
Utah State University
DigitalCommons@USU

All Graduate Theses and Dissertations Graduate Studies, School of

1-1-2012

Java API-Aware Code Generation Engine: A
Prototype
Chandra Sekhar Vijyapurpu
Utah State University

This Thesis is brought to you for free and open access by the Graduate
Studies, School of at DigitalCommons@USU. It has been accepted for
inclusion in All Graduate Theses and Dissertations by an authorized
administrator of DigitalCommons@USU. For more information, please
contact becky.thoms@usu.edu.

Recommended Citation
Vijyapurpu, Chandra Sekhar, "Java API-Aware Code Generation Engine: A Prototype" (2012). All Graduate Theses and Dissertations.
Paper 1198.
http://digitalcommons.usu.edu/etd/1198

http://digitalcommons.usu.edu
http://digitalcommons.usu.edu/etd
http://digitalcommons.usu.edu/gradstudies
mailto:becky.thoms@usu.edu
http://library.usu.edu/
http://library.usu.edu/

JAVA API-AWARE CODE GENERATION ENGINE: A PROTOTYPE

by

Chandra Sekhar Vijyapurpu

A thesis submitted in partial fulfillment

of the requirements for the degree

of

MASTER OF SCIENCE

in

Computer Science

Approved:

Stephen W. Clyde

Major Professor

Nicholas Flann

Committee Member

Curtis Dyreson

Committee Member

Mark R. McLellan

Vice President for Research

and Dean of the School of

Graduate Studies

UTAH STATE UNIVERSITY

Logan, Utah

2012

ii

iii

Copyright © Chandra Sekhar Vijyapurpu 2011

All Rights Reserved

iv

ABSTRACT

Java API-Aware Code Generation Engine: A Prototype

by

Chandra Sekhar Vijyapurpu, Master of Science

Utah State University, 2011

Major Professor: Dr. Stephen W. Clyde

Department: Computer Science

Software reuse enhances a programmer’s productivity and reduces programming

errors. Improving software reuse through libraries and frameworks is a vast problem

area. This thesis offers an approach to solve two sub-problems within the problem area

– to identify the right library components, and to offer code snippets that use the

components correctly. The Java API-aware Code Generation Engine, or JAGE for short,

is a prototype system that demonstrates the feasibility of generating semantically valid

code snippets consisting of method calls to classes in the J2SDK library.

Developers often search for sample code snippets that describe how to use the

library. This thesis describes the design and implementation of JAGE, which allows

software developers to use an English sentence to generate helpful code snippets in Java.

This thesis also discusses the related concepts in natural-language processing including

ontology, Wordnet, and object-orientation in the area of automatic code snippet

generation.

(71 pages)

v

PUBLIC ABSTRACT

One of Dr. Stephen Clyde’s research interests at the Department of Computer

Science, Utah State University, is object-oriented software design. Recent advances in

the area of natural-language processing and the need for a better specification of

aspect-pointcuts spurned our interest in describing object oriented elements.

Chandra Sekhar Vijyapurpu’s thesis proposes a way to describe a subset of Java

SDK’s library elements and generate valid code snippets from a subset of English

language sentences. This thesis also describes the design of a prototype based on

proposal and its results.

vi

ACKNOWLEDGMENTS

 I am deeply indebted to my major advisor, Professor Stephen Clyde, who kept

motivating me to finish my thesis, for his invaluable advice, guidance, and constant

patience. I would also like to thank the members of my committee, Dr. Nicholas Flann

and Dr. Curtis Dyreson. Their suggestions, support, and hard work through my tight

schedule are appreciated.

Many thanks to Myra Cook; her great work and help were indispensable for

completing the thesis.

I would also like to thank my colleagues and friends. Thanks for guiding me to

become familiar with the project, as well as resolving many problems along the way.

Finally, I appreciate the continuous support and encouragement of my beloved

family through the duration of my academic pursuits.

Chandra Sekhar Vijyapurpu

vii

CONTENTS

Page

ABSTRACT..iv

PUBLIC ABSTRACT ... v

ACKNOWLEDGMENTS ... vi

LIST OF TABLES ..…ix

LIST OF FIGURES ... x

CHAPTER

1 INTRODUCTION ... 1

2 BACKGROUND ... 5

 2.1 Natural-language Processing ... 5

 2.2 WordNet... 7

 2.3 Ontology .. 7

 2.4 Signature Matching .. 8

 2.5 Typestates .. 8

3 DESIGN OF JAGE .. 10

 3.1 Constraints ... 10

 3.1.1 Grammar Constraints for the Prototype Using Case Frames ... 10

 3.1.2 Vocabulary Constraints for the Prototype Using WordNet 12

 3.1.3 Constraints on the Library ... 13

 3.1.4 Summary of Constraints .. 14

 3.2 Workflow ... 15

 3.3 Semantic Matching .. 17

 3.3.1 Parsing Input Sentence... 18

 3.3.2 Populating the Slots of a Case Frame 20

 3.3.3 Using Ontology .. 21

 3.3.4 Semantic Matching Algorithm... 23

 3.4 Code Snippet Generation ... 24

 3.4.1 Type-based Composition ... 24

viii

 3.4.2 Typestate-based Composition .. 26

4 SAMPLE WORKFLOWS ... 28

 4.1 A Detailed Example ... 28

 4.2 Other Examples.. 30

5 DISCUSSION OF THE PROTOTYPE ... 33

 5.1 Probabilistic Parsing .. 33

 5.2 Sub-classing Problem in Semantic Matching 34

 5.3 Multiple Paths in Typestate-Transition Graphs 36

 5.4 Improving Semantic Matching .. 37

 5.5 Customizing WordNet for Computer Science Domain 39

6 RELATED WORK .. 40

 6.1 Retrieval Techniques ... 40

 6.2 Code-Snippet Generation Techniques ... 41

 6.3 Program-Structure Generation Techniques ... 42

 6.4 Web-Service Composition ... 42

7 SUMMARY AND FUTURE WORK….. ... 44

REFERENCES .. 46

APPENDICES ...

Appendix A: Adding a Word to the Synset of the Standard WordNet Lexicon 51

Appendix B: Ontology of Selected J2SDK Classes in OWL 54

Appendix C: Sample Results ... 68

ix

LIST OF TABLES

Table Page

2.1 Common Case Frames in English. .. 7

2.2 Typestates of java.io.Socket Class. ... 9

3.1 Typestates for java.io.BufferedReader Class .. 26

4.1 Typestates for java.io.File Class ... 30

5.1 Typestates for a Hypothetical class .. 36

x

LIST OF FIGURES

Figure Page

3.1 Overall workFlow in JAGE .. 16

3.2 Semantic matching flowchart ... 17

3.3 Parse tree for the sentence, "How do I read a line from a file" 20

4.1 Parse sub-tree for the clause, “make a directory”. .. 28

5.1 Graphical representation of the typestates .. 37

CHAPTER 1

INTRODUCTION

Software reuse reduces software development effort and time, and hence saves

money [1]. Software libraries and frameworks, which are forms of reuse, aid

programmers by abstracting low-level details of implementation and providing more

user-friendly handles to do the same task. Object-oriented languages have been gaining

a wide user-base in the software industry since the introduction of Java in 1995 [2].

Java remains one of the mainstream object-oriented programming languages, along

with C# and C++. The J2SDK library provided by the developers of Java makes writing

useful and complex applications possible [3].

There are a large number of libraries and frameworks that have been written by

different developers in open-source
1
, as well as proprietary libraries for use with Java.

For example, J2SDK has a very large number (running into thousands) of classes and

methods [4]. Most developers are unaware of what possible open-source or commercial

libraries and frameworks are available that might help them with their programming

task. Coping with volume of library components and frameworks is the first hurdle to

effectively reusing them.

Search engines solve a part of the volume problem by performing free text

searches on documents containing keywords. The burden of skimming through all the

irrelevant documents and choosing the right usage scenario might solve the problem;

however, the burden of such an endeavor makes this solution less than ideal. Other

1 http://sourceforge.net/search/?&fq[]=trove%3A198&fq[]=trove%3A15 is one example of a place where software

developers can browse through and contribute to actual source code of a variety of Java software applications

http://sourceforge.net/search/?&fq%5b%5d=trove%3A198&fq%5b%5d=trove%3A15

2

approaches suggest querying repositories of usage scenarios to match the developer’s

intention with the code snippet in the repository using heuristics. While these

approaches and some domain-specific tools address the problem to some extent, the

general problem of recommending usable code snippets with a simple user interface

remains hard.

Another problem with software re-use is that developers must adhere to the API

specification of the library when using it, but compilers do not enforce the usage

protocol of a library. For example, a programmer cannot call any instance methods on

an object reference without assigning it to a valid object instance. Compilers cannot

check for such mistakes. Illegal sequences of method calls for an API lead to program

failures during execution time.

A static protocol checker could validate correct use of a library at compile time,

if the library includes formal definitions for its usages. The disadvantage of this

approach is that it is tedious to create such formal definitions. Expressiveness of the

formalisms for defining protocols is still limited. As a consequence, the ability for

formal checkers to find all possible problems is restricted. Not surprisingly, formal

protocol definitions and static protocol checkers are uncommon even for the most

common libraries.

A more common approach is for library developers to document the protocols

informally in simple text documents or in the code directly and then use tools, like

Javadoc [5], to create such text documents. Such informal documentation might say, “It

is mandatory to open a java.io.Socket before reading from it.” Even informal protocol

3

documentation is difficult to create and maintain. As a consequence, protocol

documentation tends to be incomplete and less helpful than programmers would desire.

Another approach is to describe these protocols through sample usage scenarios.

However, this puts a large burden on the library developer to write sample scenarios for

each possible use-case his library can support. Most often these scenarios are

documented through sample programs. While some libraries come with a thorough set

of sample programs, most libraries do not.

While improving reuse through libraries and frameworks is a vast problem area,

this thesis focuses on two small sub-problems that, if solved, would significantly

increase programmer productivity and reduce program errors. These two sub-problems

are a) helping programmers find appropriate components from a collection of libraries

and b) assisting programmer in using those components correctly.

This thesis introduces a two-step based approach to these problems in the

context of object-oriented libraries, like Java’s SDK. Specifically, it introduces a tool,

called JAGE (Java API-Aware Code Generation Engine), which constructs correct code

snippets from natural-language statements provided by the programmer. First, it

parses natural-language statements into their constituent phrases and then uses

information-retrieval techniques to search for appropriate library components. It next

uses the knowledge of semi-formal protocol descriptions to generate viable code.

The key contributions of JAGE are the techniques it employs in its semantic

matching and code-snippet generation process. JAGE’s semantic matching first builds

on the notion that objects in the object-oriented world are things; their attributes link

4

them to other things. It builds on the notion that an object’s methods are ways others

can perform actions on that object. In natural-language, objects and their attributes are

expressed by nouns or noun phrases, whereas actions are expressed by verbs or verb

phrases. JAGE’s semantic-matching extracts noun phrases from a natural-language

sentence and uses them to find relevant components in the object-oriented library, as

well determine what instances (objects) need to be created from these components. It

also extracts verb phrases from a sentence to determine what actions need to be

performed on this component in code that it will generate.

JAGE’s code generation process relies on class typestates, which are an idea

proposed by Strom, et al., for enhancing program reliability [6]. Specifically, typestates

determine the permitted sequences of operations on a class depending on some context.

Collectively, the set of permitted sequences is referred to as protocol. JAGE uses the

typestate specification of a class to determine what method calls need to be inserted to

generate a viable code snippet. JAGE will generate code snippets containing the actual

sequence of method calls that forms the essence of the solution along with the pre and

post method calls necessary to adhere to the protocol.

Chapter 2 provides the reader with more background on typestates and other

technologies used by JAGE. The full details of the natural-language and code

generation are discussed in Chapter 3. Chapter 4 describes the implementation and

results of a prototype. This effort led to insights about JAGE’s possibilities and

limitations, which are described in Chapter 5, along with ideas for future work. Chapter

6 discusses related work.

5

CHAPTER 2

BACKGROUND

This chapter describes the key concepts used in JAGE, namely, natural-language

processing, WordNet, ontology, signature-matching, and typestates.

