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STUDY AREA 

 

Camp W.G. Williams (Fig. 4) covers approximately 25,000 acres comprising the 

west Traverse Mountains south of Salt Lake City, Utah.  It is described in the 

Intermountain Desert and Semi-desert Province in the Temperate Desert Division of 

Bailey’s Ecoregions (Bailey, 1995).  It has been in use by the military since 1854 and was 

made a federal military reservation by a presidential executive order in 1914 (Johnson, 

2007).  

  

 
 

Figure 4. Camp W.G. Williams and Surrounding Municipalities. 
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Camp Williams receives approximately 350,000 troop training days per year.  The 

installation provides a central training point for most of Utah’s 5,300 Army National 

Guard soldiers.  Camp Williams is one of the few training areas in Utah large enough to 

accommodate live fire exercises. 

In addition to a unique military training facility, it is also home to many species of 

wildlife and vegetation.  Camp Williams acts as a nesting site for numerous raptors 

including: golden eagles (Aquila chrysaetos), great horned owls (Bubo virginianus), 

Swainson’s hawks (Buteo swainsoni), northern harriers (Circus cyaneus), red-tailed 

hawks (Buteo jamaicensis), and American kestrels (Falco sparverius).  It is also home to 

many predatory animal species such as coyote (Canus latrans), red fox (Vulpes vulpes), 

bobcat (Lynx rufus), and cougar (Puma concolor).  The cougar population ranges 

between 2 and 3 cats.  It has been identified as one of Utah’s stable cougar breeding 

populations (Wolfe et al., 2006).  This is due mainly to the fact that Camp Williams is 

home to a thriving mule deer (Odocoileus hemionus) population, especially in the winter.  

It has been identified by the Utah Division of Wildlife as one of the last remaining critical 

winter ranges for deer left on the Wasatch front.  Camp Williams is also home to over 

420 species of vegetation.  The predominant vegetation community types are grassland, 

sagebrush, pinyon-juniper, and Gambel’s oak with mosaics of two or more of the 

vegetation types in areas of community transformation (Johnson, 2007). 
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METHODS 

 

Landcover Classification 

 

Since fuel models are 

primarily driven by land cover maps, 

a 12-class land cover map was 

generated using a 4-m resolution 

IKONOS image.  The imagery was 

collected in two stages.  The first 

scene was collected on June 26, 2003 

and the second was collected on June 

29, 2003.  The imagery was 

orthorectified by Space Imaging Corp. to National Map Accuracy Standards (NMAS) for 

1:12,000 scale.  Images were collected within 9 minutes of each other on those two days.  

Therefore, sun angle azimuth and elevation were similar between the two images, as were 

the nominal collection azimuths, making the two images comparable when they were 

mosaicked.  The mosaicked image is comprised of a panchromatic raster data layer at 1-

m resolution and four multispectral raster data layers (B, G, R, NIR) at 4-m resolution 

(Table 1).  The circular error of the image is 10m with 90 percent confidence that any 

particular pixel in the image is within 10m of the point in space in which it is supposed to 

represent.  This spatial accuracy is explained by stating that the image has a CE90 of 

10m. There are two major benefits to using IKONOS data.  One, it is relatively 

inexpensive for the quality of data received.  Second, for this project, the IKONOS data 

 
 

Figure 5. IKONOS resolution merge utilizing 

principal component and nearest neighbor 

algorithms. 
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was collected when all the vegetation at Camp Williams is well into its growing season 

and all vegetation communities making up the major fire fuels of concern were fully 

leafed out. 

For the purpose of classification, a resolution merge was performed between the 

panchromatic and multispectral data.  The principal component method was used to 

perform the resolution merge with nearest neighbor being used as the re-sampling 

technique.  The principal component was chosen as it attempts to protect the original 

scene radiometry of the input image (ERDAS, 2010).  Nearest neighbor was used as the 

re-sampling technique as it does not alter pixel brightness during re-sampling. 

 

 

 

 

 

 

 

 

 

 

The image was initially classified into 40 distinct classes using the supervised 

classification technique (Jensen, 1996).  The 40 classes were then consolidated into 12 

separate classes by utilizing the signature output files, feature space analysis, and ocular 

validation. The resultant 12 classes are shown in table 2.  Once the 12 classes had been 

delineated, 3 of them (sagebrush, oak, and juniper) were used to mask the original image 

in order to focus our efforts to sub-categorize the dominant vegetation classifications into 

biomass levels based on data collected in the 2004 field season.  Approximately 1,400 

Table 1. Spectral specifications of IKONOS Imagery. 

 

IKONOS Imagery Spectral Specifications 

Band Spectral Range 
Panchromatic 526-929 nanometers 

Blue 445-516 nanometers 

Green 506-595 nanometers 

Red 632-698 nanometers 

Near Infra-Red (NIR) 757-853 nanometers 
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acres affected by the July 8, 2003 fire 

was exempted from analysis due to the 

reflective influence of ash in those 

areas.  .   

 

Field Sampling 

 

Fire fuel inventory techniques 

were first developed for tall timber 

vegetation communities (Brown, 

1974).  This was mainly due to the fact 

that conifer forests have historically drawn the most recreational and commercial use and 

therefore has been the focus of much of the fire research.  Currently, many federal and 

state land management agencies are using methods of fuels monitoring grand-fathered 

from previous generations of mangers or are using a newer generation of fuels 

monitoring techniques that have been improved, but are still rooted in techniques 

established for the purpose of monitoring fuels in tall-timber communities (Lutes, 2005).   

I evaluated a number of methodologies beginning with the “Handbook for 

inventorying surface fuels and biomass in the Interior West” (Brown, 1974) and working 

forward to more recently developed methodologies.  The FIREMON manual found at 

www.firelab.org is an excellent source of these more advanced techniques as well as fire 

effects and fire weather monitoring protocols.   

