdf, generated according to the independent component
model in (5.10).
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Fig. 5.5: A comparison of abundance maps (first row) and histograms (second row) asso-
ciated with the gray roofing gravel material. (a) and (e) Abundance truth map. (b) and
(f) Independent component. (c) and (g) Estimated abundance obtained using the AQA
algorithm. (d) and (h) Estimated abundance obtained using the CBAR algorithm.
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5.4.2 Sparse Material Example

In the previous example the material of interest was present in nearly 15% of the image

pixels, making it relatively dense. The CBAR algorithm also works to rescale materials that

are much more sparse. In this example a material is considered which is present in less than

0.3% of the image pixels. Figure 5.6 shows the truth map for a brown brick siding material,

along with associated independent component and rescaling results. The histograms are

also shown, although it is difficult to discern the Gaussian mode corresponding to the

filled-pixel class. Because only one Gaussian mode is visible, the histogram and estimated

pdf are not shown. Comparing the estimated class probabilities to the true values gives

P0 = 0.9973, P̂0 = 0.9962, P1 = 7.9346 × 10−4, P̂1 = 1.3739 × 10−4, and Pm = 0.0019,

P̂m = 0.0037. The errors in these estimates are all less than 0.002. The other estimated

values are μ̂0 = −15.8143, μ̂1 = 6.4748, and σ̂2 = 0.5030. The class thresholds are located

at t0 = −15.8142 and t1 = −3.6141.

Based on the way FastICA is supposed to behave, the value of c0 in (5.3) is expected

to be close to zero. This independent component violates that assumption. In this case, the

mean corresponding to the empty-pixel class is at 6.4748. The CBAR and LAR algorithms

are tolerant of this violation, however the AQA approach is not. Because the values cor-

responding to empty pixels are not close to zero, the AQA approach actually reduces the

correlation coefficient. These results are shown in Fig. 5.6 and Table 5.2.

5.4.3 Average Performance

In order to quantify the performance of the CBAR algorithm more generally, a large

Table 5.2: Mean-square error and correlation coefficient for brown brick siding abundance
estimates.

MSE r

Independent component 42.4931 -0.6231

LAR abundance 0.7509 -0.6231

AQA abundance 0.1575 0.0384

CBAR abundance 5.2022 ×10−4 0.8492
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Fig. 5.6: A comparison of abundance maps (first row) and histograms (second row) asso-
ciated with the brown brick siding material. (a) and (e) Abundance truth map. (b) and
(f) Independent component. (c) and (g) Estimated abundance obtained using the AQA
algorithm. (d) and (h) Estimated abundance obtained using the CBAR algorithm.

number of independent components were generated by running FastICA with a variety of

parameters on the test cube shown in Fig. 5.3 with a number of different noise levels and re-

alizations. Each independent component was then processed by the LAR, AQA, and CBAR

rescaling approaches. When any result, including the independent component, had a cor-

relation magnitude greater than 0.6, it was retained, along with the corresponding results

from the other processing approaches. This step allows for erroneous independent compo-

nents to be excluded from the characterization. After this exclusion step, 904 independent

components were retained. The average mean-square error and correlation coefficient mag-

nitude for each processing approach was then calculated. The averages were computed

separately for sparse materials and dense materials. Dense materials are loosely defined as

those that appear in at least hundreds of image pixels (greater than 1.5%) and appear as a

“pure” material in at least a handful of pixels. Sparse materials constitute the remaining

materials.

The average results are shown in Table 5.3. Notice that for these computations the
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magnitude of the correlation coefficient was considered, ignoring sign ambiguity. All three

rescaling approaches were able to reduce the MSE, with AQA performing better than LAR,

and CBAR better than the both of them. For sparsse materials the improvement over AQA

was an order of magnitude. Also, the CBAR approach was the only approach that was able

to increase the correlation coefficient. The improvement was moderate for dense materials,

but significant for sparse materials.