2.1 Natural-language Processing

Natural-language processing (NLP) is the field of computing that enables

human-computer interaction through natural-language [7]. NLP involves various

techniques that allow computers to understand natural-language as spoken or written by

humans, or to generate natural-language as heard or read by humans.

NLP facilitates communication between humans and machines, which at the

basic level only understand machine instructions and binary data. Compilers can

translate a sentence in a context-free programming language to machine instructions,

and existing development environments can help programmers write sentences in such

languages. However, natural-languages are more complex; they are more complex than

context-free languages [8]. The meaning of a phrase can depend on the previous

sentence or even the background of the involved human languages. Natural-language

parsers attempt to bridge the gap between context-sensitive and context-free languages.

While a sentence in context-free language has one parse tree representation, a

sentence in natural-language can have many possible parse-tree representations. A

statistical parser chooses the most likely parse-tree representation based on word-use

probabilities in a large training dataset [9]. As Chapter 3 explains in detail, JAGE

delegates the burden of natural-language parsing to an open-source statistical parser

6

developed by the Stanford NLP research group [10].

Like most software systems that accept natural-language input, JAGE needs to

place bounds on the input domain. Specifically, it needs to constrain the acceptable

sentence structures. To do this, it adapts a technique, called case frames [11], that have

been previously used for translating natural-language into machine-understandable

data-structures and for information retrieval [12]. A case frame is an ordered list of slots,

wherein each slot represents some grammatical construct, e.g., subject, verb phrase,

direct object, indirect object [13].

As a notation, we represent a case frame as a string containing parts-of-speech

separated by “-”. Each part-of-speech represents an empty slot in which only the

instances of the specific parts-of-speech will fit when the case frame is applied to a

sentence. For example, when the case frame represented by PRONOUN-VERB is

applied to the phrase, “I ran”, then the PRONOUN slot has the value I and the VERB

slot has the value ran. This case frame accepts “I ran”, and “You sleep”. However, it

will reject “Joe ran” because the first word in this sentence is a noun and not a pronoun.

In addition, “I ran fast” will be rejected, since this sentence has an additional adverb

following the verb. The case frame PRONOUN-VERB-ADVERB, on the other hand,

would accept this sentence.

As a whole, a case frame is a template that represents a specific sentence

structure. Table 2.1 lists five common sentence structures in the English language along

with examples of acceptable sentences that adhere to the case frame and unacceptable

examples for that case frame. Since each case frame accepts only those sentences whose

7

slots can be exactly filled, a set of case frames can describe a domain of acceptable

natural-language input for a system.

Table 2.1 Common Case Frames in English.

Sentence structure (case frame) Acceptable Unacceptable

PRONOUN VERB NOUN I am John.

I ran home.

I am happy.

PRONOUN VERB ADJECTIVE I feel happy.

I am surprised.

I run fast.

PRONOUN VERB ADVERB I run fast.

I sleep heavily.

I feel happy.

PRONOUN VERB PRONOUN VERB Where do you live?

How do I look?

Where is your home?

PRONOUN VERB VERB NOUN What is your name?

Where is your home?

Where do you live?

2.2 WordNet

WordNet [14] is a large database of words in the English language that

organizes words into groups, or synsets, based on their meaning or semantic relevance.

WordNet also has information about relationships, such as antonyms, between such

synsets. An English word can be a part of several synsets. For example, pick as a noun

is synonymous with selection, while as a verb it is synonymous with blame. WordNet

has a file-backed lexicon of these relationships and offers several open-source APIs to

enable systems to interact with it programmatically. JAGE uses JWNL [15].

2.3 Ontology

An ontology is an alphabet to frame the facts for a domain [16] and could

provide JAGE with the primitives to express concepts and relationships between objects

in a domain. W3C contains specifications for ontology description languages, like RDF

8

and OWL [17, 18]. An ontology acts like the glue that binds library components to

machine-understandable concepts and, thus, enables a system to reason about the

purpose of library components relative to programmer needs.

OWL2 Query Language [19,20] and SPARQL [21] are two standard languages

used to express queries on knowledge databases or ontologies. These languages lend to

a separation of concerns from the software design perspective and help JAGE manage

the complexity of parsing and using the ontology. These languages also have

frameworks like Jena, which enable programmatic access to the answering engine and

for parsing the results in XML [22].

2.4 Signature Matching

Signature matching is a search technique used to retrieve a particular software

library component (module, method, or procedure) based on the type of information in

its method signature [23]. This technique requires the programming language to be

strongly-typed like Java. Signature matching returns sets of exact and close matches of

methods from the defined universe of a software library given a query string that

describes the types of arguments and return value. For example, if the user requests

input type as java.io.File and output type as byte, signature matching defines techniques

to find the read method.

2.5 Typestates

Typestates are a semantic refinement of the concept of type. While a type

defines the possible operations on itself, typestates define subsets of operations that are

semantically valid on a type when it is in a particular state. Each row of Table 2.2

9

specifies a typestate transition for the java.io.Socket Class. The first two columns

represent initial typestates, the third represent actions, and the fourth column

represents final typestates, which are the results of the actions taking place.

Table 2.2 Typestates of java.io.Socket class.

Typestate

Method Final Typestate Type Initial State

java.io.Socket Start Socket() Raw

java.io.Socket Start Socket(String host, int

port)

Connected

java.io.Socket Raw connect(String host, int

port)

Connected

java.io.Socket Raw close() End

java.io.Socket Connected close() End

java.io.Socket Connected getInputStream() Connected

As per Table 2.2, a call to getInputStream() on the Socket object when it is in the

Raw state is illegal. If a program has to issue a call to getInputStream(), it should make

sure that the Socket object is in the Connected state. If a program issues the method-call,

getInputStream() to an object reference when it is in the Raw state, the Java virtual

environment will throw a sub-class of java.lang.RuntimeException. While typestates

define the subset of sequences of operations that are valid on a type, sequences that do

not conform to the typestates are invalid.

10

CHAPTER 3

DESIGN OF JAGE

This chapter focuses on the two objectives of JAGE: a) helping programmers

find appropriate components from a collection of libraries, and b) assisting programmer

in using those components correctly. To explore the feasibility and the detailed issues

involved in solving these two problems, there is value in creating a prototype system

that solves the problem in a limited context. This chapter describes a prototype

code-generator that operates with the following restrictions: a) constrained grammar

defined by set of acceptable case frames, b) constrained vocabulary, and c) limited

library components. See Section 3.1 for further explanation and justification of these

constraints. Sections 3.2 and 3.3 describe JAGE’s architecture and workflow for the

matching and generation processes.

3.1 Constraints

3.1.1 Grammar Constraints for the Prototype Using Case Frames

Research on NLP systems indicates that neither the system designer nor the

users can predict all possible words or input sentences to a question-answering system

on a database of facts [24]. This principle applies to JAGE, since the ontology for a

library of components represents a database of facts. To keep JAGE, and particularly

the initial prototype within the range of solvable problems and focused on its objectives,

we place certain constraints on the domain of acceptable input sentences.

A convenient way to constrain the domain is to limit the number of acceptable

11

sentence structures, which JAGE does by pre-defining the possible case frames.

Furthermore, JAGE restricts the sentences to be questions that start with the phrase

“How do I”, so the case frames only have to model the completion of the question.

JAGE’s initial prototype uses two pre-defined case frames, namely, a)

VERB-ARTICLE-NOUN, and b) VERB-ARTICLE-NOUN-PREPOSITION-

ARTICLE-NOUN. The first case frame models common questions about the public

methods available for the classes in libraries. Below are some typical examples:

 Rename a file

 Open a socket

 Read a file

Even though each of these questions appear simply and relate directly to a single

method call on a single object, their valid use within the context of a protocol may

involve other objects and methods calls. For example, reading a file requires the file to

be opened before the read and closed sometime after the read.

The second case frame includes prepositions, which allows user to ask questions

that might involve more than one object. Below are some typical examples:

 Read a line from a file

 Write a file to a Socket

Although using just two case frames might seem limited, the domain of valid

sentences is large and interesting, covering a wide range of the practical questions.

Since the first case frame deals with methods on single object and the second covers

questions involving two objects, the prototype can handle all method-call compositions

12

involving two classes. Even with these constraints, the prototype is interesting since it

needs to find which methods to compose to obtain the required essence of the solution.

The prototype then needs to generate the code required to put the objects in the right

typestate to invoke the method-call forming the essence of the solution, which

corresponds to one of the code structures – a) y = x.m(); and b) x.m(y);

However, the prototype cannot handle method-call compositions involving more

than two types of parameters. For example, the prototype cannot generate a code

structure of the form, x.m(y, z). A full-blown JAGE would need to implement case

frames involving at least three more parts-of-speech, namely, prepositions, conjunctions

and disjunctions. With additional case frames, JAGE would be able to generate method

calls with any number of parameter or conditional control structures.

3.1.2 Vocabulary Constraints for the Prototype Using WordNet

If JAGE were to store all possible user words used in a particular part-of-speech

in all possible user sentences, storage and search would be very expensive. Additionally,

the user need not type in the exact word stored in JAGE, he can use any synonym of the

stored word and JAGE can consult WordNet to match the two words. Hence, using

WordNet in JAGE helped reduce the storage requirement and improve its user

experience. While WordNet supports many inter-word relations, such as synonyms,

antonyms, and hyponyms, JAGE is interested in the lexicon and the synonym relation.

The synonym relation allows JAGE to search for library components that match the

user intention but not its exact description.

Unfortunately, WordNet’s lexicon is oriented towards common speech and not

13

programming jargon. For example, ‘fetch’ and ‘read’ are synonyms in WordNet, while

‘get’ and ‘read’ – two common synonyms in programming jargon – are not. To

overcome this limitation, the prototype has added this instance explicitly to the lexicon

of WordNet. Section 4.2 elaborates on this example and Appendix A has examples

about how this relation is added to the lexicon. Even though the prototype

accommodates some programming jargon, a full-blown JAGE would need a more

substantial customization to the standard WordNet lexicon and synonym relations.

By using WordNet, JAGE’s vocabulary is only limited to the extent that current

the lexicon and synonyms capture English words and programmer jargon, which we do

not view as a serious constraint relative to the purpose of the prototype.

3.1.3 Constraints on Library

According to DeLine and Fähnrich, usage protocols in object-oriented libraries

are of two major types: state-machine protocols and resource protocols [25].

State-machine protocols describe which subset of operations is permitted by contract in

the API documentation when the instance is in a particular state. Consider the

java.io.File and java.io.BufferedReader classes. The state-machine protocol for these

classes ensures that the object reference is prepared for a method to be called. For

example, an object reference of type java.io.File will not be prepared to invoke the

method renameTo() unless that object reference is tied to an instance in memory.

The prototype has the state-machine protocol information in a hash table for

each type. The hash table contains the type of an object as the key, and the value is

another hash table. The inner hash table contains the start state as the key for each entry

14

and an object containing the method name and target state as the value for the entry.

This storage schema enables the prototype to search for available transitions on a state.

However, each object type also has a start state and an end state associated with it. Each

valid code snippet involving a method call on an object contains all the method

invocations necessary to transition the state of the object from start state to end state

while involving the actual method call as the essence of the code snippet.

Resource protocols describe object creation and destruction protocols. An

example of a creation pattern in J2SDK is found in java.util.Calendar class. Since the

java.util.Calendar class is abstract, instantiation is possible only through a static

method, getInstance(), called directly on the java.util.Calendar class or by calling its

subclass, e.g., java.util.GregorianCalendar, constructor.

The prototype cannot generate code adhering to resource protocols. Resource

protocol information can be obtained by using API’s of java.lang.reflect package. This

package provides information about, which method is abstract, which constructor is

private, and so on. To enable a full-blown JAGE to generate code adhering to resource

protocols of a library, JAGE needs information about access modifiers, like private, and

about keywords, like static and abstract. Resource protocols are tied to the Java

language rather than to the library, which means that scale is not an issue for addition of

these protocols.

3.1.4 Summary of Constraints

Within the bounds of constraints as described above, the JAGE prototype

addresses interesting use cases that shed light on potential value and possible limitations

15

of a full natural-language-based code generator.