 

 

Table 2. Supervised classification, class 

descriptions. 

 

Class Number Class Description 

1 Juniper 

2 Sage 

3 Oak 

4 Grass 

5 Light Sage 

6 Light Grass 

7 Bare/Light Grass 

8 Bare/Rock/Parking 

9 Mature Shrub 

10 Roadside Vegetation 

11 Ash/Shadow 

12 Roads 
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A fourth land cover type, grassland, was ignored during this study due to its sparse nature 

and fragmented distribution across the study area.  Grass, as a fuel, is a component of all 

4 cover types in varying degrees.  Grassland, as a dominant landcover class, can be 

broken into native and invasive communities fairly easily.  The most prominent invasive 

species are cheatgrass (Bromus tectorum) and bulbous poa (Poa bulbosa).  Native grass 

communities are comprised of many species, the most prominent communities being 

comprised of needle and thread (Hesperostipa comata), western wheatgrass (Elymus 

smithii), and slender wheatgrass (Elymus trachycaulum).  Fuel loading in the grassland 

community is strongly tied to soil type and aspect.  The pixel/biomass analysis for the 

three dominant vegetation types being analyzed in this study will be done at two scales: 

sub-plot average and macro-plot average. 

Pixel values used for regression analysis against canopy biomass levels were 

taken by averaging the pixels within the field sampling plot.  In an effort to compare 

accuracies between sub-plot pixel averages and macro-plot averages, pixel averages were 

taken for hoops containing all subplots and analyzed against the macro-plot biomass 

average. The mask layer utilized for segmenting the image into areas for analysis by 

dominant vegetation class, was created from a landcover classification.  The landcover 

classification was developed with an emphasis on the correct delineation of the dominant 

vegetation types, namely: Gambel oak, juniper, and sagebrush.  Accuracy of the 

supervised classification was estimated in two stages.  First, accuracy of the landcover 

classification was assessed by determining the majority class of pixels in a specific area 

of known land cover.  Second, in an effort to break down the level of accuracy into 



29 

 

different levels for comparison, each sub-plot was given an accuracy rating of between 1 

and 4.  An accuracy rating of 1 signified that 100% of the pixels within the sub-plot were 

correctly classified, a rating of 2 was given to those sub-plots that had 99–50% of the 

pixels within the sub-plot matching the classification, a rating of 3 for those sub-plots 

with 25–49% of the pixels matching the classification, and a rating of 4 for those sub- 

plots with 5–25% of the pixels matching the classification.  The results from the second 

approach at accuracy assessment were used to determine whether a sub-plot should be 

included in the analysis.  The ratings thresholds at which a subplot was deemed adequate 

to be included varied between vegetation classes.  For instance, a rating of 2 or greater 

was deemed adequate for Gamble oak due to its growth habit tendencies, whereas a 

rating of 4 was deemed adequate for a juniper sub-plot due to the growth tendencies of 

that vegetation type (i.e. juniper woodlands have a tendency towards large interspaces 

and so even a small spatial offset of the imagery might have a greater tendency to include 

more interspace than juniper in any given subplot).  Of the three land cover classes, 

juniper had the most misclassification errors.  Juniper was most often misclassified as 

sagebrush or Gambel oak.  It was because of this tendency that I decided to include 

juniper plots with an accuracy rating of 4, making the assumption that if one pixel was 

classified as juniper, then in reality the pixels surrounding it had a higher likelihood of 

also being juniper. 

An average value for the pixels being analyzed was calculated using the zonal 

attribute tool of the vector analysis feature in ERDAS Imagine and using the sub-plot 

boundary layer as the vector layer determining area of analysis.  This tool calculates the 



30 

 

average value of pixels within each data sub-plot based on the values of pixels that at 

least touch the edge of the sub-plot (eg. pixel #1 in Fig. 7).   

 

Textural Analysis 

 

There are indications that differentiation of biomass and stand structure may be 

possible through grouping pixels with similar GLCM values as identified through the 

textural analysis (Kayitakire et al., 2006; Proisy et al., 2007).  As Kayitakire and others 

have suggested, optimal window size for textural image development may vary between 

vegetation communities, prompting us to analyze each community separately for optimal 

window size.  Window sizes of 3, 5, 9, and 15 will be compared.  It has been suggested 

that correlation values are influenced by window size (Kayitakire et al., 2006).  

Kayitakire et al found that the closer that 

window size is to the size of vegetation group, 

the higher the correlation.  It seems that 

optimal window size will change dependent 

on vegetation type (e.g. sagebrush will in 

theory have higher correlation values when a 

3X3 window is used while juniper or Gambel 

oak will most likely have higher correlation 

values when a 9X9 or 15X15 pixel window is 

used when conducting textural analysis.  The 

textural images generated using each window 

 
 

Figure 8. Juniper skeletons as a result 

of wildfire 20+ years previous. 
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size will then be rated for their utility based on their correlation coefficients when 

assessing the relationship between canopy biomass and a pixels texture value.  

 

Multispectral Imagery, Textural Analysis, 

Gradient Data 

 

It may be possible to correlate pixel reflectance values to vegetation structure 

using several additional GIS layers associated with gradient data.  The term ‘gradient 

data’ is often used as a broad label referring to ancillary environmental data that may 

influence the target data in question.  For example: elevation, aspect, soil type, and fire 

return interval, could all be considered types of gradient data.  These layers were used in 

addition to the layers previously described.  All layers were analyzed in Program R 

(citation needed) for correlation to biomass loads when, if appropriate, were incorporated 

into a predictive, regression derived, model.  The proposed layers included: slope, aspect, 

elevation, and soil productivity layers.  Slope, aspect, and elevation were derived from a 

digital elevation model (DEM).  The soil productivity layer was created by the Natural 

Resources Conservation Service (NRCS) Soil Data Viewer, and was based on the 2001 

NRCS soil survey.  In addition to these layers, I also included seral state of the plots, fire 

frequency (recent return interval), NDVI, and textural ordination layers.  My hypothesis 

in incorporating these layers in the analyses was that less productive soils, steeper slopes, 

and aspect affect vegetation productivity and structure.  Deeper, more productive soils in 

the bottoms of drainages produced taller stands.  Those areas that burned in the recent 

past were also in a low growth stage.  Similar rules were developed for sagebrush and 

juniper.   
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Environmental data may be pertinent in both improving the accuracy in stand 

structure classification as well as being able to accurately assess the amount of fine fuels 

available for fire spread.  Fire frequency may, in this case, be the most important 

environmental gradient data in predicting biomass at a landscape level.  This is 

specifically true when classifying a juniper shrubland that has experienced a stand 

replacing fire in recent history.  Juniper skeletons can take decades to decompose (Fig. 