5.5 Conclusion

The problem of hyperspectral unmixing has been approached in a variety of ways, utiliz-

ing a vast assortment of algorithms. One approach has been to use independent component

analysis to perform the unmixing. Although promising, using ICA is hindered because the

output abundance estimates exhibit a scale ambiguity. In practice, a constant offset is also

often present. Additionally, independent components also tend to be noisy. The better

the scale ambiguity, offset, and noise can be eliminated, the more useful the independent

components will be as abundance maps.

A statistical model for abundances has been developed which assumes three classes of

abundance pixels: empty, filled, and mixed. This model can be extended to produced a

corresponding statistical model for independent component values. The independent com-

ponent model takes into account the effects of scale ambiguity, offset, and noise. Using the

relationship between the ideal model and the independent component model, an algorithm

has been developed which estimates model parameters to fit an independent component

Table 5.3: Average mean-square error and correlation coefficient magnitude for rescaling
approaches.

Sparse Materials Dense Materials All Materials

MSE |r| MSE |r| MSE |r|
Independent component 16.2966 0.5060 3.9703 0.7503 10.4062 0.6228

LAR abundance 0.3809 0.5060 0.3426 0.7503 0.3615 0.6228

AQA abundance 0.0246 0.4672 0.0314 0.7096 0.0280 0.5884

CBAR abundance 0.0021 0.8198 0.0242 0.7700 0.0127 0.7960
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to the independent component model. These estimated parameters can then be used to

map independent component values to ideal values, effectively reducing the impact of scale

ambiguity, offset, and noise.

The proposed rescaling algorithm was compared to two other approaches, using syn-

thetically generated data to provide a quantitative assessment. The proposed algorithm

was the only approach that was able to both reduce the mean-square error and increase the

correlation correlation coefficient of the estimates. For sparse materials, the increase was

significant.
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Chapter 6

An Extended Algorithm to Rescale Independent

Components for Abundance Quantification1

6.1 Introduction

Many approaches have been applied to unmixing hyperspectral data including algo-

rithms that exploit the geometry of the linear mixing model [1–7], extract “extreme” spec-

tra [8–11], minimize signal complexity [12], estimate statistical model parameters [13–17],

and many others. The goal of the unmixing process is to separate the individual spectra

of materials in a pixel—allowing for material identification based on spectral matching or

pattern analysis, and to estimate the amount of the material present in the pixel—material

(abundance) quantification.

Independent component analysis (ICA) has been explored as a spectral unmixing

method. ICA encompasses a variety of algorithms that unmix data by finding results—

typically abundances—that are statistically independent. ICA algorithms used to unmix

hyperspectral data include joint cumulant-based ICA [18], joint approximate diagonaliza-

tion of eigen-matrices (JADE) [19], FastICA [19–22], and a FastICA modification called

linear spectral random mixture analysis (LSRMA) [23].

ICA outputs, called independent components (ICs), have a scale ambiguity that arises

because scalar multiplication does not affect the independence of two signals. If the ambi-

guity is not resolved, the practical application of ICA for abundance estimation is difficult,

since abundance estimates should range from zero to one [24]. Various approaches have

been proposed to rescale independent components for abundance quantification. These in-

clude the abundance quantification algorithm (AQA) [22], which finds the minimum and

1M.R. Stites, J.H. Gunther, T.K. Moon, and G.P. Williams (to be submitted for publication)
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maximum values of the absolute value of an IC and performs a linear mapping on the range

[0, 1] and the class-based abundance rescaling (CBAR) [see Chapter 5] algorithm, which

uses statistical models to describe both ideal abundances and ICs and uses the theoretical

relationship between the two models to perform a nonlinear mapping on the range [0, 1].

Experiments comparing rescaled abundances to truth data showed that AQA typically pro-

duces significant reductions in mean-square error (MSE) compared to the unscaled data,

but at the cost of decreasing the correlation coefficient, while CBAR consistently lowers

MSE and simultaneously increases the correlation coefficient [see Chapter 5].