3.2 Workflow

The input to JAGE is an English sentence, and the output is a code snippet. The

workflow is a two-step sequential process as shown in Figure 3.1. The first step in

JAGE is semantic matching. The input to the semantic matching step is a user-specified

sentence in English (See Section 3.3). The output of the semantic matching step is a set

of classes and their methods that potentially match with what the user desired, which

forms the input to the second step of JAGE – code-snippet generation (See Section 3.4).

The output of the second step is a code snippet that provides code for the use-case. In

other words, the code snippet helps the user understand how to use certain classes in the

standard J2SDK library.

16

Figure 3.1 Overall workflow in JAGE.

User text (input)
Natural

Language parser
Semantic Matcher

Set of matched classes

and methods

Knowledge of

J2SDK library

Enrich classes and

methods using

signature matching

Add required method

calls

Knowledge of

Typestates

Code-snippets

(output)

Step 1: Semantic Matching

Step 2: Code generation

17

3.3 Semantic Matching

Figure 3.2 Semantic matching flowchart.

Natural language parser

Parse tree

Start

End

User text (input)

Is sentence

structure

acceptable?

Acceptable

case frames

No

Populate case frame slots

Can words in slots

matched be with API

ontology?

Yes

No

Find synonyms inWordNet

WordNet

lexicon

API ontology

Matched library component

is the output

Yes

18

In semantic matching, shown in Figure 3.2, JAGE tries to retrieve a set of

classes and methods to enable the second step of JAGE, code generation. To accomplish

this step, the prototype of JAGE uses case frames, knowledge of an OWL ontology for

the restricted library components, knowledge from WordNet, and a parse-tree

representation of the user’s sentence.

JAGE’s user-interface is a textbox through which the user enters the English

sentence that best describes his/her use-case. The textbox has the phrase, “How do I” as

a prefix. The natural-language parser picks up the input English sentence and outputs a

parse tree representation of the sentence. The semantic matcher has access to the

knowledge of the J2SDK ontology, the WordNet lexicon through its API, and

natural-language sentence structures hard-coded within it. The semantic matcher applies

an algorithm, described in Section 3.2.4, to retrieve the right set of classes and methods

that best satisfy the user’s use-case as described in his input text.

3.3.1 Parsing Input Sentence

A free-text search is more like a regular-expression matching process [26].

However, a natural-language sentence is not just a simple bag of words. The underlying

structure of the sentence also can impact the meaning of the words. For example, “read

from a Socket to a File” and “read from a File to a Socket” have very different

meanings. A free-text search based on both these sentence, however, would use the

same bag of words, e.g., “read”, “File”, and “Socket”. A natural-language parser can

provide the addition information in the form a parse tree, where nodes can represent the

subject, action, direct object, and other parts of speech. This is the reason behind using

19

a natural-language interface for the user input.

The user interface of JAGE is primitive – a simple text box that has the prefix,

“How do I ….” The user completes the sentence by adding words into the text box. The

reason behind this design decision is to avoid the complexity behind parsing the

dependant clause of the input query. If the user is not provided with a prefix, JAGE

needs to parse the sentence in its entirety to understand its meaning. For example, the

developer may type in one of the following, “How to rename a file” or “What should I

do to rename a file?” While both these queries are semantically identical, they are

syntactically different. However, the dependant clause in both “How to” or “What

should I do,” is immaterial to the actual search criteria that JAGE needs to perform. In

addition to reducing the complexity of parsing, the prefix gives the developer a starting

point to enter his query, making the user interface more intuitive, and hence more

user-friendly.

Since the user input is in English, a machine cannot understand it directly.

Natural-language parsing is the first step of semantic matching in JAGE. This sentence

is run through the Stanford NLP probabilistic parser to get the parse tree representation

of the input sentence. For example, the sentence, “How do I read a line from a file”

gives the following output as a parse tree (see Figure 3.3).

20

Figure 3.3 Parse tree for the sentence, “How do I read a line from a file”.

3.3.2 Populating the Slots of a Case Frame

JAGE uses the structure of the user sentence to determine whether it can extract

the required data to proceed with semantic matching or not. The parse tree tags the

words to parts-of-speech and also provides the phrases that constitute the input sentence.

JAGE uses this information to match with phrase structures or case frames it is

interested in.

The first part of rejecting or accepting an input sentence is straightforward –

accept a sentence, even if one of the allowed case frames match. The second part of

finding the right case frame is largely dependent on the output or accuracy of the

natural-language parser. Parsing a natural-language sentence is a complex problem and

is still an area of active research [27]. Delegating the process of transformation an

English sentence into a parse tree to the open-source parsing technique allows the

prototype to focus on other issues like semantic matching and code generation. Chapter

21

5 deals with possible future work in this aspect.

As explained earlier, the JAGE prototype supports only two case frames, and

therefore the following two syntactic structures:

 VERB-ARTICLE-NOUN. An example is “rename a file.” This is the

simplest query structure against the prototype. The ARTICLE is not

considered in matching.

 VERB-ARTICLE-NOUN-PREPOSITION-ARTICLE-NOUN. An

example sentence could be “read a line from a file.” Semantic matching

in JAGE is currently at the parts-of-speech level. The first noun is the

direct object of the verb and aids in semantic matching to find all

methods indicated by the verb that are related to the class equivalent to

the noun of the direct object by composition. The noun extracted from

the prepositional phrase is the indirect object and helps in finding the

class that needs some transformations, thus necessitating the code

snippet generation step of JAGE.

These parts-of-speech values are used in SPARQL query templates and executed

against OWL ontology to give JAGE the required classes and methods. However, this

process is not straight-forward due to a related problem of the vocabulary of English,

which the prototype tries to overcome by using WordNet.

3.3.3 Using Ontology

The prototype needs knowledge about what a class represents and what methods

correspond to which actions. The library developer provides this information in XML

22

files adhering to specifications of OWL ontology [28]. The prototype uses an

open-source inference engine inside Protégé [29], to reason about the available classes,

their properties, and behaviors.

JAGE encodes knowledge of object-oriented concepts like inheritance in OWL

so the machine can decide at runtime that java.util.HashMap implements the

java.util.Map interface. The primitives in OWL, like isA and hasA, map well to the

object-oriented concepts of inheritance and abstraction. For example, JAGE should be

able to tell the machine what a method in a class does. Ontology acts like the language

that both the API developer and the machine understand. The J2SDK library consists of

various classes and packages that allow its user to write applications. JAGE uses

knowledge from ontologies in its semantic matching step as well as in its code

generation step.

Each J2SDK element (e.g. a class, a field, or a method) is associated with a

phrase describing itself. A class has a noun-phrase while a method has a verb-phrase

associated with it. Classes are arranged in a tree in the ontology according the

inheritance hierarchy. Hence, if a parent class has a method, the child class also has the

method. For the initial version, JAGE neglects the access modifiers of private, public,

etc. Please refer to Appendix B for details of OWL representation of J2SDK elements.

SPARQL is used for querying ontology, as SQL is used for querying databases.

JAGE uses the sentence structure to extract the verb phrase and noun phrase for

constructing the SPARQL query. The substituted SPARQL query is then executed by

Jena on the OWL ontology of J2SDK library. To extract the verb phrase, the substituted

23

SPARQL query for the sentence “Read a line from a file” looks like this.

SELECT ?class ?subject ?object WHERE {

?subject

<http://www.owl-ontologies.com/2009/8/16/Ontology1250442606.owl#ver

b_phrase> ?object.

subject

<http://www.owl-ontologies.com/2009/8/16/Ontology1250442606.owl#enc

losing_class> ?class.

FILTER regex(?object, "^read a line$") }

Executing this query on OWL ontology gives the following output:

DefaultOWLIndividual(#BufferedReader of [(#Java_Class)])

DefaultOWLIndividual(#readLine of [#Method)]) read a line.

3.3.4 Semantic Matching Algorithm

Below are the five steps that comprise the matching algorithm.

Step 1: The user enters text in the input text box and clicks the find matches button.

Step 2: JAGE tries to match this sentence with sentence structures and returns an

output of SPARQL query for querying the J2SDK ontology with substitutions for

verb phrases and noun phrases.

Step 3: The user executes the SPARQL query against the J2SDK ontology in

Protégé OWL.

Step 4: If a match found in Step 3, go to Step 7. Else go to Step 5.

Step 5: JAGE will try the next combination of synonyms suggested by computer

science ontology and WordNet by replacing the verbs and nouns in the SPARQL

query to query the J2SDK Ontology – go to Step 3.

Step 6: If all combinations of synonyms are exhausted, terminate with result “No

matches found.”

24

Step 7: Use the output classes and methods in the next step of JAGE – code snippet

generator.

The JAGE prototype returns the first match of the matching process. The

semantic matching is hence partially dependent on the reasoning engine used by

Protégé. The SPARQL query returns individuals from the OWL ontology, which is

similar to the concept of objects of classes. The library elements returned by the query

are the source type that has the method of interest and the target type that is the class of

interest.

3.4 Code Snippet Generation

Code-snippet generation is a two-step process. The first step is to enrich the

classes obtained from the semantic matching step. The second step is generating actual

code.

3.4.1 Type-Based Composition

J2SDK offers library functions that enable listing of method signatures in a Java

class. The package java.lang.reflect contains API to list signatures of methods and the

inheritance information of classes. JAGE performs a variant of signature matching

using J2SDK’s reflection API with one level of breadth-first search. Imagine a

multi-partite graph wherein at each stage, the methods of a class are the nodes. Each

edge of this graph that joins vertices between two stages denotes a signature match. An

edge between a method and a class is possible if the argument of the method is a type or

super-type of the class. The goal is to find a path from a node in the first stage to the

node in the last stage. For simplicity, JAGE uses one additional stage in between the

25

first and the last.

As an example, assume the input type to be java.io.FileReader and output type

to be java.io.File. The class java.io.FileReader has a constructor that takes an argument

of java.io.File type and returns a java.io.FileReader. In this case, JAGE needs to find a

method of source type (java.io.FileReader) that accepts a target type (java.io.File).

For another example, assume the input type is java.io.BufferedReader and

output type is java.io.File. There is no method in the class java.io.BufferedReader that

takes in an argument of type java.io.File. However, java.io.BufferedReader accepts a

java.io.Reader in one of its constructors of which java.io.FileReader is a child class. So,

JAGE lists all distinct types of arguments that all the methods of source type require

that return the source type. Then, JAGE searches for all the methods of these argument

types that take in a target object type and return the argument object type.

JAGE can now synthesize a series of method calls, one on the source object type

in conjunction with another method call on the argument type of the method in the

source object type. This enables JAGE to obtain a reference to a java.io.BufferedReader

from a java.io.File object through a java.io.FileReader object. This concept is akin to

that of Jungloids [29] wherein a series of method calls or object type-casting results in a

desired target object from a source object. However, the JAGE prototype does not

implement type-casting and differs considerably in its use of signature matching to

generate code snippets from Jungloid mining. For the following example, consider the

source class of method readLine() to be java.io.BufferedReader and target class to be

java.io.File. The output looks like the following code snippet.

26

File _file_1;

FileReader _fileReader_1 = new FileReader(_file_1);

BufferedReader _bufferedReader_1 = new

BufferedReader(_fileReader_1);

_bufferedReader_1.readLine();

3.4.2 Typestate-Based Composition

The second step of code generation ensures that the generated code adheres to

the usage protocol of the classes as defined in their API. JAGE relies on the concept of

typestates to get this information. While typestates have been used for static-checking

[30], JAGE uses them to generate code that follows the usage protocol.

Consider the code snippet shown above. While the file object is declared, it is

never constructed nor is it ever closed. Running this code as it is as a Java program will

lead to a java.io.IOException. While it is easy to point that the null object in the trivial

example mentioned as the object is never constructed, there could be more complex

scenarios like binding a socket instance to an address. To capture the protocols of usage,

JAGE uses typestate information.

Consider the table of typestates for java.io.BufferedReader (similar for

java.io.FileReader) class shown in Table 3.1.

Table 3.1. Typestates for java.io.BufferedReader Class.