10) significantly affecting portions of the fuel complex such as down-dead-woody debris.  

Model development and accuracy assessment of this approach followed the same process 

as described earlier.  

 

OBJECTIVE 2: Developing a Fuel Model Layer 

 

Given that FARSITE, BehavePLUS, and FLAMMAP (Finney, 2006) were 

developed for utilization by federal land management agencies in landscape level 

planning, it is the objective of my thesis that the product created by this project will be 

compatible with these programs.  In short, this requires the end-product to be in the form 

of a raster format fuel model map.   

 

Development of the Regression Formula 

 

The datasets associated with the three approaches were subjected to regression 

analysis.  Each dominant vegetation type was analyzed separately.  The results of these 

analyses were used to develop regression equations specific to each land cover class.  The 

regression equations were then used to create a predicted biomass layer for each 

dominant vegetation type.  Since the regression equations were developed for each 
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dominant class separately, they were applied to masked sections of the image specific to 

their respective classes and not to the entire landscape. 

Once average pixel values were calculated for each subplot, values were 

correlated with canopy biomass.  Canopy biomass values were modified using a fourth 

root transformation in order to normalize their distribution.  Only 170 of the 510 subplots 

were used when I developed the regression model for canopy biomass prediction.  The 

remaining 340 subplots not used in the regression were used to assess accuracy of the 

model.  After model results were assessed for accuracy, the resulting canopy biomass 

map were combined into ranges of biomass and correlated to the total fuel load categories 

described in Ottmar’s Natural Fuels Photo Series.  

 

Correlating canopy biomass to Ottmar’s  

Natural Fuels Photo Series 

 

If canopy biomass can be accurately determined using the methods proposed 

above, then the product can be associated with data published in the National Wildfire 

Coordinating Group (NWCG) fuel complex photo series (Ottmar, et al., 2000).  That fuel 

complex classification can be reclassified into standardized fuel models as described by 

Scott & Burgan (2005).   

There was a disconnect between the field data collected and the data required for 

classification into a corresponding fuel model.  The reason for this disconnect was that 

the fuel model descriptions seem to only be concerned with the fine fuel being utilized by 

the fire as the vehicle for spread (Scott & Burgan, 2005), which fine fuel was 

predominantly part of the understory.  Remotely sensed multispectral data only allows 
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capture of canopy reflectance data, and does not allow direct capture of understory fuels 

reflectance data.  It was because of this disconnect that a bridge is required in the form of 

the NWCG photo series.  The fuel models described by Scott and Burgan specify fine 

fuel loads associated with the understory.  Through use of the Natural Fuels Photo Series, 

canopy biomass can be associated with an understory fuel load, and subsequently be 

associated with a fuel model.   I believe that because Scott and Burgans fine fuel loads 

associated with their model descriptions are based on Ottmar’s Natural Fuels Photo 

Series, that the photo series is ideal for use in correlating the data gathered on Camp 

Williams to the fuel models described by Scott and Burgan.  Recognition of this 

disconnect also emphasizes the importance of having a method to associate understory 

fuel loads with remotely sensed data.  I grouped raster based canopy fuel load predictions 

obtained via regression models and linked them to the fuel models described by Scott and 

Burgan through correlating canopy biomass data in the NWCG Natural Fuels Photo 

Series with the fine fuel component of the Natural Fuels Photo Series described in Scott 

and Burgans fuel model descriptions.  

 

Associating NWCG Natural Fuels Photo  

Series classified pixels with Scott and  

Burgan’s fuel models 

 

After associating canopy biomass data with the canopy component of NWCG 

fuels complex data, I then associated a total fine fuel load (as is documented in Scott & 

Burgan’s 2005 fuels model descriptions) with the fine fuel load described in the NWCG 

fuel complex descriptions.   
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 This assumption requires that some basic elements of canopy structure 

(specifically in the Gambel oak community) be correctly classified.  The elements 

required were different depending on the dominant vegetation class. Canopy closure was 

one of the more important attributes in correctly classifying juniper.  Juniper shrublands 

are often described as having more interspaces and less canopy dominance than mature 

juniper woodlands.  Consequently, shrublands had more spectral contribution from 

understory species than mature woodlands.  Also, the less mature a woodland was, or 

rather the closer it was to a shrubland state, the higher the fine fuel load (Wright & 

Bailey, 1982).  The two growth forms for this community type had very different 

reflectance values and could have potentially been classified separately.  The same 

attribute was important when breaking sagebrush into sub-classes that could be utilized in 

assigning fuel models to subclasses within a vegetation classification, in conjunction with 

Ottmar’s photo series.  Gambel oak, however, because of its growth habit and form 

would need to have its structure derived from spectral and environmental data, if that is 

possible.  Because of oaks tendency to grow in closed canopy clones, the spectral 

reflectance of a closed-canopy stand averaging 6 ft in height and 600 stems/acre and the 

spectral reflectance of a stand averaging 17 ft in height and 1,600 stems/acre (comparison 

illustrated in Fig. 3) may not be sufficiently different to ascertain between size classes.  