In this chapter, an extended CBAR algorithm is proposed called CBAR-X. Generally,

ICs obtained using ICA represent single materials. However, when material spectra are

negatively correlated, a single IC can represent two distinct materials—a condition that

occurred slightly over 25% of the time in experiments. The CBAR-X algorithm extends the

statistical models used to describe abundance values to address two-material cases where the

original models do not describe observed data. This extension enables accurate extraction

of two materials from a single IC when that component represents two negatively-correlated

materials. Additionally, when the data conform to the original CBAR model, (i.e., when the

IC represents a single material), there is no reduction in performance or penalty incurred

by using CBAR-X.

6.2 Abundance Model and Rescaling Algorithm

The CBAR algorithm assumes that for a given material, an abundance pixel belongs

to one of three classes: empty, filled, or mixed. Empty pixels have a value of zero, filled

pixels a value of one, and mixed pixels have a value between zero and one. This leads to a

statistical model for ideal abundances given by

pideal(a) = Peδ(a) + Pfδ(1 − a) + Pmfm(a), (6.1)

where Pe, Pf, and Pm are the proportions of empty, filled, and mixed pixels, respectively,

and fm(a) is a probability density function (pdf) that describes the distribution of the



89

mixed-pixel abundance values. Both the uniform and beta distributions were considered to

describe the mixed-pixel abundance distribution.

An abundance map for gray roofing gravel generated by DIRSIG [25] is shown in Fig.

6.1(a) with Fig. 6.1(b) showing the simplicity of the three-class model for ideal abundances.

Although synthetically-generated, DIRSIG data are generated using physical modeling of

real-world scenes and spectral measurements, so the ground truth images provide an accu-

rate representation of abundance data in real scenes.

A statistical model for observed independent components is produced by scaling (by

c1), shifting (by c0), and adding zero-mean Gaussian noise to the ideal data. This leads to

a pdf given by

pic(a) = Pepe(a) + Pfpf(a) + Pmpm(a), (6.2)

where pe(a) = φ(a|c0, σ2), pf(a) = φ(a|c1 + c0, σ
2), and

φ(x|μ, σ2) =
1√
2πσ2

e−
(a−μ)2

2σ2 . (6.3)

The mixed-pixel class distribution of the IC, pm(a), is obtained by convolving fm(a) with

(6.3). An IC obtained using FastICA that is strongly correlated to the abundance map

in Fig. 6.1(a) is shown in Fig. 6.2(a) with corresponding histogram in Fig. 6.2(b). The
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Fig. 6.1: DIRSIG-generated abundance truth data for gray roofing gravel. (a) Abundance
map image. (b) Histogram of abundance values. This histogram conforms well to the ideal
abundance model given by (6.1).
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curve overlaying the histogram is generated by (6.2), and shows good agreement between

the model and data.

The CBAR rescaling algorithm uses expectation-maximization (EM) [26] to estimate

model parameters in (6.2) to best fit the IC values. For each IC value, the algorithm

calculates the probability of belonging to each class and the most probable class for each

pixel. Empty and filled pixels are mapped to zero and one, respectively. Mixed-class pixels

are mapped linearly between zero and one. Figure 6.3 shows an abundance map generated

using CBAR to rescale the IC in Fig. 6.2(a). The rescaling reduced the MSE from 1.8652

to 0.0168 and increased the correlation coefficient magnitude from 0.9097 to 0.9222.

The CBAR algorithm performs well for data that fit the three-class model where each

IC represents one material. However, there can be ICs that do not conform to this model.

Figure 6.4 shows an example. The histogram shows that this component has a dominant

mode near zero corresponding to empty pixels, but also shows, unexpectedly, that there are

a significant number of pixels to the left and the right of this mode. Figure 6.4 shows the

values to the right of zero as bright pixels and values to the left as dark pixels in the image.