Initial State Method Final State

Start BufferedReader(Reader) Connected

Connected readLine() Connected

Connected Close() End

Start Close() End

27

To be able to call a readLine() method on a java.io.BufferedReader object, that

object must be in connected state. This step in code snippet generation ensures that an

object begins in start state and ends in end state. The first path possible using the

typestate information as a graph helps generate code that adheres to the protocols of

usage of a class. After this step, the code snippet looks like the following:

File _file_1 = new File(java.lang.String);

FileReader _fileReader_1 = new FileReader(_file_1);

BufferedReader _bufferedReader_1 = new

BufferedReader_fileReader_1);

_bufferedReader_1.readLine();

_bufferedReader_1.close();

_fileReader_1.close();

28

CHAPTER 4

SAMPLE WORKFLOWS

4.1 A Detailed Example

This section provides a detailed example of JAGE interpreting a sentence and

generating relevant code snippets. Consider the user sentence to be “How do I make a

directory.” Since the semantic matching step neglects the static “How do I” clause, this

sentence structure matches the first case frame, VERB-ARTICLE-NOUN, specified in

Section 3.2.2. Figure 4.1 shows the parse-tree representation of the clause, “make a

directory”.

Figure 4.1. Parse sub-tree for the clause, “make a directory.”

Verb Phrase

Verb

make

Noun Phrase

Article Noun

a directory

1 2

1 2

make a directory

29

The case-frame technique extracts the verb make and the noun directory for

querying against the OWL ontology. The SPARQL query is constructed by substituting

for these values for the parts-of-speech slots in the following query:

SELECT ?class ?subject ?full ?object WHERE { ?subject

<http://www.owl-ontologies.com/2009/8/16/Ontology1250442606.owl#

enclosing_class> ?class. ?subject

<http://www.owl-ontologies.com/2009/8/16/Ontology1250442606.owl#

verb_phrase> ?object. ?class

<http://www.owl-ontologies.com/2009/8/16/Ontology1250442606.owl#

qualified_name> ?full. FILTER regex(?object, "make") }

When this SPARQL query is executed against the OWL ontology of J2SDK, the

output is a null set. JAGE then tries to get all synonyms of the verb make to fill the slot

of the verb and executes against the ontology using WordNet. WordNet suggests create

as a synonym to make, thus enabling JAGE to find a match for the verb in the ontology

in the method, mkdir(). The noun File matches the class, java.io.File. The case frame

dictates that the verb belonged to the direct object in the structure. Hence, JAGE returns

a match of method, mkdir() in the class, java.io.File.

JAGE then uses the output of method mkdir() and class java.io.File to generate

a code snippet. In this case, the first step of code snippet generation is simple, as no

type-safe transformations are required to invoke the method on the class. So, the

type-based composition returns the method mkdir() and class java.io.File to the next

step of typestate-based code snippet generation.

Typestate specification of java.io.File mentions that the object of type

java.io.File should be in the created state to invoke the method mkdir(). Table 4.1 gives

some insight into typestate specification of java.io.File class.

30

Table 4.1. Typestates for java.io.File Class.

Initial State Method Final State

Start File(String) Created

Created mkdir() Created

The typestate specification in Table 4.1 dictates JAGE to generate a call to the

contructor of java.io.File, File(String pathname) to take the object into created state.

After invoking the constructor, JAGE generates a call to the mkdir() method on the

java.io.File object. The final code snippet looks like this:

File _file_1 = new File(java.lang.String);

_file_1.mkdir();

4.2 Other Examples

This section provides results of the prototype on some additional examples of

user input to shed further light on the overall effect of the design choices that went into

the implementation. In all the examples below, the user input is shown in bold and the

essence of the solution to the user query is highlighted in gray.

1. Case Frame: VERB-ARTICLE-NOUN. Section 4.1 had the simple case.

a. To perform the action, read, a second type is required –

java.io.FileInputStream

Text input:
How do I read a file

Results of semantic matching:
Found match in

Source: class java.io.FileInputStream

Target: class java.io.File

Generated code snippet:
File _file_1 = new File(java.lang.String);

FileInputStream _fileInputStream_1 = new

FileInputStream(_file_1);

_fileInputStream_1.read();

_fileInputStream_1.close();

31

2. Case Frame: VERB-ARTICLE-NOUN-PREPOSITION-ARTICLE-NOUN

a. Happy case: Only two types are needed to answer the user query

Text input:
How do I read a line from a file

Output of semantic matching:
Found match in

Source: class java.io.BufferedReader

Target: class java.io.File

Output of code snippet generation:
File _file_1 = new File(java.lang.String);

FileReader _fileReader_1 = new FileReader(_file_1);

BufferedReader _bufferedReader_1 = new

BufferedReader_fileReader_1);

_bufferedReader_1.readLine();

_bufferedReader_1.close();

_fileReader_1.close();

b. Preposition issue: The results of the semantic matching do not make any

sense relative to the input sentence. However, the prototype thought that

the user asked for “how do I read from a file”. This is because the

prototype does not consider the preposition in its semantic matching.

(Please refer to section, 5.2.1.)

Text input:
How do I read a line to a file

Results of semantic matching:
Found match in

Source: class java.io.BufferedReader

Target: class java.io.File

Generated code snippet generation:
File _file_1 = new File(java.lang.String);

FileReader _fileReader_1 = new FileReader(_file_1);

BufferedReader _bufferedReader_1 = new

BufferedReader_fileReader_1);

_bufferedReader_1.readLine();

_bufferedReader_1.close();

_fileReader_1.close();

3. Undefined Case Frame: The prototype rejects a sentence when the parse tree

from the parser does not match any pre-defined case frames.

Text input:
How do I not read a line from a file

Output of semantic matching:
User sentence not understood: How do I not read a line from a file

4. Affect of extending WordNet

32

a. Simple case: When the verb matches exactly the method description

Text input:
How do I write a line to a file

Output of semantic matching:
Found match in

Source: class java.io.PrintWriter

Target: class java.io.File

Output of code snippet generation:
File _file_1 = new File(java.lang.String);

PrintWriter _printwriter_1 = new PrintWriter_file_1);

_printwriter_1.println(java.lang.String);

_printwriter_1.close();

b. Before WordNet was extended: WordNet does not think put and write are

synonyms. Please see section 5.2.1

Text input:
How do I put a line into a file

Output of semantic matching:
No matches found in OWL

The reason this sentence was rejected by the prototype is that WordNet

did not think put and read are synonyms. Please see section 5.2.1 which

describes an idea that can alleviate this problem.

c. After WordNet was extended: The synset for write was modified by

adding put. Please see Appendix A

Text input:
How do I put a line into a file

Output of semantic matching:
Found match in

Source: class java.io.PrintWriter

Target: class java.io.File

Output of code snippet generation:
File _file_1 = new File(java.lang.String);

PrintWriter _printwriter_1 = new PrintWriter_file_1);

_printwriter_1.println(java.lang.String);

_printwriter_1.close();

33

CHAPTER 5

DISCUSSION OF THE PROTOTYPE

Previous chapters described the JAGE prototype and its capabilities. This

chapter discusses the limitations of the prototype and possible ways of overcoming

those limitations in a full-blown JAGE. Major topics beyond the scope of a full-blown

JAGE are deferred to the Future Work section of Chapter 7.

5.1 Probabilistic parsing

The prototype is largely dependent on the accuracy of the Stanford’s

probabilistic parser. The prototype rejects an English sentence whose structure does not

match a pre-defined case frame. For a natural-language sentence, several parse-tree

representations are possible. Probabilistic parser selects one parse tree based on the

most likely use of the words, which may not match the user’s intention. In the prototype,

there is no way for the system to know what the user’s intention really was.

One approach to overcome this limitation is to have the probabilistic parser

return the top n choices, and thereby, increase the odds that one of them was what the

user intended. However, this approach generates ambiguity for the code generator since

there can be multiple case frames that match the user input and hence, multiple slot

values. This approach also increases the search time within the ontology n times in

addition to increasing the code generation complexity n times.

Another approach to overcome the multiple-parse-tree-representation problem

can be to extend the previous approach with user supervision. Multiple parse-tree

representations can be shown via a UI to the user, and he can choose the closest

34

representation he intended. However, this approach may not always work, for example,

when the user’s interpretation and the case-frame developer’s interpretation of the parse

tree do not match.

5.2 Sub-Classing Problem in Semantic Matching

As outlined in Section 3.1.3, generating code adhering to the resource protocol

is a limitation of the prototype, which the full-blown JAGE should overcome. To

achieve this, JAGE should have knowledge of Java’s access modifiers and the concepts

of abstract classes, and static methods.

To overcome the limitation of abstract classes and methods, one approach is to

choose the first concrete implementing class of an interface or abstract class. While this

approach would work for some cases, it is not optimal as the user’s intent may be

different. For example, the user wants a list to behave as a stack while the phrase “get

me a list” might return an instance of a java.util.LinkedList whose behavior is that of a

queue. The issue here is that java.util.List [31] has as children, java.util.LinkedList and

java.util.Stack, both of which while being valid implementations of the List interface,

have contrasting behaviors with respect to the order of element insertion and retrieval.

Hence, a first-fit strategy will not always help answer the use-case.

Another approach is a guided search, wherein the system can ask the user for

more information based on distinguishing attributes of the implementing classes on the

same level of inheritances from the interface or abstract classes until the system hits a

concrete class without ambiguity. To take this approach, the ontology of the class

description should include another attribute called a distinguishing attribute. This

35

attribute could be a list of name-value pairs as there can be multiple distinguishing

attributes in a class hierarchy.

For example, if the user’s intent is to get a data structure for holding elements

that are sorted upon insertion but does not allow duplicates, the questions can be similar

to any of the following:

 “does the holder needs one key to index another?” Answer to this question will

help the system to select one among java.util.List, java.util.Set, and

java.util.Map.

 “does the holder allow duplicates?” Answer to this question will help the

system to select one among java.util.List and java.util.Set?

 “does the Set have its elements in a sorted order?” Answer to this question will

help the system to select one of the concrete classes of java.util.SortedSet,

which can be a java.util.TreeSet.

These questions can be derived from the name-value pairs of distinguishing

attributes in the ontology of J2SDK. The user interface can be as simple as a multiple

choice screen with radio buttons, each of them having the name of the attribute and

radio button’s text as the value.

One approach to overcoming the limitation of access modifiers is to restrict the

code generation module to generate code involving only public and default methods.

java.lang.reflect package offers API to determine the access modifier of each library

component as well as information about static methods and classes.

36

5.3 Multiple Paths in Typestate-Transition Graphs

The code-snippet generation process deals with the issue of selecting one code

snippet from among several possibilities, based on typestate transitions. The typestates

and allowed transition discussed in Chapter 3 can be modeled as a direct graph where

the nodes are typestates and the links are transitions.

Consider a hypothetical class whose typestates are represented in Table 5.1 and

graphically in Figure 5.1. Any valid code snippet involving method calls on an object of

this class should transition the object from start state to end state. For example, consider

the essence of the solution to a user’s query involves invoking the method, m1. If the

typestate specification dictates that any valid code snippet should take the object to state

end, the code generation module can take the object from state S1 to state end by

invoking – a) method m2(), or b) method m3().

Table 5.1. Typestates for a Hypothetical Class.

Initial typestate Method name Final typestate

start m1() S1

S1 m2() end

S1 m3() end

37

Figure 5.1. Graphical representation of the typestates.

The prototype uses a depth-first strategy for selecting a path but does not

backtrack when the path it pursues does not lead to the end state. An approach to solve

this issue is by modeling this problem as a graph traversal. A variant of the shortest-path

algorithm to find the route from a node to end node can offer a code snippet. Such a

code snippet represents the code of least complexity, when the measurement unit of

complexity is lines of code.

Another approach to solving this limitation would be to display all possible

paths and have the user select a desired one. However, this approach is only effective if

the system can provide the users a basis for evaluating the different choice. Statistical

analysis of code bases offers another possible approach to solve this issue. If large

open-source code bases are indexed based on library elements, pattern-matching

techniques can offer most preferred code paths.