This makes correct fuel model classification extremely difficult if not impossible using 

spectral data alone or a combination of spectral and environmental/biophysical data.   
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 The end objective of these three steps of analysis is development of a landscape 

level fuel model map to be utilized by landscape level simulation programs such as 

FARSITE and FLAMMAP. 
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RESULTS 

 

 

Landcover Classification Accurracy 

I assessed accuracy of the three major vegetation types that were the focus of the 

canopy fuel loading data collected.    Preliminary fuels plots for grassland, taken in 

August 2003, showed a range of live herbaceous material, averaging 220 lbs/acre.  By not 

including the grassland fuel type in this analysis, I do not mean to underscore its 

importance as a fuel, or the fact that it is the dominant fuel for carrying wildfire in and 

through fuel types with more biomass.  A complete fuel map of Camp Williams will 

undoubtedly need to have grassland assessed and mapped as the fourth dominant fuel 

type.  In regards to grass understory and interspace among the 3 dominant vegetation 

classes assessed, it is anticipated that correct correlation of canopy fuel load estimates to 

photoseries will allow reasonably accurate assumptions of the surface fuel component of 

stands, including grasses.  Of the three remaining vegetation classes taken into account 

Gambel oak, juniper, and sagebrush, using the ERDAS Imagine accuracy assessment tool 

and 642 points, an overall accuracy of 58.72 percent was assessed.  The results of the 

analysis, specifically the error matrix and overall accuracies table by class, are shown in 

tables 3 and 4, respectively.   

In table 3, I did not include class 4 (grass) as a significant source of 

misclassification.  I did this for two reasons.  First, a belief that misclassifications in 

grasslands were, for the most part capturing interspace.  Second, grass biomass loads in 

tons/acres are significantly less than the other three dominant vegetation types in 

question.  As the misclassification results will be utilized in refining the supervised 
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classification for use as a mask in implementing the biomass estimation regression 

formula, I would rather err in masking grass pixels than err in their inclusion in the 

analysis.  Table 4 depicts the classification accuracy in terms of producers accuracy and 

users accuracy.  Producers accuracy is defined as the percentage of a given class that is 

correctly identified on the map.  Users accuracy is the probability that a given pixel will 

appear on the ground in the correct class. 

 

Revision of the supervised classification was done by utilizing a vegetation 

community map developed by Jonathan Edgar and Brian Meisman at Utah State 

University.  The vector layer was built by digitizing communities of vegetation utilizing 

leaf-on aerial imagery.  Revision of the classification was done by instituting rules.  For 

Table 3. Error matrix from ERDAS accuracy assessment.  Blue cells represent those 

points where pixels were classified correctly.  Red pixels represent those points 

where pixels were misclassified. 

 

Error matrix: Reference data 

Class Description Background Juniper Gambel oak Sagebrush 

0 Background 0 0 0 0 

1 Juniper 0 24 0 1 

2 Sagebrush 0 14 128 7 

3 Gambel oak 1 45 8 225 

4 Grass 1 42 28 12 

5 Light Sage 0 0 0 24 

6 Light Grass 0 8 0 0 

7 Bare/Light Grass 0 8 0 1 

8 Bare/Rock/Parking 0 1 0 0 

9 Mature Shrub 0 15 46 0 

10 Roadside 

Vegetation 

0 0 0 0 

11 Ash/Shadow 0 0 0 3 

12 Roads 0 0 0 0 

Column 

Total 

 2 157 246 273 
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instance, if a pixel was classified as Gambel oak, mature shruband fell within the vector-

based juniper community class, the pixel was then reclassified as juniper.  The question 

may be asked, why not just classify all pixels within the vector-based juniper layer as 

juniper?  The pixels that are commonly misclassified, are most often misclassified as a 

cover type with a somewhat similar biomass loading.  To include those pixels such as 

grass, bare, rock, etc. would mean applying the regression formula to those pixels and 

trying to force them into the biomass loading spectrum for which data was collected.  

Doing this forces the algorithm to classify grass or rock as having biomass in the 

tons/acre rather than in the lbs/acre as it should.   

Table 4. Initial accuracy total for the three main vegetation types. 

 

Accuracy Totals 

Class Description Reference 

Totals 

 

Classified 

Totals 

Number 

Correct 

Producers 

Accuracy 

Users 

Accuracy 

0 Background 2 0 0 --- --- 

1 Juniper 157 25 24 15.29% 96.00% 

2 Sagebrush 210 149 128 60.95% 85.91% 

3 Gambel oak 273 279 225 82.42% 80.65% 

4 Grass 0 83 0 --- --- 

5 Light Sage 0 24 0 --- --- 

6 Light Grass 0 8 0 --- --- 

7 Bare/Light  

Grass 

0 9 0 --- --- 

8 Bare/Rock/ 

Parking 

0 1 0 --- --- 

9 Mature Shrub 0 61 0 --- --- 

10 Roadside 

Vegetation 

0 0 0 --- --- 

11 Ash/Shadow 0 3 0 --- --- 

12 Roads 0 0 0 --- --- 

Totals 642 642 377   

Overall Classification Accuracy  =  58.72% 
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Table 5. Accuracy totals for the three main vegetation types in the revised landcover 

classification layer. 