Here the bright pixels correspond to white sheet metal and the dark pixels correspond

to brown siding. A number of similar examples were observed, indicating that two-sided

independent components are not rare. The two-sided ICs occur when two materials are

strongly negatively correlated which makes sense given ICA is a linear unmixing approach.

Figure 6.5 presents the reflectance spectra for the white sheet metal and brown siding

materials and shows their strong negative correlation. These two material spectra have a

correlation coefficient of -0.7914.

To address two-sided ICs that represent abundances for two distinct materials, the

CBAR model was extended to contain five classes:

pic(a) = Pepe(a) + Pf+pf+(a) + Pm+pm+(a) + Pf−pf−(a) + Pm−pm−(a). (6.4)

CBAR-X retains an empty class with mixed and filled pixels on either side. The rescaling

algorithm is the same two steps, parameter estimation followed by nonlinear mapping.
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Fig. 6.2: Independent component obtained using FastICA corresponding to gray roofing
gravel. (a) Independent component image. (b) Histogram of independent component values.
This histogram conforms well to the observed abundance model given by (6.2), showing an
obvious scaling error and blurring of the sharp peaks of the ideal abundance.
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Fig. 6.3: Abundance map produced by using CBAR to rescale the independent component
corresponding to the gray roofing gravel material.
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Fig. 6.4: Independent component corresponding to both white sheet metal and brown
siding. (a) Independent component image. (b) Histogram of abundance values showing a
non-negligible number of pixels on both sides of the empty pixels. To more clearly illustrate
the two-sided nature of the data, this histogram shows—on a logarithmic scale—the number
of pixels, rather than the proportion of pixels.

0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

Wavelength [μm]

Sp
ec

tr
al

 r
ef

le
ct

an
ce

Fig. 6.5: Reflectance spectra for white sheet metal (solid) and brown siding (dotted). The
correlation coefficient between these two spectra is -0.7914.
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The parameter estimation remains the same as in the original CBAR algorithm, but with

additional parameters. The nonlinear mapping for the five-class model is similar to the

three-class model, but is be performed twice, once for each material. This is illustrated in

Fig. 6.6, which shows a distribution generated according to (6.4) and the threshold values

between classes. For the negative (left) material, the values greater than b are assigned to

the empty class, and values less than a are assigned to the filled class. For the positive

(right) material, values less than c are assigned to the empty class and values greater than

d are assigned to the filled class.

6.3 Experimental Results

An experiment was performed to compare the performance of CBAR-X (five-class) with

CBAR (three-class). DIRISG was used to generate radiance data cubes with an AVIRIS-like

spectral response [27]. Different Gaussian noise realizations were added to produce 106 test

cubes. Each test cube was processed using FastICA, producing a large number of ICs. Each

IC was rescaled with CBAR and CBAR-X which resulted in four abundance maps for each

IC: the IC itself, the CBAR rescaled abundance, and two CBAR-X rescaled abundances. For

each of these four results, the mean-square error and correlation coefficient was computed

for every abundance truth map. If the correlation coefficient magnitude for any of these

results was greater than 0.6, all four results were retained. This was done to exclude ICs

that do not correspond to actual materials. Ultimately 923 results were retained. The
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Fig. 6.6: An example of a distribution following the five-class model given in (6.4) and the
threshold between the five classes.
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second CBAR-X result was retained only if there was a material for which the correlation

coefficient magnitude was greater than 0.6 to ignore extraneous second material results for

ICs with only one material. There were 236 results (25.57%) where two distinct materials

were extracted from a single IC.

To demonstrate the ability of CBAR-X to extract two materials from a single IC, the

IC shown in Fig. 6.4(a) was used. Figure 6.7 shows the results and corresponding truth

maps. Table 6.1 shows the MSE and correlation coefficient for this IC, processed by CBAR

and CBAR-X. For the primary white sheet metal material the improvements from CBAR

and CBAR-X over the unprocessed IC are significant and similar. For the secondary brown

siding material, the abundance from CBAR-X is significantly improved over the original IC

and is as good as the result obtained for the primary material.