5.4 Improving Semantic Matching

The preposition in the prototype’s second case frame, VERB-ARTICLE-

NOUN-PREPOSITION-ARTICLE-NOUN, raises some interesting scenarios. For

example, “read from a Socket to a File” and “read to a Socket from a File” have the

same meaning. The order of words and the prepositions indicate the source and

start S1 end

m2()

m3()

m1()

38

destination of the data flow. While the current implementation drops the prepositions

and looks solely at the position of the words in a case frame, a more intelligent semantic

matching algorithm should use the information provided by the prepositions in the input

sentence. Typed dependencies provide this information [32], along with new case

frames involving prepositions and other parts-of-speech should overcome this limitation

of the prototype.

While JAGE uses simple word-sense matching in semantic matching, research

in the area of semantic distance can help JAGE improve the semantic matching process.

For example, JAGE does not use adjectives and adverbs in matching. However,

adjectives can play an important role in choosing between classes in a tree hierarchy

when a parent class matches the requirement and so do all its child classes. Adjectives

can serve as the distinguishing attributes in such a scenario. Consider the example of

java.io.Socket. If the user is interested in getting a secure socket, the adjective secure

can allow a matcher to choose javax.net.ssl.SSLSocket over java.net.Socket.

Another limitation of the prototype is its inability to resolve pronouns in a

sentence. Any sentence that contains pronouns relies on tying the pronoun to an object

that is defined or referred to in an earlier phrase. Consider the example of “Read a line

from a file and write it to the console.” The pronoun “it” needs to be resolved to a noun,

and only then JAGE will be able to generate the code snippet accordingly. Since some

control-structure generating systems, outlined in Section 6.3 have demonstrated the

feasibility of resolving pronouns in a domain restricted by case frames, a full-blown

JAGE can reuse those techniques.

39

5.5 Customizing WordNet for Computer Science Domain

The current prototype is limited by the completeness and accuracy of WordNet.

For example, in computer science jargon, the word write and the word put are

synonyms when used as verbs. However, the standard lexicon of WordNet does not

contain a synonym relationship between these two words. To make WordNet more

suitable for use in a computer science domain, a full-blown JAGE will need a

customized lexicon. Appendix A contains details of how we added a synonym

relationship between two words to the standard lexicon of WordNet.

40

CHAPTER 6

RELATED WORK

Similar work in suggesting code snippets that answer a user’s requirement can

be broadly classified into retrieval techniques, code-snippet generation techniques, and

program-structure generation techniques. Each of these approaches has its merits and

drawbacks.

6.1 Retrieval Techniques

The common method of this class of techniques is that they need a large

repository of valid usage scenarios of an API to recommend examples to the user. They

differ in types of knowledge stored in the repository and in the types of information

extraction techniques used to interact with the user. The general drawback of retrieval

techniques is that they need a repository of valid usage scenarios. While the large

repository may include all possible usage scenarios, it remains only an assumption.

These approaches also leave this question unanswered – how about usage scenarios for

a new API of a new library? It is too cumbersome for a framework developer to

document all possible usage scenarios of a library for the API he develops. Some of the

existing code-snippet retrieval techniques are

 Approximate structural context matching [33] which takes a partial code

snippet as input

 XSnippet [34] and PARSEWeb [35] which require knowledge of the library

elements to query

 Sematics-based code search [36] which has multiple query options ranging

41

from keywords to method signatures

 SPARS-J [37] that maintains a large database of API elements to enable

keyword search

SNIFF: a search engine for Java based on free-form queries, the most recent of

these techniques, annotates usage scenarios with natural-language text [38]. The system

then searches through indexes when a user query is entered. The system also clusters

common usage scenarios and returns a set of code snippets that might follow the

protocol of API usage. This approach, as other retrieval techniques, still requires a

repository of usage scenarios. In addition, this system does not try to match the API

element with a natural-language sentence, but it does a bag of words akin to keyword

search.

6.2 Code-Snippet Generation Techniques

There are code snippet generation tools that use the type information to match

with required library elements. The upside of these techniques is that there is no need

for a large repository of usage scenarios to mine. The downside is that most of these

techniques require partial knowledge of the API to specify what the user needs.

Signature matching and Jungloid mining techniques require the user query to

specify the source and target types in the library. These techniques then suggest missing

links of method call chains or class casting to extract the object of the target type from

the source type. This places the burden on the user to know or learn part of the API to

be able to query this tool.

JAGE does not use signature matching to retrieve the initial set of classes and

42

methods that answer a user’s query. Instead, JAGE relies on parts-of-speech mapping to

retrieve the initial set of classes. JAGE then uses signature matching only if there are

missing gaps in the conversion of the source type to the target type. Hence, JAGE

overcomes the disadvantage of learning the API about the source and target types to use

signature matching.

6.3 Program-Structure Generation Techniques

The idea of using natural-language to generate code has been the subject of

active research at least since 1979 [39]. There is a class of techniques that help a

programmer to generate the body of a method from natural-language sentences. Metafor

[40] is such a system that generates structure of classes and methods from a user story.

NaturalJava [41] and Pegasus [42] take instructions from user’s text in natural-language

to generate code.

These systems can understand iteration, array operations, and variable name

resolution from anaphoric relations in text. An instruction to assign to variable, i, the

value of 1 would generate an assignment statement of, i=1, in a Java-like programming

language. While these program-generation techniques make good use of

natural-language processing techniques, they do not interface with software libraries.

They can recommend control-flow structures like loops, but cannot instantiate or call

J2SDK elements.

6.4 Web-Service Composition

The area of automatic web-service composition has witnessed much research on

using ontologies like OWL to describe software components [43]. JAGE differs from

43

these methods by using ontology to describe J2SDK elements due to the difference in

the domain of knowledge. The attributes and ontology hierarchy used to describe

J2SDK elements are different from those of web services.

44

CHAPTER 7

SUMMARY AND FUTURE WORK

This thesis introduced the concept of JAGE, which is the generation of

meaningful code-snippets from natural-language input, and demonstrated its feasibility

through a functioning prototype. The two core objectives of JAGE were to make

searching for a library component easier through natural-language, and to assist the

programmer in using these components by suggesting valid code snippets.

The prototype using a constrained grammar, constrained vocabulary and limited

library components could answer some simple user queries by providing them with

what components might fit their use case. The prototype in its second step of code

generation could generate one code snippet per query which illustrated the right way to

use the API of these library components. Chapter 5 and Appendix C contain sample

results of the prototype.

While the previous chapters discussed the limitations of the prototype and some

approaches to overcome those in a full-blown JAGE, there are still sufficiently hard

problems beyond the scope of a full-blown JAGE, some of which are outlined below.

JAGE relies on the assumption that the framework developer can provide the

system with a machine-readable ontology of facts in the library. However, this exercise

becomes quite cumbersome over large software libraries involving hundreds of classes

and a number of methods in each class. One future work can be using machine learning

techniques to automatically extract the relevant facts of domain as an ontology.

Terminology extraction is one such technique [44]. Such a method would reduce the

45

burden on framework developers and JAGE can automatically learn what other libraries

contain.

JAGE produces single-threaded code. Most Java applications, however, require

multiple threads. Generating multi-threaded code presents new challenges of data

synchronization and controlling the life-cycle of threads, which is a possible area of

more research.

Fragility of point-cut specification in aspect-oriented languages like AspectJ has

been the target of considerable research recently [45]. Point-cuts in AspectJ, for

example, rely on syntactic matching of method and class names to weave advice.

Several techniques have been proposed to improve the point-cut specification by using

point-cut specification not on syntactic method signatures, but instead using a higher

level of abstraction like UML diagrams and XML descriptors to describe methods,

hence improving the precision and recall of point-cut specification [46, 47]. Further

investigation is needed to determine if a point-cut specification strategy using

natural-language elements can be developed using parts-of-speech description of library

elements (methods and classes).

The JAGE prototype cannot understand or generate control flow constructs.

While a full-blown JAGE might learn from other program structure generation

techniques on how to generate control structures like loops and conditionals, doing so

would require sufficient research to use the Java’s exception handling primitives

correctly.

46

REFERENCES

[1] Sommerville, I. Software Engineering. Addison Wesley 1992.

[2] Jackson, J., Google exec worries over 'rudderless' Java. IT World Canada.

http://www.itworldcanada.com/news/google-exec-worries-over-rudderless-java/14

0426-pg2. Accessed, Aug, 2011

[3] Oracle. Java SE Documentation. http://download.oracle.com/javase/6/docs/.

Accessed on 2
nd

 Feb, 2011.

[4] Mandelin, D., Xu, L., Bodik, R., and Kimelman, D. Jungloid mining: helping to

navigate the API jungle. In Proceedings of the 2005 ACM SIGPLAN Conference

on Programming Language Design and Implementation,48-61.

[5] Oracle. Java SE Documentation. http://download.oracle.com/javase/6/docs/.

Accessed on 2
nd

 Feb, 2011.

[6] Strom, R.E., Yemini, S. Typestate: A programming language concept for

enhancing software reliability. IEEE TSE 12 (1986) 157-171

[7] Jurafsky, D. and Martin, J.H. Speech and Language Processing. Prentice Hall,

2000.

[8] Shieber, S. Evidence against the context-freeness of natural language. Linguistics

and Philosophy 8 (1985), 333–343.

[9] Manning, C. and Schutze, H. Foundations of Statistical Natural Language

Processing. MIT Press, 1999.

[10] Klein, D. and Manning, C. 2003. Accurate unlexicalized parsing. In Proceedings

of the 41st Meeting of the Association for Computational Linguistics, 2003,

423-430.

[11] Fillmore, C. The case for case. In Texas Symposium On Linguistic Universals,

1967.

[12] Nomiyama, H. 1992. Machine translation by case generalization. In Proceedings

of the 14th Conference on Computational Linguistics, vol. 2. Association for

Computational Linguistics, 714-720.

[13] Trandabat, D. Natural Language Processing Using Semantic Frames. Doctoral

Dissertation, Universitatea Alexandru Ioan Cuza, 2010.

[14] Princeton University.About WordNet. Princeton University.

http://wordnet.princeton.edu. Accessed, Feb, 2011.

[15] Bwalenz, J. JWNL (Java WordNet Library).

http://www.itworldcanada.com/news/google-exec-worries-over-rudderless-java/140426-pg2
http://www.itworldcanada.com/news/google-exec-worries-over-rudderless-java/140426-pg2
http://download.oracle.com/javase/6/docs/
http://download.oracle.com/javase/6/docs/
http://vig.prenhall.com/acadbook/0,2581,0130950696,00.html
http://www.eecs.harvard.edu/~shieber/Biblio/Papers/shieber85.pdf
http://nlp.stanford.edu/~manning/papers/unlexicalized-parsing.pdf
http://wordnet.princeton.edu/

47

http://sourceforge.net/projects/jwordnet/. Accessed, Feb, 2011.

[16] Gruber, T.R. A translation approach to portable ontology specifications.

Knowledge Acquisition 5, 2 (1993), 199-220.

[17] W3C. Resource Description Framework (RDF). http://www.w3.org/RDF/.

Accessed, Feb, 2011.

[18] W3C. OWL Web Ontology Lanugage Overview. http://www.w3.org/TR/

owl-features/. Accessed, Feb, 2011.

[19] Fikes, R., Hayes, P., and Horrocks, I. OWL-QL - A Language for Deductive

Query Answering on the Semantic Web. Technical Report 03-14, Knowledge

Systems Laboratory, Stanford University, 2003.

[20] W3C. Owl 2 Web Ontology Language Profiles. http://www.w3.org/TR/

owl2-profiles/#OWL_2_QL. Accessed, Feb, 2011.

[21] W3C. SPARQL Query Language for RDF. http://www.w3.org/TR/

rdf-sparql-query/. Accessed, Feb, 2011.

[22] Jena. Jena – A Semantic Web Framework for Java. http://jena.sourceforge.net/.

Accessed, Feb, 2011.

[23] Moormann Zaremski, A. and Wing, J.M. Signature matching: a tool for using

software libraries. ACM Trans. on Software Engineering and Methodology 4, 2

(1995), 146-170.

[24] Tennant, H., 1979, Experience with the evaluation of natural language question

answerers. In Proceedings 6th Internation Joint Conference on Artificial

Intelligence, 1979, 874-876.