 

Accuracy Totals 

Clas

s 

Description Reference 

Totals 

 

Classified 

Totals 

Number 

Correct 

Producer

s 

Accuracy 

Users 

Accuracy 

0 Background 2 0 0 --- --- 

1 Juniper 157 115 101 64.33% 87.83% 

2 Sagebrush 210 123 120 57.14% 97.56% 

3 Gambel oak 273 263 225 82.42% 85.55% 

4 Grass 0 76 0 --- --- 

5 Light Sage 0 28 0 --- --- 

6 Light Grass 0 8 0 --- --- 

7 
Bare/Light  

Grass 

0 9 0 --- --- 

8 
Bare/Rock/ 

Parking 

0 9 0 --- --- 

9 Mature Shrub 0 11 0 --- --- 

10 Roadside 

Vegetation 

0 0 0 --- --- 

11 Ash/Shadow 0 0 0 --- --- 

12 Roads 0 0 0 --- --- 

Totals 642 642 446   

Overall Classification Accuracy  =  69.47% 

 

In comparing results of the accuracy assessments of the initial supervised 

classification (table 4) and the revised supervised classification (table 5) we find a 

substantial improvement in juniper classification accuracy with insignificant changes 

made to both the Gambel oak and sagebrush classifications.   
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For this assessment, each plot was given a rating of 1 through 4.  A rating of 1 

meant that 75–100% of the pixels within the subplot area were classified as the 

vegetation type the plot was measuring.  A rating of 2 was given if 50–74% were 

classified correctly.  Subplots with between 25–49% of the pixels inside the subplot area 

having been classified as the dominant vegetation type in question were given a value of 

3.  Subplots with ≤ 25% but more than 0 pixels classified as the dominant vegetation type 

in question were given a value of 4.  Subplots having 0 pixels of the dominant vegetation 

type for which they were to represent were not included in regression analyses.  The 

percent of subplots with a value of 3 or more, for each of the dominant vegetation types 

in question is shown (table 6).   

 

Field Plot Alignment 

Field Data did not, in its raw form, conform to a normal distribution curve.  

Several statistical processes, such as linear regression, are based on the assumption of a 

normal population distribution.  In order to meet these statistical requirements, I 

employed the use of a data transformation.  Data transformations, or power trans-

formations (Hamilton, 1992), are implemented through application of a deterministic 

mathematical function effect the transformation had on the raw data distribution.  Raw 

canopy fuel load data shows a strong positive skew in its data distribution.  Through  

Table 6. Percent of subplots by dominant vegetation type deemed suitable for 

inclusion in regression analysis. 

 

Vegtype # of Points Valid Non-valid % Valid % Invalid 

Oak 255 211 44 90.7 9.3 

Juniper 154 103 51 68.6 31.4 

Sagebrush 215 187 28 84.5 15.5 
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Figure 9.  Illustration of the effect of a mathematical transformation on the 

normality of the data distribution. 

 

 application of a fourth root transformation, the data now approaches a normal 

distribution, while still exhibiting a slight negative skew.  Exponential, logarithmic, and 

root transformations were also tested, but a fourth root transformation was found to have 

the most normalizing effect on dependent variable data distribution.   

 

Multispectral Imagery 

 

Biomass loading was correlated against multispectral and panchromatic data 

layers as well, NDVI and texture.  Subplot pixel values were formulated for each subplot 

by using the zonal attribute tool in ERDAS Imagine, calculating the average pixel 

reflectance value for each data layer by taking the average value of all pixels falling 

within or are touching the boundary of the subplot.  These average values were then 

regressed against four multispectral, one panchromatic, and the two derivatives 

associated with 2003 IKONOS imagery and later 2006 NAIP (National Agricultural 

Imagery Program) and 2006 HRO (High Resolution Ortho-Photography, texture analysis 



68 

 

LiDAR and gradient data.  By including interspace cover type and structure a more 

accurate classification of a fuel community into a fuel model may be reached.   

A good visual illustration of the difficulty in discerning between Natural Fuels 

Photo Series and fuel model categories can be seen in figure 24.  Notice specifically 

photographs of PJ-04, PJ-06, PJ-07, and PJ-08.  There is little difference in tree height, 

stand structure, other than the ground fuel type and interspace (percent cover).  On the 

fuel model side, look at the photos depicting the SH5 and SH7 fuel models.  There is 

little difference in overall structure other than stand height or volume.  It could be that 

research focusing on determining attributes such as stand height and interspace or percent 

 
Figure 24. Visual compliment to table 20. 
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cover could be the key in accurately mapping fuel model and/or Natural Fuels Photo 

Series community.  Given the forthcoming inclusion of Natural Fuels Photo Series into 

the FCCS, research should be focused on identifying metrics that can be measured 

locally, identified at a landscape level remotely, and correlated to a specific Natural Fuels 

Photo Series.  For example, a juniper stand with 25 percent interspace populated with 

sagebrush and having an average crown diameter may translate directly into a PJ-03 

photoseries.  All attributes mentioned can be easily determined remotely through the use 

of a landcover classification and feature analyst.  Accuracies would be enhanced with 

LiDAR.  The dependent variable, however, is the determining of metrics determining the 

Natural Fuels Photo Series the stand best fits into.  The metric mentioned above are just 

examples of attributes that could be measured on the ground and detected via software 

analysis. 

 

 
 

Figure 25. Graph plotting predicted and measured values by sagebrush plot. 
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Sagebrush 

 

 The regression model used to predict sagebrush live woody biomass/fuel should 

have predicted 18% of the live woody fuel accurately at a probability level of .01.  In 

practice, it was able to predict 11% of the fuelload values accurately at a probability level 

of .01.  This degree of accuracy would by no means engender confidence in any 

landscape level simulation utilizing a fuel model map based on this regression model.  

Figure 25 depicts a fairly consistent trend of overestimation of fuel load. 

Fuel model classification of sagebrush communities suffers many of the same 

challenges that classifying juniper stands have.  Tables 21 and 22 illustrate the strong 

tendency of overlapping Natural Fuels Photo Series and fuel model classes when the 

classification process is based solely on fuel load values.   