Table 6.2 shows the average performance for the 923 primary and 236 secondary re-

sults. Both CBAR approaches significantly reduce the MSE and increase the correlation

coefficient, compared to the unscaled IC data. This improvement is especially pronounced

for sparse materials. CBAR-X with five-classes, can extract a second material in over 25%

of the ICs with performance metrics on par with those obtained for the primary materials

and no negative impact on the accuracy of the primary material extraction.

6.4 Conclusion

The CBAR algorithm (three classes) was extended to use five-classes and called CBAR-

X. CBAR has been shown to be an effective approach to rescale ICs for use in abundance

Table 6.1: Mean-square error and correlation coefficient magnitude for rescaling approaches
applied to the independent component in Fig. 6.4(a).

MSE r

Independent component, white sheet metal 3.175 0.8026

CBAR, white sheet metal 0.0010 0.8218

CBAR-X, white sheet metal 8.5553×10−4 0.8222

Independent component, brown siding 3.2027 -0.1455

CBAR, brown siding 0.0047 -0.0057

CBAR-X, brown siding 5.0969×10−4 0.8540
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(a) (b)

(c) (d)

Fig. 6.7: CBAR-5 rescaling results and corresponding truth maps. (a) Abundance truth
map for white sheet metal material. (b) Abundance truth map for brown siding material.
(c) Positive (right) CBAR-5 rescaling result. (d) Negative (left) CBAR-5 rescaling results.

Table 6.2: Average mean-square error and correlation coefficient magnitude for rescaling
approaches.

Sparse Materials Dense Materials All Materials

MSE |r| MSE |r| MSE |r|
Independent component, primary material 16.3802 0.5028 4.2433 0.7387 10.5156 0.6168

CBAR, primary material 0.0048 0.8151 0.0272 0.7568 0.0156 0.7869

CBAR-X, primary material 0.0201 0.8241 0.0179 0.7645 0.0190 0.7953

Independent component, secondary material 6.9357 0.1346 12.6495 0.4802 7.7831 0.1858

CBAR, secondary material 0.0279 0.0290 0.0359 0.0114 0.0291 0.0264

CBAR-X, secondary material 0.0003 0.7917 0.0052 0.7596 0.0011 0.7870
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quantification. However—as demonstrated in this chapter—when material spectra are neg-

atively correlated CBAR does not retain all of the material information contained in the IC.

By extending CBAR to use five, rather than three classes, this information is retained while

still achieving the desired (and significant) reduction of mean-square error and increase of

correlation coefficient. To make CBAR-X more practical, a better method should be devel-

oped to determine when a secondary material is present in an independent component. This

may be possible by analyzing the results of the parameter estimation step of the rescaling

algorithm. The relative distances between the means of the filled classes and mean of the

empty class may be an indicator for the presence or absence of a second material. The

CBAR-X results are promising, both in cases with a single material as well as cases where

two materials are present in an IC. Experimental results show that two-material cases occur

frequently. CBAR-X has the potential to enable unmixing approaches with scale ambiguity

such as ICA to be used more effectively for abundance quantification.
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Chapter 7

Summary and Future Work

In this dissertation, the problem of utilizing independent component analysis for hyper-

spectral unmixing was explored. The material in Chapters 1–3 provided background, moti-

vation, and context for the problem. In Chapters 4–6 various aspects of the problem were

examined in more detail. Throughout, a number of informative observations and useful

results were presented. Additionally, open questions and potential directions for future

research were identified.