[25] R. DeLine and M. Fähndrich. Typestates for objects. In European Conference on

Object-Oriented Programming. Springer-Verlag, 2004.

[26] Fidel, R. Searchers’ selection of search keys: II. Controlled vocabulary or free-text

searching. Journal of the American Society for Information Science 42, 7 (1991),

501-514

[27] Dan Klein, Christopher D. Manning, Accurate Unlexicalized Parsing, In

Proceedings of the 41ST Annual Meeting of the Association for Computational

Linguistics, 2003, 423--430.

[28] W3C. OWL Implemenations. http://www.w3.org/2007/OWL/

wiki/Implementations. Accessed, Feb, 2011.

[29] Noy, N. F., Sintek, M., Decker, S., Crubezy, M., Fergerson, R., Musen, M. A.,

Creating Semantic Web Contents with Protege-2000. IEEE Intelligent Systems, 16,

http://sourceforge.net/projects/jwordnet/
http://www.w3.org/RDF/
http://www.w3.org/TR/%20owl-features/
http://www.w3.org/TR/%20owl-features/
http://www-ksl.stanford.edu/abstracts_by_author/Fikes,R..papers.html
http://www-ksl.stanford.edu/abstracts_by_author/Hayes,P..papers.html
http://www-ksl.stanford.edu/abstracts_by_author/Horrocks,I..papers.html
http://www.w3.org/TR/%20owl2-profiles/#OWL_2_QL
http://www.w3.org/TR/%20owl2-profiles/#OWL_2_QL
http://www.w3.org/TR/%20rdf-sparql-query/
http://www.w3.org/TR/%20rdf-sparql-query/
http://jena.sourceforge.net/
http://www.w3.org/2007/OWL/%20wiki/Implementations
http://www.w3.org/2007/OWL/%20wiki/Implementations

48

2, 2001, 60-71. http://protegewiki.stanford.edu/wiki/Main_Page. Accessed, Aug

2011

[30] Bierhoff, K. 2008. Checking API protocol compliance in java. In Companion To

the 23rd ACM SIGPLAN Conference on Object Oriented Programming Systems

Languages and Applications, 2008, 915-916.

[31] Oracle. Interface List<E>. http://download.oracle.com/

javase/1.5.0/docs/api/java/util/List.html. Accessed on 2 Feb, 2011.

[32] Marie-Catherine de Marneffe and Christopher D. Manning. 2008. The Stanford

typed dependencies representation. In COLING, Workshop on Cross-framework

and Cross-domain Parser Evaluation, 2008, 1-8.

[33] Holmes, R., Walker, R.J., and Murphy, G.C. Approximate structural context

matching: An approach to recommend relevant examples. IEEE Trans. Software

Engineering 32, 12 (2006), 952-970.

[34] Sahavechaphan, N. and Claypool, K. 2006. XSnippet: Mining for sample code. In

Proceedings of the 21st Annual ACM SIGPLAN Conference on Object-Oriented

Programming Systems, Languages, and Applications, 2006, 413-430.

[35] Thummalapenta, S. and Xie, T. Parseweb: a programmer assistant for reusing

open source code on the web. In Proceedings of the 22nd IEEE/ACM

International Conference on Automated Software Engineering, 2007, 204-213.

[36] Reiss, S.P. 2009. Semantics-based code search. In Proceedings of the 31st IEEE

International Conference on Software Engineering, 2009, 243-253.

[37] Yokomori, R., Umemori, F., Nishi, H., Yamamoto, T., Matsushita, M., Kusumoto,

S., and Inoue, K. Java software component retrieval system SPARS-J. Trans.of the

Institution of Electronics, Information and Communication Engineers J87-D-1, 12

(2004), 1060-1068.

[38] Chatterjee, S., Juvekar, S., and Sen, K. SNIFF: A search engine for Java using

free-form queries. Fundamental Approaches to Software Engineering, Lecture

Notes in Computer Science, (2009), 385-400.

[39] Ballard, B. W. and Biermann, A. W. 1979. Programming in natural language:

“NLC” as a prototype. In Proceedings of the 1979 Annual Conference A. L.

Martin and J. L. Elshoff, Eds. ACM 79. ACM, New York, NY, 228-237.

[40] Liu, H. and Lieberman, H. 2005. Metafor: Visualizing stories as code. In

Proceedings of the 10th International Conference on Intelligent User Interfaces,

2005, 305-307.

[41] Price, D., Rilofff, E., Zachary, J., and Harvey, B. 2000. NaturalJava: a natural

language interface for programming in Java. In Proceedings of the 5th

http://protegewiki.stanford.edu/wiki/Main_Page
http://download.oracle.com/%20javase/1.5.0/docs/api/java/util/List.html
http://download.oracle.com/%20javase/1.5.0/docs/api/java/util/List.html
http://nlp.stanford.edu/pubs/dependencies-coling08.pdf
http://nlp.stanford.edu/pubs/dependencies-coling08.pdf

49

International Conference on Intelligent User Interfaces,2000, 207-211.

[42] Knöll, R. and Mezini, M. 2006. Pegasus: First steps toward a naturalistic

programming language. In Companion to the 21st ACM Symposium on Object-

Oriented Programming Systems, Languages, and Applications, 2006, 542-559.

[43] Paolucci, M., and Kawamura, K., and Payne, T.R., and Sycara, K. Semantic

matching of web services capabilities. In Proceedings of 1
st
 International Semantic

Web Conference, 2002, http://eprints.ecs.soton.ac.uk/7606/1/

ISWC2002-Matchmaker.pdf.

[44] Stylos, J., Faulring, A., Z., and Myers, B.A. Improving API documentation using

API usage information. In Proceedings of the 2009 IEEE Symposium on Visual

Languages and Human-Centric Computing, 2009, 119-126.

[45] R. Filman and D. Friedman, Aspect-oriented programming is quantification and

obliviousness. In Workshop on Advanced Separation of Concerns, 2000, 21-35.

[46] Walter Cazzola, Sonia Pini, and Ancona Massimo, Design-based pointcuts

robustness against software evolution. In 3rd ECOOP Workshop on Reflection,

AOP and Meta-Data for Software Evolution, 2006, 35-45.

[47] Yang, Z. and Zhao, T. 2007. Improve pointcut definitions with program views. In

Proceedings of the 5th Workshop on Engineering Properties of Languages and

Aspect Technologie, 2007, Article 9.

http://eprints.ecs.soton.ac.uk/7606/1/

50

APPENDICES

51

Appendix A:

Adding a Word to the Synset of the Standard WordNet Lexicon

This appendix shows the steps to extend the standard WordNet lexicon with one custom

relationship between two words in a synset. As an example, we add the word put to the

synset of the word write when both the words are verbs.

WordNet is organized as a tree of pointers with relationships. To add a word to a synset

is equivalent to adding a pointer to an existing pointer. extJWNL,

http://sourceforge.net/projects/extjwnl/, is an open source library that offers API to edit

WordNet dictionaries. In the following example, write%2:36:00:: and

put%2:31:13:: are pointers to nodes of information. The command to add a word to a

synset with the extJWNL is, ./ewn write%2:36:00:: -addptr put%2:31:13::
@

The ewn tool accepts a script containing a set of exceptions one per line, which the

full-blown JAGE can execute before starting up. The following set of commands in

bold show the work log of the exercise to modify the standard WordNet lexicon

$ export WNHOME=/WordNet/WordNet-3.0/dict/

$./ewn write -g -k -l -synsv

Synonyms of verb write

Sense 1

write [write%2:36:00::], compose [compose%2:36:01::], pen

[pen%2:36:00::], indite [indite%2:36:00::] -- (produce a literary

work; "She composed a poem"; "He wrote four novels")

 create verbally [create_verbally%2:36:00::] -- (create with

or from words)

 make [make%2:36:00::], create [create%2:36:00::] --

(make or cause to be or to become; "make a mess in one's office";

"create a furor")

$./ewn put -g -k -l -synsv

Synonyms of verb put

Sense 6

place [place%2:31:13::], put [put%2:31:13::], set [set%2:31:13::]

-- (estimate; "We put the time of arrival at 8 P.M.")

 estimate [estimate%2:31:00::], gauge [gauge%2:31:00::],

approximate [approximate%2:31:00::], guess [guess%2:31:01::],

judge [judge%2:31:01::] -- (judge tentatively or form an estimate

of (quantities or time); "I estimate this chicken to weigh three

pounds")

http://sourceforge.net/projects/extjwnl/

52

 calculate [calculate%2:31:00::], cipher

[cipher%2:31:00::], cypher [cypher%2:31:00::], compute

[compute%2:31:00::], work out [work_out%2:31:06::], reckon

[reckon%2:31:01::], figure [figure%2:31:00::] -- (make a

mathematical calculation or computation)

 reason [reason%2:31:00::] -- (think logically;

"The children must learn to reason")

 think [think%2:31:00::], cogitate

[cogitate%2:31:00::], cerebrate [cerebrate%2:31:00::] -- (use or

exercise the mind or one's power of reason in order to make inferences,

decisions, or arrive at a solution or judgments; "I've been thinking

all day and getting nowhere")

$./ewn write%2:36:00:: -addptr put%2:31:13:: @

$./ewn write -g -k -l -synsv

Synonyms of verb write

Sense 1

write [write%2:36:00::], compose [compose%2:36:01::], pen

[pen%2:36:00::], indite [indite%2:36:00::] -- (produce a literary

work; "She composed a poem"; "He wrote four novels")

 create verbally [create_verbally%2:36:00::] -- (create with

or from words)

 make [make%2:36:00::], create [create%2:36:00::] --

(make or cause to be or to become; "make a mess in one's office";

"create a furor")

 place [place%2:31:13::], put [put%2:31:13::], set

[set%2:31:13::] -- (estimate; "We put the time of arrival at 8 P.M.")

 estimate [estimate%2:31:00::], gauge

[gauge%2:31:00::], approximate [approximate%2:31:00::], guess

[guess%2:31:01::], judge [judge%2:31:01::] -- (judge tentatively or

form an estimate of (quantities or time); "I estimate this chicken

to weigh three pounds")

 calculate [calculate%2:31:00::], cipher

[cipher%2:31:00::], cypher [cypher%2:31:00::], compute

[compute%2:31:00::], work out [work_out%2:31:06::], reckon

[reckon%2:31:01::], figure [figure%2:31:00::] -- (make a

mathematical calculation or computation)

 reason [reason%2:31:00::] -- (think

logically; "The children must learn to reason")

 think [think%2:31:00::],

53

cogitate [cogitate%2:31:00::], cerebrate [cerebrate%2:31:00::] --

(use or exercise the mind or one's power of reason in order to make

inferences, decisions, or arrive at a solution or judgments; "I've

been thinking all day and getting nowhere")

54

Appendix B:

Ontology of J2SDK Classes in OWL

<?xml version="1.0"?>

<rdf:RDF

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:protege="http://protege.stanford.edu/plugins/owl/protege#"

 xmlns:xsp="http://www.owl-ontologies.com/2005/08/07/xsp.owl#"

 xmlns:assert="http://www.owl-ontologies.com/assert.owl#"

 xmlns:owl="http://www.w3.org/2002/07/owl#"

xmlns="http://www.owl-ontologies.com/2009/8/16/Ontology1250442606.owl#

"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

 xmlns:swrl="http://www.w3.org/2003/11/swrl#"

 xmlns:swrlb="http://www.w3.org/2003/11/swrlb#"

 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xml:base="http://www.owl-ontologies.com/2009/8/16/Ontology1250442606.o

wl">

 <owl:Ontology rdf:about="">

 <rdfs:comment

rdf:datatype="http://www.w3.org/2001/XMLSchema#string">Author: Chandra

Vijyapurpu</rdfs:comment>

 </owl:Ontology>

 <owl:Class rdf:ID="Typestate"/>

 <owl:Class rdf:ID="Field"/>

 <owl:Class rdf:ID="Method"/>

 <owl:Class rdf:ID="Java_Class"/>

 <owl:Class rdf:ID="Primitive"/>

 <owl:ObjectProperty rdf:ID="start_state">

 <rdfs:range rdf:resource="#Typestate"/>

 <rdfs:domain rdf:resource="#Java_Class"/>

 <rdf:type

rdf:resource="http://www.w3.org/2002/07/owl#FunctionalProperty"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="has_state">