 

Possible Solutions 

 Through inventory of the complete fuel complex and community, as opposed to 

live woody biomass only, it may be possible to develop a more accurate method for 

development of a fuel model map for sagebrush.  However, the question still poses itself 

as to whether it might be better to map fuelbeds rather than fuel models.  The same 

challenges pertaining to stand height and interspace hold for sagebrush as they did for 

juniper with the additional challenge of identifying the specific parameters separating 

fuel models or Natural Fuels Photo Series.  An additional difficulty specific to mapping 

sagebrush is incorporating stand structure outside of interspaces.  Being able to identify 

sagebrush height, whether a stand is 6 inches or 4 feet high, is extremely difficult, even 

with the use of LiDAR.  Sagebrush height varies little in comparison with other dominant 
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species such as Gambel oak and juniper.  It is partly for that reason that mapping stand 

height is so difficult.  Utilization of LiDAR in mapping stand height is difficult for two 

reasons.  First, it would require extremely resolute LiDAR data with Z-value accuracies 

of 0.3m or better.  Second, it would require extremely resolute data, meaning dozens of 

LiDAR ‘hits’ per square meter.  This is due to the fact that sagebrush has such a small 

leaf area.  So many of the LiDAR hits are likely to miss canopy leaves and hit lower 

leaves, branches, or ground, that in order to get an accurate picture of the canopy height, 

the number of hits per square meter would need to be increased substantially over what 

would be required for a deciduous canopy such as oak or a more dense coniferous canopy 

such as pinyon-juniper.  It could be that because of its small amount of height variation, 

that sagebrush related fuel models may be much more dependent on the fuels around 

them and the density of fuels in the interspaces.  I believe that a methodology for 

mapping sagebrush communities as fuel models will be more dependent on multispectral 

resolution (1ft or better) than z-value assessment.  Identifying the most beneficial data to 

collect will be one of the biggest factors determining success.  With sagebrush, as with 

juniper, the focus should not be correlating biomass to fuel model but rather community 

structure and fuelbed structure fuel model or Natural Fuels Photo Series.  As with juniper, 

I believe they key metrics within sagebrush communities will be interspace area and 

vegetation type within the interspace.         

 

Gambel Oak 

 

 The regression model used to predict fuel load should have accurately predicted 

17% of live woody fuel load nearly 100% of the time.  In application, the model was only  
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able to predict 10% of the live woody fuel load, nearly 100% of the time.  There was a 

consistent tendency towards overestimating canopy fuel loads for Gambel oak (Fig. 26). 

As with the other dominant vegetation types assessed in this thesis, correlation of 

measured fuel loads to Natural Fuels Photo Series and fuel model was extremely difficult, 

if not impossible due to the overlapping of fuel load and Natural Fuels Photo Series.  In 

the case of Gambel oak, more so than juniper and sagebrush, stand structure is pertinent 

in determining fuel model and Natural Fuels Photo Series.  Due to its growth habit, it is a 

prolific sprouter and grows in clones, Gambel oak develops a nearly 100% canopy cover 

at a very early seral stage.  This means that a 4 foot stand and an 18 foot stand will both 

show a 100 % canopy in any remotely sensed imagery.  While this trait is helpful in 

classifying a pixel as Gambel oak, it is detrimental when attempting to determine seral 

state with imagery alone.  Gambel oak are, however, the ideal application for LiDAR as 

 
 

Figure 22. Graph plotting predicted and measured values by Gambel oak plot. 
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is deciduous and has a large leaf area.  As it grows in clones, many stands are of the same 

height, so height and structure vary little within a clone, except for at the edges.   

 Correct classification of Gambel oak into the appropriate fuel model and Natural 

Fuels Photo Series is much more dependent on stand structure than fuel load values.  I 

believe that Gambel oak could be correctly classified into fuel model and Natural Fuels 

Photo Series utilizing LiDAR and multispectral imagery, with a high degree of accuracy.  

Once classified into the correct fuel model, landscape level simulations could easily be 

executed.  Correctly classified into the appropriate Natural Fuels Photo Series, other fuel 

complex data could be inferred and utilized in further analysis without investing a great 

deal of time and money in performing fuel complex inventory on a landscape level.  As 

in the case of this study, purchase of fine resolution LiDAR proves too costly for its 

inclusion in most analyses.  With time and increased use that cost should be decreased 

and become more available for inclusion in large landscape level analysis.  

 

Scale 

In assessing why I was unable to obtain the high correlation coefficients reported 

in other papers, I realized that nearly all other studies reporting high correlation 

coefficients for biomass prediction, with the exception of those studies utilizing LiDAR 

data, were utilizing lower resolution imagery (e.g. Landsat TM, MODIS) or were re-

sampling finer scale imagery to a coarser scale.  Out of curiosity, I performed an analysis 

at a coarser scale by taking an average of the microplots and using that as a macroplot 

fuel load value.  I then built hoops for each macroplot, encompassing each plots subplots, 

and calculated the zonal statistics for each analysis layer using the macroplot hoop areas.  
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I resampled the IKONOS imagery to a 30m resolution, and included 2004 Landsat TM 

data in the analysis for comparison.  My efforts were rewarded by correlation coefficients 

jumping from 0.17-0.18 to between 0.50-0.74.  As the focus of this thesis was to assess 

the utility of more resolute imagery in fuel load prediction, I include this preliminary 

assessment only to illustrate the benefit of a coarse analysis, and one of the common costs 

of more resolute analysis. 
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CONCLUSION 

 This study has shown that for the three vegetation types shown, the approaches 

assessed are ineffective methods of determining and accurately mapping fire fuel loads.  

This is in large part due to the inability to discern structure by spectral and gradient data 

alone.  It is believed however, that for Gambel oak, LiDAR data at sufficient resolution, 

could provide the ability to accurately map fuel loading at a fine scale.  Of the three 

vegetation types, Gambel oak is the most likely to benefit from this additional data due to 

its large leaf area.  Sagebrush and juniper may benefit from the inclusion of LiDAR data 

in determining structure.  LiDAR data may be of limited use in assessing the structure of 

these two vegetation types based largely on the small leaf area of both juniper and 

sagebrush.   