In Chapter 4, a quantitative assessment was made of spectral unmixing results ob-

tained using the FastICA algorithm. Such an assessment was possible through the use

of synthetically-generated but physically-realistic hyperspectral imagery. This assessment

showed that FastICA produced results that were strongly correlated to ground truth abun-

dance maps. This was especially true for sparse and super-sparse materials. Two of the

fundamental steps of the FastICA algorithm, dimension reduction (using PCA) and orthog-

onalization were also assessed. The assessment of PCA demonstrated the importance of

retaining a large number of dimensions in order to accurately unmix sparse materials. The

assessment of orthogonalization showed that forcing unmixed results to be orthogonal was

only detrimental when endmembers were spatially correlated. These results, combined with

others in the published literature demonstrate the potential ICA has for unmixing sparse

materials, complementing existing unmixing approaches.

Some observations from Chapter 4 point toward areas for future research. First, it

was noted that ICA results seem to improve as materials become more sparse. This is in

contrast to most existing spectral unmixing approaches which tend to focus only on dense

materials. Thus, an approach that combines ICA and another approach such as N-FINDR

or VCA may improve results over either algorithm individually. A mechanism for such a
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combination has yet to be explored. A second observation was the tendency for ICA to split

a single endmember into two or more ICs. An additional step during or after the unmixing

process to identify such splitting and merge independent components as appropriate has

strong potential to improve ICA unmixing performance, especially for dense materials.

With the potential for ICA established, Chapters 5–6 focused on making independent

components physically meaningful as abundances. In Chapter 5, a new algorithm, called

class-based abundance rescaling (CBAR), was introduced. A quantitative comparison—

again using synthetic data—was made between CBAR and existing abundance rescaling

methods. This comparison showed CBAR performance to be superior both in reducing

abundance error and increasing correlation with ground truth. An extended CBAR al-

gorithm, CBAR-X, was developed in Chapter 6 which allows two negatively correlated

materials appearing in a single independent component to be simultaneously separated and

rescaled. It was shown that this can be done with no adverse impact on the quality of the

results when compared to the CBAR algorithm.

Although the CBAR and CBAR-X results are superior to other rescaling algorithms,

there are research areas which could enable further improvement. First, an automated

method of determining whether an independent component contains one or two materials

would prevent CBAR-X from producing superfluous results. Second, and somewhat more

ambitious, is the integration of CBAR (or CBAR-X) with FastICA or a similar ICA algo-

rithm. Rescaling the independent components prior to orthogonalization would be expected

to improve the accuracy of subsequent results. Whether the nonlinear rescaling step and

the linear orthogonalization step could be successfully combined is an open question.

In summary, the application of ICA to the spectral unmixing problem has been consid-

ered from a number of perspectives. The hurdle of rescaling independent components for use

as abundance estimates has been addressed. The various experimental results considered

herein have been generally positive, warranting continued utilization of ICA for hyper-

spectral unmixing while simultaneously illuminating areas for future research and potential

improvement.
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Appendix A

Material Lists for Synthetic Test Images

Table A.1: Megascene 1, Tile 1 Test Image Materials.

ID Material Name
Total Pixels

Present
Total Pure

Pixels
Fractional

Area

Super–Sparse Materials (indicated by ◦ in plots)

1 Siding, Mineral, Painted, Dark Green 1 0 0.016

2 Siding, Wood, Painted Off White, Fair 1 0 0.078

3 Tree, Black Oak, Bark 2 0 0.031

4 Siding, Cedar, Stained Dark Brown, Fair 2 0 0.078

5 Siding, Wood, Painted White, New, Rough 2 0 0.094

6 Brick, Old Carolina Brick Company, Charlestowne 2 0 0.453

7 Glass 3 0 0.047

8 Brick, Brampton Brick, Old School, Red 4 0 0.313

9 Siding, Vinyl, Off White, Fair 4 0 0.594

10 Roadway Surfaces, Sidewalk, Brick, Sealed, Mixed Color 4 0 0.813

11 Vinyl, Vision Pro Sample Board, Blue D-4 7 0 0.719

12 Roof Shingle, Asphalt, Mix Brown, Good 7 0 0.781

Sparse Materials (×)