 <owl:inverseOf>

 <owl:ObjectProperty rdf:ID="of_class"/>

 </owl:inverseOf>

 <rdfs:range rdf:resource="#Typestate"/>

 <rdfs:domain rdf:resource="#Java_Class"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="has_field">

 <owl:inverseOf>

 <owl:FunctionalProperty rdf:ID="declaring_class"/>

 </owl:inverseOf>

 <rdfs:domain rdf:resource="#Java_Class"/>

 <rdfs:range rdf:resource="#Field"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="end_state">

 <rdfs:domain rdf:resource="#Java_Class"/>

 <rdfs:range rdf:resource="#Typestate"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="super_class">

 <owl:inverseOf>

55

 <owl:TransitiveProperty rdf:ID="child_class"/>

 </owl:inverseOf>

 <rdfs:domain rdf:resource="#Java_Class"/>

 <rdfs:range rdf:resource="#Java_Class"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="#of_class">

 <owl:inverseOf rdf:resource="#has_state"/>

 <rdfs:domain rdf:resource="#Typestate"/>

 <rdfs:range rdf:resource="#Java_Class"/>

 </owl:ObjectProperty>

 <owl:DatatypeProperty rdf:ID="noun_phrase">

 <rdfs:domain rdf:resource="#Java_Class"/>

 <rdfs:range

rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="argumentList">

 <rdfs:domain rdf:resource="#Method"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="state_name">

 <rdfs:domain rdf:resource="#Typestate"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="verb_phrase">

 <rdfs:range

rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

 <rdfs:domain rdf:resource="#Method"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="field_noun_phrase">

 <rdfs:domain rdf:resource="#Field"/>

 <rdfs:range

rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="returnType">

 <rdfs:domain rdf:resource="#Method"/>

 <rdf:type

rdf:resource="http://www.w3.org/2002/07/owl#FunctionalProperty"/>

 </owl:DatatypeProperty>

 <owl:TransitiveProperty rdf:about="#child_class">

 <rdfs:range rdf:resource="#Java_Class"/>

 <owl:inverseOf rdf:resource="#super_class"/>

 <rdf:type

rdf:resource="http://www.w3.org/2002/07/owl#ObjectProperty"/>

 <rdfs:domain rdf:resource="#Java_Class"/>

 </owl:TransitiveProperty>

 <owl:FunctionalProperty rdf:ID="field_is_static">

 <rdf:type

rdf:resource="http://www.w3.org/2002/07/owl#DatatypeProperty"/>

 <rdfs:domain rdf:resource="#Field"/>

 <rdfs:range

rdf:resource="http://www.w3.org/2001/XMLSchema#boolean"/>

 </owl:FunctionalProperty>

 <owl:FunctionalProperty rdf:ID="class_name">

 <rdfs:domain rdf:resource="#Java_Class"/>

 <rdf:type

rdf:resource="http://www.w3.org/2002/07/owl#DatatypeProperty"/>

 <rdfs:range

rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

 </owl:FunctionalProperty>

 <owl:FunctionalProperty rdf:ID="is_constructor">

 <rdf:type

56

rdf:resource="http://www.w3.org/2002/07/owl#DatatypeProperty"/>

 <rdfs:domain rdf:resource="#Method"/>

 <rdfs:range

rdf:resource="http://www.w3.org/2001/XMLSchema#boolean"/>

 </owl:FunctionalProperty>

 <owl:FunctionalProperty rdf:ID="method_name">

 <rdfs:range

rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

 <rdfs:domain rdf:resource="#Method"/>

 <rdf:type

rdf:resource="http://www.w3.org/2002/07/owl#DatatypeProperty"/>

 </owl:FunctionalProperty>

 <owl:FunctionalProperty rdf:ID="is_abstract">

 <rdfs:range

rdf:resource="http://www.w3.org/2001/XMLSchema#boolean"/>

 <rdf:type

rdf:resource="http://www.w3.org/2002/07/owl#DatatypeProperty"/>

 <rdfs:domain rdf:resource="#Java_Class"/>

 </owl:FunctionalProperty>

 <owl:FunctionalProperty rdf:ID="field_name">

 <rdfs:domain rdf:resource="#Field"/>

 <rdfs:range

rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

 <rdf:type

rdf:resource="http://www.w3.org/2002/07/owl#DatatypeProperty"/>

 </owl:FunctionalProperty>

 <owl:FunctionalProperty rdf:ID="qualified_name">

 <rdfs:domain rdf:resource="#Java_Class"/>

 <rdfs:range

rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

 <rdf:type

rdf:resource="http://www.w3.org/2002/07/owl#DatatypeProperty"/>

 </owl:FunctionalProperty>

 <owl:FunctionalProperty rdf:ID="enclosing_class">

 <rdfs:range rdf:resource="#Java_Class"/>

 <owl:inverseOf>

 <owl:InverseFunctionalProperty rdf:ID="has_method"/>

 </owl:inverseOf>

 <rdf:type

rdf:resource="http://www.w3.org/2002/07/owl#ObjectProperty"/>

 <rdfs:domain rdf:resource="#Method"/>

 </owl:FunctionalProperty>

 <owl:FunctionalProperty rdf:about="#declaring_class">

 <rdfs:domain rdf:resource="#Field"/>

 <rdfs:range rdf:resource="#Java_Class"/>

 <rdf:type

rdf:resource="http://www.w3.org/2002/07/owl#ObjectProperty"/>

 <owl:inverseOf rdf:resource="#has_field"/>

 </owl:FunctionalProperty>

 <owl:FunctionalProperty rdf:ID="is_static">

 <rdf:type

rdf:resource="http://www.w3.org/2002/07/owl#DatatypeProperty"/>

 <rdfs:domain rdf:resource="#Method"/>

 <rdfs:range

rdf:resource="http://www.w3.org/2001/XMLSchema#boolean"/>

 </owl:FunctionalProperty>

 <owl:InverseFunctionalProperty rdf:about="#has_method">

 <rdfs:range rdf:resource="#Method"/>

 <owl:inverseOf rdf:resource="#enclosing_class"/>

57

 <rdf:type

rdf:resource="http://www.w3.org/2002/07/owl#ObjectProperty"/>

 <rdfs:domain rdf:resource="#Java_Class"/>

 </owl:InverseFunctionalProperty>

 <Primitive rdf:ID="long"/>

 <Primitive rdf:ID="int"/>

 <Primitive rdf:ID="char"/>

 <Java_Class rdf:ID="Socket">

 <super_class>

 <Java_Class rdf:ID="Object">

 <child_class>

 <Java_Class rdf:ID="FileInputStream">

 <has_method>

 <Method rdf:ID="fileInputStream">

 <method_name

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >FileInputStream</method_name>

 <enclosing_class rdf:resource="#FileInputStream"/>

 <is_static

rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean"

 >false</is_static>

 <argumentList

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >File</argumentList>

 <is_constructor

rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean"

 >true</is_constructor>

 </Method>

 </has_method>

 <has_method>

 <rdf:Description

rdf:about="http://www.owl-ontologies.com/2009/8/16/Ontology1250442606.

owlread">

 <method_name

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >read</method_name>

 <enclosing_class rdf:resource="#FileInputStream"/>

 <verb_phrase

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >read</verb_phrase>

 <verb_phrase

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >read bytes</verb_phrase>

 <is_constructor

rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean"

 >false</is_constructor>

 <is_static

rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean"

 >false</is_static>

 </rdf:Description>

 </has_method>

 <qualified_name

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >java.io.FileInputStream</qualified_name>

 <class_name

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >FileInputStream</class_name>

 <noun_phrase

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

58

 >read byte stream</noun_phrase>

 <super_class rdf:resource="#Object"/>

 <is_abstract

rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean"

 >false</is_abstract>

 </Java_Class>

 </child_class>

 <child_class>

 <Java_Class rdf:ID="Reader">

 <noun_phrase

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >read from character stream</noun_phrase>

 <is_abstract

rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean"

 >true</is_abstract>

 <qualified_name

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >java.io.Reader</qualified_name>

 <child_class>

 <Java_Class rdf:ID="FileReader">

 <noun_phrase

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >read character stream</noun_phrase>

 <noun_phrase

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >read character input stream</noun_phrase>

 <class_name

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >FileReader</class_name>

 <qualified_name

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >java.io.FileReader</qualified_name>

 <super_class rdf:resource="#Object"/>

 <super_class rdf:resource="#Reader"/>

 <super_class>

 <Java_Class rdf:ID="InputStreamReader">

 <noun_phrase

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >bridge from byte to character streams</noun_phrase>

 <is_abstract

rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean"

 >false</is_abstract>

 <has_method>

 <Method rdf:ID="Method_10">

 <method_name

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >InputStreamReader</method_name>

 <returnType

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >InputStreamReader</returnType>

 <enclosing_class

rdf:resource="#InputStreamReader"/>

 <is_static

rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean"

 >false</is_static>

 <argumentList

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >InputStream</argumentList>

 <is_constructor

59

rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean"

 >true</is_constructor>

 </Method>

 </has_method>

 <super_class rdf:resource="#Reader"/>

 <super_class rdf:resource="#Object"/>

 <qualified_name

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >java.io.InputStreamReader</qualified_name>

 <class_name

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >InputStreamReader</class_name>

 <child_class rdf:resource="#FileReader"/>

 </Java_Class>

 </super_class>

 <is_abstract

rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean"

 >false</is_abstract>

 </Java_Class>

 </child_class>

 <class_name

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >Reader</class_name>

 <noun_phrase

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >character stream</noun_phrase>

 <child_class>

 <Java_Class rdf:ID="BufferedReader">

 <noun_phrase

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >read line</noun_phrase>

 <noun_phrase

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >read string</noun_phrase>

 <super_class rdf:resource="#Reader"/>

 <noun_phrase

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >read character stream</noun_phrase>

 <class_name

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >BufferedReader</class_name>

 <is_abstract

rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean"

 >false</is_abstract>

 <super_class rdf:resource="#Object"/>

 <qualified_name

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >java.io.BufferedReader</qualified_name>

 <has_method>

 <Method rdf:ID="readLine">

 <method_name

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >readLine</method_name>

 <verb_phrase

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >read line</verb_phrase>

 <verb_phrase

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >read a line of text</verb_phrase>

60

 <verb_phrase

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >read a line</verb_phrase>

 <is_static

rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean"

 >false</is_static>

 <is_constructor

rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean"

 >false</is_constructor>

 <enclosing_class rdf:resource="#BufferedReader"/>

 </Method>

 </has_method>

 </Java_Class>

 </child_class>

 <child_class rdf:resource="#InputStreamReader"/>

 <noun_phrase

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >read character stream</noun_phrase>

 <super_class rdf:resource="#Object"/>

 </Java_Class>

 </child_class>

 <child_class rdf:resource="#FileReader"/>

 <child_class rdf:resource="#Socket"/>

 <qualified_name

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >java.lang.Object</qualified_name>

 <child_class>

 <Java_Class rdf:ID="System">

 <has_field>

 <Field rdf:ID="out">

 <field_name

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >out</field_name>

 <field_is_static

rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean"

 >true</field_is_static>

 <declaring_class rdf:resource="#System"/>

 <field_noun_phrase

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >monitor</field_noun_phrase>

 <field_noun_phrase

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >screen</field_noun_phrase>

 <field_noun_phrase

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >console</field_noun_phrase>

 </Field>

 </has_field>

 <has_field>

 <Field rdf:ID="in">

 <declaring_class rdf:resource="#System"/>

 <field_name

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >in</field_name>

 <field_noun_phrase

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >user input</field_noun_phrase>

 <field_noun_phrase

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

61

 >console</field_noun_phrase>

 <field_is_static

rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean"

 >true</field_is_static>

 </Field>

 </has_field>

 <is_abstract

rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean"

 >false</is_abstract>

 <class_name

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >System</class_name>

 <qualified_name

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >java.lang.System</qualified_name>

 <noun_phrase

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >system constants</noun_phrase>