 Regardless of the ability to correctly assess fuel loading, there remained a 

fundamental weakness in the ability of a user to translate fuel load to fuel model.  This 

was due to the inability to discern the structure of the entire fuel complex remotely.  As 

the fuel model was based on the dominant fuel carrying the fire, which was almost 

always below the canopy, spectral data did little more than afford a landscape level 

landcover classification to aid in mapping dominant vegetation types.  The challenge was 

describing the fuel complex structure accurately at a large scale.  It should also be noted 

that the link between fuel model and fuel load were weak at best.  Often the fuel models 

had a very similar fuel load value.  Discernment between those fuel models lies 

specifically with the structure of the fuel complex and not in the fuel load in terms of tons 

per acre.   
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MANAGEMENT IMPLICATIONS 

There needs to be a dependable methodology for developing accurate fuel model 

maps in the Intermountain West.  The approach examined in this paper of assessing 

canopy fuel load, correlating it to Natural Fuels Photo Series, then classifying the pixels 

as a particular fuel model brought to light several issues that need to be addressed.  Fuel 

model descriptions were dependent on correct classification of the surface fuel layer, and 

correlation of canopy fuel estimates to surface fuel loads proved to be untenable via the 

methods outlined in this thesis.  Had the proposed methodology proved successful, the 

fact remains that Rothermel’s (1972) fire spread equations focus on surface fuels and do 

not incorporate the entire fuel complex.  Sandberg et al. (2007) has begun reformulating 

the fire spread equations to take into consideration the entire fuel complex and has 

implemented these changes into FCCS.  In the future, it may be possible to simulate fire 

spread through the complete complex through further model reformulation.  Future 

developments in the FCCS software will allow the Natural Fuels Photo Series to be input 

as fuelbeds.  Small changes will allow the fuelbeds to be further customized to user 

needs.  With all these advances, we will still not be able to simulate fire spread at a 

landscape level using the new fuelbeds.  Ideally, fuelbeds will be translated into a custom 

sets of comprehensive fuel models that could be input into FARSITE and FlamMap and 

utilized in fire spread simulation.  As it stands, the standard set of 216 fuelbeds available 

in FCCS have already been crosswalked into both the 13 fuel models and the 40 standard 

fuel models.  The trouble is that the crosswalk outputs have been determined unsuitable 

for use in FARSITE and FlamMap simulations in most circumstances (USDA-FS, PNW-
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FERA, 2011).  Perhaps FCCS could format output in a way that would be accepted by 

FARSITE and FlamMap as custom fuel models, with the addition of more complex 

fuelbed data integrated into the new fuel model descriptions.  This type of integration 

would require FARSITE and FlamMap acceptance and integration of the reformulated 

fire spread models utilized within FCCS into their programming.  This will require 

substantial integration efforts between the two teams of researchers working on program 

development.  Assuming these advances in fire behavior and spread simulation are 

accomplished, there remains the inability to accurately map fuelbeds at a landscape level 

utilizing remotely sensed data.   

I believe the next step in solving this problem should be to focus on delineation of 

landscapes into Natural Fuels Photo Series.  Accomplishing this will be heavily 

dependent on the ability to determine structural attributes of stands and then correlate 

those attributes (e.g. juniper interspace and understory with overall juniper fuelbed 

descriptions) with existing Natural Fuels Photo Series.  When FCCS integrates the 

Natural Fuels Photo Series into the fuelbed lists (a planned occurrence), customized 

fuelbeds could easily be made to reflect local stand fuelbed descriptions.  Accurate 

fuelbed maps could then be made at a landscape level.  There remains only the ability to 

crosswalk the fuelbed descriptions into either a version of standard fuel model that can be 

utilized in programs such as FARSITE or a newly described version of fuel models that 

addresses the complexity of fuelbed dynamics across a landscape.  In either case, the 

output should have the ability to be utilized in landscape level simulation software.  That 

capability does not currently exist. 
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The overall goal of AGCW is to have a data product that allows landscape level 

simulation of fire behavior, effects, in both natural areas and areas receiving fuel 

treatments.  In order to determine whether planned fuel treatments and proposed firebreak 

placements will be effective, accurate data must be available.  I was unable to develop 

those data using the methods outlined in this thesis.  It is my hope that future research 

such as that outlined in the discussions section of this thesis may be conducted and a 

sound method developed for obtaining these data development goals not only for AGCW 

but in order to benefit land managers throughout the Intermountain West. 
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FIELD PROTOCOLS 

 

 

Sagebrush Live Woody Stem Count Procedure 

Background Information 

 Use for cover types: 

Sage/grass, grass/sage, sage/oak, and sage/juniper 

 Classify sagebrush according to the percent cover (Firemon How To) 

 Use 17.9 foot hoops (default to 18 feet hoops) (Ottmar, 2000) for 75% density or 

lower (low density plots). 

 If the density is over 75% then use the 6.8 foot hoop (default to 7 foot hoops) 

 Move the center of the hoop to the 10’ and 20’points on the transects for the 7 foot 

diameter hoops (area = 205 sq. ft.). 

 Move the center of the hoop to the 20’ and 40’points on the transects for the 18 foot 

hoops (area = 1716 sq. ft.). 

 

Procedures 

 Go to stake and place one transect 30 degrees to the right and place a second transect 

30 degrees to the left from original transect placement to use the tape as a guide for 

hoop placement.  (Ottmar, 2000) 

 Place 2 hoops down on both the first and second transects with the corresponding 

spacing; therefore, a total of 4 hoops will be used on each plot (We found it to be too 

cumbersome to do 8 hoops; therefore, we used 4 hoops total). 

 Count standing woody that is at least 50% rooted within each hoop according to size 

classification (0-0.49, 0.5-0.99, 1-1.49, 1.5-1.99, 2-2.99, 3-4.99, 5-10 cm) for both the 

dead and live (more than 10% of leaves are living) woody vegetation (Brown, 1982). 