13 Stone Siding, Apple Ridge, Buckingham Fieldstone 9 0 1.156

14 Sheet Metal, Gray, Shiny, Dusty 11 0 1.078

15 Swimming Pool (Lining and Water) 12 0 5.375

16 Siding, Wood, Planks, Brown 13 0 2.359

17 Siding, Wood, Painted Tan, Fair 15 0 2.313

18 Roof Shingle, Asphalt, Harmony Sample Board, Cove Gray 26 5 16.281

19 Roof Shingle, Asphalt, Eclipse Sample Board, Twilight Gray 27 0 1.859

20 Roof Shingle, Asphalt, Black, Weathered 29 16 20.516

21 Roof Shingle, Asphalt, Black, Fair 30 6 17.453

22 Roof Shingle, Asphalt, Eclipse Sample Board, Shadow Black 30 12 20.328

23 Roof Shingle, Asphalt, Dark Light, Fair 30 12 20.813

24 Roof Shingle, Asphalt, Brown and Red Blend, Fair 31 0 9.984

25 Roof Shingle, Asphalt, Eclipse Sample Board, Forest Green 35 15 24.281

26 Roof Shingle, Asphalt, Brown, Black, New 35 10 24.719

27 Brick, Siding, Mix Brown, Fair 44 13 33.750

28 Roof Shingle, Asphalt, Harmony Sample Board, Sequoia Tile 64 16 40.953

29 Brick, Brampton Brick, Old School, Brown 76 0 13.672

30 Tree, Dogwood, Leaf 77 3 30.797

31 Brick, KF Plymouth Blend, Red Brick 84 0 14.563

32 Tree, Maple, Trunk 140 0 5.406

33 Tennis Court, Playing Surface, White Line 194 0 37.625

Intermediate Materials (♦)

34 Tree, Black Oak, Leaf 212 14 77.469

35 Sheet Metal, White, Fair 222 0 58.188

36 Tennis Court, Playing Surface, Red 250 67 155.688

37 Tennis Court, Playing Surface, Green 262 59 175.625

38 Tree, Norway Maple, Leaf 1005 196 632.422

39 Tree, Silver Maple, Leaf 1299 717 1013.297

40 Tree, Red Maple, Leaf 1360 7 611.625

41 Roof, Gravel, Gray 2373 1845 2176.047

Dense Materials (�)

42 Asphalt, Black, New 8198 2928 4975.422

43 Grass, Brown and Green w/ Dirt 9275 3124 6158.922
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Table A.2: Megascene 1, Tile 4 Test Image Materials.

ID Material Name
Total Pixels

Present
Total Pure

Pixels
Fractional

Area

Super–Sparse Materials (indicated by ◦ in plots)

1 Sheet Metal, Maroon, Shiny, Fair 1 0 0.016

2 Tree, Maple, Trunk 1 0 0.016

3 Tree, Red Maple, Leaf 1 0 0.016

4 Tree, Dogwood, Trunk 2 0 0.031

5 Brick, Old Carolina Brick Company, Charlestowne 2 0 0.266

Sparse Materials (×)

6 Sheet Metal, Black, Shiny, Dirty 21 0 1.969

7 Brick, Hampton Brick, Sandmist 36 0 2.875

8 Concrete, Cinder Blocks, Textured 68 17 40.344

9 Brick, Mixed Tan and Caramel Colors 82 0 10.234

10 Brick, Old Carolina Brick Co., Savannah Gray 102 10 45.578

11 Sheet Metal, White, Fair 183 0 55.734

Intermediate Materials (♦)

12 Tree, Silver Maple, Leaf 206 117 165.953

13 Sheet Metal, Tan, Shiny, Fair 276 187 229.172

14 Building Roof, Painted Metal, Gray, Weathered 333 129 224.063

15 Tree, Dogwood, Leaf 370 27 175.938

16 Sheet Metal, Gray, Shiny, Dusty 660 9 101.656

17 Tree, Norway Maple, Leaf 667 182 401.734

18 Siding, Vinyl, Tan, Fair 1115 771 938.859

19 Roof, Gravel, Gray 1194 767 998.188

Dense Materials (�)