 <super_class rdf:resource="#Object"/>

 </Java_Class>

 </child_class>

 <child_class rdf:resource="#BufferedReader"/>

 <child_class>

 <Java_Class rdf:ID="Date">

 <super_class rdf:resource="#Object"/>

 <class_name

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >Date</class_name>

 <is_abstract

rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean"

 >false</is_abstract>

 <noun_phrase

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >Date</noun_phrase>

 <has_method>

 <Method rdf:about="#Date(constructor)">

 <enclosing_class rdf:resource="#Date"/>

 <verb_phrase

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >time now</verb_phrase>

 <verb_phrase

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >today's date</verb_phrase>

 <verb_phrase

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >current date</verb_phrase>

 <verb_phrase

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >current system date</verb_phrase>

 <method_name

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >Date</method_name>

 </Method>

 </has_method>

 <qualified_name

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >java.util.Date</qualified_name>

 </Java_Class>

 </child_class>

62

 <child_class>

 <Java_Class rdf:ID="File">

 <has_method>

 <Method rdf:ID="delete">

 <enclosing_class rdf:resource="#File"/>

 <is_constructor

rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean"

 >false</is_constructor>

 <method_name

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >delete</method_name>

 <returnType

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >boolean</returnType>

 <verb_phrase

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >delete</verb_phrase>

 <verb_phrase

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >remove</verb_phrase>

 <is_static

rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean"

 >false</is_static>

 </Method>

 </has_method>

 <noun_phrase

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >file in the fiile system</noun_phrase>

 <noun_phrase

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >directory</noun_phrase>

 <has_method>

 <Method rdf:ID="isDirectory">

 <is_static

rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean"

 >false</is_static>

 <method_name

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >isDirectory</method_name>

 <returnType

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >boolean</returnType>

 <verb_phrase

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >tests whether the file denoted by this pathname is a

directory</verb_phrase>

 <verb_phrase

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >is directory</verb_phrase>

 <is_constructor

rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean"

 >false</is_constructor>

 <enclosing_class rdf:resource="#File"/>

 </Method>

 </has_method>

 <noun_phrase

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >file</noun_phrase>

 <qualified_name

63

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >java.io.File</qualified_name>

 <has_method>

 <Method rdf:ID="file">

 <is_static

rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean"

 >false</is_static>

 <method_name

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >File</method_name>

 <enclosing_class rdf:resource="#File"/>

 <argumentList

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >path</argumentList>

 <is_constructor

rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean"

 >true</is_constructor>

 <verb_phrase

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >new file</verb_phrase>

 <verb_phrase

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >create</verb_phrase>

 </Method>

 </has_method>

 <is_abstract

rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean"

 >false</is_abstract>

 <has_method>

 <Method rdf:ID="listFiles">

 <is_constructor

rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean"

 >false</is_constructor>

 <method_name

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >listFiles</method_name>

 <verb_phrase

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >list files in this directory</verb_phrase>

 <verb_phrase

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >list files</verb_phrase>

 <returnType

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >File[]</returnType>

 <is_static

rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean"

 >false</is_static>

 <enclosing_class rdf:resource="#File"/>

 </Method>

 </has_method>

 <class_name

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >File</class_name>

 <has_method>

 <Method rdf:ID="exists">

 <method_name

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >exists</method_name>

64

 <verb_phrase

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >exists</verb_phrase>

 <is_constructor

rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean"

 >false</is_constructor>

 <returnType

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >boolean</returnType>

 <is_static

rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean"

 >false</is_static>

 <enclosing_class rdf:resource="#File"/>

 </Method>

 </has_method>

 <super_class rdf:resource="#Object"/>

 <has_method>

 <Method rdf:ID="renameTo">

 <method_name

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >renameTo</method_name>

 <is_constructor

rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean"

 >false</is_constructor>

 <argumentList

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >File</argumentList>

 <returnType

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >boolean</returnType>

 <enclosing_class rdf:resource="#File"/>

 <verb_phrase

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >rename</verb_phrase>

 <verb_phrase

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >move</verb_phrase>

 <is_static

rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean"

 >false</is_static>

 </Method>

 </has_method>

 <has_method>

 <Method rdf:ID="getAbsolutePath">

 <returnType

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >String</returnType>

 <method_name

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >getAbsolutePath</method_name>

 <verb_phrase

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >get absolute path on the file system</verb_phrase>

 <is_static

rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean"

 >false</is_static>

 <enclosing_class rdf:resource="#File"/>

 <is_constructor

rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean"

65

 >false</is_constructor>

 </Method>

 </has_method>

 </Java_Class>

 </child_class>

 <child_class>

 <Java_Class rdf:ID="String">

 <noun_phrase

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >string</noun_phrase>

 <noun_phrase

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >stream of characters</noun_phrase>

 <noun_phrase

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >character sequence</noun_phrase>

 <qualified_name

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >java.lang.String</qualified_name>

 <super_class rdf:resource="#Object"/>

 <is_abstract

rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean"

 >false</is_abstract>

 <class_name

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >String</class_name>

 </Java_Class>

 </child_class>

 <child_class rdf:resource="#InputStreamReader"/>

 <class_name

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >Object</class_name>

 <noun_phrase

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >any java instance</noun_phrase>

 <is_abstract

rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean"

 >false</is_abstract>

 <child_class>

 <Java_Class rdf:ID="Writer">

 <child_class>

 <Java_Class rdf:ID="PrintWriter">

 <has_method>

 <Method rdf:ID="println">

 <method_name

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >println</method_name>

 <enclosing_class rdf:resource="#PrintWriter"/>

 <is_constructor

rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean"

 >false</is_constructor>

 <returnType

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >void</returnType>

 <verb_phrase

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >write line</verb_phrase>

 <is_static

rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean"

66

 >false</is_static>

 <argumentList

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >String</argumentList>

 </Method>

 </has_method>

 <is_abstract

rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean"

 >false</is_abstract>

 <super_class rdf:resource="#Writer"/>

 <class_name

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >PrintWriter</class_name>

 <noun_phrase

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >write to character stream</noun_phrase>

 <qualified_name

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >java.io.PrintWriter</qualified_name>

 </Java_Class>

 </child_class>

 <super_class rdf:resource="#Object"/>

 <qualified_name

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >java.io.Writer</qualified_name>

 <class_name

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >Writer</class_name>

 </Java_Class>

 </child_class>

 </Java_Class>

 </super_class>

 <is_abstract

rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean"

 >false</is_abstract>

 <qualified_name

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >java.net.Socket</qualified_name>

 <has_method>

 <Method rdf:ID="Method_11">

 <verb_phrase

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >create a stream socket</verb_phrase>

 <verb_phrase

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >create a socket</verb_phrase>

 <method_name

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >Socket</method_name>

 <enclosing_class rdf:resource="#Socket"/>

 <is_constructor

rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean"

 >true</is_constructor>

 </Method>

 </has_method>

 <has_method>

 <Method rdf:ID="Method_3">

 <verb_phrase

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

67

 >create a stream socket</verb_phrase>

 <verb_phrase

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >create a socket</verb_phrase>

 <method_name

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >Socket</method_name>

 <argumentList

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >port</argumentList>

 <argumentList

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >host</argumentList>

 <enclosing_class rdf:resource="#Socket"/>

 <is_constructor

rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean"

 >true</is_constructor>

 </Method>

 </has_method>

 <has_method>

 <Method rdf:ID="getInputStream">

 <verb_phrase

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >get input stream</verb_phrase>

 <method_name

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >getInputStream</method_name>

 <enclosing_class rdf:resource="#Socket"/>

 <is_static

rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean"

 >false</is_static>

 <returnType

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >InputStream</returnType>

 <is_constructor

rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean"

 >false</is_constructor>

 </Method>

 </has_method>

 <class_name rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >Socket</class_name>

 </Java_Class>

</rdf:RDF>

<!-- Created with Protege (with OWL Plugin 3.4.1, Build 536)

http://protege.stanford.edu -->

68

Appendix C:

Sample Results

The classes used in this experiment are the same classes that are described using OWL

in Appendix A.

 java.lang.Object

 java.io.File

 java.net.Socket

 java.io.Writer

 java.io.PrintWriter

 java.io.BufferedReader

 java.io.FileInputStream

 java.io.Reader

The following examples show the user text input, as well as the output of semantic

matching of JAGE, and the generated code snippet.

1. Text input:
How do I read a file

Output of Step 1:
Found match in Source: class java.io.FileInputStream Target: class

java.io.File

Output of Step 2:
File _file_1 = new File(java.lang.String);

FileInputStream _fileInputStream_1 = new FileInputStream(_file_1);

_fileInputStream _1.readLine();

_fileInputStream _1.close();

2. Text input:
How do I read a line from a file

Output of Step 1:
Found match in Source: class java.io.BufferedReader Target: class

java.io.File

Output of Step 2:
File _file_1 = new File(java.lang.String);

FileReader _fileReader_1 = new FileReader(_file_1);

BufferedReader _bufferedReader_1 = new

BufferedReader_fileReader_1);

_bufferedReader_1.readLine();

_bufferedReader_1.close();

_fileReader_1.close();

3. Text input:
How do I rename a file

Output of Step 1:
Found match in Source: class java.io.File Target: null

Output of Step 2:

69

File _file_1 = new File(java.lang.String);

_file_1.renameTo(java.io.File);

4. Text input:
How do I create a file

Output of Step 1:
Found match in Source: class java.io.File Target: null

Output of Step 2:
File _file_1 = new File(java.lang.String);

5. Text input:
How do I read a line to a file

Output of Step 1:
Found match in Source: class java.io.BufferedReader Target: class

java.io.File

Output of Step 2:
File _file_1 = new File(java.lang.String);

FileReader _fileReader_1 = new FileReader(_file_1);

BufferedReader _bufferedReader_1 = new

BufferedReader_fileReader_1);

_bufferedReader_1.readLine();

_bufferedReader_1.close();

_fileReader_1.close();

6. Text input:
How do I not read a line from a file

Output of Step 1:
User sentence not understood: How do I not read a line from a file

7. Text input:
How do I write a line to a file

Output of Step 1:
Found match in Source: class java.io.PrintWriter Target: class

java.io.File

Output of Step 2:
File _file_1 = new File(java.lang.String);

PrintWriter _printwriter_1 = new PrintWriter_file_1);

_printwriter_1.println(java.lang.String);

_printwriter_1.close();

8. Text input:
How do I put a line into a file

Output of Step 1:
No matches found in OWL

9. Text input:
How do I give a file another name

Output of Step 1:
User sentence not understood: How do I give a file another name

10. Text input:
How do I move a file

Output of Step 1:
Found match in Source: class java.io.File Target: null

70

Output of Step 2:
File _file_1 = new File(java.lang.String);

_file_1.renameTo(java.io.File);

11. Text input:
How do I delete a file

Output of Step 1:
Found match in Source: class java.io.File Target: null

Output of Step 2:
File _file_1 = new File(java.lang.String);

_file_1.delete();

12. Text input:
How do I open a file
Output of Step 1:

No matches found in OWL

13. Text input:
How do I see a file

Output of Step 1:
No matches found in OWL

14. Text input:
How do I delete a directory
Output of Step 1:
Found match in Source: class java.io.File Target: null

Output of Step 2:
File _file_1 = new File(java.lang.String);

_file_1.delete();

15. Text input:
How do I close a file

Output of Step 1:
No matches found in OWL

16. Text input:
How do I list files in a directory

Output of Step 1:
User sentence not understood: How do I list files in a directory

17. Text input:
How do I check if a file is readonly

Output of Step 1:
User sentence not understood: How do I check if a file is readonly

18. Text input:
How do I make a directory

Output of Step 1:
Found match in Source: class java.io.File Target: null

Output of Step 2:
File _file_1 = new File(java.lang.String);

This example illustrates how WordNet improved matching process.

71

19. Text input:
How do I check if the file is a directory

Output of Step 1:
User sentence not understood: How do I list files in a directory

	Utah State University
	DigitalCommons@USU
	1-1-2012

	Java API-Aware Code Generation Engine: A Prototype
	Chandra Sekhar Vijyapurpu
	Recommended Citation