 Also, find the height, length (parallel to transect tape), and width (perpendicular to the 

transect tape) of all the live sagebrush throughout the hoops to calculate the average 

volume of the total sagebrush (Ottmar, 2000 and Uresk, 1977). 

 

Calculations 

 To calculate the mean biomass per shrub based on the clipped shrubs use the 

following equation: 

 

Yds = Yn + b(Xn’ – Xn) 

 

Where: 

Yds = mean phytomass of double sampling (biomass of the plot) for each category 

Yn = mean biomass/shrub based on the n =10 clipped shrubs 

b = slope of regression of biomass per shrub on volume per shrub 

Xn’ = mean volume per shrub of the n’ = number of live shrubs in the 8 plots 

Xn = mean volume of the 10 clipped shrubs 
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(Uresk, 1977) 

 

 To calculate the variance of the biomass per shrub use the following equation: 

 

 

 
Where Var (Yds) = variance of the biomass 

S
2
y.x = residual variance about the regression line (1-R

2 
 and you want a low value).  

Find when you calculate b from first equation. 

S
2
y = variance of the biomass data points used to find b from first equation.   

Variance = (summation (Xi - µ)
2
)/n 

Instead of the number 20 on the summation, use 10. 

 

(Uresk, 1977) 

 

 To calculate the average biomass of sagebrush/area: 

Y = Yds * Z 

 

Where Y = the average biomass of sagebrush/ft^2 

Yds = average biomass/shrub 

Z = number of shrubs per square foot 

 

(Uresk, 1977) 
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Juniper Procedure 
 

Background Information 

 Use 17.9 foot hoops (default to 18 foot hoops) (Ottmar, 2000) 

 Move the center of the hoop to the 20’, 40’, 60’, and 80’ points on the transects 

for the 18 foot hoops (area = 3431 sq. ft.). 

 Each hoop is 0.005 of an acre. 

 

Procedures 

 Go to stake and place one transect 30 degrees to the right and place a second 

transect 30 degrees to the left from original transect placement to use the tape as a 

guide for hoop placement.  (Ottmar, 2000) 

 Place 4 hoops down on both the first and second transects with the corresponding 

spacing; therefore, a total of 8 hoops will be used on each plot. 

 Record the crown diameter and the Diameter of outside Bark (DOB) taken at 30 

cm, or 11.8 inches, from the ground.  If there is one or more than one stem at 

stump height record all of the diameters and you will later calculate the equivalent 

diameter (Meeuwig, 1979). 

 Record the height along with the percent cover of the trees (Grier, 1992). 

 

Calculations 

 If multiple stems originate from below the soil (DOB) or more than one stem at 

stump height (30 cm from the ground).  Calculate the equivalent diameter: (Grier, 

1992) 

Equivalent diameter = Square root (summation (DOB)
2 

) 

 For the biomass, use the following calculation: (Meeuwig, 1979) 

Ln (total aboveground biomass (kg)) = 0.85*[Ln (diameter of the outside bark at 

stump height or DOB(cm))] + 0.642*[Ln (total height (dm))] + 1.392*[Ln 

(average crown diameter (dm))] -5.805 

 

Stump height = 30 cm = 11.8 in. 

1 dm = 0.1 m 

 To calculate the loading per area (tons/acre):   

Convert the hoop size to acres (18’ hoops = 0.005 acres, therefore, multiply by 

200 to get in acres).  Convert the biomass to tons (2000 lbs = 1 ton).  Calculate the 

tons per acre per hoop and take the average of the 8 hoops.   
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Oak Procedure 
 

Background Information 

 Use 17.9 foot hoops (default to 18 feet hoops) (Ottmar, 2000) for late seral, low 

density. 

 If the tree diameter is less than 5” then use the 6.8 foot hoop (default to 7 foot 

hoops) 

 Move the center of the hoop to the 10’, 20’, 30’, and 40’ points on the transects 

for the 7 foot diameter hoops (area = 410 sq. ft.). 

 Move the center of the hoop to the 20’, 40’, 60’, and 80’ points on the transects 

for the 18 foot hoops (area = 3431 sq. ft.). 

 

 

Procedures 

 Go to stake and place one transect 30 degrees to the right and place a second 

transect 30 degrees to the left from original transect placement to use the tape as a 

guide for hoop placement.  (Ottmar, 2000) 

 Look over the plot and decide the stem density class of oak.  If the stem density is 

less than 5” then use the 7 foot hoops.  Otherwise use 18 foot hoops. 

 Place 4 hoops down on both the first and second transects with the corresponding 

spacing; therefore, a total of 8 hoops will be used on each plot. 

 Count the trees that fall within each hoop according to size classification (0-0.49, 

0.5-0.99, 1-1.49, 1.5-1.99, 2-2.99, 3-4.99, 5-10 cm) that are rooted within the 

hoop using the other go-no-go tool and measure the diameter 4 cm above the 

ground (Clary and Tiedemann 1986).  If the tree diameter is over 10 cm then give 

the exact diameter of the tree (usually in the late seral only). 

 If more than half of the base of the tree is in the hoop then count the tree is 

counted.  If not than do not count the tree in the hoop. 

 

 

Calculations 

 Total biomass for the each stem: 

Log10 Y = 0.195 + 1.92 Log10 X 

 

Where Y = ovendry biomass in kg/ha 

X = basal diameter in mm 
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Each hoop will be broken up into size classifications (i.e. #10 0-0.5 cm, #3 0.5-1 

cm, #6 1-1.5 cm, #4 1.5-2 cm, etc.).  Use the equation above for each size and 

multiply the biomass by how many were within that size class.  Once all the 

biomass has been calculated for each size classification add them all together to 

get the total biomass within the hoop for a total biomass present in kg/ha. 
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