20 Grass, Brown and Green w/ Dirt 8718 2534 5864.234

21 Asphalt, Black, New 10880 4726 7127.125
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Appendix B

Parameter Estimation for a Gaussian-Corrupted Beta

Distribution

A potentially useful model consists of data from a beta distribution which corrupted

by additive Gaussian noise. Let V ∼ N (μ, σ2), W ∼ B(α, β), and X = V +W . Assuming

the noise is zero–mean, this model is parameterized by three values, α, β, and σ2. One

approach to estimating these parameters from the data is the method of moments [1]. This

approach consists of describing the moments of a distribution in terms of the distribution

parameters and equating those to the corresponding sample moments. When the number

of samples is small, the method of moments approach has been shown to be superior to

maximum-likelihood (ML) estimation of beta distribution parameters [2].

Let xn denote the nth sample of the random variable X where there are N total samples

available. The sample moments are obtained as

m̄ =
1

N

N∑
n=1

xn, (B.1)

r̄ =
1

N

N∑
n=1

x2n, (B.2)

and

t̄ =
1

N

N∑
n=1

x3n. (B.3)

Before looking at the moments of X it is useful to examine the moments of V and W

individually. Since there are three parameters to be estimated, the first three moments will

be needed. The moments of order t of the beta distribution are given by [2]

M
(t)
W = E

[
W t

]
=

Γ (α+ t) Γ (α+ β)

Γ (α+ β + t) Γ (α)
. (B.4)
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The moments of the Gaussian distribution can be obtained from the moment generating

function as

M
(t)
V = E

[
V t

]
=

dt

dst
exp

{
sμ+

1

2
σ2s2

}∣∣∣∣
s=0

. (B.5)

The moments needed for this problem, assuming a zero-mean Gaussian, are shown in Table

B.1. The moments of X can be obtained from E
[
Xt

]
= E

[
(V +W )t

]
. Expanding the

products, exploiting the independence of V and W , and using the values in Table B.1 yields

M
(1)
X = E[W ] =

α

α+ β
, (B.6)

M
(2)
X = E

[
W 2

]
+ E

[
V 2

]
=

(α+ 1)α

(α+ β + 1) (α+ β)
+ σ2, (B.7)

and

M
(3)
X = E

[
W 3

]
+ 3E [W ]E

[
V 2

]
=

(α+ 2) (α+ 1)α

(α+ β + 2) (α+ β + 1) (α+ β)
+

3ασ2

α+ β
. (B.8)

The sample moments in (B.1), (B.2), and (B.3) can then be equated to the moment formulas

in (B.6), (B.7), and (B.8), respectively. Solving these equations for the parameters of interest

yields

σ̂2 =
−b±√

4ac+ b2

2a
, (B.9)

Table B.1: The first three moments of the beta and zero-mean Gaussian distributions.

Order Beta Gaussian

M (1) α
α+β 0

M (2) (α+1)α
(α+β+1)(α+β) σ2

M (3) (α+2)(α+1)α
(α+β+2)(α+β+1)(α+β) 0



106

where

a = 4m̄− 2, (B.10)

b = 6m̄3 − 4m̄2 − 5m̄r̄ + 4r̄ − t̄, (B.11)

and

c = m̄2r̄ − 2m̄2t̄+ m̄r̄2 + m̄t− 2r̄2 + r̄t̄. (B.12)

Once σ2 has been estimated, α and β can be obtained as

α̂ =
m̄

(
r̄ − σ̂2 − m̄

)
σ̂2 + m̄2 − r̄

, (B.13)

and

β̂ =
(1− m̄)

(
r̄ − σ̂2 − m̄

)
σ̂2 + m̄2 − r̄

. (B.14)
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